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Abstract. The existence of a new class of inclined periodic orbits of the collision restricted three-body problem
is shown. The symmetric periodic solutions found are perturbations of elliptic Kepler orbits, and
they exist only for special values of the inclination and are related to the motion of a satellite around
an oblate planet.
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1. Introduction. The launch of Sputnik in October 1957 opened the space age. The use of
circular, elliptic, and synchronous orbits, combined with dynamical effects due to the Earth’s
equatorial bulge, gives rise to an array of orbits with specific properties to support various
mission constraints. One example is the Molniya orbit, a highly elliptic 12-hour-period orbit
the former USSR originally designed to observe the northern hemisphere. The orbital plane
makes an angle of about 63 degrees with the equatorial plane of the Earth, and this is the
only value that prevents the orbit itself from rotating slowly within its plane and around the
focus.

In what follows we will introduce briefly a few common notions of orbital dynamics,
together with the current terminology (sometimes a few centuries old), and state the aim of
the paper.

The position of a body on a Keplerian elliptic orbit can be completely characterized by
six parameters. One such set of parameters are the classical orbital elements. As the orbital
plane is fixed in any inertial frame and passes through the origin, one should first give the
position of this plane. In a Cartesian frame with axes xyz, this is given by the inclination
i with respect to the xy-plane and the angle Ω from the positive x-axis to the intersection
of the orbital plane with the xy-plane. In the classical terminology of astronomy this line is
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known as the line of nodes (the nodes of the orbit being the two points of intersection with
the xy-plane, and the ascending node that in which the body crosses from z < 0 to z > 0),
and Ω is called the longitude of the ascending node.

Then we need the position of the ellipse on its plane. One focus is at the origin, and the
line joining the pericenter and the apocenter (classically the line of apsides) forms an angle
ω with the line of nodes which gives the position of the ellipse. Usually the half-line from the
origin to the pericenter and the half-line from the origin to the ascending node are taken, and
then we say that ω is the longitude of the pericenter.

The size and shape of the ellipse are given by the semimajor axis a (directly related to
the energy) and the eccentricity e (related to the energy and the angular momentum).

Finally, the position of the body along the orbit is given either by the angle f (true anom-
aly) pericenter–origin–body, or by some other related angles such as E (eccentric anomaly)
or M (mean anomaly). The three anomalies (a name already used in Greek astronomy) are
related among themselves by the geometry and the dynamics of Keplerian motion. The posi-
tion is actually a function of time, and the origin of time is called the epoch (see, for example,
[2]).

Of course, Ω, ω, and f are not well defined for circular or zero-inclination orbits, a problem
that can be solved in a variety of ways which go back to Laplace in the case of the classical
elements and to Poincaré for the Hamiltonian formulation.

Thus the position and velocity of a point in space are completely characterized by the six
orbital elements, which are constant (except f , or whichever anomaly is used) for a Keplerian
orbit. This rather strange system of coordinates in phase space is useful because in most cases
the non-Keplerian motion of a body subject to perturbations can be seen as a fast motion
along a Keplerian orbit with slowly varying elements.

A set of variables closely related to the orbital elements are the Delaunay elements, which
could be considered as the canonical (in the sense of Hamiltonian) version of the classical
elements and will be defined in section 2.

Any small perturbation of the Keplerian motion has two kinds of effects on the motion:
periodic and secular. An element subject to periodic perturbations simply oscillates around
its central unperturbed value, while a secular perturbation is a steady, linear increase or
decrease of its value. Of course, this is true only in a first order approximation, and it is a
qualitative description, because a first order approximation is valid only on a finite interval
of time, and the very concept of periodicity does not make sense. As for the secular effects
we must remember that one of the major problems of the classical dynamical astronomy of
the nineteenth century was the distinction between true secular effects and linearization of
periodic effects of very long period, and that the whole matter has been settled only by the
KAM theory.

In this sense, it is a result of classical astronomy that a, e, and i are subject to only
periodic effects, while Ω, ω, and M display periodic and secular effects. In short, a perturbed
Keplerian conic can be thought of, roughly speaking, as a conic which rotates slowly on its
plane while the plane itself rotates around the z-axis.

The most common perturbations of the potential in celestial mechanics are due either to
the presence of a third body or to lack of sphericity of the bodies. The latter can be dealt with
by expanding the potential in spherical harmonics, so that if the body has axial symmetry,
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the potential can be seen as that of an inverse square distance central force plus other terms:

V (r, φ) = −Gm
req
r

(
1 −

∞∑
k=2

Jk

(req
r

)k
Pk(cosφ)

)
,

where G is the gravitational constant, m is the mass of the body, req is its equatorial radius,
(r, θ, φ) are spherical coordinates (θ does not appear because of the axial symmetry), Pk is the
kth Legendre polynomial, and Jk are the coefficients defining the expansion (see, for example,
[10]).

The third body perturbation is quite a different matter because the equations of motion
must be supplemented with those of the new body. In the restricted three-body problem, it
is assumed that one of the bodies is so small that it does not affect the motion of the other
two (the primaries), and then we usually have a Keplerian motion plus a nonautonomous
perturbation. If, however, we consider the potential in a region far away from the primaries and
normalize this distance to unity, the velocities of the primaries are very high and heuristically
we can somehow average their mass along their whole orbits, so that dynamically we are again
in the case of a nonspherical potential.

For Earth-orbit design, the main perturbation is that of the J2 term in the expansion of
the potential of an oblate ellipsoid. This term perturbs the orbit in the sense explained above,
resulting in a precession both of the line of nodes and of the pericenter. It is apparent (see,
for example, pages 503–504 of [2]) that there exists a critical inclination angle, i � 63◦, such
that the perigee is fixed in the first approximation because its secular terms are of opposite
sign for inclinations above or under the critical value, irrespective of the eccentricity. The
case of a prolate ellipsoid, though apparently not frequent in astronomy, could be treated in
the same way, the only difference being that the J2 term has the opposite sign, so that all the
precessions are in the opposite direction.

The existence of a class of inclined periodic solutions of the circular three-body problem
was shown by Jefferys in [5]. He showed the existence of families of elliptic orbits with
inclination close to critical for any value of the eccentricity. His proof rests on a mirror
theorem: in the rotating coordinate system of the restricted three-body problem any trajectory
that hits twice perpendicularly a certain plane is a periodic solution. For an elliptic orbit,
perpendicular crossing means that the body is at either the pericenter or the apocenter and
the line of apsides lies on the mirror plane; for this situation to happen twice in time it is
sufficient that the line of apsides does not have a secular motion, so the inclination must be
near critical. Of course a precession of the line of nodes does exist, but it is hidden, as it
were, in the rotating frame. It must be borne in mind that in celestial mechanics periodic
usually means periodic in some rotating frame, and thus periodic or quasi-periodic in the
inertial frame depending on whether the angle advanced by the rotating frame in a period is
a rational multiple of π or not. The method used is the continuation method developed by
Poincaré (see [8]), which is one of the most frequently used methods for proving the existence
of periodic orbits.

The case dealt with in this paper is different from Jefferys’s because the primaries move on
an elliptic collision orbit along the z-axis. Heuristically speaking, however, it can be expected
that far away from the primaries the potential will be similar to that of a very eccentric prolate
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ellipsoid, so that a J2 effect, with its critical inclination, will exist. We show the existence
of periodic solutions of Jefferys type: large semiaxis compared to the that of the primaries,
arbitrary eccentricity, and inclination close to critical.

The problem can be seen as a perturbed Kepler problem, where the small parameter is the
semimajor axis of the primaries’ orbit after rescaling. The perturbed problem is degenerate
due to the fast motion of the primaries, and the equations are no longer analytic when the
parameter equals zero, which precludes the use of a standard implicit function theorem. We
overcome the difficulty by using Arenstorf’s theorem, where weaker assumptions of differen-
tiability are needed (see [1]). A planar configuration of this problem is studied in [6].

In our case, the problem has a rotational symmetry around the z-axis (which contains
the colliding primaries). This symmetry would be lost if we considered elliptic noncollision
orbits for the primaries. See [3] and [4], where the elliptic restricted three-body problem is
considered. In those papers, the periodic orbits are perturbations of the circular solutions
of the Kepler problem having large radii on a plane perpendicular to that of the primaries.
Periodic orbits in the spatial elliptic restricted three-body problem are also studied using
double averaging in [7].

The paper is organized as follows. Section 2 describes the general setting of the collision
restricted three-body problem. Section 3 shows how its solutions can be approximated through
successive corrections to Keplerian motion. Section 4 deals with the continuation problem.
The main result is the existence of quasi-elliptic orbits for discrete values of the semimajor
axis of the primaries, with arbitrary eccentricity and inclination close to critical. A number
of technical computations are presented in section 5.

Figure 1 shows one of the orbits predicted by the main theorem, numerically computed
with initial values r0 = 0.621114405, φ0 = 1.116457610, θ0 = 0, pr = 0, pφ = 0, pθ =
0.4098780306, and μ = 30−2/3. The equations of motion and the first variational equations
were numerically integrated with a Runge–Kutta 7-8 routine, and the equations defining the
initial conditions were solved with a Newton method starting with the Keplerian orbit with
a = 1, e = 0.4, and cos i = 1/

√
5 (critical inclination).
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Figure 1. Example of a quasi-periodic orbit in a Cartesian frame. The orbit is followed during 6 (plot on
the left) and 150 (plot on the right) times the period of the primaries. The Keplerian orbit for μ = 0 is plotted
(black line). The primaries move along the vertical line passing through the origin.

2. The collision restricted three-body problem. The collision restricted three-body prob-
lem describes the motion of a massless particle under the attraction of two primaries with equal
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masses, m1 = m2 = 1/2, moving on a collision elliptic orbit. In order to avoid a triple collision,
we consider that the third body is far from the primaries compared to the distance between
them. This fact can be introduced in the equations of motion by making the primaries very
close to each other and looking for solutions of the massless particle at distance of order unity
to the primaries.

Let μ be a small parameter. The distance between both primaries is given by

(2.1) ρ = μ(1 − cosEp(t)),

where Ep = Ep(t) is the eccentric anomaly of m1 and it is related to its mean anomaly �p
through Kepler’s equation

(2.2) Ep − sinEp = �p,

where �p = μ−3/2t. The period of the motion of the primaries is Tp = 2πμ3/2, so that Ep = kπ
when t = πkμ3/2.

Equation (2.2) is a particular case (for e = 1) of Kepler’s equation � = E − e sinE, where
e is the eccentricity, � is the mean anomaly (real time measured in such units that the period
is 2π), and E is the eccentric anomaly, which is related to the angular position f of the
body on the orbit (from the pericenter) through tan f/2 =

√
(1 + e)/(1 − e) tanE/2. The

latter equation results from the geometry of elliptic orbits, and Kepler’s equation is just the
mathematical expression of the law of areas, i.e., the conservation of the angular momentum
(see [10]).

We consider a fixed coordinate system (q1, q2, q3) (see Figure 2) with origin at the center
of mass of m1 and m2 in such a way that the primaries move along the q3-axis. Their
positions are given by r1 = (0, 0, μ2 (1 − cosEp)) and r2 = −r1. Let q = (q1, q2, q3) and
p = (p1, p2, p3) = (q̇1, q̇2, q̇3) be the position and momentum of the infinitesimal body m3.
The problem of describing its motion is known as the three-dimensional collision restricted
three-body problem.

The equations of motion for the infinitesimal body can be written as a nonautonomous
Hamiltonian system depending on the parameter μ as

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, i = 1, 2, 3,

where

(2.3) H =
1

2
(p2

1 + p2
2 + p3

3)
2 − 1

2

(
1

R1
+

1

R2

)
,

and R1 and R2 are given by

R2
1 = q2

1 + q2
2 +

(
q3 − μ

2 (1 − cosEp)
)2

,

R2
2 = q2

1 + q2
2 +

(
q3 + μ

2 (1 − cosEp)
)2

.

Let us introduce spherical coordinates (r, φ, θ), and (pr, pφ, pθ) by means of the canonical
change

q1 = r cosφ cos θ, p1 = pr cosφ cos θ − pφ
r sinφ cos θ − pθ

r cosφ sin θ,

q2 = r cosφ sin θ, p2 = pr cosφ sin θ − pφ
r sinφ sin θ + pθ

r cosφ cos θ,

q3 = r sinφ, p3 = pr sinφ +
pφ
r cosφ.
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Figure 2. Collision restricted three-body problem.

In the new variables, the Hamiltonian (2.3) becomes

(2.4) H =
1

2

(
p2
r +

p2
φ

r2
+

p2
θ

r2 cos2 φ

)
− 1

2

(
1

R1
+

1

R2

)
,

with R1 and R2 given by

(2.5)
R2

1 = r2 +
(μ

2

)2
(1 − cosEp)

2 − rμ(1 − cosEp) sinφ,

R2
2 = r2 +

(μ
2

)2
(1 − cosEp)

2 + rμ(1 − cosEp) sinφ.

Notice that Ep as given by (2.2) is a function of time t and μ, which is not defined for μ = 0.
So, neither the Hamiltonian (2.3) nor (2.4) is defined.

The equations of motion for the infinitesimal mass in spherical coordinates are

(2.6)

ṙ = pr, ṗr = −∂H
∂r ,

θ̇ = pθ
r2 cos2 φ

, ṗθ = 0,

φ̇ =
pφ
r2
, ṗφ = −∂H

∂φ .

Since R1 and R2 do not depend on θ, ṗθ = 0 and the angular momentum pθ = Θ is constant.
Thus, it can be calculated from the initial conditions, and the equation for θ can be decoupled
from the other equations. In this way, we can consider the system of equations

(2.7)

ṙ = pr, ṗr = −∂H
∂r ,

φ̇ =
pφ
r2
, ṗφ = −∂H

∂φ .

Once r and φ are obtained, we will get θ from its equation in (2.6).
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From now on, reduced problem means the problem given by (2.7), and complete problem
means the whole set of equations (2.6). Our aim is to find periodic solutions of the reduced
problem that will be periodic or quasi-periodic solutions of the complete problem.

It is easy to see that the equations of the reduced problem are invariant by the symmetry

S : (t, r, φ, pr, pφ, Ep) −→ (−t, r, φ,−pr,−pφ,−Ep),

so that, if

γ(t) = (r(t), φ(t), pr(t), pφ(t), Ep(t))

is a particular solution of (2.7), then so is

(r(−t), φ(−t),−pr(−t),−pφ(−t),−Ep(−t)),

and we have the following well-known result.

Proposition 2.1. Let γ(t) = (r(t), φ(t), pr(t), pφ(t), Ep(t)) be a solution of the reduced prob-
lem given by (2.7). If γ(t) satisfies (pr(0), pφ(0)) = (0, 0), (pr(T/2), pφ(T/2)) = (0, 0), and
Ep(T/2) = kπ, then γ(t) is a periodic solution of period T .

In order to find elliptic orbits we will introduce Delaunay variables (l, g, h) and (L,G,H),
where

L =
√
a, H = G cos i, G =

√
a(1 − e2),

a is the semimajor axis of the infinitesimal mass, G its angular momentum, i the inclination of
its orbital plane with respect to the q1q2 reference plane, l the mean anomaly, g the argument
of the pericenter measured from the ascending node, and h the longitude of the ascending
node (see, for example, [9]).

We will use the symmetry conditions stated in Proposition 2.1 to obtain periodic solutions
of the reduced problem. These conditions can be expressed in Delaunay variables as

(2.8) l(t) = 0 mod π, g(t) = π/2 mod π

for epochs t = 0 and t = T/2, where T = 2kπμ3/2 in order to satisfy Ep(T/2) = kπ.

3. Approximate solutions. In this section we will show how those solutions of the three-
dimensional collision elliptic restricted three-body problem in which the infinitesimal body
keeps moving far away from the primaries can be approximated through successive corrections
to the Keplerian motion. In section 4, we will use these approximations to continue some
elliptic solutions of the Kepler problem to the case μ �= 0.

As the Hamiltonian (2.3) is not defined when μ = 0, instead of expansions in power series
(which are no longer available) we use asymptotic series. Using expressions (2.5) and (2.1),
we can write

R1 = r

√
1 +

ρ2

4r2
− ρ

r
cosS,

where S = π
2 − φ is the angle between the position vectors of m1 and m3 (see Figure 2).

We assume that the distance from the origin to the primaries (μ/2) is small compared to the
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distance from the origin to the infinitesimal body, so that ρ � r and we can expand R−1
1 as

a power series in ρ
2r by using Legendre polynomials. Then

1

R1
=

1

r

∞∑
j=0

Pj(cosS)
( ρ

2r

)j
=

1

r

[
1 +

∞∑
j=1

μjPj(cosS)

(
1 − cosEp

2r

)j
]
,

where Pj(cosS) is the jth Legendre polynomial. Expanding R−1
2 in a similar way, the Hamil-

tonian (2.4) becomes

(3.1) H(q,p, t, μ) = H0(q,p) + μ2H1(q,p, t, μ) + μ4HR(q,p, t, μ),

where

H0(q,p) =
1

2

(
p2
r +

p2
φ

r2
+

p2
θ

r2 cos2 φ

)
− 1

r
,

H1(q,p, t, μ) =
−1

r
P2(cosS)

(
1 − cosEp

2r

)2

=
(1 − cosEp)

2

8r3

(
1 − 3 cos2 S

)
,

and

HR(q,p, t, μ) =
−1

r

∞∑
k=2

μ2(k−2)P2k(cosS)

(
1 − cosEp

2r

)2k

.

The dependence on (t, μ) comes from the eccentric anomaly Ep = Ep(t, μ) given by (2.2).
Notice that if r ≥ δ for some fixed δ > 0, then H1(q,p, t, μ) and HR(q,p, t, μ) are bounded.
Thus, μ2H1 and μ4HR are continuous at μ = 0, although H1 and HR are not so. This is the
reason why expansions as power series in μ cannot be used.

Let us denote z = (l, g, h, L,G,H). Applying the corresponding symplectic change of
variables, Hamiltonian (3.1) becomes

(3.2) H(z, t, μ) = H0(z) + μ2H1(z, t, μ) + μ4HR(z, t, μ),

where

H0(z) = − 1

2L2
,(3.3)

H1(z, t, μ) =
(1 − cosEp)

2

8r3

[
1 − 3

(
1 − H2

G2

)
sin2(g + f)

]
.(3.4)

In (3.4) we have used the true anomaly f of the motion of the infinitesimal mass in order to
write q3 = r sin i sin(f + g) and

cos2(S) =
q2
3

r2
= sin2 i sin2(f + g) =

(
1 − H2

G2

)
sin2(g + f).

Observe that H0 is the Hamiltonian of the Kepler problem and that, despite that Hamil-
tonian (3.2) is not defined for μ = 0, the limit when μ → 0 exists and

lim
μ→0

H(z, t, μ) = H0(z).
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Therefore, the equations of motion can be written as

(3.5) ż = F(z, t, μ),

where F = J · ∇H, J =
(

0 I
−I 0

)
, and I is the identity matrix of dimension 3 × 3. Using (3.2),

the vector field F is given by

F(z, t, μ) = F0(z) + μ2F1(z, t, μ) + μ4FR(z, t, μ),

where

F0(z) = (L−3, 0, 0, 0, 0, 0)t,

F1(z, t, μ) = J · ∇H1,

FR(z, t, μ) = J · ∇HR,

and H1 and HR are the terms in (3.2).
The next lemma shows that the solutions of (3.5) can be written as the solutions of the

Kepler problem plus terms of order μ2, and the same is true of its partial derivatives with
respect to the initial conditions.

Lemma 3.1. Let z0 be an initial condition and z(0)(t, z0) a solution of

ż = F0(z)

with z(0)(0, z0) = z0 such that it remains bounded and bounded away from the singularities of
F(z, t, μ). Let z(t, z0, μ) be a solution of (3.5) with the same initial condition z0. Then we
can write

z(t, z0, μ) = z(0)(t, z0) + μ2z(1)(t, z0, μ) + zR(t, z0, μ),

where z(1)(t, z0, μ) is the solution of

ż = F1(z
(0)(t, z0), t, μ) + DF0(z

(0)(t, z0)) z

with initial condition z(1)(0, z0, μ) = 0, and DF is the matrix whose entries are the partial
derivatives of F with respect to the z variables. Furthermore, zR(t, z0, μ) and Dz0zR(t, z0, μ)
are O(μ4) in a finite interval of time.

These results can be obtained by using Taylor’s expansions and Gronwall’s inequality
(see [4]). They are also valid for any initial conditions in a compact neighborhood of z0

satisfying the hypothesis of the lemma.

4. Continuation of symmetric periodic solutions. In this section we use the results of
section 3 to show the existence of symmetric periodic solutions of the reduced problem.

Let us start by considering the Kepler problem given by Hamiltonian (3.3), whose solution
with initial condition z0 is

z(0)(t, z0) = (l0 + L−3
0 t, g0, h0, L0, G0, H0).

Clearly, the orbit with initial conditions z∗0 = (0, π/2, h∗0, 1, G
∗
0, H

∗
0 ) is symmetric and periodic

of period T = 2π. We want to find periodic symmetric solutions close to z(0)(t, z∗0).
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From Lemma 3.1, any solution of the reduced problem can be written as the solution of the
Kepler problem plus a perturbation, provided that z(0)(t, z∗0) remains bounded and bounded
away from the singularities. To ensure that z∗0 satisfies these conditions, it is sufficient that
G∗

0 > 0; that is, the eccentricity is less than 1. Also, notice that we are dealing with elliptic
orbits, so G∗

0 < 1.
Thus, we will look for initial conditions z0 = (0, π/2, h0, L0, G0, H0) in a neighborhood of

a fixed z∗0 with 0 < G∗
0 < 1, in such a way that the solution z(t, z0, μ) of (3.5), with μ �= 0

small enough, is a symmetric periodic orbit of the reduced problem.
For a fixed z∗0, let D be a compact neighborhood of z∗0 where the conditions of Lemma 3.1

hold and 0 < G0 < 1.
Then, given z0 ∈ D, we know that

(4.1) z(t, z0, μ) = z(0)(t, z0) + μ2z(1)(t, z0, μ) + O(μ4),

where

z(0)(t, z0) = (L−3
0 t, π/2, h0, L0, G0, H0),(4.2)

z(1)(t, z0, μ) = Z(t, z0)

∫ t

0
Z−1(s, z0)F1(z

(0)(s, z0), s, μ) ds,(4.3)

and

Z(t, z0) =
∂z(0)(t, ξ)

∂ξ

∣∣∣∣
ξ=z0

.

From (4.1),

l(t, z0, μ) = L−3
0 t + μ2l(1)(t, z0, μ) + O(μ4),

g(t, z0, μ) = π/2 + μ2g(1)(t, z0, μ) + O(μ4),

where l(1) and g(1) are the first and second coordinates of z(1), given by (4.3), respectively.
Obviously, the symmetry conditions given by (2.8) are fulfilled at t = 0. They also must

be satisfied at t = T/2 = kπμ3/2 in order to have Ep(T/2) = kπ. We consider k a natural
number and μ > 0 such that μ = k−2/3. Then, T/2 = π and we have to find initial conditions
z0 ∈ D satisfying

(4.4)
L−3

0 π − π + μ2l(1)(π, z0, μ) + O(μ4) = 0,

g(1)(π, z0, μ) + O(μ2) = 0.

A natural way to solve (4.4) is to find a solution for the case μ = 0 and then to apply
an implicit function theorem. The first handicap is that neither l(1)(π, z0, μ) nor g(1)(π, z0, μ)
is defined for μ = 0, and neither is the Hamiltonian H1. Moreover, they do not satisfy the
differentiability conditions of the standard implicit function theorem. In order to overcome
these difficulties, we will see first that both equations can be extended to the case μ = 0.
Second, we will use Arenstorf’s theorem, which requires weaker conditions (see [1]).

Let us start by extending (4.4) to the case μ = 0. Observe that, from (4.3), l(1) and g(1)

are bounded. This fact will be sufficient to define the first equation in (4.4) for μ = 0. As for
the second one, we show that g(1)(π, z0, μ) can be written in terms of L0, H0, and G0 plus a
term of order μ3/2. In order to prove this we need the following technical lemma.
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Lemma 4.1. Given z∗0, let z0 = (0, π/2, h0, L0, G0, H0) ∈ D. Let be ϕ(t, z0) be a function
bounded in D, such that dϕ

dt (t, z0) is also bounded in D. Then,∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt =
5

2

∫ π

0
ϕ(t, z0) dt + R(z0, μ),

where |R(z0, μ)| ≤ Kμ3/2 for a certain constant K.
Proof. From (2.2), the function (1 − cosEp)

2 is even and 2π-periodic with respect to the
variable �p. Its Fourier series is given by

(1 − cosEp)
2 =

a0

2
+

∞∑
k=1

ak cos(k�p),

where

ak =
2

π

∫ π

0
(1 − cosEp)

2 cos(k�p) d�p.

From the fact that (1 − cosEp) dEp = d�p, the zero coefficient is

a0 =
2

π

∫ π

0
(1 − cosEp)

3 dEp = 5.

Then, using that �p = μ−3/2t,∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt =
5

2

∫ π

0
ϕ(t, z0) dt

+
∞∑
k=1

ak

∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt

︸ ︷︷ ︸
R(z0, μ)

.

Integrating by parts,∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt =

μ3/2

k

(
ϕ(π, z0) sin(kμ−3/2π)

−
∫ π

0

dϕ

dt
(t, z0) sin(kμ−3/2t) dt

)
.

Since ϕ(t, z0),
dϕ
dt (t, z0) are bounded for all (t, z0) with z0 ∈ D (say, |ϕ(t, z0)| ≤ k1 and

|dϕdt (t, z0)| ≤ k2), we have that for a certain constant C∣∣∣∣
∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt

∣∣∣∣ ≤ μ3/2

k

(
k1 + 2k2

μ3/2

k

)
=

μ3/2

k
C,

and

|R(z0, μ)| ≤ μ3/2C

∞∑
k=1

|ak|
k

.
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The series on the right-hand side converges because ak are Fourier coefficients of a regular
function, and so the lemma is proved.

Lemma 4.2. Given z∗0, let z0 = (0, π/2, h0, L0, G0, H0) ∈ D. Then, for μ > 0 and small
enough, g(1)(π, z0, μ) is of type C1 in D and there exist functions I1(L0, G0) and I2(L0, G0)
such that

g(1)(π, z0, μ) = −15

16
(I1(L0, G0) −H2

0I2(L0, G0)) + O(μ3/2).

Furthermore, if L0 = 1, then

g(1)(π, z0, μ) = − 15π

32G4
0

(
5
H2

0

G2
0

− 1

)
+ O(μ3/2).

Proof. From (4.3), we have that

g(1)(t, z0, μ) =

∫ t

0

∂H1

∂G

∣∣∣∣
z(0)(s,z0)

ds,

where z(0)(s, z0) is the function defined in (4.2). Then, using (3.4) we obtain that

g(1)(π, z0, μ) =
−3

8

∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt,

where

(4.5) ϕ(t, z0) =
∂

∂G

(
1

r3

(
cos2 f − 1

3

)
− H2 cos2 f

r3G2

)∣∣∣∣
z(0)(t,z0)

.

Since z0 ∈ D, it is clear that g(1)(π, z0, μ) is of type C1 in D.
From Lemma 4.1 and (4.5), we have that

g(1)(π, z0, μ) =
−15

16

∫ π

0
ϕ(t, z0) dt + O(μ3/2)

=
−15

16

(∫ π

0

∂

∂G

(
1

r3

(
cos2 f − 1

3

))∣∣∣∣
z(0)(t,z0)

dt

−H2
0

∫ π

0

∂

∂G

(
cos2 f

G2r3

)∣∣∣∣
z(0)(t,z0)

dt

)
+ O(μ3/2)

= −15

16
(I1(L0, G0) −H2

0I2(L0, G0)) + O(μ3/2),

where

I1(L0, G0) =
G0

e0L5
0

∫ E(e0,L0)

0
(e0 − cosE)

5e2
0 − 5 − 2e0 cosE + (7 − 3e2

0) cos2 E − 2e0 cos3 E

(1 − e0 cosE)6
dE,

I2(L0, G0) =
1

G0e0L5
0

(∫ E(e0,L0)

0

−2e0

1 − e2
0

(cosE − e0)
2

(1 − e0 cosE)4
dE

+

∫ E(e0,L0)

0
(cosE − e0)

4 − 5e2
0 + 4e0 cosE + (2e2

0 − 7) cos2 E + 2e0 cos3 E

(1 − e0 cosE)6
dE

)
,
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and E(e0, L0) is the solution of the equation π = L3
0(E−e0 sinE) (see section 5 for the details).

In particular, when L0 = 1, both integrals can be calculated explicitly and

I1(1, G0) =
−π

2G4
0

, I2(1, G0) =
−5π

2G6
0

,

which ensures the last statement of the lemma.

The next lemma shows that derivatives of g(1) satisfy conditions similar to those in
Lemma 4.2; i.e., they can be written in terms of L0, H0, and G0 plus terms of order μ3/2.

Lemma 4.3. Under the same hypothesis as in Lemma 4.2,

∂g(1)

∂L0
(π, z0, μ) = −15

16

(
∂I1
∂L0

(L0, G0) −H2
0

∂I2
∂L0

(L0, G0)

)
+ O(μ3/2),

∂g(1)

∂H0
(π, z0, μ) =

15

8
H0I2(L0, G0) + O(μ3/2).

Proof. The result is straightforward using arguments similar to those of Lemma 4.2.

In order to extend the symmetry equation to μ = 0, let

Ω = {(L0, H0); z0 = (0, π/2, h0, L0, G0, H0) ∈ D}.

We define the function

Φ(ξ, μ) = (Φ1(ξ, μ),Φ2(ξ, μ))

for ξ = (L0, H0) ∈ Ω and μ ≥ 0 as

(4.6) Φ1(ξ, μ) =

{
L−3

0 π − π + μ2l(1)(π, z0, μ) + O(μ4) if μ �= 0,

L−3
0 π − π if μ = 0,

and

(4.7) Φ2(ξ, μ) =

{
g(1)(π, z0, μ) + O(μ2) if μ �= 0,
−15

16(I1(L0, G0) −H2
0I2(L0, G0)) if μ = 0,

where I1(L0, G0) and I2(L0, G0) are the functions stated in the proof of Lemma 4.2. Then,
(4.4) can be written as

Φ(ξ, μ) = (0, 0)

for μ ≥ 0, and for μ = 0, L0 = 1, satisfies

Φ1(ξ, 0) = 0, Φ2(ξ, 0) = − 15π

32G4
0

(
5
H2

0

G2
0

− 1

)
.

Thus, for each fixed value of G0, Φ(ξ0, 0) = (0, 0) if ξ0 = (1, G0/
√

5). Observe that H2
0/G

2
0 =

cos2 i, and so the solution for μ = 0 corresponds to an inclination i with cos i = 1/
√

5, which
is the critical inclination angle obtained in the case of the problem of an Earth-centered orbit
when the effects of J2 are considered.
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In order to show that there exist symmetric periodic solutions of the reduced problem for
μ �= 0, we need to show that there exist solutions of Φ(ξ, μ) = (0, 0). In this case, we will use
the next proposition, proved in [4], which is a sufficient condition for Arenstorf’s theorem.

Proposition 4.4. Let U be an open domain in Rn, I ⊂ R an open neighborhood of the
origin, f : U × I → Rn with f(0, 0) = 0, differentiable with respect to x ∈ U , and Dxf(0, 0)
nonsingular. Assume that there exist c > 0, k > 0 such that for x ∈ U , ε ∈ I,

1. ‖Dxf(x, ε) −Dxf(0, 0)‖ ≤ c(‖x‖ + ε),
2. ‖f(0, ε)‖ ≤ kε.

Then there exists a function x(ε) ∈ U , defined for ε ∈ I ′ ⊂ I, such that f(x(ε), ε) = 0 and
x(0) = 0.

In order to apply Proposition 4.4 we need to prove that the function Φ satisfies some
properties.

Proposition 4.5. Let G0 be fixed and ξ0 = (1, G0/
√

5). For μ small enough, there exists η
such that the function Φ(ξ, μ) is differentiable with respect to ξ in B = {ξ ∈ Ω; ‖ξ − ξ0‖ ≤ η}
and satisfies the three properties

(i) ‖Φ(ξ0, μ)‖ ≤ C0μ
3/2,

(ii) ‖(DξΦ)−1(ξ0, 0)‖ ≤ M ,
(iii) ‖DξΦ(ξ, μ) −DξΦ(ξ0, 0)‖ ≤ C1(‖ξ − ξ0‖ + μ3/2),

where M , C0, and C1 are constants independent of μ and DξΦ(ξ, μ) denotes the Jacobi matrix
of Φ with respect to the variables ξ.

Proof. Statement (i) is a direct consequence of the definition of Φ (see (4.6) and (4.7)),
the fact that l(1) is a bounded function, and Lemma 4.2.

Using that the derivatives of l(1) are also bounded and Lemma 4.3, we have that

(4.8)

DξΦ(ξ, μ) =

(
−3π
L4

0
+ O(μ2) O(μ2)

J (L0, G0) + O(μ3/2) 15
8 H0I2(L0, G0) + O(μ3/2)

)
,

DξΦ(ξ, 0) =

(
−3π
L4

0
0

J (L0, G0)
15
8 H0I2(L0, G0)

)
,

where J (L0, G0) = −15
16

∂(I1−H2
0 I2)

∂L0
. Then, as I2(1, G0) = −5π/(2G6

0) �= 0, DξΦ(ξ0, 0) can be
inverted, and item (ii) is proved.

Let us prove (iii). First, we have that

(4.9) ‖DξΦ(ξ, μ) −DξΦ(ξ0, 0)‖ ≤ ‖DξΦ(ξ, μ) −DξΦ(ξ, 0)‖ + ‖DξΦ(ξ, 0) −DξΦ(ξ0, 0)‖.

On one hand, as the components of Φ(ξ, 0) are of type C1 with respect to ξ, we get that

(4.10) ‖DξΦ(ξ, 0) −DξΦ(ξ0, 0)‖ ≤ c0‖ξ − ξ0‖.

On the other hand,

(4.11) ‖DξΦ(ξ, μ) −DξΦ(ξ, 0)‖ ≤
2∑

i=1

‖DξΦi(ξ, μ) −DξΦi(ξ, 0)‖ ≤ c1μ
2 + c2μ

3/2
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by expressions (4.8). Substituting (4.10) and (4.11) into (4.9), we prove item (iii).
Notice that, given h0, G0, and z∗0 = (0, π/2, h0, 1, G0, G0/

√
5), the solution z(0)(t, z∗0) is a

solution of the Kepler problem lying on a plane of the critical inclination i with cos i = 1/
√

5.
Finally, let us prove that there exist periodic symmetric solutions of the perturbed reduced
problem close to z(0)(t, z∗0).

Theorem 4.6. Consider the three-dimensional collision restricted three-body problem with
masses m1 = m2 = 1/2, and primaries’ semimajor axis μ/2. If μ = k−2/3, where k is a
positive integer large enough, there exist initial conditions such that the infinitesimal body
moves in a symmetric periodic orbit of the reduced problem, of period 2π, near a Keplerian
elliptic orbit. The inclination of the orbit is close to the “critical value” cos i = 1/

√
5.

Proof. Let us consider initial values h0, G0, and ξ0 = (1, G0/
√

5). It is clear that Φ(ξ0, 0) =
(0, 0). Given ξ ∈ Ω, we define f(x, μ) = Φ(x+ ξ0, μ), where x = ξ − ξ0. From Proposition 4.5
we can easily prove that f(x, μ) is under the hypothesis of Proposition 4.4. Then there exists
a function x(μ) such that f(x(μ), μ) = (0, 0) and x(0) = 0.

This yields a continuum of solutions of system Φ(ξ, μ) = (0, 0). These conditions must
be satisfied simultaneously with Ep(T/2) = kπ, which is equivalent to T = 2kπμ3/2. Thus,
for each μ = k−2/3, k a large positive integer, a periodic solution of the reduced problem
exists.

Remark. All the orbits found are on an integral resonance with the motion of the primaries;
i.e., the primaries undergo k complete orbits in one orbit of the infinitesimal body. If k =
p/q is an irreducible rational, then similar arguments show that in q complete orbits of the
infinitesimal the primaries undergo p complete orbits.

5. Appendix. Here we develop the calculations needed in the proof of Lemma 4.2. We
want to compute∫ π

0
ϕ(t, z0)dt =

∫ π

0

∂Δ1

∂G

∣∣∣∣
z(0)(t,z0)

dt−H2
0

∫ π

0

∂Δ2

∂G

∣∣∣∣
z(0)(t,z0)

dt

= I1(L0, G0) −H2
0I2(L0, G0),

where Δ1 = cos2 f−1/3
r3

and Δ2 = cos2 f
G2r3

.
We will introduce the change of variables given by t = L3

0(E − e0 sinE), where L2
0 and

e0 correspond to the semimajor axis and the eccentricity of the Keplerian orbit z(0)(t, z0),
respectively. As the new variable to integrate will be E, we use the rule

(5.1)
∂Δi

∂G
=

∂Δi

∂E

dE

de

de

dE

for i = 1, 2. On one hand, from Kepler’s equation t = a3/2(E − e sinE), we have that

0 = a3/2

(
dE

de
− sinE − e cosE

dE

de

)
and

dE

de
=

sinE

1 − e cos e
.

On the other hand, as G2 = a(1 − e2), we have that de
dG = −G

ae . Substituting into (5.1), we
have that

(5.2)
∂Δi

∂G
=

−G sinE

ae(1 − e cosE)

∂Δi

∂E
.
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Next, as r = a(1 − e cosE) = a(1−e2)
1+e cos f , we have that cos f = cosE−e

1−e cosE , and deriving both
expressions we obtain

(5.3)
∂r

∂E
= a

e− cosE

sinE
, − sin f

df

dE
=

sinE(e2 − 2 + e cosE)

(1 − e cosE)2
.

Thus, using the expressions (5.2) and (5.3), we have that

∂Δ1

∂G
=

G(e− cosE)(5e2 − 5 − 2 e cosE + (7 − 3 e2) cos2 E − 2 e cos3 E)

ea4(1 − e cosE)7
,

∂Δ2

∂G
=

−2(cosE − e)2

G3a3(1 − e cosE)5

+
(cosE − e)

Gea4

4 − 5e2 + 4e cosE + (2e2 − 7) cos2 E + 2e cos3 E

(1 − e cosE)7
.

Finally, evaluating both expressions on the solution z(0)(t, z0) of the Kepler problem, we
obtain the expressions for the functions I1 and I2 as∫ π

0

∂Δ1

∂G

∣∣∣∣
z(0)(t,z0)

dt =
G0

e0L5
0

∫ E(e0,L0)

0
f1(e0, E) dE = I1(L0, G0),

∫ π

0

∂Δ2

∂G

∣∣∣∣
z(0)(t,z0)

dt =
1

G0e0L5
0

∫ E(e0,L0)

0
f2(e0, E) dE = I2(L0, G0),

where E(e0, L0) is the solution of the equation π = L3
0(E − e0 sinE) and

f1(e0, E) = (e0 − cosE)
5e2

0 − 5 − 2e0 cosE + (7 − 3e2
0) cos2 E − 2e0 cos3 E

(1 − e0 cosE)6
,

f2(e0, E) =
−2e0

1 − e2
0

(cosE − e0)
2

(1 − e0 cosE)4

+ (cosE − e0)
4 − 5e2

0 + 4e0 cosE + (2e2
0 − 7) cos2 E + 2e0 cos3 E

(1 − e0 cosE)6
.

Furthermore, it is clear that for a fixed value of e0 < 1 the functions f1 and f2 are
continuous and differentiable with respect to E and e0, and so I1(L0, G0) and I2(L0, G0) are
functions of type C1 with respect to e0. In particular, when L0 = 1, E(e0, L0) = π, and both
integrals can be calculated explicitly:

I1(1, G0) =
−π

2G4
0

, I2(1, G0) =
−5π

2G6
0

.
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Abstract. This paper is concerned with the analysis of a class of impacting systems of relevance in applications:
cam-follower systems. We show that these systems, which can be modeled as discontinuously forced
impact oscillators, can exhibit complex behavior due to the detachment at high rotational speeds
between the follower and the cam. We propose that the observed phenomena can be explained in
terms of a novel type of discontinuity-induced bifurcation, termed as corner-impact. We present a
complete analysis of this bifurcation in the case of a nonautonomous impact oscillator and explain
the transition to chaos observed in a representative cam-follower example. The theoretical findings
are validated numerically.
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1. Introduction. Recently, much research effort has been spent to analyze the dynamics
of piecewise-smooth dynamical systems with impacts [5, 41]. These systems arise in many
areas of engineering and applied science. A typical example is that of mechanical systems
characterized by structural components with displacement constraints. Examples include
bouncing or hopping robots, systems with backlash or friction, gears, and vibro-impacting
mechanical devices [5].

Cam-follower systems are a particularly important class of mechanical systems with dis-
placement constraints widely used for the operation of various machines and mechanical de-
vices [30]. Usually, their purpose is to actuate valves or other mechanisms through the move-
ment of a follower forced by a rotating cam. For example, all types of automated production
machines, including screw machines, spring winders, and assembly machines, rely heavily on
this kind of system for their operation. One of the most common application is to the valve
train of internal combustion engines (ICEs) [18], where the effectiveness of the ICE is based
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Figure 1. Valve train configuration.

on the proper working of a cam-follower system. A schematic of a single valve for a typical
pushrod-type engine is presented in Figure 1. Here, the cam rotation results in a linear motion
imparted to the valve. The valve spring in the system provides the restoring force necessary
to maintain contact between the components.

To guarantee that the follower moves as required, it is important in applications to care-
fully design the cam profile. Different cam geometries are used in practice ranging from
circular cams to highly complex cam profiles. In general, there is now a large variety of alter-
native methods to select the cam profile. For example, by using the constrained optimization
algorithm, it is possible to use splines to obtain the cam geometry from the desired motion
that the cam is required to impart on the follower (for examples see [9] and [16]). This often
means that while the cam has a continuous displacement profile, it might have discontinuities
in its acceleration [31].

It has been observed that, as the cam rotational speed increases, the follower can detach
from the cam. This causes the onset of undesired behavior associated to impacts taking place
between the follower and the cam. For example, in automotive engines this phenomenon can
seriously deteriorate the engine performance as the valves can close with abnormally high
velocity and even bounce off the seat (valve floating and bouncing) [21, 37, 10]. To avoid
this phenomenon, a large spring force and preload are applied to the follower [34]. This often
causes an increase in the contact force, which induces higher stresses possibly leading to early
surface failure of the parts. The resulting high friction valve train reduces the efficiency of the
engine system [39].

In general, cam-follower systems can be thought of as impact oscillators with moving
boundaries [20, 30, 15, 40]. While the dynamics of impact oscillators with continuous forcing
has been the subject of many papers in the existing literature (see, for example, [32, 17, 6, 7]),
the possible intricate bifurcation behavior of impact oscillators with discontinuous forcing was
discussed only recently, as, for example, in [8]. It was proposed that discontinuously forced
oscillators can show a novel bifurcation phenomenon unique to their nature which was termed
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as corner-impact bifurcation. Namely, in [8] the dynamics of an impact oscillator forced by a
discontinuous sinusoidal forcing of the form f(t) = A|sin(ωt)| are studied. It was shown that,
under variation of the system parameters, abrupt changes of the system’s qualitative behavior
are observed when an impact occurs at a point where the forcing velocity is discontinuous (a
corner-impact bifurcation point).

The observed behavior was explained in terms of appropriate local maps. In particular,
by using the technique of discontinuity mappings recently proposed in [17] and [12], it was
suggested that a corner-impact bifurcation of the oscillator corresponds to a border-collision
of a fixed point of the associated Poincaré map. An important difference was highlighted
between corner-impact bifurcations and other types of discontinuity-induced bifurcations [4] in
impacting systems such as grazing of limit cycles [28, 38, 22, 26, 33, 24]. While the normal form
map of a grazing bifurcation is typically characterized by a square root singularity [28], the
local normal form map associated to a corner-impact bifurcation was shown to be a piecewise-
linear map with a gap such as those studied in [19]. Hence, as explained in [8], an appropriate
classification method needs to be used to investigate this novel class of bifurcations.

In [14], it was conjectured for the first time that corner-impact bifurcations are funda-
mental in organizing the complex behavior observed in cam-follower systems. It was shown
that, as the cam rotational speed increases, these systems can exhibit sudden transitions from
periodic solutions to chaos. Such transitions were conjectured to be due to corner-impact
bifurcations.

In this paper, we present a careful analysis of corner-impact bifurcations in cam-follower
systems. We analytically derive the normal form map associated to such a bifurcation in a
representative example of interest where the cam profile is characterized by a discontinuous
acceleration. In particular, we investigate the bifurcation behavior exhibited by this system
under variations of the cam rotational speed. We find that following the detachment of the
follower from the cam, the system can exhibit complex nonlinear phenomena involving chat-
tering, period adding cascades, and the sudden transition from periodic attractors to chaos.
We explain the sudden transition to chaos observed in the system in terms of a corner-impact
bifurcation. Namely, we show that dramatic changes in the system’s behavior are observed
when, under parameter variation, one of the impacts characterizing the system’s trajectory
crosses one of the manifolds in phase space where the cam acceleration is discontinuous.

We prove that the normal form map of the corner-impact bifurcation in these systems is
a piecewise-linear continuous map rather than discontinuous because of the higher degree of
discontinuity of the forcing signal provided by the cam with respect to that of the forcing
considered in [8]. We wish to emphasize that such a finding is generic for the wide class of
impacting systems characterized by forcing terms with discontinuous acceleration.

As shown in the paper, the derivation of the mapping has an immediate practical relevance.
In fact, the derivation of a piecewise-linear normal form map implies that the strategy to
classify border-collisions in piecewise-linear continuous maps due to Feigin [13] can be used,
under some circumstances, to classify corner-impact bifurcations in continuous-time impacting
flows.

The rest of the paper is outlined as follows. In section 2, we present the modeling of the
cam-follower system of our concern, where the cam profile has been assumed to be character-
ized by a discontinuous acceleration. Then in section 3 the numerical bifurcation analysis is
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Figure 2. Cam-follower schematics. (a) t = 0. (b) t = τ .

presented under variation of the cam rotational speed. In section 4 we present the analysis of
the corner-impact bifurcation phenomenon detected in the system, and we classify the ensuing
dynamics by using an appropriately derived local mapping. Finally, conclusions are drawn in
section 5.

2. Modeling. The formulation of an appropriate model for a cam-follower system can be
a challenging task for most applications. Various models with different degrees of complexity
have been proposed and extensively studied. They range from simple models with one degree-
of-freedom (DOF) such as that described in [20] to complex models characterized by many
DOFs, as, for example, the 21 DOF model studied in [36], where additional effects of camshaft
torsion and bending, backlashing, and squeezing of lubricant in bearings are included. Never-
theless, there is general agreement in the literature, confirmed by experiments, that a lumped
parameter single DOF model is adequate to represent the main qualitative features of the
dynamic behavior of the system of interest [3, 20, 1, 15].

The schematic diagram of the cam-follower system under investigation is shown in Figure 2.
We consider the following second order equation to model the free body dynamics of the
follower away from the cam:

mq′′(t) + bq′(t) + kq(t) = −mg

if q(t) > c(t),(2.1)

where m, b, k, and g are constant positive parameters representing the follower mass, viscous
damping, spring stiffness, and gravitational constant, respectively. The state of the follower
is given by the position q(t) and the velocity q′(t). The cam position is given by c(t), and we
assume that the follower motion is constrained to the phase-space region where q(t) > c(t).
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Figure 3. (a) Cam profile. (b) Constraint position c(t), velocity c′(t), and acceleration c′′(t).

The dynamic behavior when impact occurs (i.e., q(t) = c(t)) is modeled via a Newton
restitution law as [5, 23, 29]

q′(t+) = (1 + r)c′(t) − rq′(t−)

if q(t) = c(t),(2.2)

where q′(t+) and q′(t−) are the post- and preimpact velocities, respectively, c′(t) is the projec-
tion of the cam velocity vector at the contact point along the direction of the free movement
of the follower, and r ∈ [0, 1] is the coefficient of restitution used to model from plastic to
elastic impacts.

An essential ingredient of the model is the choice of the cam profile, c(t). The cam
is assumed to be rotating at a constant angular velocity ω and can be interpreted as the
“control action” acting on the follower state, as suggested in [30]. Therefore, c(t) is carefully
selected in applications as a trade-off between several optimality criteria dependent upon the
specific device being considered and the unavoidable physical constraints on the system.

Typically, this results in a design process where the cam profile is selected by using splines
and can contain several degrees of discontinuity. For example, the cam for a single overhead
camshaft valve train is designed by using quadratic splines, and, as a consequence, disconti-
nuities are present in its acceleration. In general, it is not uncommon in applications to find
cam geometries characterized by continuous cam positions and velocities but a discontinuous
second derivative [30].

In what follows, we assume the cam profile to be characterized by a discontinuous second
derivative as shown in Figure 3. For the sake of brevity, the analytical expressions of the cam
profile and its derivatives are reported in Appendix A. The case of a smooth cam profile with
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Figure 4. Time simulation at ω = 183 rpm. (a) Follower position, q(t) (light); Cam position, c(t) (dark).
(b) Relative position, q(t) − c(t). (c) Phase space, q(t) − c(t) versus q′(t) − c′(t).

continuous first and second order derivatives is also of interest in applications and was studied
experimentally in [2].

3. Numerical bifurcation analysis. The model represented by (2.1) and (2.2) was found
to exhibit an intricate bifurcation behavior including the sudden transition to chaos under
variation of the cam rotational speed, ω [14]. The presence of bifurcations and chaos was also
confirmed by experiments, as described in [2].

Here we briefly summarize some of the most striking behavior exhibited by the system
focusing on the abrupt transition from a one-periodic impacting solution to chaos observed
when ω ≈ 673.234445 rpm.

In general, starting from low values of ω, the system exhibits solutions characterized by
permanent contact between the cam and the follower. As ω increases, the follower is observed
to detach from the cam during its evolution and then to impact with it. A typical periodic
evolution with impacts is shown in Figure 4(a) when ω = 183 rpm. We observe that the
follower and the cam are in contact with zero relative velocity for part of the orbit (sticking)
and then detach, giving rise to impacting behavior. As shown in Figure 4(b)–(c) a careful
look at the follower evolution shows that a chattering sequence is present, where theoretically
an infinite number of impacts accumulates in finite time. (Note that in practice chattering is
associated to a large but finite number of impacts.)

Chattering can be associated to an intricate bifurcation structure. In Figure 5(a), the
location of the impacts in the cam surface is depicted for each value of ω, characterizing
the follower asymptotic solution. We see that following detachment at about 114 rpm, the
follower immediately exhibits multi-impacting behavior and chattering (characterized by the
accumulation of the impact lines in the diagram onto the darker areas corresponding to the
chattering accumulation points). An interesting phenomenon is the appearance of resonant
peaks associated to impact lines crossing the boundaries where the cam acceleration profile is
discontinuous (represented by dotted lines in the figure). A detailed analysis of this bifurcation
scenario is presented in [27].

This phenomenon can be classified as due to a corner-impact bifurcation, a type of discon-
tinuity-induced bifurcation recently described in [8]. Namely, at certain values of ω, one of
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Figure 5. (a) Impact bifurcation diagram for [115, 200] rpm. The phase of an impact φi (rad) is plot-
ted against ω. (b) Time evolution for 175 rpm. (c) Impact bifurcation diagram for ω = [660, 750]rpm.
(d) Stroboscopic bifurcation diagram for ω = [660, 750]rpm. (e) Bifurcating orbit at the corner-impact point at
ω = 700rpm. (f) Chaotic evolution for ω = 670rpm. Dotted and dashed lines represent phases where the cam
profile is discontinuous. Vertical curves in panels (a), (c) show the cam position velocity and acceleration as
function of the phase.
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the impacts characterizing the follower motion occurs at a point on the cam profile where the
acceleration is discontinuous. We shall seek to analytically investigate this phenomenon and
classify the behavior following the corner-impact event in the cam-follower system of interest.
For the sake of simplicity, we focus on a different region of the system bifurcation diagram
depicted in Figure 5(c). Here a one-periodic solution characterized by one impact per period
exhibits sudden transitions to chaos as ω is decreased below 673.234445 rpm. A close look at
the impact bifurcation diagram in Figure 5(c) and in the stroboscopic bifurcation diagram in
Figure 5(d) shows that such transitions occur precisely when the impact characterizing the
solution crosses the cam discontinuity boundaries (the dotted lines in Figure 5(c)). Specifically,
the sudden transition to chaos is due to the corner-impact bifurcation of the periodic solution
depicted in Figure 5(e). Past the corner-impact bifurcation point, the system exhibits chaotic
behavior (see, for example, the trajectory reported in Figure 5(f) for ω ≈ 670 rpm). The rest
of this paper is devoted to the analysis of this bifurcation scenario.

4. Corner-impact bifurcation analysis. The numerical observations reported above in-
dicate that a corner-impact bifurcation is causing the transition to chaos observed in the
cam-follower system. Specifically, we are interested in analyzing the occurrence of the corner-
impact bifurcation depicted in Figure 5(c) when ω ≈ 673.234445 rpm. Numerically, we de-
tected that the bifurcating orbit, shown in Figure 5(e), is a one-periodic orbit characterized
by one impact per period. As the rotational speed of the cam is decreased, at the bifurcation
point, the impact is observed to cross the point on the cam surface where the cam acceleration
is discontinuous. To investigate this novel type of discontinuity-induced bifurcation we will
analytically construct the Poincaré map of the system close to the bifurcation point. We will
then study the bifurcations of the fixed point corresponding to the periodic solution of inter-
est. A crucial point in the analysis is to assess whether the resulting map is piecewise-linear
continuous or not. Indeed, only if this is the case, the theory of border-collision bifurcations
(see [35, 13]) can be used to classify the possible solutions branching from the corner-impact
bifurcation point [25].

We use the concept of discontinuity mapping (or normal form mapping) recently intro-
duced in [17, 12] to analytically construct the Poincaré map associated to the bifurcating orbit
of interest. We use the cam-follower system described in section 2 as a representative example
to carry out the analytical derivations.

4.1. Poincaré map derivation. We are interested in the analysis of the period one orbit
at the corner-impact bifurcation point. Such an orbit is sketched in Figure 6. Then, close to
such a periodic orbit we define the stroboscopic map P as the mapping from the follower state
x1 ∈ Π1 at a stroboscopic time instant t1 to the next stroboscopic point x2 ∈ Π2. Without
loss of generality, we assume that tn = −T

2 +(n−1)T for n = 1, 2, 3, . . . , where T is the period
of the cam forcing cycle (note that T = 2π/ω). Namely, we have

(4.1) x2 = P (x1).

To construct P we would need to flow forward using the system evolution from x1 to x2 for
time T taking into account the possible occurrence of impacts and therefore applying Newton’s
restitution law as required. Alternatively, as shown in [17], it is possible to construct P as the
composition of three submappings: (i) an affine transformation P1,T/2 from the stroboscopic
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Figure 6. Global map composition.

plane Π1 at t1 = −T
2 to the plane ΠD going through the corner-impact point at t = 0; (ii) an

appropriate zero-time discontinuity mapping (ZDM) PD on ΠD accounting for the presence of
the discontinuity; and again (iii) an affine transformation P2,T/2 from the plane ΠD at t = 0

back to the stroboscopic plane Π2 at t2 = T
2 . Specifically, while P1,T/2 and P2,T/2 are fixed

time maps that account for the follower evolution away from the cam as if no impact had
occurred, the ZDM represents the correction that needs to be made to the system trajectories
because of the presence of impacts. Figure 6 represents the global map composition. This
means that we can write

(4.2) P = P2,T/2 ◦ PD ◦ P1,T/2,

where P1,T/2 : Π1 �→ ΠD will map the state from the initial condition x1 on the stroboscopic

plane Π1 to a point x−d on the discontinuity plane ΠD as if no impacts had occurred. PD :
ΠD �→ ΠD will then map x−d to the point x+

d appropriately correcting the evolution for the
presence of impacts (see Figure 7). Finally, P2,T/2 : ΠD �→ Π2 will map x+

d to a point x2 back
onto the stroboscopic plane Π2. In so doing, as discussed in [17, 12], the effect of the system
discontinuities due to impacts is taken into account by the ZDM, PD, which is therefore often
termed as the local normal form map in the context of the theory of discontinuity-induced
bifurcations [26].

4.1.1. Derivation of P1,T/2 and P2,T/2. As explained above, the maps P1,T/2 and P2,T/2

are defined only in terms of the free body dynamics of the follower and the cam rotating
period T (depending upon the cam rotational speed ω). Therefore, we can solve (2.1) to get
an analytical expression of the flows generating the mappings of interest.

Specifically, we define

xt =

[
q(t) + g

ω2
0

q′(t)

]
, yt =

[
c(t)
c′(t)

]
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as the state vectors for the follower and the cam, respectively.
Then the generalized solution of (2.1) is

xt = e−ζt (I cos(ωst) + A sin(ωst))x0(4.3)

= φtx0,

where ζ = b
2m , ω0 =

√
k
m , ωs =

√
ω2

0 − ζ2, I is the identity matrix, φtx0 represents the system

flow for time t starting from the initial condition x0, and

A =

[
ζ
ωs

1
ωs

−ω2
0

ωs
− ζ

ωs

]
.

Note that, in general, the system flow operator can be expressed as

(4.4) φt =
e−ζt

ωs

[
ωs cos(ωst) + ζ sin(ωst) sin(ωst)

−ω2
0 sin(ωst) ωs cos(ωst) − ζ sin(ωst)

]
.

The submapping Pi,T/2 can then be easily obtained using (4.3) as

Pi,T/2(x) = e−ζT/2 (I cos(ωsT/2) + A sin(ωsT/2))x

:= φT
2
x.(4.5)

4.1.2. Derivation of PD. As explained in [12], the ZDM can be obtained by an appro-
priate composition of backward and forward flows so that the overall time spent following
backward and forward is zero. As explained earlier, the ZDM is the correction that maps the
point x−d ∈ ΠD onto the point x+

d ∈ ΠD, taking into account the presence of impacts in the
trajectory of interest. In what follows we assume that only one impact occurs over one cycle of
the periodic orbit of interest as we suppose to be sufficiently close to the bifurcating orbit x∗t
shown in Figure 6. Figure 7 shows a schematic diagram that describes the construction of the
ZDM, close to the corner-impact bifurcations. Without loss of generality we assume that the
origin is placed at the Poincaré section ΠD. To analytically derive the mapping x+

d = PD(x−d )
we need to perform the following steps:

1. Starting from x−d , we find the time ti at which the impact occurs. Namely, ti is obtained
by looking at the difference, (q(t) − c(t)), between the follower position and the cam
position close to t = 0. Given a vector z, we indicate by [z]1 its first component. Then
q(t) = [xt]1 −

g
ω2

0
, and therefore, close to x−d , ti can be obtained as the nearest solution

of the equation

(4.6) H(x−−ti
, ti) :=

[
x−−ti

− y−ti

]
1

= h ·
[
φ−tix

−
d − y−ti

]
= 0,

where h = [ 1 0 ].
Hence, ti is implicitly defined by the equation H(x−−ti

, ti) = 0. Once ti is found, the
preimpact state of the system, x−−ti

, can also be obtained as

(4.7) x−−ti
= φ−tix

−
d .

Note that ti can be either negative or positive according to whether the impact occurs
to the left or to the right of t = 0.



28 G. OSORIO, M. DI BERNARDO, AND S. SANTINI

0ti t

x−d

x−ti x+
ti

x+
d

c(t)

q(t)
ΠD

Figure 7. ZDM construction.

2. Using the restitution law (2.2), we can then write the postimpact state of the follower
x+
−ti

as

(4.8) x+
−ti

= x−−ti
+ R(x−−ti

− y−ti) = ρ(x−−ti
, y−ti),

where

R =

[
0 0
0 −(1 + r)

]
.

3. Finally, to obtain x+
d , we flow forward for time ti starting from the postimpact state

x+
−ti

found at the previous step. In so doing, the state of the follower x+
d ∈ ΠD can be

computed as

(4.9) x+
d = φtix

+
−ti

.

Using (4.7), (4.8), and (4.9), we can then explicitly write the ZDM as

(4.10) x+
d = PD(x−d ) = (I + φtiRφ−ti)x

−
d − φtiRy−ti ,

with ti defined implicitly by (4.6).

4.1.3. Constructing the stroboscopic map. Composing the submappings P1,T/2, P2,T/2,
and PD given by (4.5) and (4.10), we can then construct the stroboscopic Poincaré map, P , of
the system close to the corner-impact bifurcation point from a generic xn ∈ Πn to xn+1 ∈ Πn+1

as

xn+1 = P (xn, T ) = P2,T/2(PD(P1,T/2(xn)))

= φT
2

(
(I + φtiRφ−ti)φT

2
xn − φtiRy−ti

)
,(4.11)

where ti is implicitly defined by the equation H(xn, ti) = h · (φT
2
−ti

xn − y−ti) = 0.
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Note that the fixed point (x∗ associated to the periodic solution existing for a fixed value
of the cam period T = T ∗) can be obtained by solving (4.11) for xn+1 = xn = x∗, i.e.,

(4.12) x∗ = −
[
I − φT ∗ + φT∗

2
RφT∗

2

]−1
φT

2
Ry0,

with t∗i = 0.
In what follows we are interested in studying such a mapping locally to the corner-

impact bifurcation point detected when ω = ω∗ = 673.234445 rpm, corresponding to a
period T ∗ = 0.08912199969159 s. The fixed point associated to the bifurcating orbit is
x∗ =

[
5.09700788184250 0

]′
. These values were detected first numerically and then ob-

tained analytically by solving (4.12) through an algebraic manipulation software. (For the
sake of brevity we leave out the computer algebra here.)

4.2. A locally piecewise-linear continuous map. Let δxn and δT be sufficiently small
variations of the state and parameter from the bifurcation point x∗, T ∗. We can then linearize
the map xn+1 = P (xn, T ) in (4.11) about this point as

(4.13) δxn+1 =
∂P (x∗, T ∗)

∂xn
δxn +

∂P (x∗, T ∗)

∂T
δT.

For the computation of ∂P
∂xn

it is essential to take into account the implicit dependence of ti
on xn and T . Hence, using implicit differentiation, we have

(4.14)
∂P (xn, T )

∂xn
=

∂P (xn)

∂xn
+

∂P (ti)

∂ti

∂ti(xn)

∂xn
.

Using (4.11), we can then write

∂P (xn)

∂xn
= φT

2
(I + φ−tiRφti)φT

2
,(4.15)

∂P (ti)

∂ti
= φT

2

(
φ′
tiRφ−ti −

(
φtiRφ′

−ti

)
φT

2
xn − φ′

tiRy−ti + φtiRy′−ti

)
.(4.16)

Moreover, using the implicit differentiation theorem, from (4.6) we have

∂H(xn, ti(xn))

∂xn
=

∂H(xn)

∂xn
+

∂H(ti)

∂ti

∂ti(xn)

∂xn
= 0.

The above expression can be used to compute the remaining term in (4.14) as

(4.17)
∂ti(xn)

∂xn
= −

(
∂H(ti)

∂ti

)−1 ∂H(xn)

∂xn
,

where

∂H(ti)

∂ti
= −h ·

(
φ′

T
2
−ti

xn − y′−ti

)
,

∂H(xn)

∂xn
= h · φT

2
−ti

,
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and h =
[

1 0
]
.

After substituting (4.15), (4.16), and (4.17) into (4.14) we obtain

(4.18)
∂P (xn, T )

∂xn

∣∣∣∣
xn=x∗
T=T∗

= φT
2

∗

⎛
⎜⎜⎝(I + R) +

((
Rφ′

0 − φ′
0R

)
φT

2

∗x∗ + φ′
0Ry0 −Ry′0

) h

h ·
(
φ′

T
2

∗x∗ − y′0

)
⎞
⎟⎟⎠φT

2

∗ .

In an analogous way, for the computation of ∂P
∂T , it is essential to take into account the

implicit dependence of ti on xn and T . Hence, by using implicit differentiation, we have

(4.19)
∂P (xn, T )

∂T
=

∂P (T )

∂T
+

∂P (ti)

∂ti

∂ti(T )

∂T
.

Using (4.11), we can then write

(4.20)
∂P (T )

∂T

=

(
φ′
T +

1

2
φ′

T
2

+ti
RφT

2
−ti

+
1

2
φT

2
+ti

Rφ′
T
2
−ti

)
xn − 1

2
φ′

T
2

+ti
Ry−ti − φT

2
+ti

R
∂y−ti,T

∂T
.

Again, from (4.6) we have

∂H(xn, ti(xn))

∂T
=

∂H(T )

∂T
+

∂H(ti)

∂ti

∂ti(T )

∂T
= 0,

which can be used to compute the remaining term in (4.19). Namely, we obtain

(4.21)
∂ti(T )

∂T
= −

(
∂H(ti)

∂ti

)−1 ∂H(T )

∂T
,

where

∂H(ti)

∂ti
= −h ·

(
φ′

T
2
−ti

xn − y′−ti

)
,

∂H(T )

∂T
= h ·

(
1

2
φ′

T
2
−ti

xn − ∂y−ti,T

∂T

)
,

and
∂yt,T
∂T

=

[
− t

T c
′(t)

− 1
T c

′(t) − t
T c

′′(t)

]
.
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Finally, substituting (4.16), (4.20), and (4.21) into (4.19) yields

(4.22)
∂P (xn, T )

∂T

∣∣∣∣
xn=x∗
T=T∗

=

(
φ′
T ∗ +

1

2
φ′

T
2

∗RφT
2

∗ +
1

2
φT

2

∗Rφ′
T
2

∗

)
x∗ − 1

2
φ′

T
2

∗Ry0 − φT∗
2
R
∂y0,T ∗

∂T

+ φT
2

∗

((
Rφ′

0 − φ′
0R

)
φT

2

∗x∗ + φ′
0Ry0 −Ry′0

)
·
h ·

(
1
2φ

′
T
2

∗x∗ − ∂y0,T∗
∂T

)
h ·

(
φ′

T
2

∗x∗ − y′0

) .

We can then explicitly compute these quantities for the cam-follower system of interest.
In particular, after some algebraic manipulation, we have

(4.23) A :=
∂P

∂xn
(x∗, T ∗) = φT

2

∗

[
−r 0

− (1+r)(2ζc′0+c′′0+ω2
0q

∗
d)

q,∗d −c′0
−r

]
φT

2

∗

and

(4.24) B :=
∂P

∂T
(x∗, T ∗) =

1

2
φT

2

∗

[
q∗d

−rq,∗d + (1 + r)c′0

]
+

1

2
φ′

T
2

∗

[
q,∗d

−rq,,∗d − 2(1+r)
T ∗ c′0

]

+
1

2
φT

2

∗
(1 + r)q,∗d
q,∗d − c′0

[
q,∗d − c′0

2ζc′0 + c′′0 + ω2
0q

∗
d

]
.

Note that both the matrices A and B as defined by (4.23)–(4.24) depend on the value
of the second derivative of the cam acceleration c′′0 at the impact point. Therefore, the map
is actually piecewise-linear locally to the bifurcation point where the cam acceleration is
discontinuous; i.e.,

c′′−0 := lim
t→0−

c′′(t) �= lim
t→0−

c′′(t) := c′′+0 .

Then, the local map can be expressed as

(4.25) δxn+1 =

⎧⎨
⎩

A−δxn + B−δT if C · δxn + D · δT < 0,

A+δxn + B+δT if C · δxn + D · δT > 0,

where

A± =
∂P±

∂x
, B± =

∂P±

∂T
,

with the index ± indicating whether the matrices are evaluated with c′′0 = c′′−0 or c′′0 = c′′+0 .
We have established that close to the corner-impact bifurcation point, the dynamics of

the follower can be studied by means of the local mapping (4.25).
Now, from (4.11), the global Poincaré map is known to be a continuous function of the

cam position and velocity through the term y−ti . Moreover, the map is independent from the
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cam acceleration. It follows that the map is continuous at the bifurcation point; i.e., we must
have that

A−δxn + B−δT = A+δxn + B+δT

when
Cδxn + DδT = 0.

Therefore, we have

C = h · (A+ −A−) and D = h · (B+ −B−).

Substituting the numerical values of the map parameters for the cam-follower system of
interest, we obtain the following analytical estimates of the map matrices:

A− =

[
0.82093496821478 0.01346530915655
2.52012201452530 0.82093496821478

]
, B− =

[
−51.62757990297

−5455.79455977621

]
,

A+ =

[
0.68571072072040 −0.07351052377964
2.30988433707948 0.68571072072040

]
, B+ =

[
208.11740649865

−5051.96030903248

]
,

and
C = [−0.13522424749438 − 0.08697583293619] , D = 259.7449864016200.

4.2.1. Numerical validation. We will now validate our numerical findings by comparing
the map (4.25), which was derived analytically, with the numerical estimates of the mapping
obtained by means of simulation and an optimized fitting algorithm close to the bifurcation
point.

To derive such an estimate, we use an accurate event-driven numerical algorithm to simu-
late the cam dynamics over one period starting from a set of M different initial conditions and
parameter values—namely, say, δx̄n, the vector of M possible perturbations of x∗, and δT̄ , the
vector of M possible perturbations of T . We then simulate the cam dynamics from each of
the perturbed initial conditions and parameter values to obtain the vector δx̄n+1 = x∗−xn+1

after one period. We repeat the set of simulations twice, once with the cam acceleration set to
c′′+0 and once with the acceleration set to c′′−0 . In so doing, we numerically obtain the vectors

δx̄±n+1 =
[
δx̄1

n+1 . . . δx̄mn+1 . . . δx̄Mn+1

]
.

We then use a least-squares fitting algorithm to estimate the matrices Â± and B̂± that
minimize the error

e =

∥∥∥∥δx̄±n+1 −
[
Â± | B̂± ] [ δx̄n

δT̄

]∥∥∥∥2

.

The estimated map matrices found using this numerical strategy are

Â− =

[
0.82093497830369 0.01346530945739
2.52012201542191 0.82093496286678

]
, B̂− =

[
−51.62757113994

−5455.79411324739

]
,

Â+ =

[
0.68571065978423 −0.07351053029558
2.30988432418263 0.68571073479454

]
, B̂+ =

[
208.11731732063

−5051.95951604729

]
.
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We notice that these numerical estimates are almost identical (up to at least five decimal
places) to those obtained analytically earlier in the paper. This validates our analysis and
shows the reliability of the analytical derivation used to get a leading order estimate of the
Poincaré map close to the bifurcation point under investigation.

4.3. Classification of the nonsmooth bifurcation scenario. We can now use the locally
derived map (analytical or numerical) to classify and explain the bifurcation scenario due to
the corner-impact bifurcation detected in the cam-follower system of interest. In particular,
the map derived above is a piecewise-linear continuous map. As the cam rotational speed is
increased, the period T of the forcing provided by the cam varies. Correspondingly, at the
corner-impact bifurcation point (δT = 0), the map fixed point undergoes a border-collision.
The Feigin strategy for border-collision bifurcations can then be used to classify the corner-
impact bifurcation scenario [13].

The idea is to start by recasting the map (4.25) into a canonical form following the
procedure presented in [4]. Specifically, we do the following.

1. We eliminate the term depending on δT by considering an appropriate change of
coordinates. In particular, if we say that c1 and c2 are the coefficients of C, we choose

δx̃1
n = δx1

n + D
μ

c1
,

δx̃2
n = δx2

n,

so that the map becomes

δx̃n+1 =

⎧⎨
⎩

A−δx̃n + B̃δT if C · δx̃n < 0,

A+δx̃n + B̃δT if C · δx̃n > 0,

where

B̃ =

[
b−1 − a−11

c1
d

b−2 − a−21
c1

d

]
=

[
b+1 − a+

11
c1

d

b+2 − a+
21
c1

d

]
=

[
1525.26226128059
−615.02768162765

]
,

with a±ij being the coefficients of A±.
2. Then, using the strategy presented in [4, 11], we consider the change of coordinates

x = W−1x̃, where the matrix W is obtained as W = T−O− with

O− =

[
C

CA−

]
, T− =

[
1 0
d−1 1

]
,

where d−1 is the linear coefficient of the characteristic polynomial of A− given by
p−(λ) = λ2 + d−1 λ+ d−2 . Applying such a similarity transformation, the map matrices
become

Ā− =

[
1.64186993642956 1

−0.64 0

]
, Ā+ =

[
1.37142144144080 1

−0.64 0

]
,

and

B̄ =

[
152.75990
207, 79599

]
, C̄ =

[
1 0

]
.
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Figure 8. Numerical bifurcation diagram of the local map (4.25) with the analytically estimated matrices.
The border-collision when δT = 0 corresponds to the corner-impact bifurcation point at ω ≈ 673.2 rpm. Note
that as predicted a nonsmooth fold scenario is observed with no fixed point existing for δT < 0 and two coexisting
fixed points, one stable and the other unstable for δT > 0.

As explained in [13, 4], we can now classify the type of bifurcation scenario observed at
the bifurcation point under investigation by computing the map eigenvalues on both sides of
the boundary. For the case under investigation, we have that (i) the eigenvalues of A− are
λ−

1 = 1.0052 and λ−
2 = 0.6367; (ii) the eigenvalues of A+ are λ+

1,2 = 0.6857 ± j0.4120. Hence,
according to Feigin’s classification strategy, since the total number of real eigenvalues greater
than unity on both sides of the boundary is odd, the bifurcating fixed point will undergo a
nonsmooth saddle node bifurcation and will cease to exist [13]. This is in perfect agreement
with what is observed numerically in the local bifurcation scenario in the map in Figure 8.

Therefore, we can explain the sudden transition to chaos observed in the cam-follower
system under investigation as due to the occurrence of a corner-impact bifurcation. Namely,
the corner-impact is associated to a nonsmooth-fold scenario causing the disappearance of the
stable impacting solution undergoing the bifurcation. This causes trajectories to leave the
local neighborhood where they are confined before the bifurcation and converge toward the
stable coexisting chaotic attractor when ω is decreased below the corner-impact bifurcation
point.

Hence, we can conclude that corner-impact bifurcations in cam-follower systems can indeed
lead to dramatic changes of the system qualitative behavior including sudden transitions from
periodic solutions to chaos.

5. Conclusions. We have studied a novel type of discontinuity-induced bifurcation in a
class of mechanical devices widely used in applications: cam-follower systems. Using a repre-
sentative second order model of the follower, we have shown that its dynamics can undergo
several bifurcations including sudden transitions to chaos as the cam rotational speed is varied.
We analyzed in detail the corner-impact bifurcation of a one-periodic solution characterized by
one impact per period. In particular, we observed that the system’s behavior undergoes dra-
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matic changes when the impact occurs at a point where the cam profile is discontinuous. Using
the concept of discontinuity mappings, we analytically derived the Poincaré map associated
to the bifurcating orbit in the case where the cam profile has a discontinuous acceleration.
Then, using the classification strategy for border-collision bifurcations, we proved that the
corner-impact causes the fixed point associated to the bifurcating orbit to undergo a nons-
mooth saddle node bifurcation. Namely, the fixed point ceases to exist, with the trajectories
being attracted toward a chaotic invariant set.

We wish to emphasize the following.

• The analysis presented above applies with minor changes to the case of impact oscil-
lators forced by signals with discontinuous second derivative. As shown above, this
leads to maps which are locally piecewise-linear continuous close to a corner-impact
bifurcation point. This extends the analysis presented in [8] for the case of an impact
oscillator forced by a function with discontinuous first derivative. We conjecture that
the properties of the local mapping depend on the degree of discontinuity of the forcing
signal. This is the subject of ongoing work.

• As shown in [12], discontinuity-induced bifurcations in flows are usually associated to
maps which are not piecewise-linear. Grazing bifurcations of limit cycles are known to
be associated to maps with square-root singularities in impacting systems and Filippov
systems [26] or maps with higher order nonlinear terms in the case of piecewise-smooth
continuous (PWSC) flows. The only cases in the literature where the map was indeed
found to be piecewise-linear continuous were corner-collisions in PWSC systems and
grazing sliding bifurcations in Filippov systems. So far, no evidence was given of a
bifurcation event in impacting systems associated to locally piecewise-linear continuous
maps. The corner-impact bifurcation scenario presented in this paper fills this gap in
the literature.

• We believe cam-follower systems are a particularly useful set-up to show generically
the behavior of impacting systems with discontinuous forcing.

Finally, the results presented here can pave the way to future work toward a better under-
standing of the complex dynamics of cam-follower systems. This can lead to less conservative
solutions to detachment avoidance, hopefully without resorting to highly stiff closing springs,
and maybe active control strategies.

Appendix A. Cam profile. We report below the analytical description of the representative
cam profile considered in this paper. As shown in Figure 9, in this case the cam profile is the
result of a geometrically based design.

The lift profile c(θ) can be defined from the construction as a piecewise-smooth function
of the angle θ as

c(θ) =

⎧⎪⎪⎨
⎪⎪⎩

c0(θ) if 0 < θ ≤ π
2 − θ1,

c1(θ) if π
2 − θ1 < θ ≤ π

2 − θ2,
c2(θ) if π

2 − θ2 < θ ≤ π
2 − θ3,

c3(θ) if π
2 − θ3 < θ ≤ π,

(A.1)
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(a) (b)

Figure 9. Cam profile definition. (a) θ = 0. (b) θ = π.

c0(θ) = ρ0,

c1(θ) = −κ1 sin(θ + θ1) + (ρ2
1 − κ2

1cos(θ + θ1)
2)

1
2 ,

c2(θ) = κ2 sin(θ + θ3) + (ρ2
2 − κ2

2cos(θ + θ3)
2)

1
2 ,

c3(θ) = ρ3,

where θ1 = ∠SOR, θ2 = ∠SOP , and θ3 = ∠SOQ. Additionally, κi and ρi are constant
parameters given by our particular geometrical construction of the cam as (see Figure 9)

(A.2)
κ1 = ‖OO1‖, ρ0 = ‖OR‖, ρ2 = ‖O2P‖,
κ2 = ‖OO2‖, ρ1 = ‖O1R‖, ρ3 = ‖OQ‖.
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paradox, Eur. J. Mech. A Solids, 21 (2002), pp. 869–896.

[24] R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations in Non-Smooth Mechanical Systems, Springer-
Verlag, New York, 2004.

[25] A. R. Champneys, M. di Bernardo, and C. J. Budd, Corner collision implies border collision, Phys.
D, 160 (2001), pp. 222–254.

[26] A. R. Champneys, M. di Bernardo, and C. J. Budd, Normal form maps for grazing bifurcations in
n-dimensional piecewise smooth systems, Phys. D, 154 (2001), pp. 171–194.

[27] I. Merillas, G. Osorio, M. di Bernardo, E. Fossas, and P. Piiroinen, Complex Dynamics of Cam
Follower Systems, Internal report, SICONOS Project, Dipartimento di Informatica ed Sistemitica,
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Quantitative Characteristic of Rotating Stall and Surge for Moore–Greitzer PDE
Model of an Axial Flow Compressor∗

MingQing Xiao†

Abstract. A commonly used mathematical model for axial flow compressors that captures the flow behavior of
a compression system, known as the Moore–Greitzer model, consists of a PDE and two ODEs. The
PDE describes the dynamical behavior of disturbances in the inlet region of the compression system,
and the two ODEs describe the coupling of the disturbances with the mean flow. In this paper,
we obtain a quantitative characteristic Δ, depending on the compressor geometry, to identify the
type of oscillations of the system. More specifically, the sign of Δ indicates the physical oscillations
predominated by rotating stall or by surge. In mathematical terminology, these three types of oscil-
lations are distinctive Hopf bifurcations occurring in the system as the throttle coefficient decreases,
and they present quite different dynamical behaviors in axial engine compressors. Estimations of
oscillation frequencies corresponding to surge and rotating stall, respectively, are also given in the
paper. Numerical simulations are provided to demonstrate different types of flow oscillation of the
system.

Key words. Moore–Greitzer PDE model, axial flow compressors, rotating stall and surge, Hopf bifurcations
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1. Introduction. The problem of compressor instability has been studied for many years
because engine efficiency could be reduced significantly by rotating stall and surge (e.g., [14],
[12], [9], and references therein). Rotating stall, which corresponds to a traveling wave of
gas around the annulus of the compressor, occurs when a nonaxisymmetric flow disturbance
develops (around the annulus of the rotor) and causes a drastic reduction in the performance
of the compressor. On the other hand, surge is an axisymmetric oscillation across the com-
pression system. It is a low-frequency, large-amplitude oscillation of the mean flow rate in the
compressor which induces a high blade, causing stress levels and possibly reversed flow which
affects flow conditions throughout the entire compression system. Such instability phenomena
can damage engine components during operations.

Moore and Greitzer [14] developed a relatively simple model that captures the dynamical
behavior of a compression system. This model consists of a PDE, which describes the behavior
of disturbances in the inlet region of compression systems, and two ODEs, which describe the
coupling of the disturbances with the mean flow. Considerable research has been carried out
on the analysis and control of the stall and the surge, using simplified models obtained by
a Galerkin projection of the PDE describing the stall dynamics onto its first or first several
Fourier models (for example, see [12], [10], [2], [11], [19], and references therein), but relatively
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little research has been conducted heretofore on the analysis of the full PDE model. Although
the single harmonic Galerkin method is a useful approximation for general transients and
provides a correct picture of the nonlinear effect of rotating stall on performances, it cannot
accurately represent a wave of the relaxation type of transition which arises in fully developed
rotating stall. Experimental observations of the behavior of disturbance velocity potential in
compression systems indicate that its shape is often far from being sinusoidal [14]. Recently
studies on the analysis (and control) of the full PDE model of Moore and Greitzer, mainly
focusing on low-speed compressors, were conducted by Banaszuk, Hauksson, and Mezić [3],
Birnir and Hauksson [4], [5], [6], Chung and Titi [1], Xiao and Başar [18], [20], and Xiao [17].

To the best of our knowledge, currently there is no quantitative criteria available in the
literature for identifying which type of flow oscillations, such as rotating stall or surge, will
predominate the dynamics in the analysis and control of the full Moore–Greitzer model. As
Moore and Greitzer point out in [14], these two types of oscillations differ fundamentally
in that the flow dominated by stall is nonaxisymmetric, while the flow dominated by surge
is symmetric. Moreover, from the point of view of control, surge is linearly controllable
and rotating stall is not linearly controllable (by the throttle coefficient). Thus the control
strategies for these two types of oscillations need considerably different methodologies. This
motivates us to look for a quantitative criterion which can identify the different types of
oscillations occurring inside a compressor.

In this paper we provide a useful indicator Δ which depends on the geometric structure of a
compressor and is computable from the parameters of the system for a given axial flow engine
compressor. The sign of Δ predicts which type of oscillations will develop and ultimately
predominate the dynamical behavior of the system. Let us first recall the stability analysis of
nonlinear evolution equations in a Banach space by studying its linearized system. Consider
Cauchy problems of form

(1.1) ẋ = Ax + f(x), x(0) = x0,

where x(t) takes values in a Banach space (X, ‖ · ‖), A generates a continuous semigroup
on X, f is Fréchet differentiable, with Fréchet derivative df , and the mapping x → dfx is
continuous from X to L(X) (L(X) is the space of linear maps of X onto itself with the usual
norm-topology). Let xe ∈ X be an equilibrium solution; that is, xe is a steady solution
of Ax + f(x) = 0. xe is said to be locally exponentially asymptotically stable if there is a
neighborhood N of xe and positive numbers c, α such that if x is a solution of (1.1) with
x(0) ∈ N , then x(t) exists for all t > 0 and

(1.2) ‖x(t) − xe‖ ≤ ce−αt‖x(0) − xe‖, t > 0.

Now we consider the linearized system of (1.1) at the equilibrium xe:

(1.3) ẋ = Ax + dfxe(x), x(0) = x0.

It is known that if A + dfxe generates a compact C0 semigroup S(t) for t > 0, then the
spectrum of A + dfxe consists solely of a point spectrum (e.g., see [15]). In this case xe is
asymptotically stable if and only if there exists an α < 0 such that the eigenvalues of A+dfxe
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lie in the half-space Re z ≤ α. The connection of stability between (1.1) and (1.3) in this case
is given by Smoller [16] as follows: if xe is an asymptotically stable solution of (1.3), then
xe is also a locally asymptotically stable solution of (1.1). Thus the stability of the system
around xe will be determined by the eigenvalues of A + dfxe provided that the real parts of
all eigenvalues are nonzero. Although when some real parts of the eigenvalues become zero,
A+dfxe is not able to provide any stability information, and other methods such as the center
manifold approach or the averaging integral method must be employed to study the nonlinear
effect in order to determine the stability of the system [20]; however, for the Hopf bifurcation
case, A + dfxe still offers us the information of periods of bifurcating closed orbits, which are
useful for the study of oscillations of the system.

The axial flow engine compressor PDE model, also called the Moore–Greitzer PDE model,
can be put into an abstract evolution form,

(1.4) ẋ = Ax + f(μ, x), x(0) = x0,

in an infinite-dimensional Hilbert space H, where μ is a real parameter varied in (0,∞). Both
equilibrium solutions and the spectrum of A + dfxe(μ) depend on the parameter μ. As μ
decreases, the spectrum of A + dfxe(μ) moves from the left half plane to the right half plane,
which results in an oscillation of the system. In this paper we provide a quantitative criterion
which can identify three different types of Hopf bifurcations by checking Δ > 0, or Δ < 0,
or Δ = 0. These three types of Hopf bifurcations correspond to the occurrence of three
types of physical oscillations predominated by surge, or rotating stall, or a mixture of both.
Estimations of oscillation frequencies corresponding to surge and rotating stall, respectively,
are also provided in the paper.

2. Axial flow engine compressor model. The basic compression system is shown in Fig-
ure 1. It consists of an inlet duct, a compressor, a downstream duct, a plenum, and a throttle.
The compressor operates between the inlet duct and the downstream duct. The flow enters
the compressor from the inlet duct and exits into the plenum through the downstream duct.
The throttle controls the flow through the system at the plenum exit in order to model the
turbine. The compressor geometry is shown in Figure 2. Variable φ in Figure 1 represents
the local, unsteady axial velocity at the compressor face, which depends on both the angle θ
around the wheel and (dimensionless) time ξ = t. Ψ is the pressure in the plenum, which is
defined as

Ψ :=
exit static pressure − inlet total pressure

density × mean rotary speed2 .

The annulus-averaged axial flow coefficient Φ of φ around the wheel is defined as

Φ(t) :=
1

2π

∫ 2π

0
φ(θ, t)dθ.

The model consists of three states, Φ, Ψ, and g, where Φ = Φ(t) is the annulus-averaged
axial flow coefficient, and Ψ = Ψ(t) is the annulus-averaged total-to-static pressure rise co-
efficient. We denote φ(t, θ, η) as the upstream disturbance velocity at any point (θ, η) of the
compressor, where η represents the position along the axial direction of the compressor. Let

g = φη|η=0,
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Figure 1. An outline of a compression system.
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Figure 2. Compressor geometry.

which represents the derivative of the upstream disturbance velocity with respect to η at the
duct entrance η = 0. The free variables in the system are t and θ, where t is the dimensionless
time variable, and θ is the circumferential angle around the compressor annulus. Before the
flow enters the duct, the upstream disturbance velocity φ satisfies the Laplace equation,

(2.1) φθθ + φηη = 0, (θ, η) ∈ [0, 2π] × (−∞, 0),

and φ ≡ 0 at η = −∞. At the duct entrance, we denote φη|η=0 = g and the pressure rise
coefficient satisfies

(2.2) Ψ(t) = ψc(Φ + g) − lc
dΦ
dt − ∂

∂t(mφ + 1
ag) + 1

2agθ −
ν
2agθθ,

where ψc is the characteristic function of the compressor, which will be given later; m is the
duct parameter; a is the internal compressor lag; lc is the length of the compressor; and ν is
the viscous coefficient. By computing the circumferential mean of boundary condition (2.2),
the annulus-averaged axial flow coefficient Φ has a dynamics in the form of

(2.3) lc
dΦ

dt
= −Ψ +

1

2π

∫ 2π

0
ψc(Φ + g)dθ,

which describes the change of mass flow through the compressor. The annulus-averaged total-
to-static pressure rise coefficient Ψ satisfies the pressure-balance equation

(2.4) lc
dΨ

dt
=

1

4B2
(Φ − μ

√
Ψ),

where B is the plenum/compressor volume ratio, which is called the Greitzer B-parameter,
and μ is the throttle coefficient, which is used to control the mass flow through the throttle.
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It accounts for dynamic pressure changes downstream of the compressor exit, in the plenum
and across the throttle.

The compressor characteristic is an inherent feature of the compressor and has a cubic
form in terms of Φ (see [14]), as shown in Figure 3,

(2.5) ψc(Φ) = ψc0 + H

[
1 +

3

2

(
Φ

W
− 1

)
− 1

2

(
Φ

W
− 1

)3
]
,

where ψc0 > 0 is the shut-off value parameter, H > 0 is the semiheight parameter, and W > 0
is the semiwidth parameter.

−1 −0.5 0 0.5 1 1.5
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Figure 3. Notation used in the definition of compressor characteristic with w = 0.5, and H = ψc0 = 2.

The throttle characteristic is defined to be

(2.6) Φ = μ
√

Ψ,

which characterizes the mass flow through the throttle, where μ > 0 is the throttle coefficient
which controls the flow through the throttle. When μ is changed from small to large, it implies
that the throttle is being opened up and more flow is leaving the plenum (see Figure 1).

Let us denote the intersection of the compressor characteristic Ψ = ψc(Φ) and throttle
characteristic Φ = μ

√
Ψ by (φe(μ), ψe(μ)) (see Figure 4). Then (0, φe(μ), ψe(μ)) is called an

unstalled or nominal equilibrium point of (2.2)–(2.4).

The viscous coefficient ν usually is small in axial flow engine compression systems; thus
throughout this paper we assume1

(2.7)
νW

3aH
≤ 1.

1If νW
3aH

> 1, then the system becomes less interesting, since in this case surge will always become predom-
inant.
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Figure 4. Notation used in the definition of a nominal equilibrium point.

This assumption implies that the slope of Ψ = ψc(Φ) at the reflection point Φ = W is not
smaller than ν

2a . This can be seen by observing

ν

2a
≤ 3H

2W
= ψ′

c(W ).

3. Main results.

Theorem 3.1.

1. When the throttle coefficient μ ≥ 2W√
2H+ψc0

, the state (g(t, θ),Φ(t),Ψ(t)) governed by

(2.2)–(2.4) is locally asymptotically stable and as t → +∞
∫ 2π

0
|g(t, θ)|2 dθ → 0, Φ(t) → φe(μ), Ψ(t) → ψe(μ).

2. Suppose νW
3aH ≤ 1. Let

(3.1) Δ =

ψc0 + H

[
1 + 3

2

√
1 − νW

3aH − 1
2

(√
1 − νW

3aH

)3
]

W

(
1 +
√

1 − νW
3aH

) − a

4B2ν
.

Then, as the throttle coefficient μ is decreasing, oscillations inside the compressor
occur. If Δ > 0, the frequency of the flow oscillation is smaller than 1/(4

√
2πBlc)

(i.e., the flow oscillation is predominated by surge). While Δ < 0, the frequency of the
flow oscillation is greater than 1/

(
4π
(

3aH
νW +am

))
(i.e., the oscillation is predominated

by rotating stall). When Δ = 0 a motion composed of the above two types of oscillations
is expected.
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The above main theorem implies that the sign of

Δ =

ψc0 + H

[
1 + 3

2

√
1 − νW

3aH − 1
2

(√
1 − νW

3aH

)3
]

W

(
1 +
√

1 − νW
3aH

) − a

4B2ν

describes how the spectrum moves across the imaginary axis. The quantity Δ depends on the
geometry structure (parameters W,H, a, ψc0 , B) of the axial flow compressor system as well
as the viscous coefficient ν. An important observation for Δ is that it can also be written as

Δ =
ψ

(ν)
e

φ
(ν)
e

− a

4B2ν
,

where

φ(ν)
e := W

(
1 +

√
1 − νW

3aH

)
, ψ(ν)

e = ψc

(
φ(ν)
e

)
,

and, according to the definition of the compressor characteristic ψc, one can see that

ψ(ν)
e := ψc

(
φ(ν)
e

)
= ψc0 + H

⎡
⎣1 +

3

2

√
1 − νW

3aH
− 1

2

(√
1 − νW

3aH

)3
⎤
⎦ .

Thus the sign of Δ implies the relationship between two quantities: the slope of the line

segment through two points (φ
(ν)
e , ψ

(ν)
e ), (0, 0) and the fraction a

4B2ν
. For the high speed com-

pressor, parameter B (the plenum/compressor volume ratio) is large, which leads to Δ > 0 in
most cases. In this case we shall show that a pair of eigenvalues γ±1 crosses the imaginary axis
with nonzero speed, and a Hopf bifurcation occurs at μ = μ̂ according to the Hopf bifurcation
theorem (see, for example, [7], [8]). Experiments show that for a high-speed compressor there
is often a low frequency with large-amplitude flow oscillation through the compressor, which
is called surge, and it can induce vibrations in other components of the compression system,
such as connected piping. On the other hand, for the low-speed compressor, B is small and
usually leads to Δ < 0. In this case another pair of eigenvalues λ±1 crosses the imaginary axis
with nonzero speed, and the compressor will enter another type of high-frequency oscillation,
called rotating stall from the experiments. Thus the sign of Δ is a quantitative criterion for
identifying the dynamics predominated by surge or by rotating stall. If Δ = 0, the dynamics
of the system becomes even more complicated at μ = μν since two Hopf bifurcations appear
simultaneously, as two pairs of eigenvalues λ±1 and γ±1 cross the imaginary axis with nonzero
speed, and in such a case a mixed type of oscillation takes place. Therefore, Δ predicts the
system dynamics as the throttle of the plenum is being closed (μ is reduced). We will provide
details in the following sections.

3.1. Abstract formulation. Let L̇2(0, 2π) be the space of all square integrable 2π-periodic
complex-valued functions with zero average, that is,∫ 2π

0
φ(θ)dθ = 0
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for any φ ∈ L̇2(0, 2π). Note that for any φ ∈ L̇2(0, 2π), its Fourier series is given by

φ(θ) =
∑

n∈Z\{0}
φne

inθ, where φn =

∫ 2π

0
φ(θ)e−inθdθ,

where Z stands for the set of all integers. Boundary condition φ = 0 at η = −∞ implies that
Laplace’s equation (2.1) has a solution of the form

φ(t, θ, η) =
∑

n∈Z\{0}
φn(t)e|n|η+inθ.

We define the flow disturbance at the compressor face to be g := φη|η=0; it thus can be written
as

g(t, θ) =
∑

n∈Z\{0}
|n|gneinθ.

We next introduce a linear operator Π : L̇2(0, 2π) → L̇2(0, 2π) by

Π(φ) =
∑

n∈Z\{0}

{
1 +

am

|n|

}
φne

inθ

for any φ =
∑

n∈Z\{0} φne
in· ∈ L̇2(0, 2π). It is not difficult to see that Π is a positive definite,

self-adjoint linear operator on L̇2(0, 2π). Thus

〈φ, ψ〉Π := 〈φ,Πψ〉L2(0,2π)

defines an equivalent inner product on L̇2(0, 2π), and we denote by L̇2
Π(0, 2π) the space which

consists of elements of L̇2(0, 2π) with inner product 〈·, ·〉Π. By using the operator Π, (2.2) can
equivalently be written as

∂g

∂t
= Π−1

(
ν

2

∂2g(t, θ)

∂θ2
− 1

2

∂g(t, θ)

∂θ

)
+aΠ−1

(
ψc(Φ(t)+g(t, θ))− 1

2π

∫ 2π

0
ψc(Φ(t)+g(t, θ))dθ

)
.

Let X = L2
Π(0, 2π) × R × R, with inner product

(3.2) 〈x1, x2〉 = a−1〈g1, g2〉L̇2
Π(0,2π) + lcΦ1Φ2 + (4lcB

2)Ψ1Ψ2,

where xi = (gi,Φi,Ψi)
T ∈ X, i = 1, 2, and let the norm on this space be defined by ‖x‖ :=√

〈x, x〉 for x ∈ X. The system defined by (2.2), (2.3), and (2.4) can thus be written as

(3.3)
∂

∂t

⎡
⎣ g

Φ
Ψ

⎤
⎦ =

⎡
⎢⎣ Π−1

(
ν
2

∂2

∂θ2 − 1
2

∂
∂θ

)
0 0

0 0 0
0 0 0

⎤
⎥⎦
⎡
⎣ g

Φ
Ψ

⎤
⎦+

⎡
⎣ aΠ−1(ψc(Φ + g) + ψc)

1
lc

(ψc − Ψ)
1

4lcB2 (Φ − μ
√

Ψ)

⎤
⎦ ,

where

ψc =
1

2π

∫ 2π

0
ψc(Φ + g)dθ,
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or in an evolution form of

(3.4)
dx

dt
= Ax + f(μ, x),

where x = (g,Φ,Ψ)T and the linear operator A is defined by

(3.5) A =

⎡
⎢⎣ Π−1

(
ν
2

∂2

∂θ2 − 1
2

∂
∂θ

)
0 0

0 0 0
0 0 0

⎤
⎥⎦

with

D(A) =

{
x ∈ X

∣∣ ∂g
∂θ

,
∂2g

∂θ2
∈ L̇2

Π(0, 2π), and g(0) = g(2π), where x = (g,Φ,Ψ)T ∈ X

}
,

and the function f(μ, x) is defined to be

f(μ, x) =

⎡
⎣ aΠ−1

(
ψc(Ψ − g) − ψc

)
1
lc

(ψc − Ψ)
1

4lcB2 (Φ − μ
√

Ψ)

⎤
⎦ ,

where x = (g,Φ,Ψ)T .
Remark. When we study (3.4), all parameters such as B, lc, a, ν, W , H, and ψc0 are fixed

except the throttle coefficient μ, which is varied in (0,∞).
We will show the main result through a sequence of lemmas.
Lemma 3.1. The operator A defined in (3.5) is the infinitesimal generator of an analytic

compact C0 semigroup on X.
Proof of Lemma 3.1 is provided in the appendix. We would like to point out here that

Chung and Titi provide a detailed discussion of the analyticity of the solution of (3.4) by
establishing Geverey regularity of the system [1]. Their main purpose is to show the existence
of a global invariant manifold; thus some subtle technique has to be applied to deal with the
term

√
Ψ since it is not an analytic function near Ψ = 0. In this paper we focus on local

dynamics of the systems since in reality small perturbations occur more often. Lemma 3.1
can lead to local analyticity of the solution without heavy exposition of other mathematical
tools.

A direct calculation gives the following.
Lemma 3.2. The Fréchet derivative of f(μ, x) at xe(μ) = (0, φe(μ), ψe(μ)) is

(3.6) dfxe(μ) =

⎡
⎢⎢⎣

aΠ−1
(
ψ′
c(φe(μ)) − ψc

′)
0 0

1
lc
ψc

′ 1
lc
ψc

′ − 1
lc

0 1
4lcB2 − 1

4lcB2
μ

2
√

ψe(μ)

⎤
⎥⎥⎦ ,

where ψ′
c and ψ

′
c are the Fréchet derivatives of ψc and ψc, respectively, at x, and for any

x = (g,Φ,Ψ) ∈ X
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(3.7) dfxe(μ)(x) =

⎡
⎢⎢⎢⎣

aΠ−1
(
ψ′
c(φe(μ))g

)
1
lc

(ψ′
c(φe(μ))Φ − Ψ)

1
4lcB2

(
Φ − μΨ

2
√

ψe(μ)

)
⎤
⎥⎥⎥⎦ .

Notice that dfxe(μ) is a bounded operator on X. According to Proposition 3.1.4 and
Corollary 3.2.2 of [15], we have the following lemma.

Lemma 3.3. A+dfxe(μ) is the infinitesimal generator of an analytic compact C0 semigroup
on X.

Lemma 3.4 implies that the eigenvalues of A + dfxe(μ) will determine the stability of the
system around the equilibrium point xe if their real parts are not equal to zero, according to
the discussion given in section 1.

Lemma 3.4. The point spectrum of A + dfxe(μ) is given by

σ (A + dfxe(μ)) = {γ±1(μ), λn(μ), n = ±1,±2, . . . } ,

where

(3.8) λn(μ) =
a|n|

|n| + am

(
ψ′
c (φe) −

ν

2a
n2 − 1

2a
ni

)
,

and

(3.9) γ±1(μ) =

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

±
√(

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

)2
+ ψ′

c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

2
,

where (φe, ψe) satisfies φe = ψc(φe), φe = μ
√
ψe. The eigenvector corresponding to λn(μ) is

given by �vn = (einθ, 0, 0).
Proof. Recall that

(3.10) A + dfxe(μ) =

⎡
⎢⎢⎣

Π−1
(
ν
2

∂2

∂θ2 − 1
2

∂
∂θ

)
+ aΠ−1

(
ψ′
c − ψc

′)
0 0

1
lc
ψc

′ 1
lc
ψc

′ − 1
lc

0 1
4lcB2 − 1

4lcB2
μ

2
√
ψe

⎤
⎥⎥⎦

with

D(A+dfxe(μ)) =

{
x ∈ X

∣∣ ∂g
∂θ

,
∂2g

∂θ2
∈ L̇2

Π(0, 2π), and g(0) = g(2π), where x = (g,Φ,Ψ)T ∈ X

}
.

In order to obtain the eigenvalues and eigenvectors, we need to solve the boundary value
problem

Π−1

(
ν

2

∂2v(1)(θ)

∂θ2
− 1

2

∂v(1)(θ)

∂θ

)
+ aΠ−1ψ′

cv
(1)(θ) = λv(1)(θ),(3.11)

1

lc
ψ′
c(φe)v

(2) − 1

lc
v(3) = λv(2),(3.12)

1

4lcB2
v(2) − 1

4lcB2

μ

2
√
ψe

v(3) = λv(3),(3.13)
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where v(1)(0) = v(1)(2π).

The solutions of (3.11)–(3.13) are given by

(3.14) λn(μ) =
a|n|

|n| + am

(
ψ′
c (φe(μ)) − ν

2a
n2 − 1

2a
ni

)
, �vn = (einθ, 0, 0), n = ±1,±2, . . . ,

and

(3.15) γ±1(μ) =

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

±
√(

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

)2
+ ψ′

c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

2
,

�vγi = (0, φ̂i, ψ̂i), i = ±1, where φ̂i, ψ̂i satisfy

1

lc
ψ′
c(φe)φ̂i −

1

lc
ψ̂i = γiφ̂i,(3.16)

1

4lcB2
φ̂i −

1

4lcB2

μ

2
√
ψe

ψ̂i = γiψ̂i.(3.17)

We thus have obtained the spectrum of A + dfxe(μ), which is

(3.18) σ (A + dfxe(μ)) = {γ±1(μ), λn(μ), n = ±1,±2, . . . } ,

and the proof is complete.

Let X1 = the closure of span{einθ; n = ±1,±2, . . . } and X2 = R
2. Clearly we have

X = X1 ⊕X2.

Lemma 3.5. Let the semigroup Tμ
1 (t) and Tμ

2 (t) be the restrictions of et(A+dfxe (μ)) to X1

and X2, respectively. Then X1 is Tμ
1 (t)-invariant and X2 is Tμ

2 (t)-invariant. Thus for any
(g0,Φ0,Ψ0) ∈ X we have

(3.19) et(A+dfxe (μ))

⎛
⎝ g0

Φ0

Ψ0

⎞
⎠ =

⎛
⎝ Tμ

1 (t)g0

0
0

⎞
⎠+

⎛
⎝ 0

Tμ
2 (t)

(
Φ0

Ψ0

) ⎞⎠ .

Proof. Recall that

(3.20) A + dfxe(μ) =

⎡
⎢⎢⎣

Π−1
(
ν
2

∂2

∂θ2 − 1
2

∂
∂θ

)
+ aΠ−1

(
ψ′
c − ψc

′)
0 0

1
lc
ψc

′ 1
lc
ψc

′ − 1
lc

0 1
4lcB2 − 1

4lcB2
μ

2
√
ψe

⎤
⎥⎥⎦ .

For any (g,Φ,Ψ) ∈ D(A), we have

(3.21) (A + dfxe(μ))

⎛
⎝ g

Φ
Ψ

⎞
⎠ =

⎛
⎜⎝ Π−1

(
ν
2gθθ −

1
2gθ

)
+ aΠ−1

(
ψ′
c(φe)g

)
1
lc

(ψ′
c(φe)Φ − Ψ)

1
4lcB2 Φ − 1

4lcB2
μ

2
√
ψe

Ψ

⎞
⎟⎠ ,
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since ψc
′
g = 0 according to the definition of X. Thus the restriction of A + dfxe(μ) to x1 is

(3.22) (A + dfxe(μ))
∣∣∣
X1

(g) = Π−1

(
ν

2
gθθ −

1

2
gθ

)
+ aΠ−1

(
ψ′
c(φe)g

)
∈ X1,

and that to x2 is

(3.23) (A + dfxe(μ))
∣∣∣
X2

(
Φ
Ψ

)
=

(
1
lc

(ψ′
c(φe)Φ − Ψ)

1
4lcB2 Φ − 1

4lcB2
μ

2
√
ψe

Ψ

)
∈ X2,

which implies that the restrictions of A + dfxe(μ) to X1 and X2 are invariant, respectively.
Therefore, the restrictions of et(A+dfxe (μ)) to X1 and X2 are invariant, respectively.

Before we proceed in a further discussion, let us make some important comments based
on Lemmas 3.1–3.6.

1. The semigroup et(A+dfxe (μ)) is asymptotically stable if and only if both Tμ
1 (t) and Tμ

2 (t)
are asymptotically stable.

2. The semigroup Tμ
1 (t) is determined by the evolution of the upstream disturbance

velocity at the duct entrance, while the semigroup Tμ
2 (t) is decided by dynamics of

the flow coefficient and the pressure rise coefficient.
3. As we will see later, as μ is reduced, both Tμ

1 (t) and Tμ
2 (t) will lose asymptotical

stability (i.e., their spectra will cross the unit disk, respectively). Resulting dynam-
ical behaviors (rotating stall or surge) of the system depend on which one loses its
asymptotic stability first.

4. We will show that the eigenvalues of Tμ
1 (t) and Tμ

2 (t) move across the unit circle with
nonzero speeds as μ is reduced. Thus bifurcations to periodic orbits take place.

5. The center manifold theorem indicates that the periodic orbit (rotating stall) due to
the spectrum of Tμ

1 (t) is in a two-dimensional subspace of X1, while the periodic orbit
(surge) due to the spectrum of Tμ

2 (t) is in X2.
In the following, we will show that quantitative Δ given by (3.1) can identify two different
dynamical behaviors of the system: rotating stall and surge.

Lemma 3.6. When μ ≥ 2W√
2H+ψc0

, all eigenvalues of A+ dfxe(μ) are in the left half plane.

Proof. Notice that μ ≥ 2W√
ψc0+2H

implies that φe(μ) ≥ 2W , and hence ψ′
c(φe(μ)) ≤ 0.

Now we consider Re(λn) and Re(γ±1), respectively. Notice that

Re(λn(μ)) =
a|n|

|n| + am

(
ψ′
c (φe(μ)) − ν

2a
n2
)
≤ a|n|

|n| + am

(
− ν

2a
n2
)

≤ − ν

2(1 + am)
for n = ±1,±2, . . . .

Next we denote χ(μ) as

(3.24) χ(μ) =
1

lc
ψ′
c(φe(μ)) − 1

4lcB2

μ

2
√

ψe(μ)
,

and notice that μ = φe/
√
ψe, and when μ ≥ 2W√

ψc0+2H
(that is, φe ≥ 2W ),

(3.25)
dχ

dμ
(μ) =

1

lc

d

dμ
ψ′
c(φe(μ)) − 1

4lcB2

d

dμ

(
φe(μ)

ψe(μ)

)
< 0,
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since ψ′
c(φe(μ)) is a decreasing function of μ and φe(μ)/ψe(μ) is an increasing function of μ.

Hence when μ ≥ μ0 one has

χ(μ) ≤ χ(μ0) =
1

lc
ψ′
c(φe(μ0)) −

1

4lcB2

μ0

2
√

ψe(μ0)
= − 1

4lcB2

μ0

2
√

ψe(μ0)

= − 1

4lcB2

φe(μ0)

2ψe(μ0)
= − W

4lcB2(ψc0 + 2H)

since ψ′
c(φe(μ0)) = 0. Recall that γ±1 is given by

γ±1(μ) =

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

±
√(

1
lc
ψ′
c(φe) − 1

4lcB2
μ

2
√
ψe

)2
+ ψ′

c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

2

=
χ(μ) ±

√
χ2(μ) + ψ′

c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

2
.

According to the definition of χ given in (3.24), γ±1 can be further written as

γ±1(μ) =
χ(μ) ±

√(
χ(μ) − 2

lc
ψ′
c(φe)

)2
− 1

l2cB
2

2
.

Notice that ψ′
c(φe) ≤ 0 and χ(μ) < 0; thus Re γ±1(μ) < 0, and the proof is complete.

Now we are ready to prove part 1 of Theorem 3.1.
Lemma 3.7. When μ > W√

ψc0+H
:= μ00, the real parts of eigenvalues λn(μ) and γ±1(μ)

cross the imaginary axis with nonzero speeds. Specifically, if there are μ1 ≥ μ00 and μ2 ≥ μ00

such that Re(λn(μ1)) = 0 and Re(γ±1(μ2)) = 0, respectively, then

d

dμ
Re (λ±1(μ))

∣∣∣
μ=μ1

< 0,
d

dμ
Re (γ±1(μ))

∣∣∣
μ=μ2

< 0.

Proof. Recall that (φe, ψe) satisfies ψe = ψc(φe), φe = μ
√
ψe. Notice that μ ≥ W√

ψc0+H

implies φe(μ) ≥ W . Moreover, φe(μ) increases as μ increases, which leads to

dφe(μ)

dμ
> 0.

Thus for n = ±1,±2, . . . , we have

d

dμ
Re (λn(μ)) =

|n|a
|n| + am

d2ψc(φe(μ))

dφ2
e

dφe(μ)

dμ
< 0

since Ψ = ψc(Φ) is concave downward for Φ > W .
For Re(γ±1), recall that

(3.26) γ±1(μ) =
χ(μ) ±

√
χ2(μ) + ψ′

c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

2
.
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Figure 5. Slope on the compressor characteristic at (φe, ψe) and slope for the line segment between (0, 0)
and (φe, ψe).

Notice that

ψ′
c(φe) <

ψe

φe

for μ > μ00 since the slope of the tangent line of Ψ = ψc(Φ) is always smaller than the slope
of the line segment between the origin and (φe, ψe), which can be seen in Figure 5. Hence it
yields

ψ′
c(φe)

l2cB
2

μ

2
√
ψe

=
ψ′
c(φe)

l2cB
2

φe

2ψe
≤ 1

2l2cB
2
,

which implies
ψ′
c(φe)

l2cB
2

μ

2
√
ψe

− 1

l2cB
2
≤ − 1

2l2cB
2
< 0.

Thus according to (3.26) Re(γ±1(μ)) = 0 if and only if χ(μ) = 0 as μ decreases from μ0. Now
we differentiate γ±1(μ) with respect to μ:

dγ±1(μ)

dμ
=

1

2

⎛
⎝dχ(μ)

dμ
+

2χ(μ)dχ(μ)
dμ + d

dμ

(
ψ′
c(φe)
l2cB

2
μ

2
√
ψe

)
2
√

χ2(μ) + ψ′
c(φe)
l2cB

2
μ

2
√
ψe

− 1
l2cB

2

⎞
⎠ .

Applying χ(μ1) = 0, we have

dγ±1(μ)

dμ

∣∣∣
μ=μ1

=
1

2

⎛
⎝dχ(μ)

dμ
− i

d
dμ

(
ψ′
c(φe)
l2cB

2
μ

2
√
ψe

)
2
√

−ψ′
c(φe)
l2cB

2
μ

2
√
ψe

+ 1
l2cB

2

⎞
⎠

μ=μ1

.

Therefore,
d

dμ
Re γ±1(μ)

∣∣∣
μ=μ1

=
1

2

dχ(μ)

dμ

∣∣∣
μ=μ1

< 0,
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since ψ′
c(φe(μ)) is a decreasing function of μ and φe(μ)/ψe(μ) is an increasing function of μ

for μ ≥ μ00.
Let

φ(ν)
e := W

(
1 +

√
1 − νW

3aH

)
, ψ(ν)

e = ψc

(
φ(ν)
e

)
;

then according to the definition of the compressor characteristic ψc one can see that

ψ(ν)
e := ψc

(
φ(ν)
e

)
= ψc0 + H

⎡
⎣1 +

3

2

√
1 − νW

3aH
− 1

2

(√
1 − νW

3aH

)3
⎤
⎦ ,

and φ
(ν)
e satisfies the equation

ψ′
c (Φ) |

Φ=φ
(ν)
e

=
ν

2a
.

Let us now denote

μν =

W

(
1 +
√

1 − νW
3aH

)
√√√√ψc0 + H

[
1 + 3

2

√
1 − νW

3aH − 1
2

(√
1 − νW

3aH

)3
] =

φ
(ν)
e√
ψ

(ν)
e

.

One can verify that W√
ψ0+H

< μν < 2W√
ψ0+2H

(see Figure 3).

Lemma 3.8.
1. If Δ > 0, there exists a positive number μ̂ with μν < μ̂ < 2W√

ψc0+2H
such that when

μ ∈ (μ̂,∞) the spectrum of A + dfxe(μ) is contained in the left half plane, and when
μ = μ̂, a pair of eigenvalues γ±1 crosses the imaginary axis with

(3.27)
d

dμ
Re (γ±1(μ))

∣∣∣
μ=μ̂

< 0.

2. If Δ < 0, then when μ ∈ (μν ,∞) the point spectrum of A + dfxe(μ) is contained in
the left half plane, and when μ = μν , a pair of eigenvalues λ±1 = γ±1 crosses the
imaginary axis with

(3.28)
d

dμ
Re (λ±1(μ))

∣∣∣
μ=μν

< 0.

3. If Δ = 0, then when μ ∈ (μν ,∞) the point spectrum of A+ dfxe(μ) is contained in the
left half plane, and when μ = μν , two pairs of eigenvalues λ±1, γ±1 cross the imaginary
axis with

d

dμ
Re (λ±1(μ))

∣∣∣
μ=μν

< 0,

d

dμ
Re (γ±1(μ))

∣∣∣
μ=μν

< 0.



54 MINGQING XIAO

Proof. 1. Suppose Δ > 0. According to the definition of the compressor characteristic
given in (2.5), one can see when φe = 2W we have ψ′

c(φe) = 0. The corresponding throttle
coefficient μ0 can be obtained as

μ0 =
φe√
ψe

=
2W√

ψc0 + 2H
.

At μ = μ0 we have

Re(λn(μ0)) =
a|n|

|n| + am

(
ψ′
c(φe) −

ν

2a
n2
)
< 0,

Re(γ±0(μ1)) < 0.

As μ is reduced from μ0 to μν , the eigenvalues λn, n = ±1,±2, . . . , become

Re(λ±1(μν)) =
a

1 + am

(
ψ′
c(φ

(ν)
e ) − ν

2a

)
= 0,

Re(λn(μν)) =
a|n|

|n| + am

(
ψ′
c(φ

(ν)
e ) − ν

2a
n2
)
< 0, n = ±2,±3, . . . .

Notice that

χ(μν) =
1

lc
ψ′
c(φ

(ν)
e ) − 1

4lcB2

μν

2

√
ψ

(ν)
e

=
1

lc

(
ν

2a
− 1

4lcB2

φ
(ν)
e

2ψ
(ν)
e

)

=
νφ

(ν)
e

2alcψ
(ν)
e

(
ψ

(ν)
e

φ
(ν)
e

− a

4B2ν

)
=

νφ
(ν)
e

2alcψ
(ν)
e

Δ > 0,

which indicates Re γ1(μν) ≥ χ(μν)
2 > 0. Since Re γ±1(μ) is a continuous function of μ, the

intermediate theorem implies that there exists μ̂ with μν < μ̂ < μ0 such that Re γ±1(μ̂) = 0
and Re γ±1(μ) < 0 when μ > μ̂. Since μ̂ > W√

ψc0+H
= μ00, applying Lemma 3.7 leads to

d

dμ
Re (γ±1(μ))

∣∣∣
μ=μ̂

< 0.

2. Suppose Δ < 0. When μ = μν we have

Re(λ±1(μν)) =
a

1 + am

(
ψ′
c

(
φ(ν)
e

)
− ν

2a

)
= 0

and

Re(λn(μν)) =
a|n|

|n| + am

(
ψ′
c (φe) −

ν

2a
n2
)
< 0, n = ±2,±3, . . . ,

χ(μν) =
νφ

(ν)
e

2alcψ
(ν)
e

Δ < 0.
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Lemma 3.7 implies that both Re(λn(μ)) and χ(μ) are decreasing functions of μ when μ >
W√

ψc0+H
. Hence when μ > μν we have

Re(λn(μν)) < 0, n = ±2, . . . , and Re(γ±1(μ)) < 0.

Thus in this case λ±1 crosses the imaginary axis and the rest of the spectrum of A + dfxe(μ)
is contained in the left half plane when μ > μν . Applying Lemma 3.7 again we know that

d

dμ
Re (λ±1(μ))

∣∣∣
μ=μν

< 0.

3. Suppose Δ = 0. Then when μ = μν we have

Re(λ±1(μν)) =
a

1 + am

(
ψ′
c

(
φ(ν)
e

)
− ν

2a

)
= 0,

χ(μν) =
νφ

(ν)
e

2alcψ
(ν)
e

Δ = 0,

and

Re(λn(μν)) =
a|n|

|n| + am

(
ψ′
c

(
φ(ν)
e

)
− ν

2a
n2
)

=
a|n|

|n| + am

( ν

2a
− ν

2a
n2
)
< 0, n = ±2,±3 . . . .

Lemma 3.7 leads to

d

dμ
Re (λ±1(μ))

∣∣∣
μ=μν

< 0,
d

dμ
Re (γ±1(μ))

∣∣∣
μ=μν

< 0,

and the proof of the lemma is complete.
Lemma 3.9. If Δ > 0, the frequency of the flow oscillation is smaller than 1/(4

√
2πBlc)

(i.e., the flow oscillation is predominated by surge). While Δ < 0, the frequency of the flow
oscillation is greater than 1/

(
4π
(

3aH
νW +am

))
(i.e., the oscillation is predominated by rotating

stall).
Proof. When Δ > 0, as μ is decreasing from μ0, according to Lemma 3.8 γ±1(μ) crosses

the imaginary axis with nonzero speed at μ = μ̂. In this case the bifurcating periodic orbit lies
in X2, that is, in the ΦΨ-plane. According to the Hopf bifurcation theorem [13], the period
of the closed orbit is about 2π

|γ±1(μ̂)| . In the proof of Lemma 3.7 we know that

γ±1(μ̂) =
±
√

ψ′
c(φe)
l2cB

2
μ̂

2
√
ψe

− 1
l2cB

2

2

and
ψ′
c(φe)

l2cB
2

μ

2
√
ψe

− 1

l2cB
2
< − 1

2l2cB
2
.

Hence we have

the period ≈ 2π

|γ±1(μ̂)| >
2π

1
2

√
1

2l2cB
2

= 4
√

2πBlc.
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Therefore, the frequency of the flow oscillation is smaller than 1/(4
√

2πBlc).

When Δ < 0, as μ is decreasing from μ0, λ±1(μ) crosses the imaginary axis with nonzero
speed at μ = μν according to Lemma 3.8 again. Now the bifurcating periodic orbit lies in
a two-dimensional subspace of X1, and λ±1(μν) = ± 1

2(1+am) i. Thus according to the Hopf

bifurcation theorem the period of the flow oscillation is about 2π
1

2(1+am)

= 4π(1 + am). Notice

that νW
3aH ≤ 1; we have

4π(1 + am) ≤ 4π

(
3aH

νW
+ am

)
,

which implies that the frequency is greater than 1/
(
4π
(

3aH
νW +am

))
. Therefore, we finish the

proof of Theorem 3.1.

4. Numerical simulations. Following Moore and Greitzer [14], in the simulations the
parameter values for the compressor characteristic (2.5) are chosen as

H = 0.18, W = 0.25, ψc0 = 1.67H.

In this case the peak of the compressor characteristic is at (Φ,Ψ) = (0.5, 0.6606). Without
loss of generality we also set operator Π, defined in section 3.1, to be the identity of X, since
Π does not affect the stability of the system (see Lemma 3.4). Other parameters for system
(2.2)–(2.4) are set to be

lc = 8, a = 1/3.5, ν = 0.1.

The initial disturbance is set to be g(0, θ) = 0.005 sin θ, and the initial flow and initial pressure
rise are set near the peak of the compressor characteristic, that is, (Φ(0),Ψ(0)) = (0.51, 0.66).
The simulations for the full model (3.3) are conducted by using the Mathematica PDE package.

Asymptotically stable case. In this case we choose μ = 0.66 which is greater than 2W√
2H+ψc0

=

0.615. The simulation is given by Figure 6, which is consistent with the first part of the main
results.

Surge case. We pick B = 2. Based on parameters we set, we have Δ = 1.19706 > 0,
μν = 0.589996. We choose μ = 0.6 (so that μ is the value between μν and 2W√

2H+ψc0

), and

simulation is provided in Figure 7. Simulation shows that the frequency of the flow is about
1/500, which is smaller than 1/(4

√
2πBlc) ≈ 1/284. Moreover, one can see that some inverse

flow appears, which is one of the features of surge behavior.

Rotating stall case. In this case we set B = 0.5. Then we have Δ = −1.48151 < 0. We set
μ = 0.565, which is smaller than μν = 0.589996. Simulation is presented in Figure 8. From
the simulation, one can see that the frequency of the flow oscillation is about 1/50, which is
greater than 1/

(
4π
(

3aH
νW

))
≈ 1/77 (m = 0 due to Π = identity). Moreover, the amplitudes of

both Φ and Ψ are relatively smaller than those in previous (surge) case.

A mixture case. If we set B = 0.72058, then Δ = −0.000017316. We pick μ = 0.572, and
simulation is given in Figure 9. The frequency of the flow oscillation is about 1/100, which
lies between the frequency of surge and the frequency of rotating stall. The amplitudes of
Φ and Ψ are similar to those in the surge case. Simulation shows that the dynamics of the
system evolves as a combination of rotating stall and surge.
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Figure 6. Asymptotically stable case with B = 0.5 and μ = 0.66 ≥ 0.615 = 2W√
2H+ψc0

.

5. Concluding remarks. In this paper we provide a quantity Δ for predicting the type of
oscillations of the Moore–Greitzer PDE model of an axial flow compressor. Δ > 0 indicates
that the dynamics will be predominated by surge, an oscillation which is induced by the
flow coefficient Φ and the pressure coefficient Ψ. Δ < 0 implies that the dynamics will be
predominated by rotating stall g, an oscillation that results from the flow velocity disturbance
at the duct entrance of a compressor. If Δ = 0, then the dynamics will be governed by both.
These instability phenomena can be further quantified by applying the infinite-dimensional
version of the Hopf bifurcation theorem (see, e.g., [21], [7], and [8]). To avoid an overwhelming
presentation in this paper, such results will be reported elsewhere.

6. Appendix.
Lemma 3.1. The operator A defined in (3.5) is the infinitesimal generator of an analytic

compact C0 semigroup on X.
Proof. We first claim that A generates an analytic C0 semigroup on X. Notice that

D(A) =
(
H2(0, 2π) ∩ X

)
× R × R is dense in X. Let y ∈ X and λ = ρeiϑ with ρ > 0,

−π
2 < ϑ < π

2 . Consider the eigenvalue problem

λx−Ax = y.

By taking the inner product of both sides of the above identity with e−iϑx, and then taking
the real part, we arrive at



58 MINGQING XIAO

500 1000 1500 2000
time

0.3

0.4

0.5

0.6

0.7

pressure rise coefficient

500 1000 1500 2000
time

-0.2

0.2

0.4

0.6

0.8

flow coefficient

Figure 7. Surge oscillation Δ ≈ 1.197 > 0 with B = 2 and μ = 0.6.

(6.1) ρ cosϑ‖x‖2 − cosϑRe 〈Ax, x〉 + sinϑ Im 〈Ax, x〉 = Re[e−iϑ〈x, y〉],

where Re 〈Ax, x〉 and Im 〈Ax, x〉 stand for the real part and the imaginary part of 〈Ax, x〉,
respectively. Next we show that there exists ϑ0 with 0 < ϑ0 < π

2 such that when |ϑ| < π
2 + ϑ0

we have

(6.2) − cosϑRe 〈Ax, x〉 + sinϑ Im 〈Ax, x〉 ≥ 0

for any x ∈ D(A). Let x = (g,Φ,Ψ) with g = g1 + ig2. The conjugate function of g is denoted
by g∗ = g1 − ig2. A direct calculation shows that

Re 〈Ax, x〉 = Re

∫ 2π

0

(
ν

2a

∂2g

∂θ2
− 1

2a

∂g

∂θ

)
g∗dθ

=

∫ 2π

0

(
ν

2a

∂2g1

∂θ2
− 1

2a

∂g1

∂θ

)
g1dθ +

∫ 2π

0

(
ν

2a

∂2g2

∂θ2
− 1

2a

∂g2

∂θ

)
g2dθ

= − ν

2a

∫ 2π

0

(∣∣∣∣∂g1

∂θ

∣∣∣∣2 +

∣∣∣∣∂g2

∂θ

∣∣∣∣2
)
dθ

and
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Figure 8. Rotating stall oscillation Δ ≈ −1.482 < 0 with B = 0.5 and μ = 0.572.

Im 〈Ax, x〉 = Im

∫ 2π

0

(
ν

2a

∂2g

∂θ2
− 1

2a

∂g

∂θ

)
g∗dθ

= −
∫ 2π

0

(
ν

2a

∂2g1

∂θ2
− 1

2a

∂g1

∂θ

)
g2dθ +

∫ 2π

0

(
ν

2a

∂2g2

∂θ2
− 1

2a

∂g2

∂θ

)
g1dθ

=
1

2a

∫ 2π

0
2
∂g1

∂θ
g2dθ.

According to Poincaré’s inequality we know that for any g ∈ L̇(0, 2π) we have

(6.3)

∫ 2π

0
|g|2dθ ≤ 4π2

∫ 2π

0

∣∣∣∣∂g∂θ
∣∣∣∣2 dθ.

According to Cauchy’s inequality and (6.3) we obtain

∣∣∣∣ Im 〈Ax, x〉
Re 〈Ax, x〉

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

∫ 2π

0
2

∣∣∣∣∂g1

∂θ
g2

∣∣∣∣ dθ
ν

∫ 2π

0

(∣∣∣∣∂g1

∂θ

∣∣∣∣2 +

∣∣∣∣∂g2

∂θ

∣∣∣∣2
)
dθ

∣∣∣∣∣∣∣∣∣∣
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Figure 9. A mixed oscillation Δ ≈ 0 with B = 0.72061 and μ = 0.572.

≤
2

(∫ 2π

0

∣∣∣∣∂g1

∂θ

∣∣∣∣2 dθ
) 1

2 (∫ 2π

0
|g2|2dθ

) 1
2

ν

∫ 2π

0

(∣∣∣∣∂g1

∂θ

∣∣∣∣2 +

∣∣∣∣∂g2

∂θ

∣∣∣∣2
)
dθ

≤
4π

(∫ 2π

0

∣∣∣∣∂g1

∂θ

∣∣∣∣2 dθ
) 1

2
(∫ 2π

0

∣∣∣∣∂g2

∂θ

∣∣∣∣2 dθ
) 1

2

ν

∫ 2π

0

(∣∣∣∣∂g1

∂θ

∣∣∣∣2 +

∣∣∣∣∂g2

∂θ

∣∣∣∣2
)
dθ

≤ 2π

ν
.

On the other hand, one can see that

(6.4) − cosϑRe 〈Ax, x〉 + sinϑ Im 〈Ax, x〉 = −|〈Ax, x〉| cos(ϑ + ϕ),

where

(6.5) tanϕ =
Im 〈Ax, x〉
Re 〈Ax, x〉 .

Thus, if we let ϑ0 := tan−1 2π
ν , then for |ϑ| < π

2 + ϑ0 we have cos(ϑ + ϕ) > 0, and thus
− cosϑRe 〈Ax, x〉 + sinϑ Im 〈Ax, x〉 ≥ 0.
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From (6.1) it follows that when |ϑ| < π
2 + ϑ0 we have ‖x‖ ≤ (ρ cos ϑ0

2 )−1‖y‖, so that

‖(λI −A)−1‖ ≤ 1

|λ| cos ϑ0
2

, |arg λ| < π

2
+ ϑ0,

and hence

ρ(A) ⊃ Σ(ϑ) =
{
λ ∈ C : |arg λ| < π

2
+ ϑ0

}
.

Therefore, it follows that A is the infinitesimal generator of an analytic semigroup on X.

Next we claim that A also generates a compact C0 semigroup on X. Since the semi-
group T (t) generated by A is analytic, it is continuous in the uniform operator topology for
t > 0. Furthermore, the embedding H2

π(0, 2π) ↪→ L2
π(0, 2π) is compact and R(λ,A)X ⊆

D(A) ⊆ H2
π(0, 2π). Thus R(λ,A) is a compact operator. Therefore, T (t), t > 0, is a compact

semigroup, and this completes the proof.
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[19] M. Xiao and T. Başar, Analysis and control of multi-mode axial flow compression system models,

ASME J. Dynamic Systems, Measurement and Control, 122 (2000), pp. 393–401.
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Pattern Formation in a Model of a Vibrated Granular Layer∗

D. M. Winterbottom†, S. M. Cox†, and P. C. Matthews†

Abstract. A phenomenological model for pattern formation in a vertically vibrated granular layer is examined
in order to investigate its nonlinear dynamics. The model comprises two coupled partial differential
equations: one describes the evolution of the short-scale pattern, while the other enforces conserva-
tion of granular material. In a layer of moderate horizontal extent, the model predicts that a variety
of exotic regular patterns may be stable, according to the system parameters. The usual cubic-order
amplitude equations are unable to determine the stable solution over a significant parameter range;
we compute the corresponding fifth-order terms necessary to resolve this degeneracy. When spatial
modulation of the pattern is taken into account, in a sufficiently wide layer, a stability analysis of
regular one-dimensional roll and two-dimensional square patterns demonstrates that each may suf-
fer a modulational instability, which tends to localize the pattern. The corresponding modulational
stability boundaries, for both rolls and squares, coincide with the transition between stable rolls
and squares in the unmodulated problem. As a consequence, in a suitably large container, squares
are always unstable, and corresponding numerical simulations indicate highly localized worm- or
chain-like patterns. The numerical simulations and stability results are compared with appropriate
experimental results.

Key words. pattern formation, phenomenological model, vibrated granular layer

AMS subject classifications. 76T25, 74J30
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1. Introduction. The near-threshold behavior of a vertically vibrated granular layer has
been the subject of considerable attention in recent years. Experimentally, a diverse collec-
tion of extended cellular and localized patterns has been observed, including rolls, squares,
hexagons, interfaces, and oscillons [1, 25, 26, 33, 34]. Theoretically, however, there is no
widely accepted continuum description for the highly complicated rheology of granular media
[2, 3, 6, 19]; granular materials are known to exhibit some of the dynamical properties of fluids
and solids, as well as their own unique properties [15, 16, 19]. Aranson and Tsimring [3] have
provided a comprehensive recent review of the behavior of granular media.

A thin horizontal layer of granular material on a flat plate that oscillates with vertical
displacement z = A sin(2πft) can form a pattern, which is governed by the driving frequency
f and the nondimensional acceleration amplitude Γ = 4π2Af2/g, where g is the acceleration
due to gravity [25, 26, 33]. Almost irrespective of the driving frequency, patterned states
appear at Γ ≈ 2.4, where rolls, squares, or oscillons may be found (all oscillating at half the
driving frequency). At low frequencies, a hysteretic transition to a regular square pattern is
observed, while above some critical frequency, rolls are selected [25]; localized structures such
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as oscillons are observed in the slightly subcritical region. At higher accelerations (Γ > 3.72),
these patterns become unstable and are replaced by hexagons. Further increases in Γ lead
to the appearance of interfaces (also known as kinks) and, subsequently, quarter-harmonic
patterns [26].

Several theoretical approaches to this phenomenon have been developed, including simu-
lations of molecular dynamics [6, 12, 31], hydrodynamic-type and phenomenological models
[11, 14, 27], and semicontinuum models [8, 17, 18, 30, 35]. In particular, granular hydrody-
namic models have had considerable success in describing granular flow in appropriate param-
eter regimes [3]. However, while many features of the experiments have been reproduced, no
model offers a complete description of the rich variety of observed phenomena [19].

In this paper, we consider the phenomenological model proposed by Tsimring and Aranson
[2, 32], which comprises a Ginzburg–Landau-type amplitude equation for an order parameter,
coupled to an equation expressing the net conservation of granular material. A weakly nonlin-
ear analysis of the emerging pattern reveals how the constraint that the granular material be
conserved leads to a mechanism for localization of the pattern. The resulting weakly nonlinear
equations allow the computation of the stability boundaries for regular patterns; beyond these
boundaries in parameter space localized patterns are indeed found in numerical simulations.
We emphasize that although the underlying model [2, 32] is purely phenomenological, the
mechanism by which the localization of the pattern takes place relies essentially only on the
physical constraint of mass conservation, and so we expect our results to be robust, and to
extend in principle to more sophisticated models of granular media.

We also expect our results to be applicable to vibrated fluid layers where, experimentally, a
wide range of patterns are observed [5, 23] but, as with granular layers, a number of theoretical
models are employed [37, 38]. Indeed, the Ginzburg–Landau-type amplitude equation (2.1),
with no coupling to a mean-field, has been studied previously as a model for parametric surface
waves [20, 37].

The structure of the paper is as follows. In section 2 we recall the phenomenological order-
parameter model of Tsimring and Aranson [2, 32] and review the corresponding linear stability
results. In section 3 we develop two weakly nonlinear models: one describes a spatially regular
pattern comprising modes with up to four distinct wavevectors, and the other describes the
spatial modulations of the pattern that may arise in a layer of greater horizontal extent.
The stability of various patterns is then determined and the results confirmed and extended
through numerical simulation. Finally, in section 4 we discuss the implications of these results
and present our conclusions.

2. Order-parameter model. Since there is no generally accepted continuum model, our
starting point is the phenomenological model [2, 32]

ψt = γψ∗ − (1 − iω)ψ + (1 + ib)∇2ψ − |ψ|2ψ − ρψ,(2.1)

ρt = β∇2ρ + α	∇ · (ρ	∇|ψ|2)(2.2)

that incorporates the essential physical ingredients of a subharmonic pattern-forming instabil-
ity and mass conservation. The order parameter ψ(x, y, t) characterizes the complex amplitude
of the subharmonic pattern, with the disturbance to the planar layer surface being

(2.3) h = ψeiπft + c.c.,
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while ρ(x, y, t) represents the local mass of the granular layer per unit area.
As described by Blair et al. [7], the linear terms in (2.1) follow from an expansion of

the linear dispersion relation for surface perturbations in the form h ∝ exp(Λ(k)t + ikx) for
small k. If we retain only the terms Λ(k) = −Λ0 − Λ2k

2 in this expansion then we obtain
the linearized evolution equation ht = −Λ0r(1 + iΛ0i/Λ0r)h + Λ2r(1 + iΛ2i/Λ2r)∇2h, where
subscripts r and i denote real and imaginary parts, respectively. If we now remove the factors
Λ0r and Λ2r by rescaling time and space variables, we see that ψ satisfies

ψt + iπfψ = −(1 + iΛ0i/Λ0r)ψ + (1 + iΛ2i/Λ2r)∇2ψ,

and hence we obtain the linear terms in (2.1), with ω = −Λ0i/Λ0r−πf and b = Λ2i/Λ2r. Since
the subharmonic oscillation in the physical variable h is already accounted for in (2.3), the
simplest subharmonic pattern is realized with ψ of the time-independent form ψ = Ψ(x, y).

Equation (2.1), with no coupling to the mean-field ρ(x, y, t), has been studied previously
as a model for a vibrated fluid layer [20, 37] as well as for the large-Γ regime of a vibrated
granular layer [4, 7], where ρ is assumed constant. The term γψ∗ provides the parametric
driving required for standing waves to become excited, where the control parameter γ is
the normalized amplitude of the parametric forcing. The coupling term −ρψ indicates that
increasing the depth of the layer makes the system more stable, as observed in experiments [25].

Equation (2.2) describes the conservation of mass in the layer; the distributive mechanisms
are a diffusive flux (proportional to −	∇ρ) and a flux proportional to −ρ	∇|ψ|2 corresponding to
particles escaping from regions of large fluctuation. The mass diffusion constant β is expected
to be proportional to the energy of the plate vibrations and should increase with the driving
frequency f [32]. It is the rapid diffusive smoothing which allows the role of ρ to be discounted
in investigations of the high-acceleration regime of a vibrated granular layer [4, 7]. Since ρ is
conserved, its mean value ρ0 is effectively another parameter in the model. Since the model
comprising (2.1) and (2.2) involves pattern formation coupled to a conservation law, it is likely
to exhibit localized patterns [24].

Perturbations to the uniform solution ψ = 0, ρ = ρ0 (corresponding to a flat homogeneous
layer) with wavenumber k give rise to a neutral curve of the form

(2.4) γ2 = (1 + k2 + ρ0)
2 + (ω − bk2)2.

The nature of the primary bifurcation as the control parameter γ is increased then depends
on the sign of ωb− 1 − ρ0. For ωb− 1 − ρ0 > 0, stability is lost at γ = γc, where

(2.5) γ2
c =

[ω + b(1 + ρ0)]
2

1 + b2
;

corresponding perturbations have finite critical wavenumber kc, determined by

(2.6) k2
c =

ωb− 1 − ρ0

1 + b2
.

By contrast, for ωb− 1 − ρ0 < 0, the instability is first manifest through disturbances on the
largest spatial scales (i.e., as the wavenumber k → 0) with corresponding threshold

(2.7) γ2
c = (1 + ρ0)

2 + ω2.

We restrict our attention in this paper to the case of instability to finite-wavelength pertur-
bations; henceforth, we assume ωb− 1 − ρ0 > 0.
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3. Amplitude equations. We suppose the system to be close to the primary bifurcation
of the uniform solution, near the onset of a pattern-forming instability at finite wavelength.
We proceed with a weakly nonlinear framework, setting γ = γc + ε2γ2 and expanding ψ and
ρ about the uniform state ψ = 0, ρ = ρ0 as series in the small parameter ε:

ψ = εψ1 + ε2ψ2 + ε3ψ3 + · · · ,(3.1)

ρ = ρ0 + ε2ρ2 + · · · .(3.2)

Note that only even powers of ε appear in the expansion for ρ because the forcing in (2.2) is
quadratic in ψ. Making the appropriate substitutions in (2.1) and (2.2), and collecting linear
terms, we find

(3.3) ∂tψ1 = γcψ
∗
1 − (1 − iω)ψ1 + (1 + ib)∇2ψ1 − ρ0ψ1.

This equation inherits from (2.1) a rotational symmetry: all modes with a given wavenumber
k have equal rate of growth or decay, regardless of their orientation. The modes that can be
realized in practice are dictated by the container; for analytical simplicity, we assume that
periodic boundary conditions are applied in x and y. Here we examine two pattern formation
problems: the first involves the competition between two sets of modes, aligned at some angle
to one another, and the second involves the competition between four modes.

3.1. No spatial modulation. Consider a two-mode rhombic standing wave ansatz

(3.4) ψ1 = (b + s + i)
{[

Ãeikx + B̃eik(x cos θ+y sin θ)
]

+ c.c.
}
,

where Ã and B̃ are complex amplitudes, evolving on the slow time scale T̃ = ε2t, θ parame-
terizes the angle between the two modes, and we have introduced

s =
√

1 + b2.

Note that the argument of ψ1, indicated by the factor b + s + i, follows from (3.3).

At O(ε2) we are permitted to choose ψ2 = 0, while ρ2 is found to be slaved to the quadratic
self-interactions of ψ1. Finally at O(ε3), applying the appropriate solvability condition yields
the evolution equations for A and B (compare with equation (4) of [2, 32]):

ÃT̃ = rÃ− 2s(s + b) (3 − φ) |Ã|2Ã− 4s(s + b) (3 − 2φ) |B̃|2Ã,(3.5)

B̃T̃ = rB̃ − 2s(s + b) (3 − φ) |B̃|2B̃ − 4s(s + b) (3 − 2φ) |Ã|2B̃,(3.6)

where

r =
γ2

γc

(ω
b

+ 1 + ρ0

)
, φ =

αρ0

β
.

Note that these equations are independent of the angle θ between the two modes. We assume
henceforth that φ, which measures the strength of coupling between ψ and ρ, satisfies 0 < φ <
3, so that the primary bifurcation to a single mode is supercritical. The interesting dynamical
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behavior of (3.5) and (3.6) then arises for r > 0, which we assume henceforth. To reduce (3.5)
and (3.6) to a canonical form, we introduce

(3.7) (A,B) =

√
2s(s + b)(3 − φ)

r
(Ã, B̃), T = rT̃ ;

then the governing equations (3.5) and (3.6) become

AT = A− |A|2A− λ|B|2A,(3.8)

BT = B − |B|2B − λ|A|2B,(3.9)

where the nonlinear coupling coefficient is

(3.10) λ = 2

(
3 − 2φ

3 − φ

)
.

The equations (3.8) and (3.9) reveal two nontrivial solutions [21]: rolls (e.g., |A| = 1,
B = 0), which are stable when λ > 1, and rhombs (i.e., |A|2 = |B|2 = 1/(1 + λ)), which
are stable when −1 < λ < 1. Thus rolls are predicted to be stable for φ < 1, while rhombs
(which include squares as the special case θ = π/2) are stable when 1 < φ < 9/5. This picture
is consistent with experimental observations, since β is expected to increase (and hence φ is
expected to decrease) with increasing f [32].

When there is no coupling between the order-parameter equation (2.1) and ρ (see [4, 7,
20, 37]), α = 0, and so φ = 0, and the nonlinear coupling coefficient is simply λ = 2. Thus, in
this case the predictions of the amplitude equations are insensitive to the model parameters,
and only rolls can be stable.

An extended version of the amplitude equations (3.8) and (3.9) was derived in [2, 32]
including terms up to O(ε5), by making the simplifying approximation that ρ is slaved to |ψ|2
in (2.2). These extended equations allow a phase diagram to be constructed, illustrating the
stability regions of rolls and squares in Γ-φ parameter space. However, the region of validity
of the inherent approximations is limited to large α and β. Furthermore, we shall see below,
when we describe our numerical simulations of (2.1) and (2.2), that the global conservation of
ρ provides a mechanism for the generation of highly localized patterns, and this mechanism
is lost by imposing a local enslavement of ρ to |ψ|2.

We turn now to a lattice-periodic ansatz comprising four modes, such as may arise in a
periodic square box of side L = n

√
5Λc for n ∈ N, where Λc = 2π/kc is the critical wavelength.

Thus [13]

(3.11) ψ1 = (b + s + i)

{[
Ã exp

{
ik√
5
(2x + y)

}
+ B̃ exp

{
ik√
5
(x + 2y)

}

+ C̃ exp

{
ik√
5
(−x + 2y)

}
+ D̃ exp

{
ik√
5
(−2x + y)

}]
+ c.c.

}
.

Performing a weakly nonlinear expansion as for the roll–rhomb ansatz (3.4), we obtain, at
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O(ε3), after a rescaling as in (3.7), the amplitude equations

AT = A− |A|2A− λA
(
|B|2 + |C|2 + |D|2

)
,(3.12)

BT = B − |B|2B − λB
(
|A|2 + |C|2 + |D|2

)
,(3.13)

CT = C − |C|2C − λC
(
|A|2 + |B|2 + |D|2

)
,(3.14)

DT = D − |D|2D − λD
(
|A|2 + |B|2 + |C|2

)
,(3.15)

where the nonlinear coupling coefficient λ is just that for the rhombic case, given by (3.10).
We find that the only steady solutions to these four amplitude equations that may be stable in
some region of parameter space are rolls (e.g., |A| = 1, B = C = D = 0), which are stable for
φ < 1, and four-mode solutions with |A|2 = |B|2 = |C|2 = |D|2 = 1/(1+3λ), which are stable
when 1 < φ < 21/13. The amplitude equations also allow stationary solutions in the form of
squares (e.g., |A| = |C| = 1/(1 + λ), B = D = 0) and rhombs (e.g., |A| = |B| = 1/(1 + λ),
C = D = 0), but these solutions are always unstable.

Since (3.12)–(3.15) are invariant under phase translations (A �→ Aeiθ), higher-order terms
are required to resolve the relationships between the phases of the four modes in the latter
case. However, it has been shown using the equivariant branching lemma that such solutions
exist in two forms—“supersquares” and “antisquares” [13], with stability being determined
by the coefficients of some quintic-order terms in the amplitude equations. To determine
the necessary coefficients, we write for each amplitude an evolution equation of the form
Ãt = ε2f2 + ε4f4 + · · · , where, as indicated above, prior to any rescaling,

f2 = rÃ− 2s(s + b)(3 − φ)|Ã|2Ã− 4s(s + b)(3 − 2φ)Ã(|B̃|2 + |C̃|2 + |D̃|2).

The relevant terms for distinguishing between the stability of supersquares and antisquares
arise in f4, which may be written in the form

f4 = ÃF4(|Ã|2, |B̃|2, |C̃|2, |D̃|2) + b41B̃
2C̃∗2D̃ + b42Ã

∗B̃C̃D̃∗2

for some real-valued coefficients b41 and b42. Fortunately, for the purpose of determining
the stability of supersquares and antisquares it is not necessary to compute F4; it proves
necessary only to calculate the quantity b41 + 2b42. It turns out that antisquares are stable if
1 < φ < 21/13 and b41 + 2b42 < 0; supersquares are stable if the latter inequality is reversed.
We find

b41 = 12s2(s + b)2
{

(453bγc − 32sk2
c )(φ− 1)2

40s3k4
c

− φ2

ρ0

}
,(3.16)

b42 = 2b41.(3.17)

Thus we conclude that (provided 1 < φ < 21/13) antisquares are stable when

(3.18)
φ2

(φ− 1)2
> δ,

where

δ =
(453bγc − 32sk2

c )ρ0

40s3k4
c
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(and supersquares are stable when the inequality in (3.18) is reversed). It follows that, as we
increase φ from φ = 1, antisquares are stable, at least at first. If δ < 441/64, then (3.18) is
satisfied for all φ in the range 1 < φ < 21/13, so supersquares are never stable. Alternatively,
if δ > 441/64, then antisquares are stable for 1 < φ < φ1, while supersquares are stable for
φ1 < φ < 21/13, where φ1 = 2

√
δ/(

√
δ − 1).

3.1.1. Rotational degeneracy of the amplitude equation coefficients. We now briefly
comment on the fact that the cross-coupling coefficients in (3.5) and (3.6) are independent of
the angle θ between the two sets of modes. Because of this degeneracy, there is no selection
of θ in the cubic-order amplitude equations. One might ask whether one could augment the
phenomenological model for ψ and ρ to overcome this degeneracy. The obvious candidate
respecting the symmetry ψ �→ −ψ is the addition of a term ψt = · · · − pψ|	∇ψ|2. However, it
turns out that the corresponding contribution to the cross-terms (e.g., the term proportional
to A|B|2 in the AT equation) then vanishes identically. Other terms, such as quadratic terms
of the form ψt = · · · + pψ2 + qψ2∗, succeed in resolving the degeneracy, in that the cross-
coupling term depends on θ, but require more substantial justification: such terms might
represent, for example, an additional component of the forcing of the layer, proportional to
sin(3πft) or cos(3πft).

3.2. Small-container numerical simulations. The analytical results of the preceding sec-
tion can be used to predict interesting parameter regimes in which to numerically simulate
the model equations (2.1) and (2.2) in a container of moderate horizontal extent (so that
long-wavelength modulational effects are not relevant). For all our simulations, we set the
parameter values

β = ρ0 = 0.3, b = 1, ω = 2.5,

and use the mobility coefficient α (which equals φ with this choice of parameters) as a control
parameter. For these parameter values, we find b41 + 2b42 = P (α − α1)(α − α2), where
P = 12425(3 + 2

√
2)/4 > 0, α1 ≈ 0.7475, and α2 ≈ 1.5100. Thus, since 21/13 ≈ 1.6154,

antisquares are predicted to be stable for 1 < α < α2, and supersquares are predicted to be
stable for α2 < α < 21/13.

Our simulations use periodic boundary conditions, implemented with a Fourier spectral
method. The initial conditions are the uniform state plus small-amplitude noise, and the
time-stepping is carried out with the exponential time differencing method [9]. If we choose
a square container with side L = nΛc, n ∈ N, then the dominant modes are perpendicular
to and aligned with the periodic boundaries. In this situation, the leading-order pattern is
of the form (3.4) with θ = π/2. Near-threshold simulations in such containers confirm the
predictions of (3.8)–(3.9), displaying stable rolls for φ < 1 and stable squares for 1 < φ < 3/2.

Alternatively, if we choose L = n
√

5Λc, n ∈ N, then the dominant modes take the form
of those in (3.11). Again simulations support the theory: near onset, rolls are stable for
φ < 1 and a four-mode solution is stable for 1 < φ < 3/2. Figure 1 shows simulations for
φ = 1.1: Figure 1(a) shows a stable four-mode solution, which takes the form of antisquares,
as predicted above. An accompanying video (67540 01.mov [334KB]) shows a random initial
condition leading to stable antisquares for parameters as in Figure 1(a). As far as we are aware
this is the first example of a pattern-forming system exhibiting stable antisquares. However,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/67540_01.mov
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(a) (b)

Figure 1. Plots of Re(ψ) from spectral simulations of (2.1) and (2.2) with a container size L = 2
√

5Λc

and periodic boundary conditions: (a) antisquares found at 0.5% above threshold; (b) split rolls at 1% above
threshold. Further above threshold, roll patterns are found. The parameter values for these simulations are
α = 1.1, β = ρ0 = 0.3, b = 1, ω = 2.5; these values of β, ρ0, b, and ω are used for all simulations reported
here.

Figure 2. Plots of Re(ψ) from spectral simulations of (2.1) and (2.2) with a container size 4Λc × 4Λc/
√

3
and periodic boundary conditions, showing a pattern of triangles. The parameter values are as for Figure 1(a).

the range of validity of the weakly nonlinear approximation is found to be fairly small; at
1% above threshold, antisquares are no longer realized, and instead we find rolls or roll-like
patterns (Figure 1(b)).

The theoretical results predict that supersquares are stable only in a very small region
of parameter space near the point at which the bifurcation becomes subcritical, but we were
unable to find stable supersquares in this region in our numerical simulations. However, if we
change the parameters to β = ρ0 = 2, b = 1, ω = 4, the theory predicts a larger region of
stable supersquares, 1.0867 < α < 1.6154, and stable supersquares were found in numerical
simulations in this range.

Since the model equations do not select a preferred angle between modes when φ > 1, this
angle is in fact determined by the imposed periodic lattice. As an illustration of this, Figure 2
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shows a simulation in a periodic domain of size 4Λc × 4Λc/
√

3, designed to permit patterns
that reside on a hexagonal lattice. In this case a stable pattern of regular triangles is found.

3.3. Spatial modulation. The weakly nonlinear analysis presented above holds when the
pattern spectrum consists of discrete modes whose wavenumbers are close to the critical circle
k2 = k2

c . However, in a spatially extended domain, the fact of mass conservation leads to
the existence of slowly evolving modes of large wavelength (i.e., with wavenumber close to
zero), representing adjustments of large-scale inhomogeneities in the thickness of the layer.
These slowly varying modes, even though linearly damped through the diffusive term in the
equation of mass conservation, must be included in any amplitude-equation description of the
near-threshold dynamics of the pattern [10, 22, 24]. Previous theoretical work has indicated
the appropriate amplitude equations for a system undergoing a stationary bifurcation to a
pattern [10, 22, 24], and we sketch below how this analysis may straightforwardly be extended
to the present problem of parametric forcing.

To this end, we restrict our attention to mutually perpendicular modes (θ = π/2) and
consider the planforms

ψ1 = (b + s + i)
(
Ã(X̃, Ỹ , T̃ ) exp(ikx) + B̃(X̃, Ỹ , T̃ ) exp(iky) + c.c.

)
,(3.19)

ρ2 = C̃(X̃, Ỹ , T̃ ) + q.t.,(3.20)

where “q.t.” denotes quadratic interaction terms involving Ã and B̃ (proportional to e2ikx,
eik(x+y), etc.). The amplitudes Ã, B̃ are complex, but C̃, the large-scale mode arising from
mass conservation, is real.

As before, the evolution of the amplitudes takes place on the slow time scale T̃ = ε2t,
while spatial modulations occur over the scales given by X̃ = εx and Ỹ = εy. Examining the
problems that arise at successive orders in ε, we find at O(ε3), after a rescaling of amplitudes
and time as in (3.7), and a spatial scaling

(X,Y ) =

√
b(ω + b(1 + ρ0))

2(1 + b2)(ωb− 1 − ρ0)
(X̃, Ỹ ),

the amplitude equations

AT = A + AXX − |A|2A− λ|B|2A−AC,(3.21)

BT = B + BY Y − |B|2B − λ|A|2B −BC,(3.22)

where λ is given in (3.10). In addition, at O(ε4) the evolution equation for C is found to be
(after the same rescaling of variables that leads to (3.21) and (3.22))

(3.23) CT = σ∇2C + μ∇2
(
|A|2 + |B|2

)
,

where

σ =
β

2

[
ωb + b2(1 + ρ0)

(ωb− 1 − ρ0)(1 + b2)

]
,(3.24)

μ =
αρ0

3 − φ

[
ωb + b2(1 + ρ0)

(ωb− 1 − ρ0)(1 + b2)

]
.(3.25)
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The average of C over X and Y is conserved, according to (3.23), corresponding to conservation
of mass in (2.2). We must set this average to zero, so that the average of ρ is ρ0. The amplitude
equations (3.21)–(3.23) are precisely those of Cox and Matthews [10] (in the special case that
their parameter μ− = 0), and so we may directly apply their modulational stability results
for rolls and squares.

We first consider rolls: a family of roll solutions to (3.21)–(3.23) exists in the form A =
QeiqX , B = C = 0, where Q2 = 1 − q2, corresponding to rolls of wavenumber kc + εq. Of
course, we recover the results of section 3.1 regarding the stability of rolls to disturbances with
exactly critical wavenumber: rolls are unstable to squares if λ < 1 (i.e., if φ > 1). An analysis
of the modulational stability of rolls [10] indicates that a new instability, leading to amplitude
modulation, replaces the usual Eckhaus instability and, when μ > 0, is more widespread than
the case when there is no conserved mode. Indeed, all rolls may be modulationally unstable if
μ > σ, with the last rolls to succumb to the instability being those at band-center (q = 0). We
thus focus on the band-center rolls. For these rolls, in terms of the original variables, the region
of modulational instability corresponds to 1 < φ < 3, which is identical to that for instability
to perturbations in a perpendicular mode. Since we expect the time-scale for the growth of
perpendicular modes to be less than that for modulational modes, we do not expect to see
long-wavelength instability of rolls in simulations, except under contrived circumstances, and
we expect instead to see only the transition to squares. This coincidence of stability conditions
is also found in the modified Swift–Hohenberg model considered in [10] and is a consequence
of the fact that in these simple models the cross-coupling coefficient λ does not depend on the
angle between the modes.

Squares take the form A = QeiqX , B = QeiqY , C = 0 with Q2 = (1 − q2)/(1 + λ) and are
stable to roll-type perturbations only while |λ| < 1, i.e., 1 < φ < 9/5. All square patterns are
found to be unstable to modulational perturbations when 2μ > (1 + λ)σ [10]. This implies
that squares are modulationally unstable while φ > 1, again matching the roll-perturbation
stability boundary. This leads to the remarkable result that all square patterns are unstable,
provided the container size is suitably large, and so a regular square pattern can never be seen
in corresponding simulations. A more detailed analysis indicates that the initial deformation of
a modulationally unstable square pattern will be primarily to its amplitude if the wavenumber
k + εq lies near the band-center, but to its phase otherwise [10]. Nevertheless, in a finite
computational box, one would generally expect some modulation of both the amplitude and
phase; in very long boxes, different modulational scalings are appropriate [28].

3.4. Large-container numerical simulations. For a numerical extension of the preced-
ing analytical results, we simulate (2.1) and (2.2) in a large square container (so that long-
wavelength modulations to the pattern can occur), again with periodic boundary conditions.
Extensive simulations support the predictions regarding the modulational stability of both
rolls and squares. Figure 3 illustrates the predicted long-wavelength instability of squares.
We see that the initial manifestation of the instability is an amplitude modulation in the form
of a large-scale square “superstructure” (a limited analysis of such a superstructure [10] is con-
sistent with the square shape observed here). The final state reached in this example is a highly
localized oscillon chain. Similar patterns have been found through a model based on the as-
sumption of nearest-pattern interaction [17, 18], which indicates that the observed state is not
merely an artifact of the present model. We find such localized states, composed of straight or
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Figure 3. Plots of Re(ψ) depicting four snapshots of the long-wavelength instability of square patterns. The
initial manifestation of the instability takes the form of a square modulation (cf. Figure 5(a) of [10]), while
the final state is an oscillon chain (cf. Figure 10(f) of [17]), spreading across the entire width of the domain.
For this simulation, parameter values are the same as for Figure 1 except the container size is L = 10Λc, γ is
0.1% above critical, and α = φ = 1.1. The initial condition is periodic squares perturbed by small amplitude
noise.

wavy oscillon chains, widely in our simulations in intermediate to large containers with φ > 1
[36]. In large containers we also commonly observe worm-like patterns [29], several of which
can coexist in any given simulation, in various orientations in different parts of the domain.

Although no corresponding analysis is currently available, an analogous modulational
instability for antisquares can be seen in the simulations illustrated in snapshot in Figure 4.
After an initial condition of small-amplitude noise, we see regular antisquares initially being
selected before a long-wavelength amplitude modulation takes place in the form of a one-
dimensional superstructure. Subsequently, the system evolves to a single oscillon chain.
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Figure 4. Plots of Re(ψ) depicting four snapshots of the long-wavelength instability of antisquare patterns.
The initial manifestation of the instability takes the form of a roll modulation, while the final state is a single
oscillon chain. For this simulation, the container size is L = 3

√
5Λc, γ is 0.1% above critical, and α is 1.25.

The initial condition is small-amplitude noise.

Simulating the model equations at increasing values of φ shows the degree of localization
to increase as φ moves away from 1. This phenomenon is illustrated in Figure 5, where the
final states are shown for four values of φ. We see roll solutions for φ = 0.9, while rhombs
are found at φ = 1.1. Subsequently, at φ = 1.2, we find a disordered cellular pattern, where a
slight localization can be observed. Finally, at φ = 1.3, a similar cellular pattern is apparent
but with a far stronger degree of localization. Indeed, the final state can be thought of
as comprising several oscillon chains. This behavior is characteristic of much of parameter
space. An accompanying video (67540 02.mov [604KB]) shows a typical example of increasing
localization leading to oscillon chains for φ = 1.2, with γ chosen to be 0.2% above critical.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/67540_02.mov
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Figure 5. Plots of Re(ψ) illustrating the steady states realized as φ is increased. The parameter values are
the same as in Figure 1, the container size is L = 10.5Λc, γ is 0.5% above critical, and the initial condition is
noise of amplitude 10−3.

4. Discussion. The analysis presented here extends that of Tsimring and Aranson [2, 32]
in providing a more complete description of the stability of patterns in their phenomenological
model for pattern formation in a vertically vibrated granular layer. Extensive numerical
experiments on (2.1) and (2.2) have supported all the analysis.

In small domains, a variety of unusual patterns can be stable, including antisquares and
triangles. In larger domains, our results show that rolls and squares may suffer a modulational
instability, which is strongly influenced by the constraint of mass conservation. It turns out
that rolls are effectively immune to this modulational instability because it arises only where
a regular roll pattern is already unstable to a regular pattern of squares. By contrast, squares
are always susceptible; both these modulational results have been confirmed numerically. The
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fact that squares are always unstable would appear to be in conflict with the experimental
results, where stable square patterns are commonly observed [25]; it may thus indicate a
shortcoming in the phenomenological model of (2.1) and (2.2). However, other explanations
for the discrepancy are not ruled out. For example, since the modulational instability leads
to long-wavelength perturbations becoming unstable first, the instability can take place only
if perturbations on a sufficiently large spatial scale can be accommodated in the container.
So for finite containers squares will generally be stable close to the roll–square transition, but
will lose stability as the driving frequency is decreased (effectively increasing φ). A further
possible explanation for the absence of observations of the instability of squares is that the
long-wavelength nature of the instability corresponds to a very slow temporal growth of the
disturbance. Thus, square patterns may be observed for a significant period of time before the
long-wavelength modulation manifests itself; this has certainly been apparent in our numerical
simulations. However, the exact coincidence of the roll–square transition and the modulational
instability is a consequence of the simplicity of the model.

Since we have considered only a supercritical bifurcation from the uniform state, bistability
arguments are not necessary in explaining the existence of strongly localized solutions. Rather,
it is the influence of the conserved quantity that provides the localization mechanism: particles
tend to flee regions in which ψ is large, leading to an increased flux of particles and a reduction
in the local density ρ. This, in turn, decreases the damping in the ψ equation (2.1). Such mass
redistribution, and corresponding localization, is observed in numerical simulations of models
such as that of Eggers and Riecke [14]. The feedback loop just described enables localized
structures to remain stable. In effect, a large-scale redistribution of the granular medium
causes some regions to be locally “supercritical” and others locally “subcritical,” while the
system as a whole is supercritical. Many other models of a vertically vibrated granular layer
include in them the principle of conservation of mass, and one might expect corresponding
long-wavelength effects to be applicable in a wide range of models. However, few continuous
order-parameter models exist; most are of a semicontinuum or stroboscopic nature and the
weakly nonlinear analysis carried out here is not immediately transferable.

Our interest in (2.1) and (2.2) is not exclusively in the context of vibrated granular layers;
such a phenomenological model could also account for a vibrated fluid layer. In this situation,
the complex order-parameter ψ corresponds to the velocity potential at the free surface [37],
while ρ represents the displacement from the undisturbed fluid height (the volume of fluid
being conserved). In addition, aside from its application to granular and fluid layers, the phe-
nomenological model (2.1) and (2.2) is an interesting and unusual model of pattern formation
in its own right. It is unusual in the sense that the coupling to a mean field enables the se-
lection of cellular patterns to be determined by the parameter values rather than being solely
dependent on symmetries as in other common models such as the Swift–Hohenberg equation.
What makes (2.1) and (2.2) particularly interesting is how the coupling with a large-scale
mode facilitates the near-threshold exhibition of a plethora of cellular, but predominantly
localized, patterns.
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Abstract. A concept of “near invariance” is developed starting from sets that are actually invariant under
smaller perturbations. This is based on a theory for system dynamics of Markov diffusion processes
illuminating the idea of “large” noise perturbations turning invariant sets for smaller noise ranges
into transient sets. The controllability behavior of associated deterministic systems plays a crucial
role. This setup also allows for numerical computation of nearly invariant sets, the exit times from
these sets, and the exit locations under varying perturbation ranges. Three examples with additive
perturbations are included: a one degree of freedom system with double well potential and the
escape equation without and with periodic excitation.
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1. Introduction. Almost invariance is an often used concept for stochastic dynamical
systems that intends to describe sets such that the system

• stays within a set in the state space for a “long” time,
• exits from the set only under “large” noise perturbations,
• and may return to this set at a later, much “longer” time.

Hence almost invariance tries to describe a transient phenomenon of stochastic systems,
but on “large” time intervals. The interpretation of “large” time intervals and “large” per-
turbations usually depends on the application one has in mind.

Recently, these phenomena have found renewed interest. This includes approaches based
on transfer operator theory combined with set oriented numerics (Dellnitz and Junge [11],
[12], Froyland [20], [21], and Froyland and Dellnitz [22]) and graph theoretic methods (Dellnitz
et al. [14]) as well as extensions of metastability in the classical Freidlin–Wentzell theory [19]
in Huisinga, Meyn, and Schütte [27] and the analysis of dominant eigenvalues of transfer op-
erators (Schütte, Huisinga, and Deuflhard [37]; Deuflhard et al. [16]). An important approach
is also developed in the work of Bovier [2] and Bovier et al. [3], [4].

Applications of almost invariant sets include, e.g., the analysis of molecular dynamics,
where they can symbolize conformations of a molecule that are essential for its chemical
properties (Deuflhard and Schütte [15]); Mezic [34] proposes a different dynamical systems
explanation of conformation dynamics based on an interplay between local and global in-
terconnections for coupled oscillator networks. Similar problems of almost invariance occur,

∗Received by the editors November 8, 2004; accepted for publication (in revised form) by K. Mischaikow July 10,
2007; published electronically January 16, 2008.

http://www.siam.org/journals/siads/7-1/61853.html
†Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany (fritz.colonius@math.uni-augsburg.de,

tobias.gayer@math.uni-augsburg.de).
‡Department of Mathematics, Iowa State University, Ames, IA 50011 (kliemann@iastate.edu).

79

http://www.siam.org/journals/siads/7-1/61853.html
mailto:fritz.colonius@math.uni-augsburg.de
mailto:tobias.gayer@math.uni-augsburg.de
mailto:kliemann@iastate.edu


80 F. COLONIUS, T. GAYER, AND W. KLIEMANN

e.g., in dynamical astronomy (Dellnitz et al. [13]), in the analysis of dynamic reliability when
one tries to estimate rare occurrences of system failure due to large perturbations (see, e.g.,
Colonius, Häckl, and Kliemann [5]), and in other models in engineering and science.

The goal of this paper is to develop a theory that

• defines a plausible concept of “nearly invariant sets” based on the actual system dy-
namics of Markov diffusion processes,

• illuminates the idea of “large” noise perturbations turning invariant sets for smaller
noise ranges into transient sets,

• explores the idea of invariance over “large” time intervals,
• and allows for numerical computation of nearly invariant sets, the exit times from

these sets, and the exit locations under varying perturbation ranges.

Thus the concept of near invariance captures essential features of “almost invariance.”
Our approach is, roughly, as follows:

• We consider Markov diffusion models (i.e., the system does not anticipate future be-
havior of the noise) with perturbations entering as parameter or additive noise into
the system dynamics, which are modeled as a set of ordinary differential equations

(1) ẋ = X0(x) +

m∑
i=1

ξi(t, ω)Xi(x)

on a finite dimensional C∞ manifold M , where the C∞ vector field X0 describes the
unperturbed dynamics and ξ(t, ω) = (ξi(t, ω), i = 1, . . . ,m) is the vector of random
perturbation processes with C∞ dynamics X1, . . . , Xm. We model ξ as a function
ξ = f(η) of a background noise η, f : N → U , where N is the state space of the
background noise and U ⊂ R

m is the set of perturbation values. We assume η to be a
stationary, ergodic Markov process.

• The noise range is treated as a parameter ρ ≥ 0 of the system by introducing a family
fρ : N → Uρ, ρ ≥ 0, of functions such that the sets Uρ of perturbation values increase
with ρ. Setting U0 = {0}, we recover the unperturbed dynamics of the system (1).

• We identify the invariant sets of the stochastic system (1), depending on the noise
range. Under mild conditions, the invariant control sets of an associated control system
are the supports of the invariant measures of (1) and they form the cores of the
invariant sets for the system.

• Analyzing the change of the invariant sets as the noise range ρ ≥ 0 increases leads to
the study of the loss of invariance, specifically to the analysis of bifurcation points ρ0

where an invariant set loses its invariance and becomes transient or “nearly invariant.”
• Finally, we study the exit time distributions from invariant sets as they become tran-

sient under the influence of larger perturbations.

This approach develops a concept for near invariance starting from sets that are actually
invariant under smaller perturbations. In other approaches the term “almost invariance” is
used to describe the behavior in certain regions, usually in relation to an invariant probability
measure with support on the whole state space; see, e.g., Huisinga, Meyn, and Schütte in [27].
In the approach outlined above, such a reference measure need not exist, and we suggest the
term “near invariance” for the concept developed here.
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Though our analytical approach applies to systems in arbitrary finite dimension, numerical
evaluations appear possible for low dimensional systems only thus restricting the range of
applicability.

It is worth noting that recently, in the context of random diffeomorphisms, problems
similar to near invariance have been analyzed by Zmarrou and Homburg [41]. They analyze
average escape times from sets as functions of a bifurcation parameter.

In section 2 we describe the setup used in this paper and recall some background material
on Markov diffusion systems and their qualitative behavior, based on the analysis of associated
control systems with varying control range. Section 3 presents the definition of near invariance
together with the main result on the existence of nearly invariant sets. Theorem 3.3 and
Corollary 3.4 describe the bifurcation points where an invariant and a variant set merge
to generate a nearly invariant set. The rest of this section is devoted to the study of the
exit sets from variant sets. Section 4 discusses the numerical computation of exit times
for nearly invariants sets and the corresponding exit locations. Section 5 analyzes three
examples in some detail: a one degree of freedom system with double well potential and
additive perturbation and two perturbed versions of the escape equation, without and with
an extra periodic excitation; see, e.g., [40], [35], [17], [26], and the references therein. The
latter example is three dimensional and at the present limit of our computational possibilities.
The appendix, section 6, contains some background information on parameter dependent
deterministic control systems that is used throughout the paper.

2. Markov diffusion systems and associated control systems. In this section we recall
some facts about Markov diffusion systems, their relations to associated control systems, and
the support theorem of Stroock and Varadhan. We start from the system

(2) ẋ = X0(x) +

m∑
i=1

fi(ηt)Xi(x)

on a finite dimensional, C∞ manifold M with C∞ vector fields X0, . . . , Xm as in section 1.
First we specify our assumptions on the background noise η. Let N be a compact connected
finite dimensional C∞ manifold on which the stochastic differential equation

(3) dη = Y0(η)dt +

l∑
j=1

Yj(η) ◦ dWj

is defined. Here W = (Wj) is an l dimensional Wiener process, Y0, . . . , Yl are C∞ vector fields
on N , and “◦” denotes the Stratonovich stochastic differential. The compactness of the noise
space N rules out excitation processes with Gaussian statistics, and thus (3) can be regarded
as a realistic model of physical systems with bounded noise. We assume that (3) admits at
least one stationary Markov solution. Imposing the Lie algebra rank condition

(4) dimLA{Y1, . . . , Yl}(q) = dimN for all q ∈ N

as a nondegeneracy condition on N guarantees that this stationary solution is unique (see
Kunita [31]) and can be extended to a stationary Markov solution η∗t , t ∈ R.
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The noise process ξt := fi(ηt) in (2) is defined in the following way: Let U ⊂ R
m be a

compact convex set with 0 ∈ intU and U = cl intU . Let

f : N → U

be a continuous surjective function such that there exists a closed connected subset L ⊂ N .
f |L is C1 and Df(η) has full rank for all η ∈ L with f(η) ∈ U ; see [7]. Then ξt := f(η∗t ) is a
stationary process with values in U .

We model variations in the size of the noise by introducing a parameter ρ ≥ 0 and the
noise ranges Uρ, satisfying the same assumption as U above. We consider the process η∗t
as a background noise, which for every ρ is mapped into the stochastic perturbation space
Uρ = {u : R → Uρ, measurable} by a continuous surjective function

fρ : N → Uρ,

which satisfies the assumptions on f above. Combining this perturbation model with sys-
tem (1), we arrive at the Markov diffusion system

dη = Y0(η)dt +
∑�

j=1 Yi(η) ◦ dWj , η0 = η∗0,

ẋ = X0(x) +
∑m

i=1 f
ρ
i (ηt)Xi(x)

(5)

on the state space M × N , for which we assume the existence and uniqueness of a strong
solution for all t ≥ 0. This system is degenerate since the Wiener process acts only on the
second component. Note that, in general, the component x(t) by itself is not Markovian.
The pair process (x(t), ηt) is, however, a Markov diffusion process for all ρ, if the initial
random variable x0 in M is independent of the increments of the Wiener process. Compare,
in particular, especially [29] for results on degenerate diffusions along these lines, and [7]
and [8] for more details on our setting in general.

The system (5) can be analyzed using control theory via the support theorem presented
by Stroock and Varadhan in [38]. To make this more precise, we set up the control system
associated with (5) to be

η̇ = Y0(η) +
∑�

j=1 wj(t)Yi(η),

ẋ = X0(x) +
∑m

i=1 f
ρ
i (ηt)Xi(x),

(6)

where w ∈ W := {w : [0,∞) → R
l, piecewise constant}, and we assume the Lie algebra

rank condition (4) for the η-component. Furthermore, we want the pair system (5) to be
regular; i.e., we want the topological support of its transition probabilities from each point
(x, p) ∈ M ×N to have nonvoid interior in M ×N . This is guaranteed by

(7) dimLA
{(

X0 +
∑

ηiXi(x)
Y0 +

∑
wj Yj

)
, w ∈ R

l

}(
x
η

)
= dimM + dimN

for all (x, η) ∈ M ×N (see Meyn and Tweedie [33] for a relaxation of this condition). Instead
of (6) it will be sufficient to consider the system

(8) ẋ(t) = X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t)), u ∈ Uρ;
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see the appendix, section 6, for definitions and notation of control systems. Note that the
condition (7) implies local accessibility for the x-component (8).

We fix ρ ≥ 0 for the remainder of this section and drop it in the notation. For all
(x, η) ∈ M ×N the orbits O+(x, η) of system (6) are of the form clO+(x, η) = clO+(x)×N ,
where O+(x) is the forward orbit of the system (8) from x ∈ M . In particular, the invariant
control sets Ĉ ⊂ M × N of (6) correspond one-to-one to the invariant control sets C ⊂ M
of (8) via Ĉ = C×N . This follows from Lemma 3.17 in [7]. (We remark that in the statement
of that lemma one has to add the surjectivity assumption for f which is used in the proof.)
Therefore, the global control structure of the x-component (8) determines the control structure
of the pair process (6).

The natural probability space to work in is Ω̂ := C(R+
0 ,M × N) = {ω : R+

0 → M × N,
continuous} and for fixed initial conditions (x, q) ∈ M×N the pair process (5) induces a prob-
ability measure P̂(x,q) on Ω̂. By P̂(x,η∗) we denote the measure corresponding to the stationary

Markov solution {η∗t , t ≥ 0} in the η-component. Its marginal distribution on Ω := C(R+
0 ,M)

will be denoted by Px, x ∈ M . The trajectories of the pair process are (ϕ(t, (x, q), ω), η(t, q, ω))
for (x, q) ∈ M ×N , and we will write the x-component under {η∗t , t ≥ 0} as ϕ(t, x, ω), x ∈ M .
Then the “transition probability” from x ∈ M to a set A ⊂ M in time t ≥ 0 is

(9) P (t, x,A) = Px(ϕ(t, x, ω) ∈ A).

Using the tube method introduced by Arnold and Kliemann in [1], it follows (compare
with [28]) from the support theorem that

(10) suppP (t, x, ·) = cl

{
y ∈ M | there is a piecewise continuous

u ∈ U such that ϕ(t, x, u) = y

}
.

It now follows from [29] and [7] that the invariant Markov probability measures μ of (5)
have support given by suppμ = C ×N , where C is an invariant control set of (8), and these
measures are unique on each set of this form. We call ergodic sets those invariant control sets
C of (8) such that C ×N is the support of some invariant Markov measure, which includes,
in particular, all bounded invariant control sets. All points in M × N outside of invariant
control sets are transient.

To describe the consequences of the support theorem for the relationship between the
Markov diffusion process (5) and the control system (8) in more detail, we define the first
entrance time of (5) to a set A ⊂ M from a point x ∈ M as the random variable

τx(A) := inf{t ≥ 0, ϕ(t, x, ω) ∈ A},

and the first exit time of (5) from a set A ⊂ M starting at a point x ∈ M as the random
variable

σx(A) := inf{t ≥ 0, ϕ(t, x, ω) /∈ A}.

The corresponding exit location is given as

hx(A)(ω) :=

{
y ∈ M, y = ϕ(σx(A), x, ω) for σx(A)(ω) < ∞,

∅ for σx(A)(ω) = ∞.
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Due to Theorem 3.19 in [7], for invariant control sets C ⊂ M of system (8) the equation
Px(σx(C) < ∞) = 0 holds for all x ∈ C. For bounded variant control sets D ⊂ M , on the
other hand, it holds that Px(σx(D) < ∞) = 1 for all x ∈ D. Under the measure Px we even
have that the expectation of the sojourn time Ex[σx(D)] is finite (see [5, Theorem 11]).

3. Near invariance and mergers of control sets. If a bounded invariant control set Cρ for
ρ ≤ ρ0 becomes variant for ρ > ρ0, then the corresponding ergodic set of the Markov process
disappears and becomes transient. Nevertheless, although the disappearance of an ergodic
set changes the global behavior of a stochastic system considerably, we expect the system to
experience large exit times from the resulting variant control set as long as ρ is close to ρ0

(see [25] for an example that can serve as a prototype of this phenomenon). This behavior is
captured more generally in the following definition.

Definition 3.1. Consider the family of Markov diffusion systems (5)ρ. A closed set A ⊂ M
with intA 
= ∅ is nearly invariant in x0 ∈ intA for ρ > ρ0 if

(i) σρ
x0(A) < ∞ with positive probability for ρ > ρ0, and

(ii) for all x ∈ A one has σρ
x(A) ↗ ∞ almost surely for ρ ↘ ρ0 and σρ0

x (A) = ∞ almost
surely.

If A is nearly invariant in every x0 ∈ intA, the set A is called nearly invariant.
The following theorem reduces the search for nearly invariant sets to the search for closed

sets A which are invariant for the control range Uρ0 and lose their invariance under increased
control ranges.

Theorem 3.2. Suppose the Markov diffusion systems (5)ρ satisfy the Lie algebra rank con-
ditions (7) and (4) and that Uρ increases upper semicontinuously with respect to ρ ∈ (ρ∗, ρ∗).
Let x0 ∈ intA for some closed set A ⊂ M , intA 
= ∅, and consider ρ0 ∈ (ρ∗, ρ∗). Then the
set A is nearly invariant in x0 if and only if the set A is positively invariant for ρ0, and for
each ρ > ρ0

(11) int(Oρ,+(x0) � A) 
= ∅.

Proof. First we show that from positive invariance of A and upper semicontinuity of Uρ

at ρ = ρ0 property (ii) of Definition 3.1 follows. By Lemma 6.1, intA is also positively
invariant and hence σρ0

x (A) = ∞ almost surely. Now assume, contrary to the other assertion,
that there are x ∈ A, a positive time T > 0, and ρn ↘ ρ0 such that Px(σ

ρn
x (A) < T ) > 0.

Then from (10) it follows that for all ρn there is a control un ∈ Uρn with ϕ(T, x, un) /∈ A,
and, due to continuity, there are positive times tn < T such that ϕ(tn, x, un) ∈ ∂A. Since
Uρ is increasing, we can look upon the sequence un as a sequence in the compact set Uρ1

endowed with the weak∗-topology. Then there are subsequences, called (tn) and (un) again,
such that tn → t∗ and un → u∗. By (20) it follows that ϕ(tn, x, un) → ϕ(t∗, x, u∗). Now
observe that on a bounded interval weak∗-convergence in L∞ implies weak convergence in L2;
and here a subsequence of a weakly convergent sequence converges pointwise. Hence upper
semicontinuity of the closed sets Uρ implies that u∗ ∈ Uρ0 , because if u∗(t) was not in Uρ0

for some t, this would contradict un(t) ∈ Uρn for all n. Then by continuity it follows that
ϕ(t∗, x, u∗) ∈ ∂A, contradicting the positive invariance of intA.

Next we prove that assumption (11) implies property (i) of near invariance by showing
that Px0(σ

ρ
x0(A) < ∞) > 0 for all ρ > ρ0. Pick ρ > ρ0; then there are some open set
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V ⊂ int(Oρ,+(x0) � A), a positive time t0 < ∞, and a piecewise constant control u0 ∈ Uρ

such that ϕ(t0, x0, u0) ∈ V . By continuous dependence of the solutions of (8)ρ on u, there is
an open neighborhood V(u0) ⊂ Uρ such that ϕ(t0, x0, u) ∈ V for all u ∈ V(u0). The support
theorem implies that P (η ∈ C(R+

0 , N), fρ(η) ∈ V(u0)) > 0. Since the trajectories of (5) are
continuous, we obtain

Px0(σ
ρ
x0

(A) < ∞) ≥ Px0(σ
ρ
x0

(A) < t0)

≥ P (η ∈ C(R+
0 , N), fρ(η) ∈ V(u0)) > 0.

(12)

For the converse implication assume that A is nearly invariant in x0 ∈ intA for ρ > ρ0. Then
σρ
x0(A) < ∞ with positive probability for ρ > ρ0. Thus for every ρ > ρ0 there is a realization

of η and a time T such that with uρ := fρ(η) ∈ Uρ

ϕ(T, x0, u
ρ) /∈ A.

Thus ϕ(T, x0, u
ρ) ∈ Oρ,+(x0) � A. Local accessibility of (8) implies that

Oρ,+(x0) ⊂ cl intOρ,+(x0).

Since A is closed, we see that for every ρ > ρ0 condition (11) holds.

It remains to show that the set A is positively invariant for ρ0. This follows from
σρ0
x (A) = ∞ almost surely. In fact, if A is not positively invariant, we obtain a contra-

diction using the same reasoning as above in the proof that (11) implies property (i) of near
invariance.

This result shows that we have to look for closed sets which are positively invariant for
ρ0 and lose their invariance for ρ > ρ0. Naturally, the sets A that are nearly invariant for all
x0 ∈ intA are of particular interest. These sets are specified in the following theorem. Recall
from section 6 that Ainv(I) denotes the largest invariant set in the domain of attraction of a
set I.

Theorem 3.3. (i) Let the assumptions of Theorem 3.2 be satisfied and let Cρ0 be a compact
invariant control set for ρ0. For each ρ > ρ0 denote by Cρ the unique control set of (8)ρ for
which Cρ0 ⊂ Cρ. Suppose that there is x ∈ intCρ0 with

(13) int(Oρ,+(x) � Cρ0) 
= ∅ for all ρ > ρ0.

Then the invariant control set Cρ0 is nearly invariant for ρ > ρ0.

(ii) For every compact set K ⊂ M the intersection Ainv(Cρ0) ∩K is nearly invariant for
ρ0 if the intersection is positively invariant for ρ0.

(iii) If the invariant control set Cρ0 is nearly invariant for ρ > ρ0 and bounded, then
Pxo{σ

ρ
x0(C

ρ0) < ∞} = 1 for all x0 ∈ Cρ0 and all ρ > ρ0.

(iv) Condition (13) is satisfied, in particular, if Cρ0 merges with a variant control set Dρ0

with nonvoid interior, i.e., Dρ0 ⊂ Cρ for all ρ > ρ0, or if all (u, x) ∈ Uρ0 × Cρ0 are inner
pairs of system (8)ρ for every ρ > ρ0; compare with the appendix, section 6.

Proof. (i) We show that Cρ0 is nearly invariant for ρ > ρ0. Since int(Cρ
� Cρ0) 
= ∅ and

Cρ is a control set, there are y ∈ int(Cρ
� Cρ0) and x ∈ intCρ0 such that y ∈ Oρ,+(x). Due
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to continuity, it follows that there is an open neighborhood V (y) ⊂ int(Cρ
� Cρ0) of y such

that V (y) ⊂ Oρ,+(Cρ0), and therefore condition (11) holds.

(ii) Condition (13) implies that (11) is satisfied for every x0 ∈ A := Ainv(Cρ0), since

Oρ,+(x) ⊂ Oρ,+(x0) for all x0 ∈ Ainv(Cρ0).

(iii) According to [29], all points x ∈ M are either recurrent or transient, and points
in variant control sets are transient. Furthermore, the first exit time from bounded sets of
transient points is almost surely finite.

(iv) If Cρ0 merges with a variant control set Dρ0 with nonvoid interior, one has Dρ0∩Cρ0 =
∅ and Dρ0 ⊂ Cρ for ρ > ρ0, and therefore condition (13) is satisfied. Finally, from the
assumption that all (u, x) ∈ Uρ0 ×Cρ0 are inner pairs of system (8)ρ for ρ > ρ0, it ensues that
Cρ0 ⊂ intCρ according to Theorem 6.4. Therefore there is some open set V ⊂ Cρ

�Cρ0 , and
condition (13) holds.

This theorem shows that control sets Cρ0 that are invariant for the perturbation range
ρ0, but variant for ρ > ρ0, are the key nearly invariant sets of a stochastic system. They
are contained in the variant control sets Dρ ⊃ Cρ0 as “nearly invariant” sets. If these nearly
invariant sets are also bounded, then property (i) of Definition 3.1 holds with probability 1.
In this situation, we also have the following consequence.

Corollary 3.4. Let the assumptions of Theorem 3.2 be satisfied and let Cρ0 be a compact
invariant control set for ρ0. For each ρ > ρ0 denote by Cρ the unique control set of (8)ρ

for which Cρ0 ⊂ Cρ. Assume that Cρ0 merges with a variant control set Dρ0 with nonvoid
interior, i.e., Dρ0 ⊂ Cρ for all ρ > ρ0. If Cρ is bounded, then Px{σρ

x(Cρ) < ∞} = 1 for all
x ∈ Cρ, ρ > ρ0, and σx(C

ρ) has finite expectation. This holds, in particular, for x ∈ Cρ0.

The proof of this lemma is a direct consequence of Theorem 11 in [5].

We now analyze how the stochastic system can exit from variant control sets. The following
propositions show how the continuity results for exit boundaries of control sets (see section 6)
can be translated to the stochastic situation.

Proposition 3.5. Suppose the family of Markov diffusion systems (5)ρ fulfills the Lie algebra
rank conditions (4) and (7) for all ρ ∈ [ρ∗, ρ∗].

Let Dρ ⊂ M be a bounded variant control set of (8)ρ with nonvoid interior such that
Dρ∗ ⊂ Dρ, and let x ∈ Dρ. For each ρ we define a probability measure on M via

Qx(D
ρ)(A) := Px(ω ∈ Ω, hx(D

ρ)(ω) ∈ A) for all Borel sets A ⊂ M,

with support cl ∂exD
ρ. If the mapping ρ → clDρ is continuous in the Hausdorff distance at

ρ0 and if the perturbation range Uρ increases lower semicontinuously at ρ0, then the support
of Qx(D

ρ) changes continuously.

Proof. Recall that Px(σx(D) < ∞) = 1 for a bounded variant control set D with x ∈ D,
and since all trajectories ϕ(t, x, ω) are continuous, Qx(D

ρ) is a probability measure. Equa-
tion (10) implies that suppQx(D

ρ) = cl ∂exD
ρ by definition of ∂exD

ρ. The desired continuity
follows from the deterministic situation in Theorem 6.5.

Finally, we study the exit locations when an invariant control set merges with a variant
control set. The deterministic situation is described in Theorem 6.5.
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Proposition 3.6. Suppose the family of Markov diffusion systems (5)ρ fulfills the Lie algebra
rank conditions (4) and (7) for all ρ ∈ [ρ∗, ρ∗]. For ρo ∈ (ρ∗, ρ∗) let Cρ0 and Dρ0 be an
invariant and a variant control set, respectively, satisfying the conditions of Theorem 6.6.

Then for the stochastic system (5)ρ0 we have for the first entrance time τx(C
ρ0) to the set

Cρ0 that the probability px := Px(τx(C
ρ0) < ∞) < 1 for x ∈ Dρ0. By

Qx �→Cρ0 (Dρ)(A) := 1
1−px

Px

(
ω ∈ Ω, hx(D

ρ) ∈ A and τx(C
ρ0) = ∞

)
for all Borel sets A ⊂ M

a probability measure is defined on M with support cl ∂ex�→Cρ0Dρ. Furthermore, for the variant
control set F ρ ⊃ Cρ0 ∪Dρ0 we have that

suppQx(F
ρ) → suppQx �→Cρ0 (Dρ0) for ρ ↘ ρ0

in the Hausdorff metric.

Proof. We first show that px < 1 for x ∈ Dρ0 . Since it is assumed that the exit boundary
of Dρ0 can be nontrivially decomposed into ∂ex→Cρ0Dρ0 and ∂ex �→Cρ0Dρ0 , it follows that
cl ∂ex�→Cρ0Dρ0 
= ∅. Then (10) implies px < 1.

Thus Qx �→Cρ0 (Dρ0) is well defined and Qx �→Cρ0 (Dρ0)(M) = 1. As before, due to (10) and
the continuity of the trajectories, suppQx �→Cρ0 (Dρ0) = cl ∂ex�→Cρ0Dρ0 . Now the asserted right
continuity follows from Theorem 6.6.

4. Computation of exit times and exit locations for nearly invariant sets. In this section
we present an algorithm to compute exit times of stochastic systems from sets, based on set
oriented methods as they were developed for dynamical systems by Dellnitz, Hohmann, and
Junge (see [10], [11]) and for control systems by Szolnoki (cf. [39]). We start from the setup
in Theorem 3.3 and Corollary 3.4: For the parameter interval [ρ∗, ρ∗] we assume that there
is a “bifurcation point” ρ0 such that Cρ0 is an invariant control set that is contained in a
variant control set Cρ for ρ > ρ0. According to Theorem 3.3, points x in the set Cρ0 and in
Ainv(Cρ0) ∩K of the stochastic system (5)ρ0 can be expected to be identified in the analysis
of system (5)ρ for ρ > ρ0, with ρ− ρ0 small, by significantly large first exit times. However, it
is impossible to analytically compute σx(C

ρ) in general. We know, however, that for bounded
variant Cρ we have Px(σx(C

ρ) < ∞) = 1 for all x ∈ Cρ. For more detailed information on
exit time distributions, one has to use numerical methods.

The following algorithm produces a numerical approximation to the distribution of exit
times from sets in the state space. We will concentrate here on the distribution Px{σx(Cρ) ≤
t}, t ≥ 0, for bounded variant control sets Cρ of the system (5)ρ.

Algorithm.

Step 1. Compute the bounded variant control set Cρ ⊂ M of the control system (8)ρ.

Step 2. Choose a compact set K ⊂ M with clCρ ⊂ intK and define a partition P of K
into finitely many boxes Bi. Define the collection C = {B1, B2, . . . , BN} of all boxes in P that
have nonvoid intersection with Cρ, and denote by BN+1 the “sink box” which symbolizes the
area outside of

⋃N
i=1 Bi. Since Cρ ⊂

⋃N
i=1 Bi, and we are interested in the first exit time, one

box suffices to cover the area of “no return.”
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Step 3. Choose a discretization time T > 0, and compute the “transition probabilities”
pij := 1

m(Bi)

∫
Bi

P (T, y,Bj) dy for the ensuing discretized system, with P (T, y,Bj) as defined

in (9) for i = 1, . . . , N . Here m(·) denotes the Lebesgue measure. We set pN+1,j = 1 for
j = 1, . . . , N +1. The resulting matrix P := (pij) ∈ R

(N+1)×(N+1) is row stochastic and hence
the transition matrix of a certain Markov chain on the box space.

Step 4. Compute the cumulative distribution function (cdf) of the first exit time σx(C
ρ)

for x ∈ Bi: P{σx(Cρ) ≤ nT} is approximated by the ith entry in the last column (p
(n)
i,N+1) of

Pn. Specifically, for a given time Texit we find ne with (ne − 1)T ≤ Texit ≤ neT , and the last
column of Pne approximates the probability to exit Cρ from Bi until time Texit.

For the approximation of the control sets, numerical methods have been developed in [39]
relying on subdivision techniques for the numerical analysis of dynamical systems from [10],
[11]. These references also describe the generation of a partition P and of the boxes.

For the approximation of the dynamics of (5)ρ we have created a Markov chain on a finite
box partition. After choosing a discretization time T in Step 3, the transition probabilities
between the states are computed by Monte Carlo simulation. This idea is rather old and goes
back to Metropolis, Ulam, and von Neumann (see [32]). Although in the meantime many
sophisticated variants for different disciplines have been developed, there are no general error
estimates available; hence one can never be sure that the Monte Carlo simulation recognizes
all relevant behavior of the stochastic system. This is especially problematic if one wants to
compute stationary measures or long time simulations of stochastic processes that visit certain
areas of the state space only infrequently. There have been some developments to overcome
these problems for specific systems. For instance, for systems with purely additive noise, the
deterministic part and the noise influence can be decoupled, as has been done by Fischer in [17]
and Fischer and Kreuzer in [18] following some work by Froyland [20]. Subsequent application
of the so-called exhaustion algorithm produces some error bounds for such systems. In the
algorithm described above we start from a given partition P, a fixed discretization time T , and
several starting points within each box Bi. Hence this algorithm does not follow a simulated
trajectory of one initial point over a long time period, and it has proven to be quite reliable.

To approximate the dynamics of (5)ρ, in Step 3 we first simulate a large number of tra-
jectories η̂l, l = 1, . . . , s1, of the background noise process η. For this we choose initial values
in the compact space N according to the stationary solution η∗ (provided this is known) and
approximate solutions of the stochastic differential equation (3) until time T . Strong schemes
are the methods of choice for the approximation because information about the whole solution
path of (3)ρ is needed for solving the x-component of (5)ρ (see Kloeden and Platen [30] for
an introduction to numerical methods for stochastic differential equations).

Subsequently, s2 starting points xk are picked in each box Bi. From each starting point,
the solution of the x-component of (5)ρ is approximated for all samples η̂l generating s1s2

target points, denoted by ϕ̂(T, xk, η̂l). The transition probability from box Bi to Bj is then
approximated by

pij =
1

m(Bi)

∫
Bi

P (T, x,Bj) dx ≈ 1

s1s2

s2∑
k=1

s1∑
l=1

χBj

(
ϕ̂(T, xk, η̂l)

)
,

where χBj denotes the characteristic function of the set Bj . The question as to how many
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boxes, starting points, and sample paths of the background process should be used depends
on the properties of the system, the time length T , and the box size—and, of course, on the
availability of computing resources. While the number of boxes N + 1 is mainly limited by
available memory (note that it is necessary to multiply full matrices with (N + 1)2 entries
in Step 4), we have observed that the algorithm is more sensitive to a change of the noise
realization than to a change of the initial values within a box. It seems that the solution
trajectories η∗· (ω) of (3) are less smooth than the solutions of the system (2). Therefore, it is
reasonable to increase the number of realizations of the background noise at the expense of
initial values in each box when computing resources become an issue.

Repeated multiplication of the matrix P with itself in Step 4 may pose a problem for
fine partitions, particularly in higher dimensions. When computing the cdf of the first exit
time, this problem cannot be avoided. If one is interested mainly in the probability of exit
until some large time Texit, one can save certain iterations: Instead of performing ne = Texit

T

multiplications with P , we find n̂ = max{n ∈ N, 2n̂ ≤ ne} and compute P 2n̂ in n̂ steps. If
2n̂ < ne, we continue the same process with ne − 2n̂, etc., until Pne is computed. (Of course,
bases other than 2 can be used and sometimes lead to fewer factors in the decomposition of
ne.) For Texit = 104 and T = 10−2, this process results in 25 matrix multiplications instead
of 106. If the cdf of the first exit time is not required in a resolution corresponding to ne time
intervals, one can proceed similarly by expressing the size of the desired resolution in powers
of a prime, e.g., of 2. In our example, choosing a resolution of 103T , we compute P 1000 with
14 multiplications, and then P 1000k, k = 2, . . . , 1000, resulting in 1013 steps.

Recall that for bounded variant control sets Cρ the expected exit time from a point x ∈ Cρ

is finite and given by

E[σx(C
ρ)] =

∫ ∞

0
t dPσ,

where Pσ is the distribution of σx. This expected value can be approximated by

Ê[σx(C
ρ)] = T

∞∑
n=1

n (p
(n)
i,N+1 − p

(n−1)
i,N+1) for x ∈ Bi.

For the actual computation, naturally an upper limit nmax on n has to be chosen, which
results in an approximation of the expected exit time before nmaxT .

To compute the exit locations for the system (2), we again approximate its dynamics by
the Markov chain defined in Step 3. For an initial value x ∈ Cρ we identify the box Bi

with x ∈ Bi. As before, p
(n)
i,j is the probability to reach the state Bj from Bi in n steps. If

Bj 
= BN+1, and if p
(n+1)
j,N+1 > 0, then the Markov chain exits from C in step n+ 1. In this case

the state Bj is an exit state for the chain, starting from Bi. Let hi denote the corresponding
random exit location. We then have

P{hi = Bj} =

∞∑
n=0

p
(n)
ij p(j,N + 1),

and this distribution approximates that of hx(C
ρ) as defined in section 2. In practice, again

one will have to choose a maximal time Texit ∈ N, and the finite sum with Texit + 1 terms is
computed.
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5. Examples.

5.1. A perturbed escape equation. As a first example we will present some results for
the perturbed escape equation. It describes the movement of a particle with unit mass in the
potential V (x) = 1

2x
2− 1

3x
3 with inertia and linear viscous damping under the influence of some

perturbation. This equation has attracted great interest and has been analyzed thoroughly
(see, e.g., [40], [35], or [17] and the references therein). We consider the perturbed escape
equation

ẍ + γẋ + x− x2 = ρ sin ηt

with a background noise process ηt on the one dimensional sphere S
1. The Wiener process on

this sphere is considered as the one dimensional Wiener process on R modulo 2π. For t ≥ 0
and x̄, ȳ ∈ S

1 and x, y ∈ R such that x̄ ≡ x mod 2π and ȳ ≡ y mod 2π, the transition densities
of this process, resulting from the corresponding normally distributed process on R, are given
by

p(t, x̄, ȳ) =
1√
2πt

∞∑
n=−∞

exp

(
−(y − x + 2nπ)2

2t

)
.

The sum on the right-hand side converges uniformly and absolutely. Then, for an integrable
nonnegative function f : S

1 → R, it holds that

Utf(x̄) :=
∫
S1 p(t, x̄, ȳ) f(ȳ) dȳ

= 1√
2πt

∫ 2π
0

(∑∞
n=−∞ exp

(
− (y−x+2nπ)2

2t

))
f(y) dy

= 1√
2πt

∫∞
−∞ exp

(
− (y−x)2

2t

)
f(y mod 2π) dy.

The function f(x̄) ≡ 1
2π fulfills Utf(x̄) = f(x̄). Thus f(x̄) is the unique stationary density of

the noise process because (4) obviously holds.
The perturbed escape equation driven by this background process is given by

ẋ(t) = y(t),

ẏ(t) = −γ y(t) − x(t) + x(t)2 + ρ sin(ηt),(14)

dηt = dWt mod 2π.

As we saw, the stationary process η∗t has the uniform distribution on S
1 as its one dimensional

distribution.
The associated controlled version of this equation on R

2 reads

(15)

(
ẋ(t)
ẏ(t)

)
=

(
y(t)

−γ y(t) − x(t) + x(t)2

)
+

(
0

u(t)

)
,

where u(t) ∈ Uρ := [−ρ, ρ]. For our computations we set the damping coefficient γ to 0.1.
Computation of the control sets using the method described in section 4 yields for ρ = 0.04
the existence of one invariant control set C0.04 that contains the stable fixed point (0, 0) of the
uncontrolled equation and one variant control set D0.04 containing the hyperbolic fixed point
(1, 0) of the uncontrolled equation (cf. Figure 1). Increasing the control range, one finds that
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Figure 1. Control sets for the controlled escape equation for ρ = 0.04 (left) and ρ = 0.045 (right).

the two control sets merge for some ρ0 close to 0.0411 (see [23]) to form one variant control
set. The assumptions of Theorem 6.6 are satisfied for this example.

For the computation of the exit times from the merged control set we set ρ = 0.15 and
distinguish two different scenarios. The first one explores the exit time distribution for a very
short time, i.e., Texit ≤ 1.0. In this case we choose a fine partition of the compact set K
containing D0.15. The second one aims at long times, and we choose a coarser partition to
accelerate the computation time. In both cases we pick only the center of each box as the
initial value because the system (14) proves to be more sensitive to a variation in the noise
sample than to a small change of the initial value.

In order to approximate the background noise process in the short time case (Texit ≤ 1.0),
we choose η̂l0 = l · 2π/100 for l = {0, 1, . . . , 99} as initial values to represent the uniform
distribution of η∗t . Then the background noise part of (14) is solved for each of these initial
values with step size 0.1 until time 1.0, generating 100 sample paths η̂l of the Wiener process
on S

1. For this integration, a simple Euler scheme can be used efficiently because drift and
diffusion coefficients are both constant. The exit probability from a box Bi is then approx-
imated directly by solving the (x, y)-component for each sample η̂l starting at the center of
Bi. This way, the upper left graph in Figure 2 was produced, where different colors represent
different exit probabilities until time Texit = 1.0. The other three graphs in Figure 2 follow
the same procedure for Texit = 5, 30, and 220.

To compute the distribution of the exit times σx(D
0.15), which requires large time intervals,

we follow the same scheme to integrate the Wiener process, but compute more samples by
starting from η̂l0 = l · 2π/10000 for l = {0, 1, . . . , 9999} to compensate for the increased box
sizes. Once again, the approximation of the (x, y)-component for each sample η̂l starts at the
center of Bi. Here the limiting factor for the number of boxes is the multiples of the transition
matrix P that are to be computed. Multiples Pn of P are computed for n = 2, . . . , 1500. The
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Figure 2. Exit probabilities from D0.15 for ρ = 0.15 until Texit.

minimum over all boxes of the exit probabilities mini p
(1500)
i,N+1 until Texit = 1500 is then 0.98,

and the computation is terminated. The left-hand graph in Figure 3 shows the distribution
of the exit probability until time n = 1500 for the initial value (0, 0), and Figure 4 shows
the distribution for the initial values (0.0,−0.5) and (0.9,−0.1), now on a logarithmic scale.
Both graphs show an exponential tail for the exit time distribution. Indeed, these numerically
computed distributions (after some oscillations during the initial settling-in period) closely
resemble a three-parameter Weibull distribution, which is the standard model for lifetime
distributions in reliability theory. The oscillations stem from the deterministic dynamics of
system (14). Computing an unperturbed solution that starts not too far away from (0, 0)
on the positive x-axis, one obtains a time of roughly 6.5 before the trajectory intersects
the positive x-axis again. This is exactly the average distance between two maxima in the
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0 500 1000

10
−4

10
−3

10
−2

10
−1

0 20 40 60
10

−3

10
−2

0 500 1000

10
−4

10
−3

10
−2

0 20 40 60
10

−3

10
−2

start from (0.0,−0.5) start from (0.9,−0.1)

Figure 4. Exit time distribution starting from (0.0,−0.5) and (0.9,−0.1).

histograms of the distributions. The right-hand graph in Figure 3 shows the expected value
of the exit time from all boxes in D0.15. These expected times reflect the separation between
long sojourn times in the formerly invariant region and short ones outside this area; compare
with Figure 1.

5.2. A system with perturbed double well potential. Next we investigate a particle in
a two-well potential and consider the following equation:
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Figure 5. Control sets for the double well potential at ρ = 0.085.

ẋ(t) = y(t),

ẏ(t) = −γ y(t) − x(t) (2x2(t) + 2x(t) − 4) + ρ sin(ηt),(16)

dηt = dWt mod 2π,

with associated control system

(17)

(
ẋ(t)
ẏ(t)

)
=

(
y(t)

−γ y(t) − x(t) (2x2(t) + 2x(t) − 4)

)
+

(
0

u(t)

)
,

where again u(t) ∈ Uρ := [−ρ, ρ] and the damping coefficient γ is set to 0.1. For ρ = 0.07 there
are two invariant control sets C0.07

1 and C0.07
2 that contain the stable fixed points (1, 0) and

(−2, 0), respectively, of the uncontrolled equation and one variant control set D0.07 containing
the hyperbolic fixed point (0, 0) of the uncontrolled equation. Increasing the control range,
one finds that the control sets Cρ0

1 and Dρ0 merge for some ρ0 close to 0.085 and form one
variant control set (see Figure 5). Note that before the merger of the control sets, the variant
control set increases discontinuously and forms a ring around the invariant control set.

At some ρ1 close to ρ = 0.2 the remaining control sets Cρ1
2 and Dρ1 merge in a similar

way (see Figures 6, 7, and 8).

Thus the corresponding stochastic system (16) possesses one nearly invariant region Cρ0
1

and one nearly invariant region Cρ1
2 . Figure 9 shows the exit probabilities until the given exit
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Figure 6. Control sets for the double well potential at ρ = 0.19.

times from the colored subsets for ρ = 0.4. Again, a comparison of the regions of large exit
time in Figure 9 with the invariant control sets Cρ0

1 in Figure 5 and Cρ1
2 in Figure 7 show

remarkable agreement. Also the invariant domains of attraction of the control sets become
visible in Figure 9 as regions, whose exit times are rather large.

5.3. The escape equation with periodic excitation. Our third example is a perturbed
escape equation with a periodic excitation and the same noise process as above. The standard
way of removing the periodic time dependence leads to a three dimensional system which we
analyze via its Poincaré sections. Specifically, we consider

ẋ(t) = y(t),

ẏ(t) = −γy(t) − x(t) − x(t)2 + F sin z(t) + ρ sin ηt,

ż(t) = ω mod 2π,

dηt = dWt mod 2π

with parameters

(18) F = 0.06, ω = 0.85, γ = 0.1, and ρ = 0.02.

The somewhat involved control set structure of the associated control system has been studied
in detail in [26]. For ρ = 0.0 there are two orbitally stable periodic solutions and two hyperbolic
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Figure 7. Control sets for the double well potential at ρ = 0.2.

periodic solutions. For small amplitude, e.g., for ρ = 0.005, they are included in the interior
of control sets D0.005

1 , D0.005
2 , D0.005

3 , D0.005
4 . Figure 10 shows a slice at the phase π/ω; the

potential hill top is to the right. Here D0.005
1 and D0.005

3 (in red) are invariant control sets,
while D0.005

2 (in the potential well) and D0.005
4 (on the potential hill top) are variant control

sets. The white regions around D0.005
1 and D0.005

3 show their domains of attraction A(D0.005
1 )

and A(D0.005
3 ), respectively.

For ρ = 0.0085, the two control sets D0.005
1 and D0.005

2 have merged into a variant control
set D0.0085

12 , while D0.0085
3 and D0.0085

4 remain distinct. For ρ = 0.01 also, the control sets
D0.0085

12 and the invariant control set D0.0085
3 have merged into an invariant control set D0.01

123 ,
and, finally, for ρ ≥ 0.013 also, the control set D0.01

4 has merged with D0.01
123 forming a variant

control set Dρ
1234. In this latter situation, no invariance properties prevail.

We remark that the results presented in [26] have to be slightly modified: For the periodic
control u(t) = 0.0064 sinωt, t ∈ R, there is a hill top periodic solution which, for ρ > 0.0064, is
contained in the interior of Dρ

4. Numerical results show that its stable and unstable manifolds
have transversal intersections. Hence, for these ρ-values, there exists a homoclinic orbit which
is also contained in the control set Dρ

4 (compare with [9]).

Figures 11–13 show, for Poincaré sections at the phase π/ω, the exit probabilities from
initial points in the control set D0.2

1234 for different exit times (note that the color coding differs).
One sees, as expected, that exit is highly probable from a first area above the hill top. It
is also probable from an area below the hill top. Here, in fact, an intersection point of the
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Figure 8. Control sets for the double well potential at ρ = 0.4.

stable and the unstable manifolds of the hill top periodic solution lies, and one iteration of
the Poincaré map leads into the first area.

One also notes remarkable differences of exit probabilities from other areas of the control
set. This is explored in more detail in Figures 14–16, which show slices through the domain
of attraction A(D0.2

1234) for different exit times.
In Figure 16 one can discern two areas color coded by blue and brown. A comparison to

Figure 10 reveals that they correspond to the domains of attraction of the two invariant control
sets Dρ

1 and Dρ
3 (before their merging). They are separated by an area which corresponds

to the (variant) control set Dρ
2 in the potential well. These results illustrate that the near

invariance property is still present for control range ρ = 0.02, which is well above the control
ranges where the two invariant control sets Dρ

1 and Dρ
3 lose their invariance.

We remark that, particularly due to memory requirements as discussed above, a direct
numerical analysis of the three dimensional problem would be much harder. Furthermore,
Poincaré sections are convenient for visualization of the results.

6. Appendix: Some background on nonlinear control systems. In this appendix, we
recall some facts on nonlinear control systems. See, for example, [6] for more information.

6.1. Accessibility and control sets. Consider the control-affine system (8) given by

(19) ẋ(t) = X0(x(t)) +

m∑
i=1

ui(t)Xi(x(t))
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Figure 9. Exit probabilities from the colored region around Cρ0
1 until time T = 10 (right) and from the

colored region around Cρ0
2 until time T = 1000 (left) for ρ = 0.4. Parts of the invariant domains of attraction

Ainv(Cρ0
1 ) and Ainv(Cρ0

2 ) become visible.

with C∞ vector fields X0, . . . , Xm on a C∞ manifold M of dimension d < ∞. We obtain
a family of systems by specifying an increasing family of compact convex control ranges
0 ∈ intUρ ⊂ R

m with Uρ = cl intUρ for all ρ ∈ [ρ∗, ρ∗] and define corresponding sets of
control functions Uρ = {u : R → Uρ, measurable}. Setting u ≡ 0 models the uncontrolled
system. We assume that there exists a unique solution ϕ(t, x, u) of (19) for each ρ, for every
u ∈ Uρ, for every initial state x ∈ M , and for all t ∈ (−∞,∞). If the dependence on ρ is not
important, we will simply omit the notation of ρ in the following.

The positive and negative orbits at time t > 0 are

O+
t (x) = {ϕ(t, x, u), u ∈ U}, O−

t (x) = {ϕ(−t, x, u), u ∈ U},

and we set

O+
≤T (x) =

⋃
t∈[0,T ]

O+
t (x), O−

≤T (x) =
⋃

t∈[0,T ]

O−
t (x),

O+(x) =
⋃

t∈[0,∞)

O+
t (x), O−(x) =

⋃
t∈[0,∞)

O−
t (x),

respectively. A set D ⊂ M with nonvoid interior is a control set if it is a maximal set with
the property D ⊂ clO+(x) for every x ∈ D. A control set C with C = clO+(x) for every
x ∈ C is an invariant control set; the others are called variant. Throughout we assume that
system (8) is locally accessible, i.e.,

intO+
≤T (x) 
= ∅ and intO−

≤T (x) 
= ∅ for all T > 0.
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Figure 10. Control sets and domains of attraction for ρ = 0.005.

This is guaranteed by the Lie algebra rank condition dimLA{X0, . . . , Xm}(x) = d for all
x ∈ M . We endow the set of control functions U ⊂ L∞(R,Rm) with the weak∗- (or L1-)
topology, which makes U a compact metric space. Then for tn → t, xn → x, and un → u in
U , it follows that

(20) ϕ(tn, xn, un) → ϕ(t, x, u).

We note the following lemma which states that the interior of a positively invariant set is
positively invariant.

Lemma 6.1. Suppose that I ⊂ M is closed and satisfies ϕ(t, x, u) ∈ I for all t ≥ 0, x ∈ I,
and u ∈ U . Then ϕ(t, x, u) ∈ int I for all x ∈ int I, u ∈ U , and t ≥ 0.

Proof. Suppose that there are x ∈ int I, t > 0, and u ∈ U with ϕ(t, x, u) /∈ int I. Then
τ := sup{s ∈ (0, t], ϕ(t, x, u) ∈ int I} satisfies ϕ(τ, x, u) ∈ ∂I. Hence there is a neighborhood
V of ϕ(τ, x, u) with V ∩ (M \ I) 
= ∅. Continuous dependence on initial conditions implies
that there are y ∈ int I with ϕ(τ, y, u) /∈ I contradicting the positive invariance of I.

Invariant control sets and hence their interiors are positively invariant. For a set I ⊂ M
with nonvoid interior the domain of attraction is

A(I) =
{
x ∈ M, clO+(x) ∩ int I 
= ∅

}
.

Domains of attraction are open, since by local accessibility clO+(x) = cl intO+(x). We define
the invariant domain of attraction as the largest invariant set contained in A(I) (sometimes
called its invariance kernel).
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Figure 11. Exit probabilities from the control set D0.2
1234 until time Texit = 2π/ω.

Definition 6.2. For I ⊂ M the invariant domain of attraction is

Ainv(I) = {x ∈ A(I), ϕ(t, x, u) ∈ A(I) for all u ∈ U and t ∈ R+}.

This set is related to invariant control sets by the following observation.
Proposition 6.3. Assume that A(I)∩K is positively invariant for a compact set K. Then

(21) Ainv(I) ∩K =

{
x ∈ A(I) ∩K,

if C ⊂ clO+(x) is an invariant
control set, then C ∩ int I 
= ∅

}
,

and this set is compact. Furthermore, int[Ainv(I) ∩K] is positively invariant.
Proof. Let x ∈ Ainv(I)∩K and suppose that C ⊂ clO+(x) is an invariant control set. Then

intC ⊂ O+(x). If C ∩ int I = ∅, invariance of intC implies that we can find y ∈ C ∩ O+(x),
which is not in A(I), contradicting x ∈ Ainv(I). For the converse, let x ∈ A(I)∩K be in the
set on the right-hand side of (21). Consider ϕ(t, x, u) with u ∈ U and t ∈ R+. Then by [6,
Theorem 3.2.8] there is an invariant control set C ⊂ clO+(x) ∩K. Then C ∩ int I 
= ∅ and
it follows that ϕ(t, x, u) ∈ A(I), and hence x ∈ Ainv(I) ∩K. This proves the other inclusion.
In order to see closedness, let xn ∈ Ainv(I) ∩ K with xn → x. Then x ∈ K and, again by
[6, Theorem 3.2.8], there is an invariant control set C ⊂ clO+(x) ∩ K. We find T > 0 and
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Figure 12. Exit probabilities from the control set D0.2
1234 until time Texit = 10 ∗ 2π/ω.

u ∈ U with ϕ(T, x, u) ∈ intC. Then for n large enough, also ϕ(T, xn, u) ∈ intC and hence
C ⊂ clO+(xn). Now (21) implies C ∩ int I 
= ∅ and x ∈ Ainv(I) ∩K follows. Invariance of
the interior follows by Lemma 6.1.

Note also that every invariant control set C satisfies C ⊂ Ainv(C), but not necessarily
C ⊂ intAinv(C).

6.2. Parameter dependent control systems. In this section we describe the behavior of
control sets under perturbations of the control range. Here, in addition to control sets, also
chain control sets are needed. A nonvoid set E ⊂ M is a chain control set for (19) if it is
a maximal set such that for all x ∈ E there is a control u ∈ U with ϕ(t, x, u) ∈ E for all
t ∈ R, and for every ε > 0, T > 0 any two points x, y ∈ E can be connected by controlled
(ε, T )-chains; i.e., there are

n ∈ N, x0 = x, . . . , xn = y, u0, . . . , un−1 ∈ U , and T0, . . . , Tn−1 > T

with
d(ϕ(Ti, xi, ui), xi+1) < ε for all i = 0, . . . , n− 1.

For a given interval [ρ∗, ρ∗] of parameters, we denote by (19)ρ the corresponding control system
with control range Uρ, ρ ∈ [ρ∗, ρ∗]. For every control set Dρ∗ and every chain control set Eρ∗
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Figure 13. Exit probabilities from the control set D0.2
1234 until time Texit = 100 ∗ 2π/ω.

of the system (19)ρ∗ there are unique control sets Dρ and unique chain control sets Eρ for each
ρ ∈ [ρ∗, ρ∗] such that Dρ∗ ⊂ Dρ and Eρ∗ ⊂ Eρ. If all involved sets are bounded, it is well known
that the increasing compact-valued mappings ρ �→ clDρ and ρ �→ clEρ are continuous with
respect to the Hausdorff metric at all but countably many ρ-values (Scherbina’s lemma [36]).

In order to obtain stronger results on the behavior of control sets and chain control sets,
the following inner-pair condition is needed. A pair (x, u) ∈ M × U is called an inner pair of
the control system (19) if there exists T > 0 such that φ(T, x, u) ∈ intO+(x). The family of
systems (19)ρ is said to satisfy the inner-pair condition if for all ρ1 < ρ2 each pair (x, u) ∈
M × Uρ1 is an inner pair of the ρ2-system (19)ρ2 . We say that a set K ⊂ M fulfills the
no-return condition if x ∈ O+(K) ∩Kc implies that O+(x) ∩K = ∅, where Kc denotes the
complement of K in M .

The following theorem (see [6, Lemma 4.7.3, Lemma 4.7.4, and Theorem 4.7.5]) describes
the close relation between control sets and chain control sets if the inner-pair condition holds.

Theorem 6.4. Consider the family of control-affine systems (19)ρ for ρ ∈ [ρ∗, ρ∗], where
ρ �→ Uρ is continuous with respect to the Hausdorff metric. Let Dρ∗ be a control set and Eρ∗

be a chain control set of (19)ρ∗ such that Dρ∗ ⊂ Eρ∗. Then for all ρ it holds that Dρ ⊂ Eρ,
where the sets Dρ and Eρ are defined as above. Suppose Eρ∗ ⊂ K for a compact set K ⊂ M
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Figure 14. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 2π/ω.

that fulfills the no-return condition for the ρ∗-system, and assume that the family (19)ρ satisfies
the inner-pair condition in [ρ∗, ρ∗].

Then for ρ1 < ρ2 in (ρ∗, ρ∗] it holds that clDρ1 ⊂ Eρ1 ⊂ intDρ2, and for all up to at most
countably many ρ-values, the equation clDρ = Eρ is satisfied. The map (ρ∗, ρ∗) → C(K) :
ρ �→ clDρ is continuous at ρ if and only if clDρ = Eρ; the same is true for the map ρ �→ Eρ.
Here C(K) denotes the space of compact subsets of K.

In [24] it is shown that the inner-pair condition holds for an important class of systems
that includes, in particular, the escape equation (15) and the double well equation (17).

We also need some results on the boundaries of control sets D. Define the entrance and
exit boundaries by

∂exD := {x ∈ ∂D | there is y ∈ intD such that x ∈ O+(y)},(22)

∂enD := {x ∈ ∂D | there is y ∈ intD such that y ∈ O+(x)},

and the tangential boundary ∂tgD := ∂D \ (∂exD ∪ ∂enD). The sets ∂exD and ∂enD are
disjoint and open in ∂D, and ∂tgD is closed in ∂D. Furthermore, ∂tgD = cl ∂exD ∩ cl ∂enD
and int∂D ∂tgD = ∅. The following theorem from [24] shows that exit and entrance boundaries
change continuously if the control range Uρ increases lower semicontinuously and if the control
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Figure 15. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 254 ∗ 2π/ω.

sets themselves change continuously.
Theorem 6.5. Consider the set-valued mapping [ρ∗, ρ∗] → C(M), ρ �→ clDρ, as in the

previous theorem, where now Dρ∗ is a control set of (19)ρ∗ and Dρ denotes the unique control
set of (19)ρ with Dρ∗ ⊂ Dρ. If this map is continuous in the Hausdorff distance at ρ0 ∈
(ρ∗, ρ∗), Dρ∗ is bounded, and if the control range Uρ increases lower semicontinuously at ρ0,
then the mappings ρ �→ ∂Dρ, ρ �→ cl ∂exDρ, and ρ �→ cl ∂enDρ are continuous in the Hausdorff
distance at ρ0.

Next we will examine more closely how an invariant control set C loses its invariance
when merging with a variant control set D while the control range Uρ is increased. For this
we introduce two further specifications of exit boundaries: the part from where under all
admissible controls exactly one invariant control set C can be reached, and the part from
where C cannot be reached at all. We denote the first set by

∂ex→CD :=

{
x ∈ ∂exD | O+(x) bounded, and if for some invariant

control set C ′ ⊂ M we have C ′ ∩ O+(x) 
= ∅, then C = C ′

}
and the second one by

∂ex�→CD := {x ∈ ∂exD | O+(x) ∩ C = ∅}.
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Figure 16. Exit probabilities from the domain of attraction A(D0.2
1234) until time Texit = 1000 ∗ 2π/ω.

Note that from [6, Theorem 3.2.8] it follows that O+(x) ⊂ O−(C)∩O+(D) for all x ∈ ∂ex→CD.

If the exit boundary of Dρ0 can be decomposed into ∂ex→Cρ0Dρ0 and ∂ex�→Cρ0Dρ0 , then
the exit boundary of the merged set is continuous in the following sense [24].

Theorem 6.6. Let K ⊂ M be a compact set such that all control sets of the control sys-
tems (19)ρ have void intersection with the boundary of K. Assume that system (19)ρ0 has
precisely one invariant control set Cρ0 ⊂ K and one variant control set Dρ0 ⊂ K such that
Cρ0 ∩ clDρ0 
= ∅. For each ρ > ρ0 let there be precisely one variant control set F ρ ⊂ K
of (19)ρ and Cρ0 ∪ Dρ0 ⊂ F ρ. Suppose that clF ρ are chain control sets of (19)ρ for each
ρ > ρ0 and cl(Oρ0,−(Cρ0)∩Oρ,+(Dρ0)) is a chain control set of (19)ρ0. Finally, assume that
Uρ depends continuously on ρ with respect to the Hausdorff metric at ρ0 and let δex→Cρ0Dρ0

and δex�→Cρ0Dρ0 be a nontrivial decomposition of δexDρ0.

Then cl ∂exF ρ → cl ∂ex�→Cρ0Dρ0 in the Hausdorff metric for ρ ↘ ρ0.

Acknowledgments. The algorithms used have been implemented into the MATLAB ver-
sion of the program package GAIO by Junge. Thus the box handling algorithms from Junge
could be used. The control sets are found using methods based on Szolnoki [39]. The neces-
sary solvers for stochastic differential equations and the routines for the computation of the
transition matrix were added into the GAIO structure.
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Abstract. Many real-world large-scale complex networks demonstrate a surprising degree of synchronization.
To unravel the underlying mechanics of synchronization in these complex networks, a generally
linearly hybrid coupled network with time-varying delay is proposed, and its global synchronization is
then further investigated. Several effective sufficient conditions of global synchronization are attained
based on the Lyapunov function and a linear matrix inequality (LMI). Both delay-independent and
delay-dependent conditions are deduced. In particular, the coupling matrix may be nonsymmetric
or nondiagonal. Moreover, the derivative of the time-varying delay is extended to any given value.
Finally, a small-world network, a regular network, and scale-free networks with network size are
constructed to show the effectiveness of the proposed synchronous criteria.
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1. Introduction. Over the last few years, complex networks have received increasing at-
tention from all fields of sciences and humanities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].
Networks are everywhere in the real world, such as food-webs, ecosystems, metabolic path-
ways, the Internet, the World Wide Web, social networks, and global economic markets [1, 2].
The ubiquity of networks in the biological, physical, engineering, and social sciences leads
naturally to two important common problems: How does network structure affect network
function? How do individual dynamics affect global dynamics?

Despite advances in understanding network structure and dynamical behaviors in ideal-
ized cases, relatively little is known about large-scale, real-world complex networks and their
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dynamical characteristics, especially for the evolving networks [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34]. Historically, many models
were proposed to describe various complex networks, including regular graph, random graph,
small-world network, scale-free network, evolving networks, etc. [1, 2]. Undoubtedly, these
models well describe many real networks in nature, such as social, biological, and engineering
networks.

On the other hand, one can also extend the existing network models by introducing dynam-
ical elements into the network nodes [3, 4, 14, 32, 33, 34]. Over the last few years, nonlinear
dynamics of complex networks have been intensively investigated. Synchronization is a kind
of typical collective behavior and a basic motion in nature [14]. Our intuition is that loosely
coupled dynamical systems tend to synchronize with respect to periodic behavior [18]. This
synchronization is essentially a form of self-organization. Moreover, it has been demonstrated
that many real-world problems have a close relationship with network synchronization. For
example, theoretical and experimental results reveal that a mammalian brain not only displays
its storage of associative memories but also modulates oscillatory neuronal synchronization
by selective perceived attention [6].

Recently, network synchronization has been intensively investigated in various different
fields [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32,
33, 34]. For example, some researchers studied the synchronization of coupled connected neural
networks [6, 8, 9, 10]; Yu, Cao, and their colleagues explored the synchronization of an array
of linearly coupled networks with time-delay [7, 16]; Lü and his colleagues introduced several
synchronization criteria for the time-varying complex dynamical networks [16, 32, 33, 34];
and Li and Chen studied the robust adaptive synchronization of some uncertain dynamical
networks [15].

In this paper, we introduce a linearly hybrid coupled network with time-varying delay.
Based on this network model, several simply sufficient conditions of global network synchro-
nization are then deduced by using the Lyapunov function and a linear matrix inequality
(LMI). Both delay-independent and delay-dependent sufficient conditions are also attained.
It should be especially emphasized that we do not assume that the coupling matrix is sym-
metric or diagonal. However, most of the former works on network synchronization are based
on this assumption. Furthermore, we extend the derivative of the time-varying delay to any
given value. Last but not least, one constructs a small-world network, a regular network, and
scale-free networks with network size to verify the effectiveness of the proposed synchronous
criteria.

The remainder of this paper is organized as follows: In section 2, the main background
of complex networks is briefly outlined, and a generally linearly hybrid coupled network with
time-varying delay is proposed. The main theorems and corollaries for global network syn-
chronization are then given in section 3. In section 4, a small-world network, a regular
network, and scale-free networks with network size are constructed to show the effectiveness
of the proposed global network synchronous criteria. The conclusions are finally drawn in
section 5.
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2. Preliminaries. Consider a complex dynamical network consisting of N identical nodes
with linearly diffusive couplings [3, 4, 5, 14, 32, 33, 34], which is described by

(1) ẋi(t) = f(xi(t)) + c

N∑
j=1, j �=i

GijΓ(xj(t) − xi(t)), i = 1, 2, . . . , N,

where i = 1, 2, . . . , N , xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of the
ith node, f : Rn −→ Rn is continuously differentiable, c is the coupling strength, Γ =
diag(γ1, γ2, . . . , γn) ∈ Rn×n is a 0-1 diagonal matrix with specific γi = 1 and 0 for others, and
G = (Gij)N×N is a coupling configuration matrix representing the topological structure of the
network, where Gij is defined as follows: if there exists a connection from node i to another
node j, then the coupling strength Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i), and the
diagonal elements of matrix G are defined by

(2) Gii = −
N∑

j=1, j �=i

Gij = −
N∑

j=1, j �=i

Gji.

Thus network (1) can be rewritten as follows:

(3) ẋi(t) = f(xi(t)) + c

N∑
j=1

GijΓxj(t), i = 1, 2, . . . , N.

Hereafter, suppose network (3) is connected in the sense that there are no isolate clusters.
That is, the coupling configuration matrix G is an irreducible matrix.

However, most real-world complex networks are time-varying. To characterize the real-
world evolving networks, Lü and Chen introduced a time-varying network [14, 32, 33, 34]
which represents many real biological and engineering networks. Also, there inevitably exists
time-delay in many practical complex networks because of the finite information exchanging
speed. Considering the time-delay, we propose a simple complex network model as follows [13].
Recently, a linearly coupled complex network was presented and further studied [6, 7, 8].
Considering the time delay, Cao and his colleagues further introduced the following constant
delayed complex dynamical network [16].

In this paper, we will consider the following linearly hybrid coupled network with time-
varying delay:

(4) ẋi(t) = −Cxi(t)+Af(xi(t))+Bf(xi(t−τ))+I(t)+

N∑
j=1

GijDxj(t)+

N∑
j=1

GijDτxj(t−τ(t)),

where i = 1, 2, . . . , N , C = diag(c1, c2, . . . , cn) ∈ Rn×n is a diagonal matrix with positive
diagonal entries ci > 0, i = 1, 2, . . . , n, A = (aij)n×n and B = (bij)n×n are weight and delayed
weight matrices, respectively, I(t) = (I1(t), I2(t), . . . , In(t))T ∈ Rn is an external input vector,
D = (dij) ∈ Rn×n and Dτ = (dτij) ∈ Rn×n are constant and delayed inner coupling matrices
of complex networks, respectively, f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T ∈ Rn
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corresponds to the activation functions of neurons, and G = (Gij)N×N satisfies the diffusive
condition (2). In particular, one does not assume that the constant and delayed inner coupling
matrices D = (dij) ∈ Rn×n and Dτ = (dτij) ∈ Rn×n are diagonal matrices.

Denote xi(t) = φi(t) ∈ C([−r, 0], R) (i = 1, 2, . . . , N), where r = supt∈R{τ(t)} and
C([−r, 0], R) is the set of continuous functions from [−r, 0] to R. To simplify, one has the
following fundamental assumptions.

A1: fi(xi) (i = 1, 2, . . . , n) are monotonically nondecreasing on R.

A2: fi(xi) (i = 1, 2, . . . , n) are Lipschitz continuous; i.e., there exist constants Fi > 0 such
that

(5) |fi(α1) − fi(α2)| ≤ Fi|α1 − α2| ∀α1, α2 ∈ R.

A3: τ(t) is a bounded differential function of time t satisfying

0 ≤ τ̇(t) ≤ h < 1,

where h is a positive real constant.

A4: The coupling matrix G satisfies the conditions

(6) Gij ≥ 0, i �= j, Gii = −
N∑

j=1, j �=i

Gij , i = 1, 2, . . . , N.

Before stating the main results, some similar definitions and lemmas are given [6, 7, 8, 9,
10].

Definition 1. Let r = maxt∈R{τ(t)}. Set S = {x = (x1(s), x2(s), . . . , xN (s)) : xi(s) ∈
C([−r, 0], R), xi(s) = xj(s), i, j = 1, 2, . . . , N}, which is called the synchronization manifold
of network (4).

Definition 2. Let R̂ be a ring and T (R̂,K) = {the set of matrices with entries R̂ such that
the sum of the entries in each row is equal to K for some K ∈ R̂}.

Definition 3. The set of MN
1 (1): MN

1 (1) is composed of matrices with N columns; each

row (such as the ith row) of M̃ ∈ MN
1 (1) has exactly one entry αi and one entry −αi, where

αi �= 0, and all other entries are zeros.

Definition 4. The set of MN
1 (n): MN

1 (n) = {M = M ⊗ In : M ∈ MN
1 (1), In is the

n-dimensional identity matrix}, where ⊗ is Kronecker product.

Definition 5. MN
2 (n) ⊂ MN

1 (n): If M ∈ MN
2 (n), for any pair of indices i and j, there

exist indices j1, j2, . . . , jl and p1, p2, . . . , pl−1 such that Mpq ,iq �= 0 and Mpq ,iq+1 �= 0 for all
1 ≤ q < l, where j1 = i and jl = j.

Definition 6. Synchronization manifold S is said to be globally exponentially stable (or
network (4) is globally exponentially synchronized) if there exist ε > 0, T > t0, and M > 0
such that

(7) ‖xi(t) − xj(t)‖ ≤ Me−εt,

where φi ∈ C([−r, 0], R), t > T , i, j = 1, 2, . . . , N .
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Definition 7. Synchronization manifold S is said to be globally asymptotically stable (or
network (4) is globally asymptotically synchronized) if for any ε > 0, there exists T > t0 such
that

(8) ‖xi(t) − xj(t)‖ ≤ ε,

where φi, φj ∈ C([−r, 0], R), t > T , i, j = 1, 2, . . . , N .

Lemma 1 (see [9]). Let G be an N×N matrix in the set T (R̂,K). Then the (N−1)×(N−1)
matrix H satisfies MG = HM , where H = MGJ ,
(9)

M =

⎛
⎜⎜⎜⎝

1 −1
1 −1

. . .

1 −1

⎞
⎟⎟⎟⎠

((N−1)×N)

, J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1

. . . 1
· · · 1 1

0 0 · · · 0 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(N×(N−1))

,

in which 1 is the multiplicative identity of R̂. Moreover, the matrix H can be rewritten
explicitly as follows: H(i,j) =

∑j
k=1 G(i,k) −G(i+1,k) for i, j ∈ {1, 2, . . . , N − 1}.

Lemma 2 (Schur complement [17]). The LMI(
Q̃(x) S̃(x)

S̃(x)T R̃(x)

)
> 0

is equivalent to one of the following conditions:

(i) Q̃(x) > 0, R̃(x) − S̃(x)T Q̃(x)−1S̃(x) > 0,

(ii) R̃(x) > 0, Q̃(x) − S̃(x)R̃(x)−1S̃(x)T > 0,

where Q̃(x) = Q̃(x)T , R̃(x) = R̃(x)T .

Lemma 3 (see [9]). If matrix G is symmetric and also satisfies condition A4, then G is
irreducible iff there exists a p×N matrix M ∈ MN

2 (1), such that G = −MTM .

Lemma 4 (see [9]). Let x = (x1, x2, . . . , xN )T , where xi ∈ Rn, i = 1, 2, . . . , N . Then x ∈ S
iff there exists M ∈ MN

2 (n) satisfying ‖Mx‖ = 0.

Denote

(10) d(x) = ‖Mx‖2 = xTMTMx, M ∈ MN
2 (n).

Then d(x) is a nonnegative distance function. From the assumptions of M, one has d(x) −→ 0
iff ‖xi(t) − xj(t)‖ −→ 0 for all i, j = 1, 2, . . . , N .

Lemma 5 (see [19]). The Kronecker product has the following properties:

(1) (αA) ⊗B = A⊗ (αB);

(2) (A + B) ⊗ C = A⊗ C + B ⊗ C;

(3) (A⊗B)(C ⊗D) = (AC) ⊗ (BD).

Lemma 6 (Jensen inequality [29]). Assume that the vector function ω : [0, r] ∈ Rm×m is
well defined for the following integrations. For any symmetric matrix W ∈ Rm×m and scalar
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r > 0, one has

r

∫ r

0
ω(s)Wω(s) ds ≥

(∫ r

0
ω(s) ds

)T

W

(∫ r

0
ω(s) ds

)
.

3. Main results. In this section, several novel criteria are proposed for the global syn-
chronization of complex network (4) based on the Lyapunov function and an LMI.

To simplify the presentation, some notation is given in the following. Let T be a symmetric
and irreducible matrix satisfying assumption A4. From Lemma 3, there exists a p×N matrix

M̃ ∈ MN
2 (1) such that T = −M̃T M̃ . Denote M = M̃ ⊗ In ∈ MN

2 (n), and let Mi =
(Mi1,Mi2, . . . ,MiN ) be the ith row of M, where Mii1 = αiIn, Mii2 = −αiIn, and Mij = 0 for
j �= i1, i2. Let A⊗B be the Kroneker product of matrices A and B.

C = IN ⊗ C, C1 = Ip ⊗ C, A = IN ⊗A, A1 = Ip ⊗A,

B = IN ⊗B, B1 = Ip ⊗B, G = G⊗D, Gτ = G⊗Dτ ,

xi(t) = (xi1(t), xi2(t), . . . , xin(t))T (∀i = 1, 2, . . . , N), x(t) = (xT1 (t), xT2 (t), . . . , xTN (t))T ,

f(x(t)) = (fT (x1(t)), f
T (x2(t)), . . . , f

T (xN (t)))T , I(t) = (IT (t), IT (t), . . . , IT (t))T ,(11)

where IN is the N dimensional identity matrix.
Then the complex network (4) can be recast as follows:

(12)
ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t) + Gτx(t− τ(t)), i = 1, 2, . . . , N.

Theorem 1. Suppose A2–A4 hold. Network (12) is globally exponentially synchronized if
there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q = (qij)n×n ∈ Rn×n, and
Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible symmetric matrix T = (tij) ∈
RN×N satisfying A4, such that

(13) Λ0 =

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and one of the following conditions holds:

(i) Λij =

( ∑N
k=1 TikGkj(PD + DTP ) + Tij(Ω + Δ)

∑N
k=1 TikGkjPDτ∑N

k=1 TikGkjD
T
τ P −(1 − h)TijΩ

)
< 0

∀1 ≤ i < j ≤ N.

(14)

(ii) Λ̃ij =

(
2
∑n

k=1 pikdkjTG + (Ωij + Δij)T
∑n

k=1 pikdτkjTG∑n
k=1 pikdτkjG

TT −(1 − h)ΩijT

)
> 0

∀1 ≤ i, j ≤ n.

(15)
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Proof. See Appendix A.
Instead of using inequality (A.4), from assumption A1, one has

fT (x(t))MTΣMf(x(t)) =
∑p

j=1 α
2
j [f(xj1(t)) − f(xj2(t))]

TΣ[f(xj1(t)) − f(xj2(t))]

≤
∑p

j=1 y
T
j (t)FΣ[f(xj1(t)) − f(xj2(t))].

(16)

Similarly, following the same steps in part (i) of Theorem 1, one can easily attain the following
corollary.

Corollary 1. Suppose that assumptions A1–A4 hold. Then network (12) is globally expo-
nentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible
symmetric matrix T = (tij) ∈ RN×N satisfying A4, such that

(17)

⎛
⎝ −2PC − Δ PA + FΣ PB

ATP + ΣF −2Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and
(18)( ∑N

k=1 TikGkj(PD + DTP ) + Tij(Ω + Δ)
∑N

k=1 TikGkjPDτ∑N
k=1 TikGkjD

T
τ P −(1 − h)TijΩ

)
< 0 ∀1 ≤ i < j ≤ N.

Denote e = (1, 1, . . . , 1)T ∈ RN , J = eeT , U = NIN − J . Let T = −U = J −NIN ; then
Tij = 1 (i �= j), Tij = −(N − 1) (i = j), i, j = 1, 2, . . . , N . It is easy to verify that T satisfies
assumption A4. According to Lemma 3, there exists a p×N matrix M ∈ MN

2 (1), such that
T = −MTM . Since G satisfies assumption A4, then one has∑N

k=1 TikGkj = (Tii − 1)Gij +
∑N

k=1, k �=i TikGkj + Gij

= −NGij +
∑N

k=1 Gkj = −NGij .
(19)

Therefore, from Theorem 1, one gets the following corollary.
Corollary 2. Suppose assumptions A2–A4 hold. Then network (12) is globally exponen-

tially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

(20)

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(21)

(
−NGij(PD + DTP ) + (Ω + Δ) −NGijPDτ

−NGijD
T
τ P −(1 − h)Ω

)
< 0 ∀1 ≤ i < j ≤ N.
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Remark 1. In [16], Cao and his colleagues investigated the global synchronization of a
coupled complex network with constant time-delay. The main theorem in [16] is Corollary 2
with h = 0, where the time-delay is a constant. Therefore, the main result in [16] is a special
case of Theorem 1.

Let Gτ = 0; i.e., there is no linearly delayed coupling in network (12) as that in [6, 7, 8].
Let Ω = ζIn, where ζ is a sufficient small positive number. Then one has the following
corollary.

Corollary 3. Suppose assumptions A2–A4 hold. Network (12) with Dτ = 0 is globally ex-
ponentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n and
Q = (qij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible symmetric matrix T = (tij) ∈
RN×N satisfying A4, such that

(22)

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(23)

(
2

n∑
k=1

pikdkjTG + ΔijT

)
> 0 ∀1 ≤ i, j ≤ n.

It should be especially emphasized that the inner coupling matrix D is not necessarily a
diagonal matrix in Theorem 1. If D is a diagonal matrix, then one gets the following corollary.

Corollary 4. Suppose that assumptions A2–A4 hold. Assume also that Dτ = 0 and D is
diagonal. Network (12) is globally exponentially synchronized if there exist a positive definite
matrix Q = (qij)n×n ∈ Rn×n, positive definite diagonal matrices P = diag(p1, p2, . . . , pn) ∈
Rn×n and Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, a symmetric matrix Δ = diag(δ1, δ2, . . . , δn) ∈
Rn×n, and an irreducible symmetric matrix T = (tij) ∈ RN×N satisfying A4, such that

(24)

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(25) T (2pidiG + δi) > 0, i = 1, 2, . . . , n.

Let P , Ω, and Δ be diagonal matrices. According to part (ii) of Theorem 1, one has the
following corollary.

Corollary 5. Suppose assumptions A2–A4 hold. Suppose also that D and Dτ are diagonal
matrices. Then network (12) is globally exponentially synchronized if there exist a positive def-
inite matrix Q = (qij)n×n ∈ Rn×n, positive definite diagonal matrices P = diag(p1, p2, . . . , pn)
∈ Rn×n, Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and Σ = diag(Ω1,Ω2, . . . ,Ωn) ∈ Rn×n, a
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symmetric matrix Δ = diag(δ1, δ2, . . . , δn) ∈ Rn×n, and an irreducible symmetric matrix
T = (tij) ∈ RN×N satisfying A4, such that

(26)

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(27)

(
2pidiTG + Ωi + δiT pidτiTG

pidτiG
TT −(1 − h)ΩiT

)
> 0, i = 1, 2, . . . , n.

Remark 2. In [6], Lu and Chen further investigated the synchronization of a coupled
connected neural network with constant time-delay. Theorem 3 in [6] is Corollary 4 with
h = 0. Therefore, the main result in [6] is a special case of Theorem 1. Moreover, in [6],
the inner coupling matrix D and the inner delayed coupling matrix Dτ are both diagonal
matrices. However, one removes these limit conditions in this paper.

Remark 3. To minimize the number of LMIs in the conditions of Theorem 1, one can
apply the following rule: if N < n, one can use condition (i) of Theorem 1; otherwise, one can
use condition (ii) of Theorem 1.

Since the conditions of Theorem 1 are relatively complex, one will simplify these LMIs by
introducing some special M ∈ MN

2 (1).
Theorem 2. Suppose that assumptions A2–A4 hold. Network (12) is globally asymptotically

synchronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n,

Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, and R = (rij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n,
such that
(28)

Ω =

⎛
⎜⎜⎜⎝

−2PC1 + PH + HTP + FΣF + R PHτ PA1 PB1

HT
τ P −(1 − h)R 0 0

A1TP 0 −Σ + Q 0

B1TP 0 0 −(1 − h)Q

⎞
⎟⎟⎟⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗ D,
Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

Proof. See Appendix B.
Instead of using inequality (B.4), from assumption A1, one has

fT (x(t))MTΣMf(x(t)) =
∑N−1

j=1 [f(xj(t)) − f(xj+1(t))]
TΣj [f(xj(t)) − f(xj+1(t))]

≤
∑N−1

j=1 [xj(t) − xj+1(t)]
TFΣj [xj(t) − xj+1(t)]

= xT (t)MTFΣMx(t),

(29)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn). Following the same steps in Theorem 2, other conditions
can be similarly verified. Then the following corollary is obtained.
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Corollary 6. Suppose assumptions A1–A4 hold. Network (12) is globally asymptotically syn-
chronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n,

Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, and R = (rij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n,
such that

(30)

⎛
⎜⎜⎜⎝

−2PC1 + PH + HTP + R PHτ PA1 + FΣ PB1

HT
τ P −(1 − h)R 0 0

A1TP + ΣF 0 −2Σ + Q 0

B1TP 0 0 −(1 − h)Q

⎞
⎟⎟⎟⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗ D,
Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

Corollary 7. Suppose that assumptions A2–A4 hold. Network (12) is globally asymptot-
ically synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and R = (rij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

(31) Λ0 =

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0

and

(32) Ξ =

(
PH + HTP + R + Δ PHτ

HT
τ P −(1 − h)R

)
< 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, P = IN−1 ⊗ P , R = IN−1 ⊗ R, Δ = IN−1 ⊗ Δ,
H = H ⊗D, Hτ = H ⊗Dτ , H = MGJ , and M and J are defined in (9).

Proof. See Appendix C.
When Dτ = 0, there is no linearly delayed coupling in network (12). Let R = ζ In

in Corollary 7, where ζ is a sufficiently small positive number. Then Corollary 7 can be
simplified as follows.

Corollary 8. Suppose that assumptions A2–A4 hold. Network (12) with Dτ = 0 is globally
exponentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n and
Q = (qij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

Λ0 =

⎛
⎝ −2PC − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0

and
PH + HTP + Δ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, P = IN−1 ⊗ P , Δ = IN−1 ⊗ Δ, H = H ⊗ D,
H = MGJ , and M and J are defined in (9).
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Remark 4. In [7], Wang and Cao further studied the synchronization of an array of linearly
coupled networks with time-varying delay. The main theorem, Theorem 2, in [7] is Corollary 8.
Therefore, the main result in [7] is a special case of Theorem 2. Moreover, the inner coupling
matrix D and inner delayed coupling matrix Dτ are both diagonal matrices in [7]. However,
one removes these limit conditions. Furthermore, one also introduces the time-delay in the
linear coupling in this paper.

If assumption A3 is not satisfied, i.e., τ̇(t) ≥ 1 for some t, one attains the following
synchronous theorem.

Theorem 3. Suppose assumptions A2 and A4 hold. Then network (12) is globally
asymptotically synchronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈
R(N−1)n×(N−1)n, Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, R = (rij)(N−1)n×(N−1)n ∈
R(N−1)n×(N−1)n, and T = (tij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, positive definite diagonal

matrices Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n and Λ = diag(Λ1,Λ2, . . . ,Λ(N−1)n)

∈ R(N−1)n×(N−1)n, and a matrix U = (uij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, such that
(33)

Ω1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ PHτ + UT PA1 PB1 0 (−C1 + H)TT
HT

τ P + U Ψ1 0 0 −U HT
τ T

A1TP 0 −Σ + Q 0 0 A1TT

B1TP 0 0 −(1 − h)Q − Λ 0 B1TT

0 −UT 0 0 −1

r
T 0

T(−C1 + H) THτ TA1 TB1 0 −1

r
T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

where Ψ = −2PC1 + PH + HTP + R + FΣF, Ψ1 = −(1 − h)R − 2U + FΛF, F =
diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗D, Hτ = (MGJ) ⊗
Dτ , and M and J are defined in (9).

Proof. See Appendix D.
Remark 5. Although Theorems 1–3 and Corollaries 1–8 give some rigorously theoretical

conditions for the synchronization of network (12), it is also difficult to fix the suitable param-
eters of matrixes in these conditions. However, in real-world control systems, one can easily
use MATLAB LMI Toolbox to numerically solve these system parameters. For example, in
Theorem 1, fixing matrix T as in Corollary 2, one can use MATLAB LMI Toolbox to solve
(20) and (21); in Theorems 2–3, one can use MATLAB LMI Toolbox to solve (28) and (33),
respectively.

In this paper, the delay-independent and delay-dependent conditions are both further
investigated. It is well known that the delay-independent conditions tend to be conservative
for small time-delay. In addition, for the coupled networks with time-varying delay, the state
estimation criteria proposed in [7] are not applicable to the case in which the derivative of
the time-varying delay is larger than 1. In this case, assumption A3 is not satisfied. In this
paper, one overcomes this difficulty in Theorem 3. Moreover, in [6, 7, 8], the coupling matrix
G is a diagonal matrix. However, we do not need this assumption in all theorems.

4. Numerical simulations. To verify the effectiveness of the proposed theorems and corol-
laries, three simple examples are given in the following.
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Figure 1. Phase portrait of a single node.

Figure 2. Small-world network.

4.1. Synchronization of small-world network. Consider the following Chua circuit de-
scribed by [37]:

(34)

⎧⎨
⎩

ẋ1 = θ(−x1 + x2 − l(x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −βx2,

where l(x1) = bx1 + 0.5(a − b)(|x1 + 1| − |x1 − 1|). The system (34) is chaotic as shown in
Figure 1 when θ = 10, β = 18, a = −4/3, and b = −3/4.

Now one considers network (4) with small-world connection as shown in Figure 2 [1], where
the single node is given as above, and

D =

⎛
⎝ 4 0.4 0.4

0.8 4 1.2
−0.4 −0.8 4

⎞
⎠ .
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Figure 3. Phase portrait of single node in network (4) and total synchronous error of the small-world
network (4).

According to Theorem 2 and MATLAB LMI Toolbox, one can easily attain the feasible
solutions. Then network (4) is globally asymptotically synchronized. The total synchronous
error of the small-world network is defined as follows:

err(t) =
1

25

2∑
i=1

√√√√ 25∑
j=1

[x1i(t) − xji(t)]2.

Figure 3 shows the phase portrait of single node in network (4) and the total synchronous error
of the small-world network (4). Similarly, one can verify the synchronization of network (4)
with other topological structures, such as random graph and scale-free distribution.

4.2. Synchronization of a regular network. Consider the following 2-dimensional delayed
system as a node, which is described by

(35) ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t),

where x(t) = (x1(t), x2(t))
T , f(x(t)) = (tanh(x1(t)), tanh(x2(t)))

T , I(t) = (0, 0)T ,

C =

(
1 0
0 1

)
, A =

(
2.0 −0.1
−5.0 3.0

)
, B =

(
−1.5 −0.1
−0.2 −2.5

)
,

and τ(t) = 0.03[1 + sin(40t)].
It is easy to verify that assumptions A1 and A2 hold for F = I2 and assumption A3 does

not hold for h = 1.2, r = 0.06. The initial values are given as follows:

x1(s) = 0.4, x2(s) = 0.6 ∀s ∈ [−1, 0].

Then system (35) has a chaotic attractor as shown in Figure 4.
Consider a regular network (4), where A,B,C, I(t), f, τ(t) are given above, and

G =

⎛
⎝ −3 1 2

1 −2 1
2 1 −3

⎞
⎠ , D =

(
4 0.4

0.8 4

)
, Dτ =

(
1 0.2

0.1 1

)
.
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Figure 4. Phase portrait of a single node.

From Theorem 3, one gets the feasible solutions as follows:

P =

⎛
⎜⎜⎝

9.4243 −0.9377 −1.6670 0.2372
−0.9377 7.7092 0.2372 −1.2747
−1.6670 0.2372 9.4243 −0.9377
0.2372 −1.2747 −0.9377 7.7092

⎞
⎟⎟⎠ ,

Q =

⎛
⎜⎜⎝

31.5252 8.0596 2.1015 −0.8115
8.0596 21.9258 −0.8115 0.8043
2.1015 −0.8115 31.5252 8.0596
−0.8115 0.8043 8.0596 21.9258

⎞
⎟⎟⎠ ,

R =

⎛
⎜⎜⎝

38.3723 2.7562 −3.4028 −3.1834
2.7562 20.8588 −3.1834 1.0167
−3.4028 −3.1834 38.3723 2.7562
−3.1834 1.0167 2.7562 20.8588

⎞
⎟⎟⎠ ,

T =

⎛
⎜⎜⎝

4.5225 0.1097 −0.4335 −0.1062
0.1097 3.1546 −0.1062 −0.0711
−0.4335 −0.1062 4.5225 0.1097
−0.1062 −0.0711 0.1097 3.1546

⎞
⎟⎟⎠ ,

U =

⎛
⎜⎜⎝

52.2980 3.7695 4.8829 1.0437
3.7695 44.0932 1.0437 5.5130
4.8829 1.0437 52.2980 3.7695
1.0437 5.5130 3.7695 44.0932

⎞
⎟⎟⎠ ,

Σ =

⎛
⎜⎜⎝

118.7802 0 0 0
0 66.5769 0 0
0 0 118.7802 0
0 0 0 66.5769

⎞
⎟⎟⎠ ,
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Figure 5. Total synchronous error of network (4) with a regular structure.

Λ =

⎛
⎜⎜⎝

35.4724 0 0 0
0 30.6460 0 0
0 0 35.4724 0
0 0 0 30.6460

⎞
⎟⎟⎠ .

According to Theorem 3, network (4) is globally asymptotically synchronized. The total
error of network (4) is defined by

err(t) =
1

3

2∑
i=1

√
[x1i(t) − x2i(t)]2 + [x1i(t) − x3i(t)]2.

Figure 5 shows the total synchronous error of network (5), where the initial values are given
by

x1(s) =

(
0.1
−0.3

)
, x2(s) =

(
0.5
−1

)
, x3(s) =

(
1

−0.5

)
.

4.3. Synchronization of scale-free networks with network size. The scale-free network
model was proposed by Barabási and Albert [40]; they generated the network as follows:

(1) Growth: Starting with a small number (m0) of nodes, at every time step a new node
is introduced and connected to m (≤ m0) existing nodes by undirected links.

(2) Preferential attachment : The probability that the new node is connected to node i is
based on the degree ki of node i:

pi =
ki∑N
j=1 kj

.

After t time steps, this complex network has N = t+m0 nodes and mt links. In the simulation,
we take m0 = m = 5, with each node being the same system as (35) except τ(t) = et

1+et . It

is obvious that 0 < τ(t) < 1, τ̇(t) = et

(1+et)2
≤ 1

2 < 1. G is connected in the scale-free

network sense: if there exists a connection from node i to another node j in the scale-free
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Figure 6. The time for solving the LMI with network size in scale-free networks.

network, then the coupling strength Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i), and

Gii = −
∑N

j=1, j �=iGij .

D =

(
10 1
2 10

)
, Dτ =

(
1 0.2

0.1 1

)
.

Theorem 1 is available only when the scale-free network size N = 5 or N = 6. Therefore,
the previous works [6, 7, 16] cannot be used to solve the network with size N > 6. However,
Theorem 2 in this paper can be used to solve this problem. The sufficient condition in
Theorem 2 is satisfied with more larger network size N . The time for solving the LMI in
MATLAB Toolbox by using a normal computer and the corresponding network size are given
in Figure 6.

Though the size of matrices P, Q, R, and Σ in Theorem 2 are of order N × N , it
can provide general and good results which is applicable for ensuring the synchronization of
coupled networks with large size N . If the network size N is very large, the computation of
LMI conditions is very difficult as in Figure 6 which should be further considered in the near
future.

5. Conclusions. We have developed a generally linearly hybrid coupled network with
time-varying delay and also further investigated its global synchronization. Based on this
model, several effective sufficient conditions of global network synchronization are then de-
duced by using the Lyapunov function and an LMI. Both delay-independent and delay-
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dependent sufficient conditions are attained. It should be especially pointed out that we do
not assume that the coupling matrix is symmetric or diagonal. However, most of the former
works on network synchronization are based on this assumption. Moreover, we also generalize
the derivative of the time-varying delay to any given value in this paper, although most of
the former results are based on assumption A3. To verify the effectiveness of the proposed
synchronous criteria, a small-world network, a regular network, and scale-free networks with
increasing network size are finally constructed to show the global network synchronization.

The proposed network model builds a platform for the study of network synchronization
and other network dynamical behaviors. These network synchronous criteria also provide
some new insight for the underlying mechanics of network synchronization. Furthermore,
there are some abundant dynamical behaviors in the network which deserve to be also further
investigated in the near future, such as the relation between network structure and function,
the individual and global dynamics, etc. We will also explore the possible applications for
these criteria in the real-world biological and engineering networks.

Appendix A. Proof of Theorem 1. Let

Σ = IN ⊗ Σ, Σ1 = Ip ⊗ Σ, Δ = Ip ⊗ Δ, P = Ip ⊗ P,

Q = Ip ⊗Q, Ω = Ip ⊗ Ω, In = IN ⊗ In, I1n = Ip ⊗ In.

Let y(t) = Mx(t) = (yT1 (t), yT2 (t), . . . , yTp (t))T , yi(t) = (yi1(t), yi2(t), . . . , yin(t))T , i = 1, 2,
. . . , p.

According to (13), there exists a sufficiently small ε > 0, such that

Λ̃0 =

⎛
⎝ −2P (C − εIn) − Δ + FΣF PA PB

ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞
⎠ < 0.

(i) Consider the Lyapunov candidate

V (t) = e2εtxT (t)MTPMx(t) +

∫ t

t−τ(t)
e2εsfT (x(s))MTQMf(x(s)) ds

+

∫ t

t−τ(t)
e2εsxT (s)MTΩMx(s) ds.

(A.1)
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Differentiating V (t) along the trajectories of (12) yields

V̇ (t)|(12) = 2εe2εtxT (t)MTPMx(t) + 2e2εtxT (t)MTPMẋ(t) + e2εtfT (x(t))MTQMf(x(t))

− (1 − τ̇(t))e2ε(t−τ(t))fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MTΩMx(t)

− (1 − τ̇(t))e2ε(t−τ(t))xT (t− τ(t))MTΩMx(t− τ(t))

≤ 2e2εtxT (t)MTPM[−(C − εIn)x(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t)

+ Gx(t) + Gτx(t− τ(t))] + e2εtfT (x(t))MTQMf(x(t))

− (1 − h)e2εtfT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MT (Ω + Δ − Δ)Mx(t)

− (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t)).

(A.2)

From the definition of M, one gets

MC = C1M, MA = A1M, MB = B1M, MIn = I1nM, MI(t) = 0.

Therefore, one has

V̇ (t)|(12) ≤ 2e2εtxT (t)MTP[−(C1 − εI1n)Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t)))

+ MGx(t) + MGτx(t− τ(t))] + e2εtfT (x(t))MTQMf(x(t))

− (1 − h)e2εtfT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MT (Ω + Δ − Δ)Mx(t)

− (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t)).

(A.3)

According to assumption A2, one gets

fT (x(t))MTΣMf(x(t)) =
∑p

j=1 α
2
j [f(xj1(t)) − f(xj2(t))]

TΣ[f(xj1(t)) − f(xj2(t))]

≤
∑p

j=1 y
T
j (t)FΣFyj(t).

(A.4)

Let

ξj =
(
yTj (t) αj(f(xj1(t)) − f(xj2(t)))

T αj(f(xj1(t− τ(t))) − f(xj2(t− τ(t))))T
)T

.
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It follows from (A.3)–(A.4) that

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)MTPM[Gx(t) + Gτx(t− τ(t))] + e2εtxT (t)MT

× (Ω + Δ)Mx(t) − (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ P )(M̃ ⊗ In)(G⊗D)x(t)

+ 2e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ P )(M̃ ⊗ In)(G⊗Dτ )x(t− τ(t))

+ e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ (Ω + Δ))(M̃ ⊗ In)x(t)

− (1 − h)e2εtxT (t− τ(t))(M̃T ⊗ In)(Ip ⊗ Ω)(M̃ ⊗ In)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)(M̃T M̃G⊗ PD)x(t) + 2e2εtxT (t)(M̃T M̃G⊗ PDτ )

× x(t− τ(t)) + e2εtxT (t)(M̃T M̃ ⊗ (Ω + Δ))x(t) − (1 − h)e2εtxT (t− τ(t))

× (M̃T M̃ ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εtxT (t)(TG⊗ PD)x(t) − 2e2εtxT (t)(TG⊗ PDτ )x(t− τ(t))

− e2εtxT (t)(T ⊗ (Ω + Δ))x(t) + (1 − h)e2εtxT (t− τ(t))(T ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

∑N
j=1 x

T
i (t)(

∑N
k=1 TikGkjPD)xj(t)

− 2e2εt∑N
i=1

∑N
j=1 x

T
i (t)(

∑N
k=1 TikGkjPDτ )xj(t− τ(t)) − e2εt∑N

i=1

∑N
j=1 x

T
i (t)Tij

× (Ω + Δ)xj(t) + (1 − h)e2εt∑N
i=1

∑N
j=1 x

T
i (t− τ(t))TijΩxj(t− τ(t)).

(A.5)

Denote Lij =
∑N

k=1 TikGkj . Then one obtains

∑N
j=1 Lij =

∑N
j=1, j �=i Lij + Lii

=
∑N

j=1, j �=i

∑N
k=1 TikGkj +

∑N
k=1 TikGki

=
∑N

k=1(
∑N

j=1, j �=i TikGkj + TikGki)

=
∑N

k=1 Tik(
∑

j=1 Gkj) = 0.

(A.6)

Thus one has

(A.7) Lii = −
N∑

j=1, j �=i

Lij , i = 1, 2, . . . , N.
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Let ηij = (xTi (t) − xTj (t), xTi (t− τ(t)) − xTj (t− τ(t)))T . From (A.5), one gets

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

∑N
j=1 x

T
i (t)(LijPD)xj(t)

− 2e2εt∑N
i=1

∑N
j=1 x

T
i (t)(LijPDτ )xj(t− τ(t))

− e2εt∑N
i=1

∑N
j=1 x

T
i (t)Tij(Ω + Δ)xj(t)

+ (1 − h)e2εt∑N
i=1

∑N
j=1 x

T
i (t− τ(t))TijΩxj(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)(LijPD)xj(t) + xTi (t)LiiPDxi(t)

)
− 2e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)(LijPDτ )xj(t− τ(t)) + xTi (t)LiiPDτxi(t− τ(t))

)
− e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)Tij(Ω + Δ)xj(t) + xTi (t)Tii(Ω + Δ)xi(t)

)
+ (1 − h)

× e2εt∑N
i=1

(∑N
j=1, j �=i x

T
i (t− τ(t))TijΩxj(t− τ(t)) + xTi (t− τ(t))TiiΩxi(t− τ(t))

)
= e2εt∑p

j=1 ξ
T
j Λ̃0ξj + 2e2εt∑N−1

i=1

∑N
j=i+1 (xi(t) − xj(t))

T (LijPD) (xi(t) − xj(t))

+ 2e2εt∑N−1
i=1

∑N
j=i+1 (xi(t) − xj(t))

T (LijPDτ ) (xi(t− τ(t)) − xj(t− τ(t)))

+ e2εt∑N−1
i=1

∑N
j=i+1 (xi(t) − xj(t))

T Tij(Ω + Δ) (xi(t) − xj(t)) − (1 − h)

× e2εt∑N−1
i=1

∑N
j=i+1 (xi(t− τ(t)) − xj(t− τ(t)))T TijΩ (xi(t− τ(t)) − xj(t− τ(t)))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + e2εt∑N−1

i=1

∑N
j=i+1 η

T
ijΛijηij .

(A.8)

According to Lemma 4 and (A.8), under conditions (13)–(14), V̇ (y(t)) ≤ 0 and V (t) ≤ V (0).
That is, V (t) is a bounded function and ‖y(t)‖ = O(e−εt). This completes the proof of part (i).

(ii) Let y(t) = Mx(t) = (yT1 (t), yT2 (t), . . . , yTp (t))T , yi(t) = (yi1(t), yi2(t), . . . , yin(t))T , i =

1, 2, . . . , p, x̃j(t) = (x1j(t), x2j(t), . . . , xNj(t))
T , and ỹj(t) = (y1j(t), y2j(t), . . . , ypj(t))

T . Then

ỹj(t) = M̃x̃j(t) for j = 1, 2, . . . , n.

Following the same method in part (i), from (A.5), one has

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εtxT (t)(TG⊗ PD)x(t) − 2e2εtxT (t)(TG⊗ PDτ )x(t− τ(t))

− e2εtxT (t)(T ⊗ (Ω + Δ))x(t) + (1 − h)e2εtxT (t− τ(t))(T ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑n

i=1

∑n
j=1 x̃

T
i (t)(

∑n
k=1 pikdkjTG)x̃j(t)

− 2e2εt∑n
i=1

∑n
j=1 x̃

T
i (t)(

∑n
k=1 pikdτkjTG)x̃j(t− τ(t)) − e2εt∑n

i=1

∑n
j=1 x̃

T
i (t)

× (Ωij + Δij)T x̃j(t) + (1 − h)e2εt∑n
i=1

∑n
j=1 x̃

T
i (t− τ(t))ΩijT x̃j(t− τ(t)).

(A.9)

Let η̃ij = (x̃Ti (t) − x̃Tj (t), x̃Ti (t− τ(t)) − x̃Tj (t− τ(t)))T . According to (A.9), one obtains

(A.10) V̇ (t)|(12) ≤ e2εt
p∑

j=1

ξTj Λ̃0ξj + e2εt
n∑

i=1

n∑
j=1

η̃TijΛ̃ij η̃ij .
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From Lemma 4 and (A.10), under conditions (13) and (15), V̇ (y(t)) ≤ 0 and V (t) ≤ V (0).
That is, V (t) is a bounded function and ‖y(t)‖ = O(e−εt). This completes the proof of
part (ii).

Appendix B. Proof of Theorem 2. Consider the following Lyapunov candidate:
(B.1)

V (t) = xT (t)MTPMx(t) +

∫ t

t−τ(t)
fT (x(s))MTQMf(x(s)) ds +

∫ t

t−τ(t)
xT (s)MTRMx(s) ds.

Differentiating V (t) along the trajectories of (12) yields

V̇ (t)|(12) = 2xT (t)MTPMẋ(t) + fT (x(t))MTQMf(x(t)) − (1 − τ̇(t))fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t)

− (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t))

≤ 2xT (t)MTPM[−Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t)).

(B.2)

From the definition of M, one has

MC = C1M, MA = A1M, MB = B1M, MI(t) = 0.

Therefore, one obtains

V̇ (t)|(12) ≤ 2xT (t)MTP[−C1Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t))) + MGx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)).

(B.3)

According to assumption A2, one gets

fT (x(t))MTΣMf(x(t)) =
∑N−1

j=1 [f(xj(t)) − f(xj+1(t))]
TΣj [f(xj(t)) − f(xj+1(t))]

≤
∑N−1

j=1 [xj(t) − xj+1(t)]
TFΣjF [xj(t) − xj+1(t)]

= xT (t)MTFΣFMx(t),

(B.4)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn). From Lemmas 1 and 5, one has

2xT (t)MTPMGx(t) = 2xT (t)MTP[(M ⊗ In)(G⊗D)]x(t)

= 2xT (t)MTP[MG⊗D]x(t)

= 2xT (t)MTP[HM ⊗D]x(t)

= 2xT (t)MTP[(H ⊗D)(M ⊗ In)]x(t)

= 2xT (t)MTPHMx(t)

(B.5)
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and

2xT (t)MTPMGτx(t− τ(t)) = 2xT (t)MTP[(M ⊗ In)(G⊗Dτ )]x(t− τ(t))

= 2xT (t)MTP[MG⊗Dτ ]x(t− τ(t))

= 2xT (t)MTP[HM ⊗Dτ ]x(t− τ(t))

= 2xT (t)MTP[(H ⊗Dτ )(M ⊗ In)]x(t− τ(t))

= 2xT (t)MTPHτMx(t− τ(t)),

(B.6)

where H = MGJ , H = (MGJ) ⊗D, Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

According to (B.3)–(B.6), one obtains

V̇ (t)|(12) ≤ −2xT (t)MTPC1Mx(t) + 2xT (t)MTPA1Mf(x(t))

+ 2xT (t)MTPB1Mf(x(t− τ(t)))

+ 2xT (t)MTPHMx(t) + 2xT (t)MTPHτMx(t− τ(t)) + xT (t)MTFΣFMx(t)

− fT (x(t))MTΣMf(x(t)) + fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t))

= ηT (t)Ωη(t),

(B.7)

where

η(t) =
(
xT (t)MT xT (t− τ(t))MT fT (x(t))MT fT (x(t− τ(t)))MT

)T
.

From Lemma 4 and (B.7), under the condition (28), V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t)
is a bounded function and ‖Mx(t)‖ −→ 0. This proof is thus completed.

Appendix C. Proof of Corollary 7. Select the Lyapunov candidate (B.1), where M and
J are also defined in (9), P = IN−1 ⊗ P , Q = IN−1 ⊗Q, R = IN−1 ⊗R, and Σ = IN−1 ⊗ Σ.

From (B.7), one obtains

V̇ (t)|(12) ≤ ηT (t)Ωη(t)

=
∑N−1

j=1 ξTj Λ0ξj +
(
xT (t)MT , xT (t− τ(t))MT

)
Ξ
(
MxT (t),MxT (t− τ(t))

)T
,

(C.1)

where

ξj =
(

(xj(t) − xj+1(t))
T (f(xj(t)) − f(xj+1(t)))

T (f(xj(t− τ(t))) − f(xj+1(t− τ(t))))T
)T

and Ω is defined in (28). According to Lemma 4 and (C.1), under the conditions (31)–(32),
V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t) is a bounded function, and ‖Mx(t)‖ −→ 0. This
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completes the proof.

Appendix D. Proof of Theorem 3. Construct the Lyapunov function as follows:

V (t) = xT (t)MTPMx(t) +
∫ t
t−τ(t) f

T (x(s))MTQMf(x(s)) ds +
∫ t
t−τ(t) x

T (s)MTRMx(s) ds

+
∫ 0
−r dθ

∫ t
t+θ ẋ

T (s)MTTMẋ(s) ds.

(D.1)

From Lemma 6, differentiating V (t) along the trajectories of (12) results in

V̇ (t)|(12) = 2xT (t)MTPMẋ(t) + fT (x(t))MTQMf(x(t)) − (1 − τ̇(t))fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t)

− (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t))

+ rẋT (t)MTTMẋ(t) −
∫ t
t−r ẋ

T (θ)MTTMẋ(θ) dθ

≤ 2xT (t)MTPM[−Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)) + rẋT (t)MTTMẋ(t)

− 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)
.

(D.2)

From the definition of M, one has

MC = C1M, MA = A1M, MB = B1M, MI(t) = 0.

According to (D.2), one obtains

V̇ (t)|(12) ≤ 2xT (t)MTP[−C1Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t))) + HMx(t)

+ HτMx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)) + rẋT (t)MTTMẋ(t)

− 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)
.

(D.3)

Similar to (B.4), one has

(D.4) fT (x(t))MTΣMf(x(t)) ≤ xT (t)MTFΣFMx(t)

and

(D.5) fT (x(t− τ(t)))MTΛMf(x(t− τ(t))) ≤ xT (t− τ(t))MTFΛFMx(t− τ(t)).
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From the Leibniz–Newton formula, for any matrix U with appropriate dimensions, one
gets

(D.6) xT (t− τ(t))MTUM

(
x(t) − x(t− τ(t)) −

∫ t

t−τ(t)
ẋ(s) ds

)
= 0.

Let

ξ(t) =
(

xT (t)MT xT (t− τ(t))MT fT (x(t))MT fT (x(t− τ(t)))MT
∫ t
t−τ(t) ẋ

T (s) dsMT
)T

,

Π =
(
−C1 + H Hτ A1 B1 0

)
;

then one has

(D.7) ẋT (t)MTTMẋ(t) = ξT (t)ΠTTΠξ(t).

Combining this with (D.3)–(D.7), one obtains

V̇ (t)|(12) ≤ −2xT (t)MTPC1Mx(t) + 2xT (t)MTPA1Mf(x(t)) + 2xT (t)MTPB1Mf(x(t− τ(t)))

+ 2xT (t)MTPHMx(t) + 2xT (t)MTPHτMx(t− τ(t)) + xT (t)MTFΣFMx(t)

− fT (x(t))MTΣMf(x(t)) + xT (t− τ(t))MTFΛFMx(t− τ(t)) − fT (x(t− τ(t)))MT

× ΛMf(x(t− τ(t))) + fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQM

× f(x(t− τ(t))) + xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t))

+ rξT (t)ΠTTΠξ(t) − 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)

+ 2xT (t− τ(t))MTUM
(
x(t) − x(t− τ(t)) −

∫ t
t−τ(t) ẋ(s) ds

)
= ξT (t)(Ξ + rΠTTΠ)ξ(t),

(D.8)

where

Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ψ PHτ + UT PA1 PB1 0
HT

τ P + U −(1 − h)R − 2U + FΛF 0 0 −U

A1TP 0 −Σ + Q 0 0

B1TP 0 0 −(1 − h)Q − Λ 0

0 −UT 0 0 −1

r
T

⎞
⎟⎟⎟⎟⎟⎟⎠

and Ψ = −2PC1 + PH + HTP + R + FΣF.

According to Schur complement Lemma 2, Ξ+rΠTTΠ < 0 is equivalent to Ω1 < 0. From
Lemma 4 and (D.8), under the condition (33), V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t) is a
bounded function, and ‖Mx(t)‖ −→ 0. Thus the proof is completed.
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[14] J. Lü, X. Yu, and G. Chen, Chaos synchronization of general complex dynamical networks, Phys. A,

334 (2004), pp. 281–302.
[15] Z. Li and G. Chen, Robust adaptive synchronization of uncertain dynamical networks, Phys. Lett. A,

324 (2004), pp. 166–178.
[16] J. Cao, P. Li, and W. Wang, Global synchronization in arrays of delayed neural networks with constant

and delayed coupling, Phys. Lett. A, 353 (2006), pp. 318–325.
[17] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and

Control Theory, SIAM Stud. Appl. Math. 15, SIAM, Philadelphia, 1994.
[18] D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton

University Press, Princeton, NJ, 1999.
[19] J. Chen and X. Chen, Special Matrices, Tsinghua University Press, Beijing, China, 2001.
[20] W. Yu and J. Cao, Adaptive synchronization and lag synchronization of uncertain dynamical system

with time delay based on parameter identification, Phys. A, 375 (2007), pp. 467–482.
[21] W. Yu and J. Cao, Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with

time delays, Phys. Lett. A, 351 (2006), pp. 64–78.
[22] J. Cao and J. Liang, Boundedness and stability for Cohen-Grossberg neural networks with time-varying

delays, J. Math. Anal. Appl., 296 (2004), pp. 665–685.
[23] J. Cao and J. Wang, Global asymptotic and robust stability of recurrent neural networks with time

delays, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), pp. 417–426.
[24] X. F. Liao, K. W. Wong, Z. Wu, and G. Chen, Novel robust stability criteria for interval-delayed

Hopfield neural networks, IEEE Trans. Circuits Systems I Fund. Theory Appl., 48 (2001), pp. 1355–
1359.

[25] S. Q. Hu and J. Wang, Global exponential stability of continuous-time interval neural networks, Phys.
Rev. E (3), 65 (2002), 036133.

[26] J. Cao and J. Wang, Absolute exponential stability of recurrent neural networks with time delays and
Lipschitz-continuous activation functions, Neural Networks, 17 (2004), pp. 379–390.



GLOBAL SYNCHRONIZATION OF HYBRID COUPLED NETWORKS 133

[27] J. Cao, H. X. Li, and D. W. C. Ho, Synchronization criteria of Lur’e systems with time-delay feedback
control, Chaos Solitons Fractals, 23 (2005), pp. 1285–1298.

[28] H. Lu, Chaotic attractors in delayed neural networks, Phys. Lett. A, 298 (2002), pp. 109–116.
[29] K. Q. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser Boston,
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[39] W. Yu, J. Cao, K. W. Wong, and J. Lü, New communication schemes based on adaptive synchroniza-

tion, Chaos, 17 (2007), 033114.
[40] A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), pp.

509–512.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 134–160
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Abstract. We present new necessary and sufficient conditions for the existence of fixed points in a finite system
of coupled phase oscillators on a complete graph. We use these conditions to derive bounds on the
critical coupling.
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1. Introduction. The phenomenon of synchronization arises in a wide variety of applica-
tion areas across neuroscience, biology, engineering, and physics [6, 17, 2, 16, 5]. As such, the
identification and study of structures and mechanisms that support the onset of synchronized
behavior is a key issue in the theory of interconnected dynamical systems. In particular,
there has been a great deal of interest across the mathematics, physics, and engineering com-
munities in the development and analysis of simple mathematical models of synchronization
[9, 19, 20, 3, 21, 22].

To date, one of the most widely studied frameworks for the analysis of synchronization
is the so-called Kuramoto model of phase-coupled oscillators [10, 23]. In fact, this model
has been used in numerous applications in the chemical and biological sciences, and its basic
properties have been analyzed using a combination of numerical and analytical techniques
[11, 23, 24, 1]. The basic Kuramoto model is comprised of a system of coupled oscillators,
which may have different natural frequencies, where the coupling between two oscillators is
given by a weighted sinusoidal function of the difference of their phases. The weights used in
the model are typically taken to be the same for all pairs of oscillators and are given by the
ratio of a fixed parameter, the coupling strength, to the network size.

The aspect of the Kuramoto model that has attracted the most attention to date is the
manner in which the onset of synchronization depends on the strength of coupling between
the oscillators. For instance, at very low values of the coupling strength, little or no syn-
chronization is observed. As the coupling strength is increased, some partial synchronization
appears in the network up to a threshold value of the coupling strength, referred to here as
the critical coupling, at which fully synchronized behavior emerges [9, 3]. The mechanism
of (de)synchronization in finite populations of oscillators has been described in considerable
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detail [13, 12]. In particular, when the coupling strength drops below its critical value and
as it continues to decrease, the system undergoes a series of so-called frequency-splitting bi-
furcations. At each such bifurcation, the ensemble of oscillators subdivides into smaller and
smaller groups of oscillators with identical average frequency, until eventually all oscillators
oscillate at their own intrinsic frequency. A detailed analysis of this behavior for a system
with three oscillators was given in [13]. While the aforementioned contributions focus on the
behavior of the system in the subcritical coupling regime, the present paper studies globally
phase-locked solutions, which by definition exist only in the supercritical coupling regime.

Another aspect of the Kuramoto model that has attracted attention recently is the emer-
gence of phase chaos [14, 18] in systems of dimension four and higher. A generic feature of
coupled oscillator systems, phase chaos in the Kuramoto model is most prominent in systems
with relatively low dimension (comprising between ten and fifteen oscillators) [14]. Again,
this phenomenon can exist only in the subcritical coupling regime, and we shall not further
consider it here.

In the original Kuramoto model, it is assumed that all pairs of oscillators in the network
are connected with the same coupling strength [10]. This type of coupling is referred to as “all-
to-all” coupling and corresponds to a network in which the underlying graph is complete [4].
Extensions of the Kuramoto model to lattices [8] and rings [20] have also been considered,
and more recently the dynamics of coupled oscillators on networks with small-world [27, 7]
and scale-free [15] topologies have started to attract a lot of interest. More generally, there
are many fundamental questions relating to the interplay between a network’s topology and
dynamical processes taking place on it which are still unanswered. The work described in [6],
which proposes an extension of group-based symmetry, using so-called groupoid formalism,
as a means of classifying possible behaviors for networked dynamical systems is particularly
noteworthy in this context.

Many of the recent results concerned with the dynamics and synchronization of coupled
oscillators have either been based on numerical simulations or else have been derived for the
limiting case of networks of infinite size. In contrast, relatively few rigorous results are available
for finite-size networks [23, 9]. In this paper, we shall be concerned with synchronization
in finite systems of coupled oscillators. Specifically, we shall establish (new) necessary and
sufficient conditions for the existence of fixed points in a finite system of coupled oscillators
(see also [25, 26]), compute bounds on the critical coupling strength for such systems, and
provide insight into the number of fixed points possible under strong coupling. Our analysis
is in the spirit of the work presented in [9, 3] and places particular emphasis on the existence
of fixed points. Of course, the stability of such fixed points is also a topic of great interest and
has been considered in [9, 19, 20, 3]. However, we shall not explicitly address the question of
stability in the current paper.

The outline of the paper is as follows. In section 2, we introduce the Kuramoto model
and review some of its basic properties. Here, we also give a formal definition of critical
coupling, which is essentially the lowest value of the coupling strength for which fixed points
exist. In section 3, we show that fixed points will always exist for sufficiently strong coupling
(essentially proving that the critical coupling is a finite number), and then, in section 4 we
provide lower bounds on the critical coupling. Section 5 contains necessary and sufficient
conditions for the existence of fixed points, which are then used in section 6 to describe an
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algorithm for computing the critical coupling. Section 7 contains a numerical example to
illustrate the results of the paper, and finally, in section 8 we present our concluding remarks.

2. Mathematical preliminaries and the Kuramoto model.

2.1. Basic notation. Throughout the paper, R (C) denotes the field of real (complex)
numbers, R

N (CN ) denotes the vector space of all N -tuples of real (complex) numbers, and
R
N×N (CN×N ) denotes the space of N ×N matrices with entries in R (C). i is used to denote

the complex number satisfying i2 = −1. For a vector x ∈ R
N , xi denotes the ith entry of x.

Also, 1N denotes the vector in R
N , all of whose entries are equal to one.

We shall use V to denote the projection matrix in R
N×N given by

(1) [Vij ] :=

{
N−1
N , j = i,

− 1
N , j �= i,

i, j = 1, . . . , N,

and V R
N shall denote the image of R

N under V . Formally,

V R
N :=

{
x ∈ R

N :

N∑
j=1

xj = 0

}
.

2.2. The basic Kuramoto model. The basic Kuramoto model of phase-coupled oscillators
under the assumption of all-to-all coupling is given by

(2) θ̇i = ωi +
k

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N.

Here, θi(·) ∈ R (S1) and ωi ∈ R respectively denote the phase and intrinsic (or natural)
frequency of oscillator i, and the constant k ∈ R+ is a global coupling coefficient.

This model can be described more compactly in vector notation as

(3) θ̇ = ω + kf(θ),

where θ(t) := (θ1(t), . . . , θN (t)), ω := (ω1, . . . , ωN ), and the mapping f : R
N �→ R

N is given
by

f(ξ) = (f1(ξ), . . . , fN (ξ)),

fi(ξ) :=
1

N

N∑
j=1

sin(ξj − ξi), 1 ≤ i ≤ N.(4)

The assumption of all-to-all coupling is naturally very restrictive and ought to be relaxed in
order for this work to be more directly applicable to the modeling of biological systems, or
most engineering systems for that matter. Work toward this end is underway, and we hope
to be able to present some results in the near future. Meanwhile, in this paper, we shall
focus exclusively on configurations with all-to-all coupling. First, we recall some fundamental
notions in the theory of synchronized oscillators.
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2.3. The order parameter. Let D denote the complex unit disc {z ∈ C : |z| ≤ 1}. Then
define r : R

N �→ D by

(5) r(ξ) :=
1

N

N∑
j=1

eiξj .

Let r−1(z) := {ξ ∈ R
N : r(ξ) = z} denote the preimage of r, and note that the preimage is

nonempty for all z ∈ D provided N ≥ 2. We introduce the notation R0 := r−1(0). Then, for
ξ ∈ R

N , we may express r(ξ) in polar coordinates:

(6) r(ξ) =

{
R(ξ)eiψ(ξ), ξ ∈ R

N\R0,

0, ξ ∈ R0.

Here, R : R
N �→ [0, 1] and ψ : R

N\R0 �→ [0, 2π) are respectively defined as

(7) R(ξ) :=

√√√√(
1

N

N∑
j=1

sin(ξj)

)2

+

(
1

N

N∑
j=1

cos(ξj)

)2

and

(8) ψ(ξ) := arctan

(
1
N

∑N
j=1 sin(ξj)

1
N

∑N
j=1 cos(ξj)

)
.

The following properties of the maps R(·) and ψ(·) follow immediately from (5):

R(ξ + c1N ) :=

∣∣∣∣∣ 1

N

N∑
j=1

ei(ξj+c)

∣∣∣∣∣ = |eic|R(ξ) = R(ξ) ∀ξ ∈ R
N ;(9)

ψ(ξ + c1N ) = ψ(ξ) + c mod 2π ∀ξ ∈ R
N\R0.(10)

In the physics literature, r(·) is known as the order parameter and is used to characterize the
amount of order or synchronization in the system (2). The idea is to think of the phase θj of
oscillator j as a unit vector eiθj in C; the order parameter then corresponds to the geometric
centroid of the set of vectors {eiθj : j = 1, . . . , N}, as illustrated in Figure 1. The magnitude
of the order parameter, given by R(θ), serves as a measure of the order in the system in
the sense that the closer the vectors are to being perfectly aligned, the closer R(θ) is to its
maximal value 1, while vectors that are far from alignment will give rise to values of R(θ)
significantly smaller than 1.

It follows from (6) that for ξ ∈ R
N\R0,

R(ξ) = e−iψ(ξ)r(ξ)(11)

=
1

N

N∑
j=1

ei(ξj−ψ(ξ)).(12)
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R(θ)

ψ(θ)

Figure 1. The order parameter r(θ) := R(θ)eiψ(θ) is defined as the centroid (closed circle) of the set of unit
vectors (open circles) associated with the phases of the oscillators.

Equating real and imaginary parts in (11), we immediately see that for ξ ∈ R
N\R0,

R(ξ) =
1

N

N∑
j=1

cos(ψ(ξ) − ξj);(13)

N∑
j=1

sin(ψ(ξ) − ξj) = 0.(14)

Both of these identities shall prove useful throughout the paper.

Before proceeding, note that the function f : R
N �→ R

N given by (4) can be written in
terms of the functions R(·) and ψ(·) as

(15) fi(ξ) :=

{
R(ξ) sin(ψ(ξ) − ξi), ξ ∈ R

N\R0,

0, ξ ∈ R0,

for 1 ≤ i ≤ N .

2.4. Fixed points and global phase-locking. Let 〈ω〉 denote the sample mean of the
natural frequencies, 〈ω〉 := 1

N

∑N
j=1 ωj . Similarly, let 〈θ(t)〉 denote the mean phase of a

solution of (2) at time t. In general, 〈ω〉 and 〈θ(t)〉 will be nonzero. However, we shall
now show that for the study of phase-locked solutions of (2), we may assume without loss of
generality that 〈ω〉 = 0, 〈θ(t)〉 = 0 for t ≥ t0. This helps to simplify the analysis of phase-
locked solutions of (2), as it allows us to transform the problem into a question of fixed point
existence for a lower-dimensional system.

Consider the new coordinates

(16) xi(t) := θi(t) − 〈θ(t)〉, i = 1, . . . , N.

Then x(t) := V θ(t). Similarly, define Ω := V ω. In the new coordinates, the system dynamics
are given by

(17) ẋ = Ω + kf(x), x(t) ∈ V R
N ,
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where f(·) is defined in (4).
The key point here is that as 〈Ω〉 = 0, V R

N is invariant under (17). To avoid confusion,
we shall use x(t) to denote solutions to the system (17) on V R

N , while θ(t) shall be used
to denote solutions to the original Kuramoto system (2) on R

N . Our main concern for the
remainder of the paper is to find conditions on k and Ω under which the system (17) has one
or more fixed points in the sense of the following definition.

Definition 1 (fixed point). Given ω ∈ R
N , let Ω := V ω. We say that x ∈ V R

N is a fixed
point (of the system (17)) if

(18) kf(x) = −Ω.

There is a natural correspondence between fixed points of (17) and phase-locked solutions
of (2). In fact, for every fixed point x∗ ∈ V R

N there is a 1-dimensional manifold M :=
{θ ∈ R

N : θ = x∗ + 〈ω〉t, t ∈ R} that is invariant under the original system dynamics (2).
More precisely, let x∗ be a fixed point and let θ0 ∈ R

N be such that V θ0 = x∗. Then the
solution θ(t) of the system (2) with initial condition θ(t0) = θ0 satisfies

(19) θi(t) − θj(t) = θ0
i − θ0

j

for all t ≥ t0 and all (i, j). In other words, a fixed point in the sense of Definition 1 corresponds
to a situation in which each oscillator is phase-locked to every other and moves at constant
speed θ̇i = 〈ω〉. We shall refer to this phenomenon as global phase-locking. In the literature,
it is also known as full (or complete) synchronization. See also [9].

2.5. Critical coupling. We next define the notion of critical coupling, which is central to
the work of the rest of the paper. Essentially, the critical coupling is the smallest k for which
the system (17) has at least one fixed point. Formally, we have the following definition.

Definition 2. Given ω ∈ R
N , let Ω := V ω. We define the critical coupling, kc, as follows:

(20) kc := inf
k

{
k ∈ R+ : ∃x ∈ V R

N s.t. kf(x) = −Ω
}
.

Note that this definition of the critical coupling, which is equivalent to that of KL in [9],
does not coincide with the traditional notion used in the physics literature. Indeed, the
traditional notion of critical coupling is defined in terms of the lowest value of k for which
there exists at least one solution x(t), t ≥ t0, and a constant c ∈ (0, 1] such that R(x(t)) = c
for all t ≥ t0 (so-called stationary or steady solutions [23]). Note that these solutions are not
necessarily fixed points, although, in finite dimensions, the probability of finding stationary
solutions that are not fixed points is vanishingly small. In his original analysis, Kuramoto
showed that in the limiting case when N tends to infinity, stationary solutions always exist for
large enough k, provided the distribution of natural frequencies is symmetric. Our definition,
although more restrictive in a sense, does not impose any restriction on the shape of the
distribution of natural frequencies other than that it should have compact support. In fact,
it follows from the result of Lemma 4 below that, if the distribution of natural frequencies
does not have compact support, then the critical coupling will exceed any finite number with
probability tending to 1 as N tends to infinity. In this paper we shall therefore focus on
distributions with compact support.
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3. Existence of fixed points under strong coupling. In this section we shall show that,
provided the distribution of intrinsic frequencies has compact support, the critical coupling
given in Definition 2 is always finite. Following from this, in the next section, we shall derive
a number of lower bounds for the value of the critical coupling. There are two steps in the
derivation given here: first, we characterize the fixed points of the homogeneous system

(21) ẋ = kf(x).

Then, in the second step, we use a perturbation argument to show that for every fixed point
of the homogeneous system, we can find an open set containing it, such that, under strong
enough coupling, the original system (17) has a unique fixed point on this set. As a first step,
the following lemma characterizes the fixed points of the homogeneous system.

Lemma 1. Let f(·) be given by (4) and ξ ∈ R
N . We have that f(ξ) = 0 if and only if one

or both of the following conditions are satisfied:
(a) R(ξ) = 0;
(b) sin(ξi − ξj) = 0 for all (i, j).
Proof. Sufficiency of conditions (a) and (b) follows from (15) and (4), respectively. To

prove necessity, suppose f(ξ) = 0 and R(ξ) �= 0 (if R(ξ) = 0, we are done). It follows that
sin(ψ(ξ) − ξi) = 0 for all i. This implies that there exist integers ki ∈ Z, i = 1, 2, . . . , N ,
such that ψ(ξ) − ξi = kiπ for all i, and we have that ξi − ξj = (kj − ki)π. We conclude that
sin(ξi − ξj) = 0 for all (i, j).

Remark 1. It is not hard to see that conditions (a) and (b) in Lemma 1 are mutually
exclusive if and only if the dimension N is odd. We shall prove necessity. Suppose conditions
(a) and (b) both hold and suppose furthermore that N is odd. Then for all (i, j) we have that
either cos(ξi−ξj) = 1 or cos(ξi−ξj) = −1. We write R2(ξ) = 1

N2

∑
i,j cos(ξi−ξj) = 1

N2

(
N +

2
∑

i,j>i cos(ξi−ξj)
)
. Since R(ξ) = 0 by assumption, it follows that 2

∑
i,j>i cos(ξi−ξj) = −N .

The left-hand side evaluates to an even integer. By assumption, the number on the right-hand
side is odd. We arrive at a contradiction and conclude that if N is odd, conditions (a) and (b)
cannot both hold.

Next we shall prove that the fixed points of our N -dimensional system (17) can be found
by solving a system of N − 1 equations in as many variables. We have the following result.

Lemma 2. Let p ∈ {1, . . . , N} and let x∗ ∈ V R
N . Then x∗ is a fixed point of (17) if and

only if kfi(x
∗) = −Ωi for i �= p.

Proof. The proof of necessity is trivial. To prove sufficiency, recall that

(22)

N∑
j=1

(Ωj + kfj(x)) = 0 ∀x ∈ R
N .

Now suppose kfi(x) = −Ωi for all i �= p. Then it follows from (22) that Ωp + kfp(x) = 0. In
other words, it follows that kfi(x) = −Ωi for all i. We conclude that x is a fixed point.

Let x∗ ∈ V R
N be a fixed point of the homogeneous system (21) such that R(x∗) �= 0. We

shall now show that locally, in a neighborhood of x∗, the system of equations

(23)

⎧⎪⎨
⎪⎩

−Ω1 = kf1(x1, . . . , xN−1,−
∑N−1

j=1 xj)
...

...

−ΩN−1 = kfN−1(x1, . . . , xN−1,−
∑N−1

j=1 xj)
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has a unique solution, provided k is large enough. It follows directly from Lemma 2 that every
solution of (23) defines a fixed point and, conversely, that every fixed point satisfies (23). We
proceed as follows. Let x∗ ∈ V R

N . We define the Jacobian J(x∗) as follows:

(24) [Jij(x
∗)] :=

∂fi(x1, . . . ,−
∑N−1

j=1 xj)

∂xj

∣∣∣∣∣
x=x∗

,

where i, j = 1, . . . , N − 1. We have the following result.
Lemma 3. Let f(·) be given by (4) and suppose that x∗ ∈ V R

N satisfies f(x) = 0 and
R(x) �= 0. Then det(J(x∗)) �= 0.

Proof. Let x∗ be a fixed point of the homogeneous system and suppose R(x∗) �= 0. Then
by Lemma 1, we have that sin(x∗j − x∗i ) = 0 for all (i, j), and it follows that

cos(x∗j − x∗i ) = cos((x∗j − x∗s) − (x∗i − x∗s))

= cos(x∗j − x∗s) cos(x∗i − x∗s)(25)

for all s and all (i, j). The claim is that J(x∗) is nonsingular. To prove this, we proceed as
follows. From the definition, we have that

(26) Jij(x
∗) =

{
−
∑N−1

m=1,m �=i cos(x∗m − x∗i ) − 2 cos(x∗N − x∗i ), i = j,

cos(x∗j − x∗i ) − cos(x∗N − x∗i ), i �= j.

Using the aforementioned identity, setting s = N , we rewrite (26) as follows:

(27) Jij(x
∗) =

⎧⎨
⎩
−
(∑N−1

m=1,m�=i cos(x∗m − x∗N ) + 2
)

cos(x∗i − x∗N ), i = j,(
cos(x∗j − x∗N ) − 1

)
cos(x∗i − x∗N ), i �= j.

Inspection shows that the rank of J(x∗) is invariant under permutations of the components
of x∗. Hence we can assume, without loss of generality, that there exists ρ ∈ {0, . . . , N − 1},
such that

(28) cos(x∗j − x∗N ) =

{
−1, 1 ≤ i ≤ ρ,

+1, ρ + 1 ≤ i ≤ N.

Under this assumption J(x∗) takes the form

(29) J(x∗) =

(
A 0
C B

)
,

where A and B are square matrices of dimension ρ×ρ and (N−1−ρ)×(N−1−ρ), respectively.
It follows that J(x∗) is nonsingular if and only if A and B are nonsingular. Inspection shows
that A = (N − 2ρ)I + 211T and B = (2ρ−N)I. It follows that A or B is singular if and only
if N = 2ρ. In case N is odd, this condition is never satisfied. In case N is even, this condition,
combined with (25) and the fact that R2(x) = 1

N2

∑
i,j cos(xi − xj), implies that R(x∗) = 0,
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which contradicts our starting assumption. We conclude that, under the hypotheses of the
lemma, J is nonsingular. This concludes the proof.

Let Π : R
N−1 �→ V R

N be given as

(30) (Π(y))i :=

{
yi for i = 1, 2, . . . N − 1;

−
∑N−1

j=1 yj for i = N,

and note that Π has an inverse Π−1 that is defined everywhere in V R
N . We are now ready

to state the main result.

Theorem 1. Let f(·) be given by (4) and x∗ ∈ V R
N be such that f(x∗) = 0 and R(x∗) �= 0.

Also, let Ω ∈ V R
N . Then there exist K ∈ R and an open set U ∈ R

N−1 such that (a) Π−1(x∗)
is an interior point of U ; and (b) for all k > K, the system of equations (23) has a unique
solution on U .

Proof. Define y∗ := Π−1(x∗), and let g : R
N−1 �→ R

N−1 be given as gi(y) := fi(y1, . . . ,
yN−1,−

∑N−1
j=1 yj), i = 1, . . . , N − 1. Note that g(y∗) = 0. Also, by Lemma 3, we have that

det(∂g∂y (y∗))| �= 0. Under these conditions, the inverse function theorem says that there exists

an open set U ⊂ R
N−1 containing y∗ such that g|U : U �→ g(U) is a diffeomorphism. By

continuity (and bijectivity) of g−1 there exists δ > 0 such that for all z ∈ R
N−1 satisfying

‖z‖ < δ, the equation g(y) = z has a unique solution on U . Now let z be given as zi := −Ωi/k.
Since, by assumption, maxi |Ωi| < ∞, it follows that, provided k is large enough, the system
of equations {kgi(y) = −Ω : i = 1, . . . , N − 1} has a unique solution on U . This concludes the
proof.

As alluded to earlier, there is a unique correspondence between solutions of (23) and the
fixed points of the system (17). Indeed, by Lemma 2 we have that if y is a solution of (23),
then Π−1(y) is a fixed point, and conversely, if y is a fixed point, then Π(y) is a solution of (23).
Thus, an immediate consequence of Theorem 1 is that for large enough k, the system (23) will
have at least one fixed point. In other words, Theorem 1 tells us that the critical coupling,
kc, is always finite.

Note furthermore that the proof of Theorem 1 does not require detailed knowledge of
the coupling function g and that, as such, its applicability is not restricted to networks with
all-to-all coupling. To illustrate this, consider the case of a 4-cycle, where g is given as

g1(y) =
1

4
sin(y2 − y1) +

1

4
sin(−2y1 − y2 − y3),

g2(y) =
1

4
sin(y3 − y2) +

1

4
sin(y1 − y2),

g3(y) =
1

4
sin(−2y3 − y1 − y2) +

1

4
sin(y2 − y3).(31)

We have that g(0) = 0 and det(∂g∂y (0)) = −1
4 �= 0. This implies that for k large enough,

the system of equations {kgi(y) = −Ωi : i = 1, 2, 3} has a unique solution on some open set
containing the origin.

Last, note that continuity of g−1 implies that the fixed points of the original system (17)
will converge to the fixed points of the homogeneous system (21) as k tends to infinity.
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4. Lower bounds on the critical coupling. In the previous section we showed that the
critical coupling is finite, provided the oscillator’s intrinsic frequencies are finite. In the present
section we shall investigate in more detail the relation between the distribution of intrinsic
frequencies and the critical coupling. In particular, we shall derive various lower bounds and
discuss some of these bounds’ implications for the system’s dynamic behavior.

First, let us observe that kc (Definition 2) is lower bounded by the l∞ norm of Ω:

(32) kc ≥ ‖Ω‖∞ := max
i

|ωi − 〈ω〉|.

This follows trivially from inspection of (17). In order to derive another lower bound, we shall
need the following result.

Lemma 4. Let f(·) be given by (4). Then the following hold:
1. For all x ∈ R

N ,

(33) ‖f(x)‖2 ≤
√
NR2(x) (1 −R2(x)).

2. If N is even, then for every c ∈ [0, 1] there exists x ∈ V R
N such that R(x) = c and

‖f(x)‖2 =
√
NR2(x) (1 −R2(x)).

3. If N is odd, then inequality (33) is strict for all x ∈ R
N such that 0 < R(x) < 1.

Proof. Part 1. Observe that inequality (33) is trivially satisfied when x ∈ R0. Suppose
therefore that x ∈ R

N\R0. Then by definition

‖f(x)‖2
2 :=

N∑
j=1

(fj(x))2

= R2(x)

N∑
j=1

sin2(ψ(x) − xj),(34)

where ψ(x) and R(x) are the phase and magnitude of the order parameter, previously defined
in (8) and (7), respectively. Introducing the shorthand notation zi(x) := cos(ψ(x) − xi) and
using (13), we now rewrite (34) as follows:

(35) ‖f(x)‖2
2 =

(
1

N

N∑
j=1

zj(x)

)2 N∑
j=1

(
1 − zj(x)2

)
.

To derive the desired inequality we pick a c ∈ [0, 1] and maximize ‖f(x)‖2 over the set
{x ∈ R

N : R(x) = c}. We shall not solve this optimization problem directly but shall take an
indirect route by considering another, easier optimization problem, whose solution will then
give us an upper bound on the solution to the first problem. Then we shall show that, under
certain conditions, the two solutions coincide.

To this end, let c ∈ (0, 1] and consider the constrained optimization problem

OPT 1:
maximize

∑N
j=1

(
1 − zj(x)2

)
subject to 1

N

∑N
j=1 zj(x) = c, x ∈ R

N\R0
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Note that the constraint is feasible for all values of c in the specified interval. We shall denote
the solution to OPT 1 as s1(c). Next consider a second optimization problem

OPT 2:
maximize

∑N
j=1

(
1 − y2

j

)
subject to 1

N

∑N
j=1 yj = c, y ∈ R

N

and let the solution to this problem be denoted as s2(c). We then have that s2(c) ≥ s1(c)
for all c ∈ (0, 1]. In other words, the solution to OPT 1 is upper bounded by the solution
to OPT 2. The solution to OPT 2 can be found by means of standard Lagrange multiplier
techniques. The optimum s2(c) = N

(
1 − c2

)
is attained when yi = c for all i. We conclude

that

(36) max
{x∈RN :R(x)=c}

‖f(x)‖2
2 ≤ Nc2

(
1 − c2

)
,

and hence

(37) ‖f(x)‖2 ≤
√
NR(x)

√
1 −R2(x)

for all x ∈ R
N .

Part 2. To prove the second part of the theorem, let c ∈ (0, 1] and note that s1(c) = s2(c)
if and only there exists x ∈ R

N\R0 such that

(38) cos(ψ(x) − xi) = c

for all i. Suppose N is even and let x be given as

(39) xi :=

{
arccos(c), i = 1, . . . , N2 ,

− arccos(c), i = N
2 , . . . , N.

Then
∑N

j=1 xj = 0, and, by definition, x ∈ V R
N . Moreover, ψ(x) = 0, and cos(ψ(x)− xi) = c

for all i. This completes the second part.
Part 3. To prove the third part, let N be odd and suppose there exists x ∈ R

N such that
condition (38) is satisfied. Then it follows from the identity sin2(ψ(x)−xi)+cos2(ψ(x)−xi) = 1
that there must exist a ∈ {−1, 1}N such that sin(ψ(x) − xi) = ai

√
1 − c2 for all i. By

identity (14), we have that
∑

j sin(ψ(x) − xj) = 0, which, assuming c �= 1, implies that∑N
j=1 aj = 0. But this cannot be true unless N is even. Thus we arrive at a contradiction and

we conclude that if N is odd then s2(c) > s1(c) for all c such that 0 < c < 1. This concludes
the proof.

Figure 2 illustrates the result of Lemma 4. When N = 4 (even), the lower bound is
attained at every value of R(x), which shows that the given bound is the tightest possible.
However, as illustrated in the left panel, when N = 3, the bound is never attained except on
the set {x ∈ R

N : R(x) ∈ {0, 1}}. It can be shown, however, that in the limit of large N the
given bound is arbitrarily tight, even for odd N , in the sense that for every c ∈ [0, 1],

min
{x∈R2m+1:R(x)=c}

1√
2m + 1

∣∣∣‖f(x)‖2 −
√

(2m + 1)c2 (1 − c2)
∣∣∣
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Figure 2. Scatter plot of 1√
N
‖f(x)‖2 for N = 3 (left panel) and N = 4 (right panel). The phases x were

drawn from a uniform distribution. The solid black line in both panels is the upper bound R(x)
√

1 −R2(x).

tends to zero as m tends to infinity.
Lemma 4 has some interesting implications. For instance, it can provide insight into the

rate at which solutions of a homogeneous system of Kuramoto oscillators ((2) with ωi = 0 for
1 ≤ i ≤ N) on R

N converge to fixed points. To see this, consider the homogeneous system

(40)

{
θ̇(t) = kf(θ(t)),
θ(t0) = θ0,

where θ0 ∈ R
N . We shall compute the time-derivative of the magnitude squared of the order

parameter, L(·) := R2(·), and show that this derivative is (i) nonnegative along solutions
of (40) and (ii) bounded from above by a certain function D(t) for every t. We proceed as
follows [9]. By definition,

dL(θ(t))

dt
:=

L(θ)

∂θ
θ̇(t) =

L(θ)

∂θ
kf(θ(t)).

Using the identity
∂L(θ)

∂θ
=

2

N
[f(θ)]T ,

it follows that

(41)
dL(θ(t))

dt
=

2k

N
‖f(θ(t))‖2

2,

which shows that the time-derivative is positive everywhere, except at the equilibria, where
it is zero. It follows that the magnitude of the order parameter is a nondecreasing function
of time. Based on the observation that the time-derivative of L is positive almost everywhere
(the set of equilibria having measure zero), we formulate the following conjecture [3, 9].

Conjecture 1. For almost all initial conditions θ0, the solution θ(t) to the homogeneous
system (40) has the property that limt→∞R(θ(t)) = 1.

In agreement with Conjecture 1, one can prove that, for the homogeneous system, the
global phase-locking manifold M := {θ ∈ R

N : θi = θj for all i, j} is (locally) asymptotically
stable. However, the existence of other invariant manifolds, not contained in M, implies
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that M is not globally asymptotically stable. We conjecture that M is “almost globally
asymptotically stable” in the sense that its region of attraction is the entire space minus a set
of measure zero.

For our next result, we shall need the concept of a dominating function, which is defined
as follows.

Definition 3. Let h, g : R �→ R and let I ⊂ R be some interval. We say that h dominates
g on I if h(t) ≥ g(t) for all t ∈ I. In that case we call h a dominating function for g on I.

Our next result states that L(θ(t)) is dominated by a certain scalar function D(t) that
depends only on θ0. In order to prove this result, we need the following two lemmas.

Lemma 5. Let θ(·) be a solution of the homogeneous system (40) and suppose L̇(θ(t′)) =
2kL(θ(t′)) (1 − L(θ(t′))) for some t′ ∈ R. Then

L̇(θ(t)) = 2kL(θ(t)) (1 − L(θ(t))) ∀t ≥ t′.

Proof. Recall that L̇(θ(t)) = 2k
N ‖f(θ(t))‖2

2. It follows from the proof of Lemma 4 that
‖f(θ(t′))‖2

2 = NL(θ(t′)) (1−L(θ(t′))) for some t′ ∈ R if and only if one or two of the following
conditions hold: (a) L(θ(t′)) = 0; (b) N is even and there exists a permutation θ̂(t′) of θ(t′)
such that

cos(θ̂i(t
′) − θ̂1(t

′)) = 1, i = 1, 2, . . . ,
N

2
,(42)

cos(θ̂i(t
′) − θ̂N (t′)) = 1, i =

N

2
+ 1, . . . , N.(43)

If L(θ(t′)) = 0, we have that L(θ(t)) = 0 for all t ≥ t′ and the result follows trivially. Now

suppose conditions (42) and (43) hold. It follows that
˙̂
θi(t

′) =
˙̂
θj(t

′) for i, j ≤ N
2 and i, j > N

2 ,
and hence

d

dτ

(
cos(θ̂i(τ) − θ̂j(τ))

)∣∣∣
τ=t′

= 0, i, j ≤ N

2
; i, j >

N

2
.

In other words, if θ̂(·) satisfies conditions (42) and (43) for some t′, it satisfies (42) and (43)
for all t ≥ t′. This concludes the proof.

Lemma 6. Let h, g : R �→ R be such that for every x0 ∈ R, the systems{
ẋ = h(x),

x(0) = x0,

{
ẋ = g(x),

x(0) = x0

have unique solutions in C1[0,∞). Let these solution be denoted xh(t;x0) and xg(t;x0), re-
spectively. Suppose there exist a, b ∈ R, a �= b, such that

h(x) > g(x) ≥ 0

for all x ∈ (a, b) ⊂ R. Then for every x0 ∈ (a, b), we have that

(44) xh(t;x0) ≥ xg(t;x0)

for all t ∈ I, where I ⊂ R is defined as

(45) I :=

{
[0,mint{xh(t;x0) = b}) when {xh(t;x0) = b} �= ∅;
[0,∞) otherwise.
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Proof. Under the hypotheses of the lemma we have that h(x0) > g(x0), and it follows
that for small enough t, xh(t) > xg(t) (omitting the argument x0 for notational convenience).
Note also that xh and xg are increasing whenever xh(t;x0) < b and xg(t;x0) < b, respectively.
Now suppose there exists t2 > 0 such that xg(t2) > xh(t2) and xg(t2) < b. Then by continuity
there exists t1 < t2 such that a < xh(t1) = xg(t1) < b and h(xh(t1)) ≤ g(xg(t1)). Define
x′ := xh(t1) = xg(t1). It follows that g(x′) ≥ h(x′), which contradicts our starting hypothesis.
We conclude that xh(t) ≥ xg(t) for all t ∈ I.

We have the following result.
Corollary 1. Let θ(·) be a solution to the homogeneous system (40) with initial condition

θ(t0) = θ0. Then

(46) D(t) :=
1

1 − e−2k(t−t0)
(
L(θ0)−1
L(θ0)

)
is a dominating function for L(θ(t)) on [t0,∞).

Proof. By Lemma 4 we have that L̇(θ(t)) ≤ 2kL(θ(t)) (1 − L(θ(t))) for all t. We claim
that, on [t0,∞), L(θ(t)) is dominated by the solution y(t) of the ODE

(47)

{
ẏ = 2ky(1 − y),

y(t0) = L(θ0),

which is given as

(48) y(t) =
1

1 − e−2k(t−t0)
(
L(θ0)−1
L(θ0)

) , t ≥ t0.

To prove this, suppose L̇(θ(t)) = 2kL(θ(t)) (1 − L(θ(t))) for some t ≥ t0 and let t′ denote the
smallest such t (in case L̇(θ(t)) < 2kL(θ(t)) (1 − L(θ(t))) for all t ≥ t0, the result follows im-
mediately from Lemma 6). Then by Lemma 5, we have that L̇(θ(t)) = 2kL(θ(t)) (1−L(θ(t)))
for all t ≥ t′, and it follows that

(49) L(θ(t))|L(θ(t′))=a =
1

1 − e−2k(t−t′)
(
a−1
a

) , t ≥ t′.

One can easily verify that L(θ(t))|L(θ(t′))=a is nondecreasing as a function of a for all t ≥ t′

(and a ∈ [0, 1]). Now let l be an upper bound for L(θ(t′)). It follows that 1
1−e−2k(t−t′)( l−1

l )
is a

dominating function for L(θ(t)) on the interval [t′,∞). To compute an upper bound for L(θ(t′),
we proceed as follows. By definition of t′, we have that L̇(θ(t)) < 2kL(θ(t)) (1 − L(θ(t))) for
all t < t′. It follows from Lemma 6 that

(50) L(θ(t)) ≤ 1

1 − e−2k(t−t0)
(
L(θ0)−1
L(θ0)

) , t0 ≤ t < t′.

By continuity, we have that

L(θ(t′)) ≤ 1

1 − e−2k(t′−t0)
(
L(θ0)−1
L(θ0)

) .
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Figure 3. Numerical simulation of the homogeneous system (40) with N = 100 oscillators and coupling
coefficient k = 2: Time evolution of L(θ(t)) := R2(θ(t)) (solid line) and the dominating function D(t)—(46)
(dashed line).

Using the upper bound 1

1−e−2k(t′−t0)
(
L(θ0)−1
L(θ0)

) for L(θ(t′)), it follows from (49) that

(51) L(θ(t)) ≤ 1

1 − e−2k(t−t0)
(
L(θ0)−1
L(θ0)

) , t ≥ t′.

Combining (50) and (51), we arrive at the desired result. This concludes the proof.

Figure 3 shows the graph of L(θ(t)) and that of the dominating function D(t)—(46) for
a particular realization of the initial condition θ0. In this example, N = 100 and k = 2.
We observe that, in agreement with Conjecture 1, the solution converges to a globally phase-
locked state, that is, L(θ(t)) → 1. Note that convergence can be very slow depending on the
choice of initial condition. Indeed, for any T ∈ R and any ε > 0, we can find δ > 0 such that if
L(θ0) < δ then L(θ(t)) < ε for all t ≤ t0 +T . The upshot of this is that if the initial condition
θ0 is selected by drawing from a uniform distribution and the number of oscillators is large,
then L(θ0) is likely to be small, and as a consequence convergence to the stable equilibrium
is likely to be slow. In the limit case when N tends to infinity, we have that L(θ0) tends to
zero with probability 1 and the time required for L(θ(t)) to exceed some given finite threshold
diverges to infinity.

Let σω :=
√

1
N

∑N
j=1 (ωj − 〈ω〉)2 denote the (sample) standard deviation associated with

the vector of intrinsic frequencies ω. Using Lemma 4 we derive another lower bound on the
critical coupling, as follows.

Corollary 2. The critical coupling kc satisfies

(52) kc ≥ 2σω.

Proof. Let x∗ ∈ V R
N be a fixed point of the system (17). Then by definition k‖f(x∗)‖2 =

‖V ω‖2 =
√
Nσω and by Lemma 4 we have that

(53) ‖f(x∗)‖2 ≤
√
N
√

R2(x∗) (1 −R2(x∗)).



GLOBAL PHASE-LOCKING ON FINITE GRAPHS 149

−0.5 0.50
0

0.5

1

↑
R(x∗)

(σω/k) →

Figure 4. Graph associated with inequality (56). For a given value of the ratio (σω/k), the magnitude of
the order parameter R(·), evaluated at a fixed point x∗, must lie within the striped region.

It is not hard to see that the right-hand side of (53) is upper bounded by 1
2

√
N . It follows

that

(54) k ≥
√
Nσω√
N 1

2

= 2σω.

This completes the proof.

Note that Corollary 2 is in agreement with the intuition that greater variation in intrinsic
frequencies requires stronger coupling to achieve global phase-locking.

Using Lemma 4 we can compute bounds on the value of the order parameter evaluated at
the fixed points of the system, should they exist. Indeed, suppose k > kc; then for any fixed
point x∗ ∈ V R

N we have that

(55)
√

R2(x∗) (1 −R2(x∗)) ≥ σω
k
.

Solving for R(x∗) gives

(56)
1

2
− 1

2

√
1 − 4

(σω
k

)2
≤ R2(x∗) ≤ 1

2
+

1

2

√
1 − 4

(σω
k

)2
.

The graph associated with inequality (56) is shown in Figure 4.

5. Necessary and sufficient conditions. In the last section, we derived lower bounds for
the critical coupling of the system (17) which provided necessary conditions for the existence
of fixed points. We next derive conditions that are both necessary and sufficient for fixed
points to exist, and we shall use these results to describe an algorithm for computing the
critical coupling in section 6.

Throughout this section, the function f : R
N �→ R

N is given by (4) and the set F(k,Ω) is
defined as

F(k,Ω) :=
{
x ∈ V R

N : kf(x) = −Ω
}
, k ≥ 0, Ω ∈ V R

N .

On F(k,Ω) we introduce a notion of equivalence as follows.
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Definition 4 (equivalence on F(k,Ω)). Given Ω ∈ V R
N and k ≥ 0, let x, x′ ∈ F (k,Ω). We

say that x and x′ are equivalent (x � x′) if R(x) = R(x′).
To motivate this definition consider the following fact. Let k,Ω be given, and let s ∈ Z

N

be such that
∑N

j=1 sj = 0. If x is a fixed point of the system (17), then x′ := x + 2sπ is also
a fixed point of the system (17) and, in addition, R(x′) = R(x).

The following theorem provides a necessary and sufficient condition for the system (17)
to have a fixed point, given a particular coupling strength k, and a particular realization of
intrinsic frequencies, Ω. Note that the first part of this theorem is essentially identical to the
result of Theorem 1 in [19].

Theorem 2. Let k > 0 and Ω ∈ V R
N . Then F(k,Ω) �= ∅ if and only if there exist

β ∈ [ 1k‖Ω‖∞, 1] ⊂ R and a ∈ {−1, 1}N such that

(57) β =
1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2

.

Moreover, suppose (a1, β1) and (a2, β2) both satisfy (57), and let x1, x2 ∈ F (k,Ω) be such that

(58)

{
kβi sin(ψ(xi) − xij) = −Ωj ,

aj cos(ψ(xi) − xij) ≥ 0,
i ∈ {1, 2}, j = 1, 2, . . . , N.

Then x1 � x2 if and only if β1 = β2 and
∑N

j=1 (ai − aj)
√

1 −
( Ωj

kβ1

)2
= 0.

Proof. Suppose Ω �= 0 (the case Ω = 0 is easy). Let x∗ ∈ V R
N be a fixed point of (17).

By definition, kf(x∗) = −Ω, and since Ω �= 0, we have that f(x∗) �= 0, and consequently
R(x∗) �= 0. It follows that

(59) sin(ψ(x∗) − x∗i ) = − Ωi

kR(x∗)
, i = 1, 2, . . . , N.

Let β := R(x∗). By (59) we have that β ≥ 1
k‖Ω‖∞. Recall that for all x ∈ R

N\R0, R(x) can
be written as

(60) R(x) =
1

N

N∑
j=1

cos(ψ(x) − xj),

and let ai be given as

(61) ai :=

{
−1 if cos(ψ(x∗) − x∗i ) ≤ 0;

+1 otherwise.

Combining (59), (60), and (61), we arrive at

(62) β =
1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2

.
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This proves necessity. To prove sufficiency, let a ∈ {−1, 1}N be given, and suppose β ≥
1
k‖Ω‖∞ > 0 (again, the case Ω = 0 is easy). Then for every c ∈ R, the system

(63)

{
kβ sin(−yi − c) = −Ωi,
ai cos(−yi − c) ≥ 0,

i = 1, 2, . . . , N,

has a unique solution y∗ ∈ [−π, π)N . We pick c such that
∑N

j=1 y
∗
j = 0. Since

∑N
j=1 sin(y∗j +

c) = 0, it follows that

(64) R(y∗) = R(y∗ + c1) =

∣∣∣∣∣
N∑
j=1

cos(y∗j + c)

∣∣∣∣∣ .
From (63), we have that

(65) cos(y∗i + c) = ai

√
1 −

(
Ωi

kβ

)2

, i = 1, . . . , N.

Combining (64) and (65), we arrive at

(66) R(y∗) =

∣∣∣∣∣∣ 1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2
∣∣∣∣∣∣ .

The second part of the theorem follows easily after noting that if xi satisfies (58) then R(xi) =
βi, i = 1, 2.

Theorem 2 gives us a necessary and sufficient condition for the equation kf(x) = −Ω to
have at least one solution for a given value of k. It is not clear, however, that there exists
a k for which this condition is satisfied. The following corollary provides an easy sufficient
condition.

Corollary 3. Let k > 0 and Ω ∈ V R
N . Suppose

(67)
1

k
‖Ω‖∞ ≤ 1

N

N∑
j=1

aj

√
1 −

(
Ωj

‖Ω‖∞

)2

for some a ∈ {−1, 1}N . Then F(k,Ω) �= ∅.
Proof. Suppose Ω �= 0 (again, the case Ω = 0 is easy). Let a ∈ {−1, 1}N . Define

m : [ 1k‖Ω‖∞, 1] �→ R, m(β) := β, and n : [ 1k‖Ω‖∞, 1] × {−1, 1}N �→ R,

(68) n(β, a) :=
1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2

.

Since Ω �= 0 we have that m(1) > n(1, a). Now suppose condition (67) is satisfied. Then we
have that m( 1

k‖Ω‖∞) ≤ n( 1
k‖Ω‖∞, a), and by the intermediate value theorem there must exist

β∗ ∈ [ 1k‖Ω‖∞, 1] such that m(β∗) = n(β∗, a). It follows from Theorem 2 that the system (17)
has a fixed point.
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Corollary 4. Let Ω ∈ V R
N . Then (i) the critical coupling kc is finite, and (ii) for large

enough coupling, the system (17) has at least 2N−1 fixed points.

Proof. Note that the right-hand side of (67) does not depend on k. Hence, it follows that,
provided

(69)
1

N

N∑
j=1

aj

√
1 −

(
Ωj

‖Ω‖∞

)2

> 0,

condition (67) is always satisfied for large enough k. Furthermore, it follows easily that if
(69) is not satisfied for given a, then it is satisfied for a′ := −a. This implies (i) that the
critical coupling kc is always finite, and (ii) that the set A+ := {a ∈ {−1, 1}N : (69) is satisfied}
contains precisely 2N−1 elements (counting multiplicity), each of which defines a unique (up
to equivalence in the sense of Definition 4) fixed point. This concludes the proof.

Corollary 5. Let k > 0 and Ω ∈ V R
N . Then F(k,Ω) �= ∅ if and only if there exist

β ∈ [ 1k‖Ω‖∞, 1] such that

β =
1

N

N∑
j=1

√
1 −

(
Ωj

kβ

)2

.

Proof. The proof of Corollary 3 suggests that if the fixed point equation (57) does not
have a solution, then necessarily

β >
1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2

for all β ∈ [ 1k‖Ω‖∞, 1] and all a ∈ {−1, 1}N . Since we have that

1

N

N∑
j=1

√
1 −

(
Ωj

kβ

)2

≥ 1

N

N∑
j=1

aj

√
1 −

(
Ωj

kβ

)2

for all a ∈ {−1, 1}N , it follows that the given condition is necessary and sufficient for the
system (17) to have at least one fixed point. This concludes the proof.

The next and final corollary gives us an upper bound on the critical coupling.

Corollary 6. The critical coupling, kc, satisfies

(70) kc ≤
‖Ω‖∞

1
N

∑N
j=1

√
1 −

(
Ωj

‖Ω‖∞

)2
.

Proof. The proof follows directly from Corollary 3.

6. An algorithm for computing kc. In this section we present a bisection algorithm that
will allow us to numerically evaluate the critical coupling with arbitrary precision. Through-
out, we shall assume that Ω �= 0. Define I := (‖Ω‖∞,∞), and let pi : I �→ (0, 1] and
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P : I �→ (0, 1] be given as

(71) pi(u) :=

√
1 −

(
Ωi

u

)2

; P (u) :=
1

N

N∑
j=1

pj(u).

Also, define h(u; k) : I × R+ �→ R+:

(72) h(u; k) :=
1

k
u.

From Corollary 5 it follows that the critical coupling is the smallest k for which the equation
P (u) = h(u; k) has at least one solution on I. We have the following result.

Theorem 3. For all Ω ∈ V R
N , Ω �= 0, the equation

(73) 2
1

N

N∑
j=1

√
1 −

(
Ωj

u

)2

=
1

N

N∑
j=1

1√
1 −

(
Ωj

u

)2

has a unique solution u∗ ∈ I, and we have that

(74) kc =
u∗

1
N

∑N
j=1

√
1 −

(
Ωj

u∗

)2
.

Proof. Observe that, by strict concavity of P and linearity of h( · ; k), the equation P (u) =
h(u; k) can have at most two solutions on I for any k > 0. We shall now show that, when
k = kc, it can have no more than one solution. Since, by definition of critical coupling, P (u) =
h(u; kc) must have at least one solution, we shall conclude that it has precisely one solution.
Let k = kc, and suppose there exist u1, u2 ∈ I, u1 �= u2, such that P (u1) = h(u1; kc) and
P (u2) = h(u2; kc). By strict concavity of P we have that P (1

2(u1 + u2)) > 1
2

(
P (u1) +P (u2)

)
.

Define u′ := 1
2(u1 + u2) and note that u′ ∈ I. We have that P (u′) > h(u′; kc). This implies

that there exists k′ < kc such that P (u′) = h(u′; k′). But by definition kc is the smallest
k for which P (u) = h(u; k) has a solution. We arrive at a contradiction and conclude that
u1 = u2 or, in other words, that the equation P (u) = h(u; kc) has exactly one solution on I.
Denoting this solution by u∗, it is not hard to see that, at u = u∗, the derivative of P with
respect to u and the derivative of h with respect to u (both of which are defined on the entire
interval I) must coincide. For suppose ∂h

∂u(u∗) < ∂P
∂u (u∗); then by continuity there exists δ > 0

such that h(u; kc) < P (u) for all u such that u − u∗ < δ. Let u′ be one such u. It follows
that there exists k′ < kc such that P (u′) = h(u′; k′). This leads to a contradiction, and we
conclude that h(u; kc) ≥ P (u). By analogy we have that h(u; kc) ≤ P (u). We conclude that
∂h
∂u(u∗) = ∂P

∂u (u∗). That is,

(75)
1

kc
=

1

u∗
1

N

N∑
j=1

(
Ωj

u∗

)2

√
1 −

(
Ωj

u∗

)2
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or, equivalently,

u∗

kc
=

1

N

N∑
j=1

(
Ωj

u∗

)2

√
1 −

(
Ωj

u∗

)2

= − 1

N

N∑
j=1

√
1 −

(
Ωj

u∗

)2

+
1

N

N∑
j=1

1√
1 −

(
Ωj

u∗

)2
.(76)

Now recall that by definition of u∗, we have that

(77)
u∗

kc
=

1

N

N∑
j=1

√
1 −

(
Ωj

u∗

)2

.

Equating the right-hand side of (76) with the right-hand side of (77) gives

(78) 2
1

N

N∑
j=1

√
1 −

(
Ωj

u∗

)2

=
1

N

N∑
j=1

1√
1 −

(
Ωj

u∗

)2
.

This shows that u∗ is a solution to (73). What remains to be shown is that u∗ is the only
solution. Define v, w : I �→ R:

v(u) := 2
1

N

N∑
j=1

√
1 −

(
Ωj

u

)2

, w(u) :=
1

N

N∑
j=1

1√
1 −

(
Ωj

u

)2
.

Note that, on their respective domains, v is strictly monotonically decreasing, while w is
strictly monotonically increasing. In addition, note that there exist a, b ∈ I such that
v(a) > w(a) and v(b) < w(b). Hence, by continuity, there must exist a point u′ ∈ (a, b) ⊂ I
such that v(u′) = w(u′). Monotonicity of v and w implies that this point is unique. It follows
that u∗ is the unique solution of (73) on I. And by (77) we have that

(79) kc =
u∗

1
N

∑N
j=1

√
1 −

(
Ωj

u∗

)2
.

This concludes the proof.
Based on the result of Theorem 3, we define the map K : V R

N\{0} �→ R+:

(80) K(Ω) =
u∗

1
N

∑N
j=1

√
1 −

(
Ωj

u∗

)2
,

where, as before, u∗ denotes the unique solution of (73) on I, given Ω. Note that, given any
realization of ω such that V ω �= 0, we have that kc = K(V ω). We have the following corollary.
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Corollary 7.
1. For all Ω ∈ V R

N , Ω �= 0, we have that ‖Ω‖∞ ≤ K(Ω) ≤ 2‖Ω‖∞;
2. there exists Ω ∈ V R

N such that K(Ω) = 2‖Ω‖∞ if and only if N is even;
3. for every ε > 0 there exist a positive integer N and Ω ∈ V R

N such that |K(Ω) −
‖Ω‖∞| < ε.

Proof. Part 1. We show that for all Ω �= 0, the solution u∗ of (73) satisfies u∗ ≤
√

2‖Ω‖∞.
The result then follows easily. Let u′ :=

√
2‖Ω‖∞. Then we have that

2
1

N

N∑
j=1

√
1 −

(
Ωj

u

)2

>
1

N

N∑
j=1

1√
1 −

(
Ωj

u

)2
∀u > u′.

It follows that

K(Ω) ≤ u′

1
N

∑N
j=1

√
1 −

(
Ωj

u′

)2
≤

√
2‖Ω‖∞
1
2

√
2

= 2‖Ω‖∞

for all Ω ∈ V R
N . The lower bound K(Ω) ≥ ‖Ω‖∞ was obtained earlier in section 4.

Part 2. From the above it follows that K(Ω) = 2‖Ω‖∞ if and only if

2
1

N

N∑
j=1

√
1 −

(
Ωj

u′

)2

=
1

N

N∑
j=1

1√
1 −

(
Ωj

u′

)2

or, equivalently, Ω2
i = Ω2

j for all (i, j). It is easy to see that this latter condition is never
satisfied when N is odd (keeping in mind that

∑
j Ωj = 0). Now suppose N is even and pick

any c �= 0. Define

Ωi :=

{
c, i = 1, 2, . . . , N2 ;

−c, i = N
2 + 1, . . . , N.

Then we have that Ω ∈ V R
N . Moreover, Ω2

i = Ω2
j = c2 for all (i, j). It follows that

K(Ω) = 2‖Ω‖∞.
Part 3. Let ε > 0 be given and suppose N is odd. Pick c �= 0 and define

Ωi :=

{
0, i = 1, 2, . . . , N − 1;

c, i = N.

Then (73) evaluates to

(81) 2(N − 1) + 2

√
1 −

( c

u

)2
= (N − 1) +

1√
1 −

(
c
u

)2
,

and it is not hard to see that as N tends to infinity, the solution u∗ of (81) tends to c. Indeed,
for N ≥ 2 we have

(82)
( c

u∗

)2
=

1

2
(N − 1)

(
−1

4
(N − 1) +

1

4

√
(N − 1)2 + 8

)
.
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−2.5
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1

0

↑
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i

(a) N = 20 (b) N = 200

Figure 5. The vector of frequencies ΩN
i := ωN

i − 〈ωN 〉, N ∈ {20, 200}, used in this example. The natural
frequencies ωN

i were sampled from a normal distribution with zero mean and unit variance and relabeled in such
a way that ωN

1 ≤ ωN
2 ≤ · · · ≤ ωN

N .

Let ε1 > 0, and pick N such that 1
N < ε1 and u∗ < (1 + ε1)c. It follows that

(83)
1

N

N∑
j=1

√
1 −

(
Ωj

u∗

)2

< 1 − ε1,

and hence

(84) K(Ω) :=
u∗

1
N

∑N
j=1

√
1 −

(
Ωj

u∗

)2
< c

(
1 + ε1
1 − ε1

)
= c + 2

(
ε1

1 − ε1

)
c.

Now let ε1 be given as ε1 := ε
2c+ε and choose N accordingly. It follows that K(Ω) < ‖Ω‖∞+ ε.

This concludes the proof.

We are now ready to present our algorithm, which, given Ω, will compute u∗ with user-
defined precision ε > 0 in a finite number of iterations, n = � log2(

‖Ω‖∞
ε )� + 1.

Algorithm 1.
1. a := ‖Ω‖∞, b :=

√
2‖Ω‖∞

2. While (b− a) > ε,
3. u := 1

2(b− a).

4. If

[∑
j

√(
1 − Ωj

u

)2
> 1

2

∑
j

1√(
1−Ωj

u

)2

]
then a := u, else b := u.

5. End.

Once we have an estimate û of u∗, we can use (74), replacing u∗ with û, to estimate kc.

7. Numerical example. We illustrate the results presented in this paper by means of
a numerical example. We consider two systems with N = 20 and N = 200 oscillators,
respectively, with frequencies {ΩN

i }, as depicted in Figures 5 and 6. The frequencies in
this example were sampled from a normal distribution with zero mean and unit variance
and relabeled such that ωN

1 ≤ ωN
2 ≤ · · · ≤ ωN

N (note that this can be done without loss
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Figure 6. Case N = 200: Time evolution of the magnitude squared of the order parameter, R2(t), for two
different initial conditions (indicated by a dashed and solid line, respectively) and two values of k. In the left
panel, the value of k ( 2.4) is (well) below the known upper bound on kc ( 2.6145), and the system does not
converge to a fixed point; in the right panel the value of k ( 2.65) is slightly above the known upper bound on
kc, and the system converges to a fixed point, as expected.

Figure 7. Case N = 20: Time evolution of the magnitude squared of the order parameter, R2(t), for two
different initial conditions (indicated by a dashed and solid line, respectively) and two values of k. In the left
panel, the value of k ( 2.1) is slightly below the known upper bound on kc ( 2.2281), and the system does not
converge to a fixed point; in the right panel the value of k ( 2.3) is slightly above the known upper bound on kc,
and the system converges to a fixed point, as expected.

of generality). For this particular realization of ω20 (ω200), we have that ‖Ω20‖∞ = 1.7858
(‖Ω200‖∞ = 2.3893) and

1

N

N∑
j=1

√
1 −

(
Ωj

‖Ω‖∞

)2

= 0.8015 (0.9139).

It follows from Corollary 6 that kc ≤ 2.2281 (2.6145), and by (32), we have that kc ≥ ‖Ω‖∞ =
1.7858 (2.3893). Figure 7 shows the time evolution of the magnitude squared of the order
parameter, R2(t) (previously denoted as L(t)), for two different initial conditions and two
values of the coupling coefficient, k = 2.3 and k = 2.65 (k = 2.1 and k = 2.3). We observe
that when k is slightly greater than the known lower bound on kc, the value of R2(t) converges
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β →

h(kβ; k)

P 20(kβ)

1
k‖Ω20‖∞ 1

1

β →

h(kβ; k)

P 20(kβ)

1
k‖Ω20‖∞ 1

1

(a) k = 2.1 (b) k = 2.3

Figure 8. Case N = 20: The graph of P 20(kβ) (71) versus β for k = 2.1, 2.3 and β ∈ [ 1
k
‖Ω20‖∞, 1].

The dashed line is the graph of h(kβ; k) = β (72). An intersection corresponds to a solution of the fixed point
equation P (kβ) = h(kβ; k), and thus, by Theorem 2, to a fixed point of the system (17).

to a constant and inspection shows that the solution x(t) of the system (17) tends to a fixed
point. On the other hand, when the coupling coefficient is slightly below the known upper
bound on the critical coupling, the trajectories x(t) appear not to converge. Note that in this
case we do not know whether the system (17) has a fixed point or not, as the condition stated
in Corollary 6 is only sufficient while at the same time the respective coupling strengths exceed
their known lower bounds (1.7858 and 2.3893, respectively). To gain more insight into this
situation, let us consider the case N = 20 in some more detail. We fix the coupling coefficient
at k = 2.1 and numerically evaluate the function P 20(k, ·),

(85) P 20(kβ) =
1

20

20∑
j=1

√√√√1 −
(

Ω20
j

kβ

)2

,

for several values of β in the interval [ 1k‖Ω20‖∞, 1]. We repeat the same computation for
k = 2.3. The result is shown in Figure 8. We observe that the equation P 20(kβ) = β does
not have a solution on the interval [ 1k‖Ω20‖∞, 1] when k = 2.1 but does have a solution when
k = 2.3.

We use Algorithm 1 to compute the “exact” value of the critical coupling to the fifth
significant digit. We find that kc = 2.2198 for the case N = 20 and kc = 2.6144 for the case
N = 200. Note that in both cases, but particularly in the latter, the upper bounds (2.2281
and 2.6145, respectively) provide good estimates of the true values of the critical coupling.

8. Conclusion. We derived necessary and sufficient conditions for the existence of fixed
points in a finite system of coupled oscillators. In particular, we derived an easy sufficient
condition in terms of the individual oscillator frequencies (Corollary 3), which we used to
compute an upper bound on the critical coupling (Corollary 6). We showed that when no
prior knowledge of the distribution of frequencies is available, we can still bound the critical
coupling in terms of the infinity norm of the frequencies with their mean removed (Corollary 7).
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These bounds were shown to be the tightest possible in the sense that we can find realizations
of the intrinsic frequencies for which the upper bound is attained and others for which the
critical coupling is arbitrarily close to the lower bound. Finally, we proposed an efficient
algorithm (Algorithm 1) for computing the critical coupling to within arbitrary bounds in a
finite number of steps. In future work we shall seek to extend the present analysis to complex
networks of arbitrary topology and investigate more closely the impact of the shape of the
distribution of intrinsic frequencies on the value of the critical coupling. We shall also consider
the important question of stability and present analytical results for the limit case when the
number of oscillators tends to infinity.
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Traveling Pulses and Wave Propagation Failure in Inhomogeneous Neural Media∗

Zachary P. Kilpatrick†, Stefanos E. Folias‡, and Paul C. Bressloff†

Abstract. We use averaging and homogenization theory to study the propagation of traveling pulses in an
inhomogeneous excitable neural network. The network is modeled in terms of a nonlocal integro-
differential equation, in which the integral kernel represents the spatial distribution of synaptic
weights. We show how a spatially periodic modulation of homogeneous synaptic connections leads
to an effective reduction in the speed of a traveling pulse. In the case of large amplitude modulations,
the traveling pulse represents the envelope of a multibump solution, in which individual bumps are
nonpropagating and transient. The appearance (disappearance) of bumps at the leading (trailing)
edge of the pulse generates the coherent propagation of the pulse. Wave propagation failure occurs
when activity is insufficient to maintain bumps at the leading edge.

Key words. traveling waves, excitatory neural network, inhomogeneous media, homogenization, neural field
theory, wave propagation failure
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1. Introduction. Traveling waves of electrical activity have been observed in vivo in a
number of sensory cortical areas including the somatosensory cortex of behaving rats [30],
turtle and mollusk olfactory bulbs [22, 23], turtle cortex [34], and visuomotor cortices in
the cat [36]. Such waves are usually seen during periods without sensory stimulation; the
subsequent presentation of a stimulus then induces a switch to synchronous oscillatory behav-
ior [13]. Traveling waves are also a characteristic feature of certain neurological disorders in
humans, including epilepsy [8] and migraines [24]. Therefore, investigating the mechanisms
underlying wave propagation in neural tissue is important for understanding both normal and
pathological brain states. A common experimental paradigm is to record electrical activity in
vitro using thin slices of cortical tissue, in which inhibition has been suppressed by blocking
GABAA receptors with an antagonist such as bicuculline [7, 15, 40, 35, 32, 18]. Synchronized
discharges can then be evoked by a weak electrical stimulus from any site on the cortical slice.
Following rapid vertical propagation, each discharge propagates away from the stimulus in
both horizontal directions at a mean velocity of about 6–9 cm/s. Although the conditions for
wave propagation may differ from the intact cortex due to the removal of some long-range
connections during slice preparation, the in vitro slice is more amenable to pharmacological
manipulation and to multielectrode recordings.
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Mathematical analyses of cortical wave propagation typically consider reduced one-dimen-
sional network models. Under the additional assumption that the synaptic interactions are
homogeneous, it has been shown that an excitatory neural network supports the propaga-
tion of a traveling front [12, 19, 5] or, in the presence of slow adaptation, a traveling pulse
[39, 1, 31, 42, 43, 10, 11, 14, 38]. However, the patchy nature of long-range horizontal connec-
tions in superficial layers of certain cortical areas suggests that the cortex is more realistically
modeled as an inhomogeneous neural medium. For example, in the primary visual cortex
the horizontal connections tend to link cells with similar stimulus feature preferences such as
orientation and ocular dominance [28, 41, 2]. Moreover, these patchy connections tend to be
anisotropic, with the direction of anisotropy correlated with the underlying orientation pref-
erence map. Hence the anisotropic pattern of connections rotates approximately periodically
across the cortex resulting in a periodic inhomogeneous medium [3, 4]. Another example of
inhomogeneous horizontal connections is found in the prefrontal cortex [27, 29, 17], where
pyramidal cells are segregated into stripes that are mutually connected via horizontally pro-
jecting axon collaterals; neurons within the gaps between stripes do not have such projections.

In this paper we investigate how a spatially periodic modulation of long-range synaptic
weights affects the propagation of traveling pulses in a one-dimensional excitatory neural net-
work, extending previous work on traveling fronts in neural network models [3] and reaction-
diffusion systems [20, 21]. We proceed by introducing a slowly varying phase into the traveling
wave solution of the unperturbed homogeneous network, and then we use perturbation theory
to derive a dynamical equation for the phase, from which the mean speed of the wave can
be calculated. We show that a periodic modulation of the long-range connections slows down
the wave, and if the amplitude and wavelength of the periodic modulation is sufficiently large,
then wave propagation failure can occur. A particularly interesting result of our analysis is
that in the case of large amplitude modulations, the traveling pulse is no longer superthreshold
everywhere within its interior, even though it still propagates as a coherent solitary wave. We
find that the pulse now corresponds to the envelope of a multibump solution, in which indi-
vidual bumps are nonpropagating and transient. The appearance (disappearance) of bumps
at the leading (trailing) edge of the pulse generates the propagation of activity; propagation
failure occurs when activity is insufficient to create new bumps at the leading edge.

2. Inhomogeneous network model. Consider a one-dimensional neural network model of
the form [31]

τm
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)f(u(x′, t))dx′ − βv(x, t),

1

α

∂v(x, t)

∂t
= −v(x, t) + u(x, t),(2.1)

where u(x, t) is the population activity at position x ∈ R, τm is a membrane time constant,
f(u) is the output firing rate function, w(x, x′) is the excitatory connection strength from
neurons at x′ to neurons at x, and v(x, t) is a local negative feedback mechanism, with β
and α determining the relative strength and rate of feedback. This type of feedback, which
could be spike frequency adaptation or synaptic depression, favors traveling waves [1, 31]. The
nonlinearity f is a smooth monotonic increasing function,
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(2.2) f(u) =
1

1 + e−η(u−κ)
,

where η is a gain parameter and κ is a threshold. As η → ∞, f → H, where H(u) = Θ(u−κ)
and

(2.3) Θ[u] =

{
0, u ≤ 0,
1, u > 0.

The periodic microstructure of the cortex is incorporated by taking the weight distribution to
be of the form [3, 4]

(2.4) w(x, x′) = W (|x− x′|)
[
1 + D′

(
x′

ε

)]
,

where D is a 2π-periodic function and ε determines the microscopic length-scale. (We consider
the first-order derivative of D so that the zeroth-order harmonic is explicitly excluded.) It
is important to note that (2.4) is a one-dimensional abstraction of the detailed anatomical
structure found in the two-dimensional layers of real cortex. (See [6] for a more detailed
discussion of cortical models.) However, it captures both the periodic-like nature of long-
range connections and possible inhomogeneities arising from the fact that this periodicity is
correlated with a fixed set of cortical feature maps.

For concreteness, we take the homogeneous weight function W to be an exponential,

(2.5) W (x) =
W0

2d
e−|x|/d,

where d is the effective range of the excitatory weight distribution, and set

(2.6) D (x) = ρ sin (x) , 0 ≤ ρ < 1,

where ρ is the amplitude of the periodic modulation. We require that 0 ≤ ρ < 1 so that the
weight distribution remains nonnegative everywhere. Example plots of the resulting weight
function w(x, y) of (2.4) are shown in Figure 1 for fixed x. This illustrates both the periodic
modulation and the associated network inhomogeneity, since the shape of the weight distribu-
tion varies periodically as the location x of the postsynaptic neuron shifts. Plotting w(x, x′)
for fixed x′ simply gives an exponential distribution whose maximum depends on x′. Finally,
the temporal and spatial scales of the network are fixed by setting τm = 1, d = 1, and the
scale of the synaptic weights is fixed by setting W0 = 1. The membrane time constant is
typically around 10 ms and the length-scale of synaptic connections is typically 1 mm. Thus,
in dimensionless units the speed of an experimentally measured wave will be c = O(1).

3. Averaging theory and homogenization. Our goal in this paper is to determine how
the periodic modulation of the weight function affects properties of traveling pulses in the
one-dimensional system obtained by substituting (2.4) into (2.1):

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
W (|x− x′|)

[
1 + D′

(
x′

ε

)]
f(u(x′, t))dx′ − βv(x, t),

1

α

∂v(x, t)

∂t
= −v(x, t) + u(x, t).(3.1)
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Figure 1. Left: Weight kernel w(y) = w(x, y) for a neuron centered at x = 0, πε/2, πε when ρ = 0.3, and
ε = 0.3. Right: Corresponding weight kernel when ρ = 0.8 and ε = 0.3.

Assuming ε is a small parameter (in units of the space constant d), a zeroth-order approxi-
mation to (3.1) can be generated by performing spatial averaging with respect to the periodic
weight modulation, leading to the homogeneous system given by (2.1) with weight distribution
w(x, x′) = W (|x−x′|). Suppose that the homogeneous network supports the propagation of a
traveling pulse of constant speed c. That is, u(x, t) = U(ξ), v(x, t) = V (ξ), where ξ = x−ct is
the traveling wave coordinate, and U(ξ), V (ξ) → 0 as ξ → ±∞. Substituting such a solution
into (2.1) with w(x, x′) = W (|x− x′|) gives

−cU ′(ξ) = −U(ξ) +

∫ ∞

−∞
W (ξ − ξ′)f(U(ξ′))dξ′ − βV (ξ),

− c

α
V ′(ξ) = −V (ξ) + U(ξ).(3.2)

Assuming the existence of a solution (U(ξ), V (ξ)) to (3.2), we would like to determine whether
or not a traveling wave persists in the presence of the periodic weight modulation. A crucial
requirement for trajectories of the averaged homogeneous system to remain sufficiently close
to trajectories of the exact inhomogeneous system for sufficiently small ε is that solutions
of the averaged system be structurally stable [16]. However, traveling pulses correspond to
homoclinic trajectories within a dynamical systems framework and are thus not structurally
stable. Therefore, one must go beyond lowest-order averaging to resolve differences between
the homogeneous and inhomogeneous systems. We will proceed by carrying out a perturbation
expansion in ε, extending previous work on traveling fronts in reaction-diffusion systems [20,
21] and excitable neural networks [3].

We begin by performing an integration by parts on the first equation in the system (3.1)
so that

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
W (x− x′)f(u(x′, t))dx′

+ ε

∫ ∞

−∞
D
(
x′

ε

)[
W ′(x− x′)f(u(x′, t)) −W (x− x′)

∂f(u(x′, t))

∂x′

]
dx′,

1

α

∂v(x, t)

∂t
= −v(x, t) + u(x, t).(3.3)
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Although the inhomogeneous system is not translationally invariant, we can assume that per-
turbations about the homogeneous system will provide us with nearly translationally invariant
solutions [20]. Thus, we perform the change of variables ξ = x− φ(t) and τ = t so that (3.3)
becomes

∂u(ξ, τ)

∂τ
= −u(ξ, τ) +

∫ ∞

−∞
W (ξ − ξ′)f(u(ξ′, τ))dξ′ + φ′∂u(ξ, τ)

∂ξ

+ ε

∫ ∞

−∞
D
(
ξ′ + φ

ε

)[
W ′(ξ − ξ′)f(u(ξ′, τ)) −W (ξ − ξ′)

∂f(u(ξ′, τ))

∂ξ′

]
dξ′,

1

α

∂v(ξ, τ)

∂τ
= −v(ξ, τ) + u(ξ, τ) +

φ′

α

∂v(ξ, τ)

∂ξ
.(3.4)

Next perform the perturbation expansions

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + · · · ,(3.5)

v(ξ, τ) = V (ξ) + εv1(ξ, τ) + ε2v2(ξ, τ) + · · · ,(3.6)

φ′(τ) = c + εφ′
1(τ) + ε2φ′

2(τ) + · · · ,(3.7)

where (U(ξ), V (ξ))T is a traveling pulse solution of the corresponding homogeneous system
(see (3.2)) and c is the speed of the unperturbed pulse. The first-order terms u1, v1 satisfy

(3.8) − ∂

∂τ

(
u1(ξ, τ)

v1(ξ, τ)/α

)
+ L

(
u1(ξ, τ)
v1(ξ, τ)

)
= −φ′

1(τ)

(
U ′(ξ)

V ′(ξ)/α

)
+

(
h1(ξ,

φ
ε )

0

)
,

where

(3.9) L
(

u
v

)
=

(
cdudξ − u +

∫∞
−∞W (ξ − ξ′)f ′(U(ξ′))u(ξ′)dξ′ − βv

c
α
dv
dξ − v + u

)

for u, v ∈ C1(R,C) and

(3.10) h1

(
ξ,

φ

ε

)
= −

∫ ∞

−∞
D
(
ξ′ + φ

ε

)[
W ′(ξ − ξ′)f(U(ξ′)) −W (ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′.

The linear operator L has a one-dimensional null-space spanned by (U ′(ξ), V ′(ξ))T. The
existence of (U ′(ξ), V ′(ξ))T as a null-vector follows immediately from differentiating the homo-
geneous equation (3.2) and is a consequence of the translation invariance of the homogeneous
system. Uniqueness can be shown using properties of positive linear operators. A bounded
solution to (3.9) then exists if and only if the right-hand side is orthogonal to all elements of
the null-space of the adjoint operator L∗. The latter is defined according to the inner product
relation

(3.11)

∫ ∞

−∞
(a(ξ) b(ξ))L

(
u(ξ)
v(ξ)

)
dξ =

∫ ∞

−∞
(u(ξ) v(ξ))L∗

(
a(ξ)
b(ξ)

)
,

where u(ξ), v(ξ), a(ξ), and b(ξ) are arbitrary integrable functions. It follows that

(3.12) L∗
(

a
b

)
=

(
−cdadξ − a + b + f ′(U(ξ))

∫∞
−∞W (ξ − ξ′)a(ξ′)dξ′

− c
α

db
dξ − βa− b

)
.
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The adjoint operator also has a one-dimensional null-space spanned by some vector (A,B)T .
(An explicit construction of this null-vector in the case of a Heaviside nonlinearity will be
presented in section 4.) Therefore, for (3.9) to have a solution, it is necessary that

(3.13) Kφ′
1(τ) =

∫ ∞

−∞
A(ξ)h1

(
ξ,

φ

ε

)
dξ,

where

(3.14) K =

∫ ∞

−∞
[A(ξ)U ′(ξ) + α−1B(ξ)V ′(ξ)]dξ.

Substituting for h1 using (3.10) leads to a first-order differential equation for the phase φ:

(3.15)
dφ

dτ
= c− εΦ1

(
φ

ε

)
,

where

Φ1

(
φ

ε

)
=

1

K

∫ ∞

−∞

∫ ∞

−∞
A(ξ)D

(
ξ′ + φ

ε

)
(3.16)

×
[
W ′(ξ − ξ′)f(U(ξ′)) −W (ξ − ξ′)

df(U(ξ′))

dξ′

]
dξ′dξ.

If the right-hand side of (3.15) is strictly positive, then there exists a traveling pulse of the
approximate form U(x− φ(t)) and of average speed c̄ = 2πε/T with

(3.17) T =

∫ 2πε

0

dφ

c− εΦ1(φ/ε)
.

However, if the right-hand side of (3.15) vanishes for some φ, then the first-order analysis
predicts wave propagation failure.

4. Calculation of average wave speed. In this section we use (3.17) to calculate the
average wave speed c̄ as a function of ε in the limiting case of a Heaviside nonlinearity. Note
that since derivatives of f always appear inside integral terms, the high gain limit η → ∞ is
well defined. One advantage of using a Heaviside nonlinearity is that all calculations can be
carried out explicitly. Moreover, as previously shown for traveling fronts [3], in the case of
smooth nonlinearities it is necessary to develop the perturbation analysis to O(ε2) since the
O(ε) terms may be exponentially small; see also section 4.3.

4.1. Homogeneous network with Heaviside nonlinearity. The existence (and stability) of
single bump traveling pulse solutions in the homogeneous network obtained by setting f = H
and w(x, x′) = W (|x−x′|) in (2.1) has been studied by a number of authors [31, 33, 42, 10, 14].
A single bump solution (U(ξ), V (ξ)) is one for which U is above threshold over a domain of
length a, corresponding to the width of the bump, and subthreshold everywhere else. In other
words, the activity U crosses threshold at only two points, which by translation invariance
can be taken to be ξ = −a, 0:

U(−a) = U(0) = κ; U(ξ) −→ 0 as ξ −→ ±∞;

U(ξ) > κ, −a < ξ < 0; U(ξ) < κ otherwise.
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It follows from (3.2) with f = H that

−cUξ = −U − βV +

∫ 0

−a
W (ξ − η)dη,

− c

α
Vξ = −V + U.(4.1)

One way to solve this pair of equations is to use variation of parameters [42, 14]. For com-
pleteness, we present the details of this calculation here, since some of the results will be used
in our subsequent analysis.

Let s = (U, V )T and rewrite the system as

(4.2) Ls ≡
(

cU ′(ξ) − U(ξ) − βV (ξ)
cV ′(ξ) + αU(ξ) − αV (ξ)

)
= −

(
Ne(ξ)

0

)
,

where

(4.3) Ne(ξ) = Ω(ξ + a) − Ω(ξ), Ω(ξ) =

∫ ξ

−∞
W (ξ′)dξ′.

We solve (4.2) using variation of parameters. The homogeneous problem Ls = 0 has two
linearly independent solutions,

S+(ξ) =

(
β

m+ − 1

)
exp(μ+ξ), S−(ξ) =

(
β

m− − 1

)
exp(μ−ξ),

where

(4.4) μ± =
m±
c

, m± =
1

2
(1 + α±

√
(1 − α)2 − 4μβ).

We shall work in the parameter regime where μ± are real, though interesting behavior can
arise when μ± is complex [38]. Thus, set

s(ξ) = [S+|S−]

(
a(ξ)
b(ξ)

)
,

where a, b ∈ C1(R,R), and [A|B] denotes the matrix whose first column is A and whose second
column is B. Since LS± = 0, (4.2) becomes

(4.5) [S+|S−]
∂

∂ξ

(
a(ξ)
b(ξ)

)
= −1

c

(
Ne(ξ)

0

)
.

Since [S+|S−] is invertible, we find that

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

cβ(m+ −m−)
[Z+|Z−]T

(
Ne(ξ)

0

)
,

where

Z+(ξ) =

(
1 −m−

β

)
exp(−μ+ξ), Z−(ξ) = −

(
1 −m+

β

)
exp(−μ−ξ).
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For c > 0, we can integrate from ξ to ∞ and find(
a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

cβ(m+ −m−)

∫ ∞

ξ
[Z+|Z−]T

(
Ne(ξ

′)
0

)
dξ′,

where a∞, b∞ are the values of a(ξ), b(ξ) as ξ → ∞. Thus

(4.6) s(ξ) = [S+|S−]

(
a∞
b∞

)
+

1

cβ(m+ −m−)
[S+|S−]

∫ ∞

ξ
[Z+|Z−]T

(
Ne(ξ

′)
0

)
dξ′.

Using Hölder’s inequality and that Ne ∈ C0(R,R), we can show that the integral in (4.6) is
bounded for all ξ ∈ R. Thus, a bounded solution s exists if a∞ = b∞ = 0. Our general
traveling pulse solution is given by

s(ξ) =
1

cβ(m+ −m−)
[S+|S−]

∫ ∞

ξ
[Z+|Z−]T

(
Ne(ξ

′)
0

)
dξ′.

Furthermore, if we define

M±(ξ) =
1

c(m+ −m−)

∫ ∞

ξ
eμ±(ξ−ξ′)Ne(ξ

′)dξ′,

we can express our solution (U, V ) as

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),(4.7)

V (ξ) = β−1(m+ − 1)(1 −m−) [M+(ξ) − M−(ξ)] .(4.8)

Since Ne(ξ) is dependent upon the pulse width a, the threshold conditions U(−a) = U(0) = κ
lead to the following consistency conditions for the existence of a traveling pulse:

κ = (1 −m−)M+(−a) − (1 −m+)M−(−a),(4.9)

κ = (1 −m−)M+(0) − (1 −m+)M−(0).(4.10)

This pair of nonlinear equations determines the pulse width a and wave speed c of a single
bump traveling wave solution as a function of the various parameters of the network. For a
given weight distribution W (x), existence of such a solution is established if a solution for
a, c can be found, and provided that U does not cross threshold at any other points besides
ξ = −a, 0. Recently the existence (and stability) of single bump traveling waves has been
examined for quite a general class of weight distributions [32] which includes both exponential
and Gaussian distributions. For concreteness, we consider the exponential weight function
(2.5) with W0 = d = 1. Numerically solving (4.9) and (4.10) for a and c as a function of
the adaptation rate α yields the existence curves shown in Figure 2. This figure illustrates
the well-known result that for sufficiently slow adaptation (small α) there exists a pair of
traveling pulses with the fast/wide pulse stable and the slow/narrow pulse unstable [31]. Also
shown in the figure is the stability of the various solution branches, which can be determined
analytically using an Evans function approach [42, 10, 14, 32].
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Figure 2. Existence curves for a single bump traveling pulse solution of (2.1) in the case of a homogeneous
network with an exponential weight distribution W (x) = e−|x|/2. Left: Existence curves in the (α, a) plane.
Right: Existence curves in the (α, c) plane. Pulses exist only for small enough α (sufficiently slow adaptation).
For each parameter set, there exists a stable branch (solid) of wide/fast pulses and an unstable branch (dashed)
of narrow/slow pulses. In the case κ = 0.3 the branches annihilate at a saddle-node bifurcation at a critical
value αc. In the other two cases, the branches end abruptly due to the fact that the eigenvalues μ± become
complex-valued [38].
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Figure 3. Existence curves for a single bump traveling pulse solution of (2.1) in the case of a homogeneous
network with an exponential weight distribution W (x) = W±e−|x|/2 with W± = 1 ± ρ. Left: Plot of wave
speed c± as a function of ρ for weight amplitudes W±. The dashed curve indicates the arithmetic mean of pair
c±. The slower branch terminates at around ρ = 0.35 due to a saddle-node bifurcation. The faster branch
terminates due to a blow-up of the pulse width. Right: Plot of pulse width a± as a function of ρ for weight
amplitudes W±.

The analysis of existence in a homogeneous network also provides some insight into what
happens when we include a periodic modulation of the weights according to (2.4) and (2.6).
Such a modulation induces a periodic variation in the amplitude W0 of the exponential weight
distribution (2.5) between the limiting values W± = (1±ρ)W0. This suggests that the speed of
a wave in the inhomogeneous network will be bounded by the speeds c± of a traveling wave in
the corresponding homogeneous network obtained by taking W0 → W±. Note that rescaling
the weight distribution in (4.9) and (4.10) is equivalent to rescaling the threshold according
to κ → κ/(1±ρ). In Figure 3 we plot the speeds c± and the corresponding pulse widths a± as
a function of ρ. For sufficiently small ρ, the wave speed c+ increases with ρ at approximately
the same rate as c− decreases so that their arithmetic mean remains constant. Therefore,
one might expect that a periodic variation in weights would lead to a corresponding periodic
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variation in wave speed such that the mean wave speed is approximately independent of ρ.
However, when a pulse enters a region of enhanced synaptic weights, the resulting increase in
wave speed coincides with a rapid increase in pulse width as a function of ρ. Thus, the pulse
will tend to extend into neighboring regions of reduced synaptic weights and the resulting
spatial averaging will counteract the speeding up of the wave. On the other hand, when
a pulse enters a region of reduced synaptic weights, the reduction in wave speed coincides
with a reduction in pulse width so that spatial averaging can no longer be carried out as
effectively. (The effectiveness of spatial averaging will depend on the ratio of the pulse width
a to the periodicity 2πε of the weight modulation.) Hence, we expect regions where the
weights are reduced to have more effect on wave propagation than regions where the weights
are enhanced, suggesting that a periodic weight modulation leads to slower, narrower waves.
This is indeed found to be the case, both in our perturbation analysis (section 4.2) and in our
numerical simulations (section 5). Interestingly, we also find that traveling waves persist for
larger values of ρ than predicted by our analysis of single bumps in homogeneous networks,
although such waves tend to consist of multiple bumps (see section 5).

4.2. Inhomogeneous network with Heaviside nonlinearity. Suppose that the
homogeneous network with a Heaviside nonlinearity supports a stable traveling wave solution
(U(ξ), V (ξ))T of wave speed c. As shown in section 4.1, a stable/unstable pair of traveling
waves exists for sufficiently slow adaptation. In order to calculate the average wave speed c̄
for nonzero ε and ρ (see (3.17)), we first need to compute the null-vector (A(ξ), B(ξ))T of the
adjoint operator L∗ defined by (3.12). In the case of a Heaviside nonlinearity,

−c
dA(ξ)

dξ
−A(ξ) + B(ξ) +

δ(ξ)

|U ′(0)|

∫ ∞

−∞
W (ξ − ξ′)A(ξ′)dξ′

+
δ(ξ + a)

|U ′(−a)|

∫ ∞

−∞
W (ξ − ξ′)A(ξ′)dξ′ = 0,

− c

α

dB(ξ)

dξ
− βA(ξ) −B(ξ) = 0.(4.11)

For ξ �= 0,−a, this has solutions of the form (A(ξ), B(ξ)T ) = ue−λξ with associated charac-
teristic equation Mu = cλu and

(4.12) M =

(
1 −1
βα α

)
.

The eigenvalues are λ = μ± = m±/c with m± given by (4.4). The corresponding eigenvectors
are

(4.13) u± =

(
1

1 −m±

)
.

The presence of the Dirac delta functions at ξ = 0,−a then suggests that we take the null-
solution to be of the form

V∗(ξ) = γ+u+

[
e−μ+ξΘ(ξ) + χe−μ+(ξ+a)Θ(ξ + a)

]
+ γ−u−

[
e−μ−ξΘ(ξ) + χe−μ−(ξ+a)Θ(ξ + a)

]
(4.14)
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with the coefficients γ± chosen such that the Dirac delta function terms that come from
differentiating the null-vector appear only in the A(ξ) term,

(4.15) γ+u+ + γ−u− =

(
Γ
0

)
,

and χ is a constant yet to be determined. Taking

(4.16) γ± = ±(1 −m∓),

we have Γ = m+ −m−.
In order to determine χ, substitute (4.14) into (4.11) to obtain the pair of equations

(4.17) c(m+ −m−) =
1

|U ′(0)|(Λ(0) + χΛ(−a))

and

(4.18) χc(m+ −m−) =
1

|U ′(−a)|(Λ(a) + χΛ(0))

with

(4.19) Λ(ζ) =

∫ ∞

0
[(1 −m−)W (ξ + ζ)e−μ+ξ − (1 −m+)W (ξ + ζ)e−μ−ξ]dξ.

We require that (4.17) and (4.18) be consistent with the formula for U ′(ξ) obtained by differ-
entiating (4.7) with respect to ξ:

U ′(ξ) =
1 −m−

c(m+ −m−)

∫ ∞

ξ
eμ+(ξ−ξ′)[W (ξ′ + a) −W (ξ′)]dξ′

− 1 −m+

c(m+ −m−)

∫ ∞

ξ
eμ−(ξ−ξ′)[W (ξ′ + a) −W (ξ′)]dξ′.(4.20)

It follows that

|U ′(0)| = −U ′(0) =
Λ(0) − Λ(a)

c(m+ −m−)
, |U ′(−a)| = U ′(−a) =

Λ(0) − Λ(−a)

c(m+ −m−)
,

which, together with (4.17) and (4.18), imply

Λ(0) − Λ(a) = Λ(0) + χΛ(−a), χ(Λ(0) − Λ(−a)) = Λ(a) + χΛ(0).

Hence, (4.14) is a solution provided that

(4.21) χ = − Λ(a)

Λ(−a)
.

This is also a constructive proof that the adjoint linear operator L∗ for a Heaviside nonlinearity
has a one-dimensional null-space spanned by V∗.
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Having found the null-solution (4.14), we now determine the phase function Φ1 given
by (3.16) with f = H. First, the constant K of (3.14) is evaluated by substituting for
(A(ξ), B(ξ)) using (4.14) and substituting for (U(ξ), V (ξ)) using (4.7) and (4.8). The rather
lengthy expression for K is given in the appendix. Next, we evaluate the double integral on
the right-hand side of (3.16) by setting D(x) = eix and using Fourier transforms. This gives

(4.22) KΦ1

(
φ

ε

)
=

i

ε
eiφ/ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞
eiqxÃ∗(q)f̃(U)(q + ε−1)

dq

2π

]
dx,

where ∗ denotes complex conjugate and

(4.23) Ã(q) =

∫ ∞

−∞
eiqxA(x)dx.

In the case of a Heaviside nonlinearity and a pulse of width a, f(U(ξ)) = Θ(ξ + a) − Θ(ξ),
and A(x) is given explicitly by the first component of the null-vector in (4.14). Taking Fourier
transforms of these expressions shows that

(4.24) Ã(q) = −
(
1 + χe−iqa

) [ γ+

iq − μ+
+

γ−
iq − μ−

]
, f̃(U)(q) =

1 − e−iqa

iq − 0+
.

If these Fourier transforms are now substituted into (4.22), we have

KΦ1

(
φ

ε

)
=

eiφ/ε

ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞

{
γ+(1 − e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iμ+)

+
γ−(1 − e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iμ−)

}
dq

2πi

]
dx.(4.25)

The resulting integral over q can be evaluated by closing the contour in the upper-half or
lower-half complex q-plane depending on the sign of x, x ± a. We find that there are only
contributions from the poles at q = iμ± with μ± > 0, whereas there is a removable singularity
at q = −ε−1 − i0+. Thus

KΦ1

(
φ

ε

)
=

γ+eiφ/ε

ε(ε−1 + iμ+)

[(
1 − χe−ia/ε

)
Ω̂+(0) + χΩ̂+(−a) − e−ia/εΩ̂+(a)

]
+

γ−eiφ/ε

ε(ε−1 + iμ−)

[(
1 − χe−ia/ε

)
Ω̂−(0) + χΩ̂−(−a) − e−ia/εΩ̂−(a)

]
,(4.26)

with

(4.27) Ω̂±(s) =

∫ ∞

0
W (x + s)e−μ±xdx.

Taking the imaginary part of the above equation then determines the phase function KΦ1 for
D(x) = ρ sin(x). After a straightforward calculation, we find that

K

ρ
Φ1

(
φ

ε

)
= (Ξ+ + Ξ−) sin

(
φ

ε

)
+ (Π+ + Π−) sin

(
φ− a

ε

)

+ (Υ+ + Υ−) cos

(
φ

ε

)
+ (Ψ+ + Ψ−) cos

(
φ− a

ε

)
,(4.28)

where the explicit expressions for Ξ±,Π±,Υ±,Ψ± are given in the appendix.
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Figure 4. Left: Average wave speed c̄ versus ε for various values of the modulation amplitude ρ. The
critical value of ε for wave propagation failure decreases as ρ increases. Right: Average wave speed c̄ versus ρ
for various values of the modulation period ε. For the sake of comparison, the speed curves previously plotted
in Figure 3 for a homogeneous network are also shown (gray curves). Other parameters are κ = 0.2, α = 0.04,
and β = 2.0.

Finally, we numerically calculate the average wave speed c̄ by substituting (4.28) into
(3.17). Note that we use the exact expression for Φ1 that includes all higher-order terms in ε,
rather than keeping only the O(1) term, since this gives a better estimate of the wave speed.
In Figure 4 we show some example plots of c̄ as a function of ε and ρ. It can be seen that
for each choice of parameters, c̄ is a monotonically decreasing function of ε and ρ, with c̄
approaching the speed c of the homogeneous wave in the limits ε → 0 and ρ → 0. Hence,
although the periodic modulation enhances the strength of connections in some regions and
reduces them in others compared to the homogeneous case (see Figure 1), the net result is
an effective reduction in wave speed. This is consistent with our discussion of Figure 3 in
section 4.1, where we used a spatial averaging argument combined with the observation that
faster waves are wider to infer that regions of reduced synaptic weights affect wave propagation
more than regions of enhanced weights. Figure 4 also suggests that for sufficiently small ε
there exists a traveling wave solution for all ρ, 0 ≤ ρ < 1, whereas for larger values of ε there
is a critical value ρc beyond which propagation failure occurs. That is, c̄ → 0 as ρ → ρc, and
this critical value decreases as the periodicity ε of the inhomogeneity increases. Similarly, for
sufficiently large ρ there exists a critical period εc such that c̄ → 0 as ε → εc. Analogous
results were previously obtained for traveling fronts in a scalar equation [3]. It is important to
bear in mind that the calculation of c̄ is based on the O(ε) perturbation analysis of section 3,
although we do include higher-order terms in the calculation of Φ1. This raises the important
question as to whether or not our analysis correctly predicts wave propagation failure in the
full system, given that c̄ tends to approach zero at relatively large values of ε and ρ. Moreover,
the perturbation analysis does not determine the stability of the wave so that propagation
failure could occur due to destabilization of the wave for ρ < ρc or ε < εc. This will indeed
turn out to be the case as we show in section 5, where we present numerical solutions of (2.1)
and provide further insight into the mechanism for propagation failure.

4.3. Smooth nonlinearities and higher-order corrections. In the case of smooth nonlin-

earities, the Fourier transforms Ã(q) and f̃(U)(q) appearing in (4.22) no longer have simple
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poles, and in general Φ1 will consist of exponentially small terms. It follows that Φ1 may be
less significant than the O(ε2) terms ignored in the perturbation expansion of (3.4). There-
fore, following the treatment of traveling fronts [3], we carry out a perturbation expansion of
system (3.4) to O(ε2). This yields an equation for (u2, v2) of the form

− ∂

∂τ

(
u2(ξ, τ)

v2(ξ, τ)/α

)
+ L

(
u2(ξ, τ)
v2(ξ, τ)

)
= −φ′

2(τ)

(
U ′(ξ)

V ′(ξ)/α

)
(4.29)

− φ′
1(τ)

(
u′1(ξ)

v′1(ξ)/α

)
+

(
h2(ξ,

φ
ε )

0

)
,

where L is defined by (3.9) and

h2

(
ξ,

φ

ε

)
= −1

2

∫ ∞

−∞
W (ξ − ξ′)f ′′(U(ξ′))[u1(ξ

′)]2dξ′

−
∫ ∞

−∞
D
(

[ξ′ + φ]

ε

)
W ′(ξ − ξ′)f ′(U(ξ′))u1(ξ

′)dξ′(4.30)

+

∫ ∞

−∞
D
(

[ξ′ + φ]

ε

)
W (ξ − ξ′)[f ′(U(ξ′))u′1(ξ

′) + f ′′(U(ξ′))U ′(ξ′)u1(ξ)]dξ
′.

The existence of a bounded solution requires the solvability conditions (3.13) and

(4.31) Kφ′
2(τ) + L(τ)φ′

1(τ) =

∫ ∞

−∞
A(ξ)h2

(
ξ,

φ

ε

)
dξ,

where

(4.32) L(τ) =

∫ ∞

−∞

[
A(ξ)

∂u1(ξ, τ)

∂ξ
+ α−1B(ξ)

∂v1(ξ, τ)

∂ξ

]
dξ.

In order to evaluate the solvability condition (4.31), we must first determine u1(ξ, φ/ε) from
(3.8). If we choose D(x) to be a sinusoid, then u1(ξ, φ/ε) will include terms that are propor-
tional to sin(φ/ε) and cos(φ/ε). Thus substituting u1(ξ/φ/ε) into (4.30) will generate terms
of the form sin2(φ/ε) and cos2(φ/ε) due to the quadratic term in u1. Using the identities
2 sin2(x) = 1−cos(2x) and 2 cos2(x) = 1+cos(2x) implies that there will be an ε-independent
contribution to φ′

2. Thus for smooth nonlinearities we find that

(4.33)
dφ

dτ
= c + ε2C2(c) + D2

(
c,
φ

ε

)
,

where C2 is independent of ε and D2 is exponentially small in ε. Equation (4.33) is the second-
order version of the phase equation (3.15) in cases where the first-order term is exponentially
small. Again, the condition for wave propagation failure is that the right-hand side of (4.33)
vanishes for some φ.
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Figure 5. Top left: Stable traveling pulse for a homogeneous network with exponential weight function (2.5)
and fixed parameters κ = 0.2, β = 2.0, and α = 0.04 (for all plots). Top right: Corresponding traveling pulse
for an inhomogeneous network with weight distribution (2.4) and a sinusoidal modulation with ε = 0.1 and
ρ = 0.3. We see rippling in the interior of the pulse. Bottom left: Using a more severe inhomogeneity, ρ = 0.8,
leads to rippling in the active region of the pulse such that now the interior crosses below threshold periodically.
Bottom right: For ρ = 1, the effect is even more severe.

5. Numerical results. Our perturbation analysis suggests that as ρ increases, the mean
speed of a traveling pulse decreases, and, at least for sufficiently large periods ε of the weight
modulation, wave propagation failure can occur. However, one of the simplifying assumptions
of our analysis is that the perturbed solution is still a traveling pulse; that is, at each time t
there is a single bounded interval over which the solution is above threshold, which is equal
to the pulse width a of the homogeneous pulse in the limit ε → 0. The inclusion of a periodic
modulation of a monotonically decreasing weight function suggests that the assumption of a
single pulse solution may break down as ρ increases toward unity. In this section we explore
this issue by numerically solving the full system of equations (2.1) in the case of a Heaviside
nonlinearity (f = H), and we show that wave propagation can persist in the presence of
multiple bumps. Numerical simulations of propagating pulses are carried out using MATLAB.
Initial conditions are taken to be solutions to the homogeneous problem given by (4.7) and
(4.8). We then apply backward Euler to the linear terms and forward Euler with a Riemann
sum to the convolution operator. Space and time discretizations are taken to be Δt = 0.01
and Δx = 0.01. The numerical results are stable with respect to reductions in the mesh size
provided that Δx � 2πε. Finally, boundary points evolve freely, rather than by prescription,
and the domain size is wide enough so that pulses are unaffected by boundaries.

In Figure 5 we show some examples of traveling pulse solutions in an inhomogeneous
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Figure 6. Top left: Comparison of the wave profiles at time t = 10 for the homogeneous (dashed line)
and the inhomogeneous (solid line) cases. Here, the parameters are κ = 0.2, β = 2.0, α = 0.04, ε = 0.3,
and ρ = 0.3. Including periodic modulation clearly thins the pulse as we see its profile fits within that of the
homogeneous medium. Top right: Subtraction of the homogeneous solution from the inhomogeneous solution at
time t = 10. We see here an approximation of u1(x, t), from our perturbation analysis. The dominant detail
is the oscillations with period 2πε. Bottom left: Profile comparison at t = 200. The homogeneous solution
has moved well ahead of the inhomogeneous solution due to speed difference. Bottom right: Pseudocolor plot of
u1(x, t), obtained by subtracting the homogeneous solution from the inhomogeneous solution. The dark bands
delineate the underlying homogeneous solution.

network with weight distribution given by (2.4), (2.5), and (2.6). The period of the modulation
is taken to be relatively small (ε = 0.1). We take as initial conditions the invariant profile for
the corresponding homogeneous case, obtained by solving in traveling wave coordinates for
the ε = 0 case, which gives (U, V ) in (4.7) and (4.8). It can be seen from Figure 5 that as the
amplitude ρ of the periodic modulation increases the wave slows down and narrows, which is
consistent with our perturbation analysis. Moreover, the network activity develops a rippling
within the interior of the pulse, as can be seen more clearly in Figure 6, where we directly
compare the numerical solution of the homogeneous network with that of a corresponding
inhomogeneous network. Superimposing the two wave profiles at an early time (t = 10)
illustrates the thinning of the pulse and shows that the difference between the two wave
profiles is an oscillatory component of approximately zero mean, which would correspond to
u1 in our perturbation analysis. Similarly, comparing the two wave profiles at a later time
(t = 200) illustrates the slowing down of the pulse. As ρ increases, the amplitude of the
ripples also increases such that, for sufficiently large ρ, activity at any given time t alternates
between superthreshold and subthreshold domains. This is illustrated in Figure 7. A closer
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Figure 7. A collection of traveling wave profiles taken at time t = 10 for various amplitudes ρ and ε = 0.1.
Other parameters are as in Figure 5. Top left: ρ = 0.1. Notice that rippling of the activity does not dip below
threshold within the pulse interior. Top right: ρ = 0.3. Rippling crosses below threshold at the edges of the pulse
creating a couple of bumps. Bottom left: ρ = 0.7. Rippling now generates a multiple bump solution. Bottom
right: ρ = 0.8.

look at the time evolution of the wave profile when the rippling is above threshold within
the interior of the pulse shows that individual ripples are nonpropagating and transient, with
new ripples appearing at the leading edge of the wave and subsequently disappearing at the
trailing edge; see Figure 8. Interestingly, such behavior persists for large ρ when the ripples
cross below threshold within the interior of the pulse; see Figure 9. Now the pulse actually
consists of multiple bumps, each of which is nonpropagating but only exists for a finite length
of time. The sequence of events associated with the emergence and disappearance of these
bumps generates a wave envelope that behaves very much like a single coherent traveling pulse.
Hence, for sufficiently short wavelength oscillatory modulations of the weight distribution, the
transient multiple bump solution can be homogenized and treated as a single traveling pulse.
However, the wave speed of the multiple bump solution differs from that predicted using
perturbation theory. This is shown in Figure 10, where we compare the c̄ versus ε curves
obtained using perturbation theory with data obtained by directly simulating the full system
(2.1). In the case of small ρ, a stable (single bump) traveling pulse persists for all ε, 0 ≤ ε < 1,
and c̄ is a monotonically decreasing function of ε. Moreover, the numerically calculated value
of the average wave speed agrees quite well with the first-order perturbation analysis. On
the other hand, for large values of ρ, such agreement no longer holds, and we find that the
traveling pulse destabilizes at a critical value of ε that is well below the value predicted from
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Figure 8. A series of snapshots in time of a traveling pulse for κ = 0.2, β = 2.0, α = 0.04, ρ = 0.3,
ε = 0.3. The interior of the pulse consists of nonpropagating, transient ripples. The disappearance of ripples
at one end and the emergence of new ripples at the other end generate the propagation of activity. Notice that
the solitary wave profile is not invariant, reflecting the underlying inhomogeneity. Top left: t = 1. Top right:
t = 5. Bottom left: t = 10. Bottom right: t = 20. Clicking on the above images displays the accompanying
movie (69921 01.avi [1.7MB]).

the perturbation analysis.

In Figure 11 we compare the behavior of traveling pulses for short wavelength (ε = 0.2)
and long wavelength (ε = 0.9) periodic modulation. The amplitude is taken to be relatively
large, ρ = 0.8, so that multiple bump solutions occur. We see that for long wavelength
modulation, the initial pulse transitions into a nonpropagating multiple bump solution, with
successive bumps disappearing sequentially and no additional bumps being created; the failure
to generate new bumps means that activity cannot propagate. We can see this more clearly
when examining a series of snapshots of the pulse/bump profiles in Figure 12. In conclusion,
one way to understand wave propagation failure for large ρ is to note that a large amplitude
periodic weight modulation can generate a pinned multiple bump solution. However, in the
absence of any inhibition, such a multiple bump solution is unstable [26, 37]. In the case of
small ε, destabilization of the bumps generates new bumps at the leading edge of the bump
such that activity can propagate in a coherent fashion. Increasing ε prevents the creation of
new bumps and propagation failure occurs.

The effect of the periodic weight modulation on a different type of solution is illustrated
in Figure 13, where, motivated by a prior numerical study of multiple bumps [25], the initial
condition of the network is taken to consist of three bumps,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_01.avi
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Figure 9. A series of snapshots in time of the “pulse” profile for κ = 0.2, β = 2.0, α = 0.04, ρ = 0.8,
ε = 0.3. The solitary pulse corresponds to the envelope of a multiple bump solution, in which individual bumps
are nonpropagating and transient. The disappearance of bumps at one end and the emergence of new bumps
at the other end generate the propagation of activity. Notice that the solitary wave profile is not invariant,
reflecting the underlying inhomogeneity. Top left: t = 10. Top right: t = 15. Bottom left: t = 20. Bottom
right: t = 30. Clicking on the above images displays the accompanying movie (69921 02.avi [1.9MB]).

(5.1) u(x, 0) =

1∑
j=−1

cos
(x
ε

)
exp

(
−
(

0.1(x− j · 20)

ε

)2
)
.

Each initial bump generates a pair of left and right moving fronts. In the homogeneous case,
we see that collision of left and right moving waves results in a bidirectional front. That is,
the region within the interior of the boundary formed by the two outermost fronts becomes
superthreshold. In the inhomogeneous case, the collision of the waves is insufficient to maintain
activity across this region, and one finds a pair of counterpropagating pulses.

6. Discussion. In this paper we analyzed wave propagation in an excitatory neural net-
work treated as a periodic excitable medium. The periodicity was introduced as an inhomo-
geneous periodic modulation in the long-range synaptic connections and was motivated by
the existence of patchy horizontal connections in the cerebral cortex. We showed that for
small amplitude, short wavelength periodic modulation the main effect of the inhomogeneity
is to slow down a traveling pulse, and the mean speed of the pulse can be estimated quite
well using perturbation theory. In the case of large amplitude modulation, a stable traveling
pulse still exists for sufficiently small ε, but now the pulse is the envelope of a multiple bump

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_02.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_02.avi
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Figure 10. Comparison of perturbation theory with direct numerical simulations. Continuous curves show
average wave speed c̄ as a function of ε obtained using perturbation theory. Data points are the corresponding
wave speeds determined from numerically solving (2.1). In the case of low amplitude modulation (ρ = 0.3, dark
curve) a stable traveling pulse persists for all ε, ε < 1, whereas for large amplitude modulation (ρ = 0.8, light
curve), wave propagation failure occurs as ε increases.

Figure 11. Comparison of traveling pulses in the case of short and long wavelength periodic modulation
with ρ = 0.8 and all other parameters as in Figure 5. Left: For short wavelength modulation (ε = 0.2)
the traveling pulse shrinks and slows but does not annihilate. Right: For long wavelength modulation (ε = 0.9)
wave propagation failure occurs. The initial pulse transitions into a collection of multiple equal width stationary
bumps which are unstable.

solution in which individual bumps are unstable and transient. Wave propagation arises via
the appearance (disappearance) of bumps at the leading (trailing) edge of the pulse. As ε
increases, wave propagation failure occurs due to the fact that there is insufficient activity to
generate new bumps.

Although the existence of multiple bump traveling “pulses” is interesting from a dynami-
cal systems perspective, it is less clear whether such solutions can be observed in real neural
tissue. One of the biological limitations of the integrodifferential equations used in this and
other studies is that, although these equations support traveling waves that have speeds con-
sistent with neurophysiology, the pulses tend to be too wide. That is, taking the range of
synaptic connections to be 1 mm, the width of a stable pulse tends to vary between 5–30
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Figure 12. A series of snapshots in time of the “pulse” profile for the inhomogeneous network with κ = 0.2,
β = 2.0, α = 0.04, ρ = 0.8, ε = 0.9. Top left: The initial wave profile, which is taken to be the invariant wave
profile U of the homogeneous network. Top right: Shortly after the simulation begins (t = 0.5), the interior
of the pulse develops ripples such that the active region contains a subregion for which activity is subthreshold.
Bottom left: At time t = 2 a multiple bump profile has emerged. We can really see here how a multiple bump
solution, as defined by multiple neighboring standing profiles, emerges from the pulse profile of t = 0. Bottom
right: Collapse of the pulse interior occurs due to the disappearance of the unstable bumps. Since no new
bumps emerge, there is no propagating activity. Clicking on the above images displays the accompanying movie
(69921 03.avi [1.1MB]).

Figure 13. Left: In the case of a homogeneous network, a three bump initial condition evolves into a
bidirectional front following the collision of left and right traveling waves. The parameters are κ = 0.2, β = 2.0,
α = 0.04. Right: In the corresponding inhomogeneous network with ε = 0.2 and ρ = 0.8, the collision of left and
right traveling waves results in a pair of counterpropagating pulses. Here the modulated synaptic interactions
are insufficient to maintain activity in the region between the two pulses.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_03.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69921_03.avi


182 Z. P. KILPATRICK, S. E. FOLIAS, AND P. C. BRESSLOFF

mm (see Figure 2), whereas waves in slices tend to be only 1 mm wide [31]. More realistic
widths and wave speeds could be generated by taking the effective range of synaptic connec-
tions to be a few hundred μ m, that is, by assuming that the predominant contribution to
synaptic excitability is via local circuitry rather than via long-range patchy horizontal con-
nections. However, inhomogeneities occurring at smaller spatial scales are unlikely to exhibit
any periodic structure.

Irrespective of these particular issues, our analysis raises a more general point that would
be interesting to pursue experimentally; namely, is it possible to detect the effects of net-
work inhomogeneities by measuring the properties of traveling waves? Signatures of such
inhomogeneities would include time-dependent rippling of the wave profile and variations in
wave speed. However, such features may not be detectable given the current resolution of
microelectrode recordings.

Appendix. In this appendix we present the explicit parameter-dependent expressions for
the various coefficients appearing in the solution of the phase function Φ1, (4.28). First, the
constants premultiplying the periodic functions on the right-hand side of (4.28) are as follows:

Ξ± =
γ±

1 + μ2
±ε

2

[
1

2(1 + μ±)
+

χ

2

(
e−a − e−μ±a

μ± − 1
+

e−μ±a

μ± + 1

)]
,

Π± =
γ±

1 + μ2
±ε

2

[
− χ

2(1 + μ±)
− e−a

2(μ± + 1)

]
,

Υ± =
γ±

1 + μ2
±ε

2

[
− μ±ε

2(1 + μ±)
− χμ±ε

2

(
e−a − e−μ±a

μ± − 1
+

e−μ±a

μ± + 1

)]
,

Ψ± =
γ±

1 + μ2
±ε

2

[
χμ±ε

2(1 + μ±)
+

μ±εe−a

2(1 + μ±)

]
.

Second, the constant scaling factor K on the left-hand side of (4.28) is determined by sub-
stituting (4.7), (4.8), and (4.14) into (3.14). Using the fact that the null-vector is zero for
ξ < −a, we can expand the integral in terms of definite integrals of exponential products with
the M±(ξ) functions

K = [γ+(1 −m−)(1 + χe−μ+a)(1 − α−1β−1(1 −m+)2)]

∫ ∞

0
e−μ+ξM′

+(ξ)dξ

+ [γ−(1 −m−)(1 + χe−μ−a)(1 + α−1β−1(m+ − 1)(1 −m−))]

∫ ∞

0
e−μ−ξM′

+(ξ)dξ

− [γ+(1 −m+)(1 + χe−μ+a)(1 + α−1β−1(m− − 1)(1 −m+))]

∫ ∞

0
e−μ+ξM′

−(ξ)dξ

− [γ−(1 −m+)(1 + χe−μ−a)(1 − α−1β−1(1 −m−)2)]

∫ ∞

0
e−μ−ξM′

−(ξ)dξ

+ χ[γ+e
−μ+a(1 −m−)(1 − α−1β−1(1 −m+)2)]

∫ 0

−a
e−μ+ξM′

+(ξ)dξ

+ χ[γ−e
−μ−a(1 −m−)(1 + α−1β−1(m+ − 1)(1 −m−))]

∫ 0

−a
e−μ−ξM′

+(ξ)dξ
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− χ[γ+e
−μ+a(1 −m+)(1 + α−1β−1(m− − 1)(1 −m+))]

∫ 0

−a
e−μ+ξM′

−(ξ)dξ

− χ[γ−e
−μ−a(1 −m+)(1 − α−1β−1(1 −m−)2)]

∫ 0

−a
e−μ−ξM′

−(ξ)dξ.

The individual integrals can be computed as follows:∫ ∞

0
e−μ±ξM′

±(ξ)dξ =
e−a − 1

2c(m+ −m−)(μ± + 1)2
,

∫ ∞

0
e−μ+ξM′

−(ξ)dξ =
e−a − 1

2c(m+ −m−)(μ− + 1)(μ+ + 1)
,

∫ ∞

0
e−μ−ξM′

+(ξ)dξ =
e−a − 1

2c(m+ −m−)(μ+ + 1)(μ− + 1)
,

and ∫ 0

−a
e−μ±ξM′

±(ξ)dξ =
1

2c(m+ −m−)

{
a

(μ± − 1)
+

1 − e(μ±−1)a

(μ± − 1)2

+
e−a(e(μ±+1)a − 1)

(μ± + 1)2
− a

2(μ± + 1)

}
,

∫ 0

−a
e−μ+ξM′

−(ξ)dξ =
1

2c(m+ −m−)

{
1 − e−(μ−−μ+)a

(μ− − μ+)(μ− − 1)
− e(μ+−1)a − 1

(μ+ − 1)(μ− − 1)

+
eμ+a − e−a

(μ+ + 1)(μ− + 1)
− 1 − e−(μ−−μ+)a

(μ− + 1)(μ− − μ+)

}
,

∫ 0

−a
e−μ−ξM′

+(ξ)dξ =
1

2c(m+ −m−)

{
1 − e−(μ+−μ−)a

(μ+ − 1)(μ+ − μ−)
− e(μ−−1)a − 1

(μ+ − 1)(μ− − 1)

+ e−a e(μ−+1)a − 1

(μ+ + 1)(μ− + 1)
− 1 − e−(μ+−μ−)a

(μ+ + 1)(μ+ − μ−)

}
.
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Localized Pattern Formation with a Large-Scale Mode: Slanted Snaking∗

J. H. P. Dawes†

Abstract. Steady states of localized activity appear naturally in uniformly driven, dissipative systems as a result
of subcritical instabilities. In the usual setting of an infinite domain, branches of such localized states
bifurcate at the subcritical “pattern-forming” instability and intertwine in a manner often referred to
as “homoclinic snaking.” In this paper we consider an extension of this paradigm where, in addition
to the pattern-forming instability (with nonzero wavenumber), a large-scale neutral mode exists,
having zero growth rate at zero wavenumber. Such a situation naturally arises in the presence of a
conservation law; we give examples of physical systems in which this arises, in particular, thermal
convection in a horizontal fluid layer with a vertical magnetic field. We introduce a novel scaling
that allows the derivation of a nonlocal Ginzburg–Landau equation to describe the formation of
localized states. Our results show that the existence of the large-scale mode substantially enlarges
the region of parameter space where localized states exist and are stable.

Key words. homoclinic snaking, pattern formation, bifurcation
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1. Introduction. Recent decades have seen a sustained level of interest in systems whose
response is spatially localized despite a spatially uniform applied forcing. One broad class
of systems which display such localized states of activity is both driven and strongly dis-
sipative, and displays “pattern-forming” (also called Turing) instabilities at which spatially
homogeneous solutions become unstable and spatial structure appears [11, 19, 25]. It is widely
appreciated that, while supercritical pattern-forming instabilities lead to spatially extended
(and almost periodic) structures, subcritical instabilities robustly lead to localized patterns
[21, 37, 8, 30, 5]. Localized steady-state pattern formation has been observed in a huge variety
of experiments and models for physical, chemical, and biological systems, for example, neural
dynamics [23], elastic buckling [20], and nonlinear optics [1, 35]. In other cases, for example,
vertically vibrated granular media [34], the localized pattern is oscillatory in nature. In many
problems the existence of the localized states can be heuristically explained by an energetic
argument: at a critical parameter value, often called the “Maxwell point,” the system has
no energetic preference between the “ground state,” corresponding to no pattern, and the
patterned state. Once a localized state has been formed there is a locking between the phase
of the pattern and the phase of the envelope which allows the localized state to persist over a
finite range of parameter values, as first remarked on by Pomeau [26].
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Mathematically, much has been done to investigate canonical model problems displaying
subcritical pattern-forming instabilities and therefore localized patterns. One such model
equation is the one-dimensional Swift–Hohenberg equation

(1.1) wt = [r − (1 + ∂2
xx)

2]w + N(w)

(writing ∂2
xx as a convenient abbreviation for ∂2/∂x2), which has been studied in detail in the

particular cases N(w) = sw2 −w3 and N(w) = sw3 −w5, where s > 0 controls the subcritical
nature of the pattern-forming instability. These choices for N(w) are commonly referred
to as the “quadratic-cubic” and “cubic-quintic” cases, respectively. Careful investigations
of these localized states have been carried out by several authors including Sakaguchi and
Brand [30] and Burke and Knobloch [5]. Many different localized and front-like solutions
between steady states have been reported. For our present purposes, we note that the most
obvious consequence of a subcritical bifurcation is the existence of stable localized states in a
small subregion between the linear instability of the state w(x, t) ≡ 0 at r = 0 and the saddle-
node bifurcation at r = rsn < 0 on the primary branch of uniform amplitude pattern. The
width of this region is exponentially small in the small amplitude parameter ε employed in
the standard Ginzburg–Landau multiple-scales expansion near r = 0 [22]. Moreover, since the
usual “spatial dynamics” analysis assumes an infinitely wide domain −∞ < x < ∞, localized
states containing arbitrary numbers of pattern bumps are simultaneously stable over almost
all of this region.

Concentrating on the cubic-quintic case, a final widely appreciated, and well-understood,
point is that two distinct pairs of branches of localized states persist over the locking region.
One pair corresponds to locking at relative phases of φ = 0 and φ = π (these are related by
the w → −w symmetry present in the cubic-quintic case) and the other pair to the relative
phases φ = π/2 and φ = −π/2, similarly related by symmetry. The first pair corresponds to
localized states that are even about the midpoint, and the second pair corresponds to states
that are odd about the midpoint. This robust phase-locking is exactly the “locking” intuitively
understood by Pomeau.

Intriguingly, the spatial dynamics analysis shows that these branches of localized states,
that generically bifurcate from r = 0, exist in r < 0 down to saddle-node bifurcations slightly
below the Maxwell point. They then undergo a sequence of repeated and intertwined saddle-
node bifurcations on alternate sides of the Maxwell point; after each pair of saddle-node
bifurcations the localized state gains an extra pair of bumps. In a finite domain the branches
terminate in bifurcations from the uniform amplitude pattern located near r = 0 and near
the saddle-node bifurcation at r = rsn. In an infinite domain the process of saddle-node
bifurcations and gaining extra bumps continues ad infinitum. This sequence of repeated
saddle-node bifurcations in an infinite domain is known as “homoclinic snaking” since all
the states approach w = 0 as x → ±∞. A brief explanation of the “homoclinic snaking”
phenomenon is that at some parameter value r = rmx, rsn < rmx < 0, there exists a “Maxwell
point” where there exists a stationary front between the trivial solution w = 0 and the uniform
spatially periodic pattern. In the corresponding spatial dynamical system this heteroclinic
connection becomes a heteroclinic tangle when normal form symmetry is broken. Within the
heteroclinic tangle we can identify intersections of the stable and unstable manifolds of w = 0;
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these correspond to spatial homoclinic orbits that comprise the “homoclinic snaking” and
they can be shown to persist near r = rmx, rather than existing only exactly at r = rmx.

In a large but finite domain (with periodic boundary conditions), it appears that localized
states persist and continue to exhibit intertwined wiggles around the Maxwell point [18]. In
a finite domain they are not truly “localized” since the domain is bounded, but they clearly
converge to the infinite domain solutions as the domain size L → ∞. A detailed discussion of
persistence and the evolution of the bifurcation structure with domain size will be presented
elsewhere.

In this paper we consider a class of pattern-forming systems that differs from (1.1) in a
fundamental way; a neutrally stable long-wavelength mode exists in addition to the pattern-
forming instability at wavenumber k = 1. Our broad motivation comes from three physical
situations: thermal convection in the presence of a vertical magnetic field [13, 10], vertically
vibrated granular media [17, 34], and thin films [16]. In all three cases the large-scale mode
arises due to the existence of a conserved quantity in the dynamics. In magnetoconvection
this is the total flux of magnetic field through the fluid layer; in the granular and thin film
cases the conserved quantity is the total mass. We remark that such a conserved quantity
makes sense only for finite experimental domains, and our analysis takes this into account.

The treatment of the large-scale mode in magnetoconvection differs in one respect from
the granular media and thin film cases; in the former problem the large-scale mode (the
horizontally averaged vertical component of the magnetic field) can take either sign; the
dynamics is unchanged by this, so the dynamical equations must also remain unchanged.
In the latter two cases the large-scale mode quantity is a scalar, density-like, quantity and
no sign-change symmetry exists. We focus in this paper on the symmetric case relevant to
magnetoconvection; the density-like case is very similar and we summarize a few calculations
in an appendix. As we will show, the presence of a large-scale mode stretches the snaking
behavior out over a substantial region of parameter space and enables localized states to exist
both below the saddle-node bifurcation on the subcritical uniform amplitude branch at r = rsn
and far above the point of linear instability of the trivial state.

Pattern formation in the presence of a long-wavelength neutral mode of this kind was
considered by Matthews and Cox [24], who carried out a weakly nonlinear analysis of a Swift–
Hohenberg-type equation modified by applying ∂2

xx to the right-hand side of (1.1) to produce
a dispersion relation that tended to zero (i.e., indicated neutral stability) as k → 0. These
authors considered the pattern amplitude to be O(ε) and the large-scale mode to deviate by
only an O(ε2) amount from the initially homogeneous state. While asymptotically correct,
these scalings are unable to capture solutions where the fluctuations in the large-scale mode are
large. As a result, numerical solutions often blow up, and higher-order stabilizing terms were
found to be required [10]. Similar difficulties were noted by Golovin, Davis, and Voorhees [16].

In this paper we present a modified multiple-scales analysis that uses the diffusivity of the
large-scale mode as the small parameter. We show that this enables the asymptotics for small-
amplitude patterns to nevertheless capture the effect of O(1) fluctuations in the large-scale
mode. In consequence, this asymptotic treatment avoids the singularities found by earlier
authors. The layout of the paper is as follows. Section 2 proposes the extension of (1.1) which
we study; details linking it directly to the governing equations for magnetoconvection are
deferred to Appendix A. Appendix B summarizes the multiple-scales derivation in the very
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σ

k2

Figure 1. Sketch of the growth rate σ(k2) for a reflection-symmetric pattern-forming instability at wave-
number k = 1, in the presence of a large-scale mode that is neutrally stable as k → 0.

similar case of a density-like large-scale mode, appropriate to the vibrated granular medium
and thin film cases. In section 3 we return to the Swift–Hohenberg ansatz and compare the
results of the multiple-scales approach with results from numerical continuation. Section 4
concludes the paper.

2. Ginzburg–Landau asymptotics. In this section we propose a model equation for pat-
tern formation coupled to a large-scale mode, appropriate for magnetoconvection. We assume
that the pattern-forming domain 0 ≤ x ≤ L is large, but, crucially, finite, and we carry out
a multiple-scales analysis to derive an amplitude equation similar to the Ginzburg–Landau
equation, but containing a nonlocal term, which captures the influence of the large-scale
mode. From the Ginzburg–Landau equation we deduce the existence of modulational insta-
bilities that lead to localized states and investigate scaling laws governing the location of the
bifurcation points.

2.1. Model equations. Suppose that a one-dimensional pattern-forming system is de-
scribed by the pattern amplitude w(x, t) and the large-scale mode B(x, t). We consider the
dispersion curves of the linearized growth rate as a function of perturbation wavenumber k to
take the form shown in Figure 1, with quadratic maxima at k = 0 and k = 1.

We further assume that the system is translationally invariant and reflection-symmetric
(i.e., x → −x). Hence a conservation law for B(x, t) contains only even numbers of derivatives.
In the absence of the large-scale mode we assume that the pattern-forming instability is
supercritical; this is appropriate for thermal convection. An additional symmetry requirement
is appropriate for magnetoconvection: that the dynamics is invariant under a change in the
sign of the large-scale mode B(x, t). Model equations constrained to have these properties are

wt = [r − (1 + ∂2
xx)

2]w − w3 −QB2w,(2.1)

Bt = εBxx +
c

ε
(Bw2)xx,(2.2)

where natural (and analytically tractable) forms of the coupling terms with coefficients Q and
c/ε have been taken. The factor of ε−1 in the second equation enables an asymptotic balance
between the nonlinear and the diffusion terms to occur when the pattern amplitude w(x, t) is
O(ε). As shown in Appendix B, this factor of ε−1 appears naturally in magnetoconvection.

Integrating (2.2) over the domain 0 ≤ x ≤ L and applying periodic boundary conditions

imply that 1
L

∫ L
0 B(x, t)dx ≡ 〈B〉 is constant in time; by rescaling B(x, t) we may take it to be
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unity. Essentially, this rescaling absorbs the original mean value 〈B〉 into the coupling param-
eter Q. Such a rescaling corresponds exactly to the usual nondimensionalization employed in
magnetoconvection, where Q is known as the Chandrasekhar number [7, 27].

We now restrict our attention to steady solutions, setting ∂t ≡ 0, and integrating (2.2)
twice to obtain

(2.3) B =
P

1 + cw2/ε2
,

where P is a constant of integration that corresponds to the value of the large-scale mode
away from the localized pattern. Using 〈B〉 = 1 we can now compute P as an integral over
the domain; P therefore becomes a nonlocal functional of the pattern amplitude w(x):

(2.4)
1

P
=

〈
1

1 + cw2/ε2

〉
.

Substituting into (2.1) and looking for steady states, we obtain the nonlocal Swift–Hohenberg
equation

(2.5) 0 = [r − (1 + ∂2
xx)

2]w − w3 − QP 2w

(1 + cw2/ε2)2
.

The study of bifurcations and solution stability in nonlocal equations is an area of substantial
current interest; see, for example, [4, 12] and the references therein. In this paper such
difficulties are largely bypassed since, although (2.5) is nonlocal, the linear stability analysis
of w(x) ≡ 0 remains a local problem. As a result, the usual approaches to small-amplitude
solutions of the Swift–Hohenberg equation can be applied, as we now show.

We now introduce the multiple-scales ansatz

(2.6) w(x, t) = εA(X) sinx + ε2w2 + ε3w3 + · · · ,

defining the long lengthscale X = εx. We rescale the parameters r = ε2μ and Q = ε2q since
we are focusing on small-amplitude patterns. The amplitude A(X) can be taken to be real
since the instability which generates localized states occurs in the pattern amplitude and not
in its phase. At third order in the expansion an amplitude equation for A(X) is obtained
by multiplying by sinx and integrating over the short lengthscale, denoting the average as
1
2π

∫ 2π
0 f(x)dx ≡ 〈f(x)〉x. We obtain

(2.7) 0 = μA + 4AXX − 3A3 − 2qP 2

〈
A sin2 x

(1 + cA2 sin2 x)2

〉
x

,

where P now becomes

1

P
=

1

εL

∫ εL

0

1

2π

∫ 2π

0

1

1 + cA2 sin2 x
dx dX

≡
〈 〈

1

1 + cA2 sin2 x

〉
x

〉
X

=

〈
1√

1 + cA2

〉
X

.(2.8)
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Carrying out the x-integral in (2.7), we obtain

(2.9) 0 = μA + 4AXX − 3A3 − qP 2A

(1 + cA2)3/2
.

It follows that the trivial state A(X) ≡ 0 (for which B = 1) undergoes a pitchfork bifurcation
at μ = q. The pitchfork bifurcation is supercritical for small q but becomes subcritical for
cq > 6, as can be checked by expanding both the nonlinear term and P for small A in (2.9).

2.2. Modulational instabilities. As is typical in subcritical bifurcations of this kind, sec-
ondary bifurcations occur close to μ = 0, and close to the saddle-node point on the uniform
branch, which results in localized states. Interestingly, for this problem these secondary mod-
ulational instabilities exist also for 2 < cq < 6 where the primary bifurcation is supercritical.
On the primary branch, where A = A0 constant, we find P =

√
1 + cA2

0, and hence from (2.9)

(2.10) q = (μ− 3A2
0)
√

1 + cA2
0,

which, on simplifying, yields

9cA6
0 + (9 − 6cμ)A4

0 + (cμ2 − 6μ)A2
0 + μ2 − q2 = 0.

To locate the bifurcation points indicating modulational instability we set A = A0(1+aeiKX).
Substituting this ansatz into (2.9) and linearizing in a, we obtain

0 = (μ− 4K2 − 9A2
0)a− (μ− 3A2

0)
1 − 2cA2

0

1 + cA2
0

a,

where we have used (2.10) to eliminate q. Simplifying further, we find that modulational
instability occurs when

15cA4
0 + (6 − 3cμ + 4cK2)A2

0 + 4K2 = 0.

In the limit of large domains, K = 2π/(εL) 	 1, we therefore expect instabilities when

(2.11) A2
0 =

4K2

3cμ− 6
+ O(K4) and A2

0 =
cμ− 2

5c
+ O(K2).

Clearly, no modulational instability is possible if cμ < 2. The first of the conditions in (2.11)
indicates that instability occurs at small A0, near the primary bifurcation at μ = q. The
second condition indicates that instability also occurs at large amplitudes.

The continuation software AUTO [14] was used to solve (2.9) as a boundary-value prob-
lem in a finite domain. Neumann boundary conditions AX = AXXX = 0 at X = 0, εL were
imposed to avoid numerical difficulties arising from the continuous translational symmetry
implied by periodic boundary conditions. Bifurcation diagrams for the supercritical and sub-
critical cases are shown in Figure 2. Of particular note in Figure 2(b) is that the branch of
localized states both extends further into μ < q than the uniform branch, i.e., μsn1 < μsn2 < q,
and also extends substantially into μ > q before rejoining the primary branch at large ampli-
tudes.
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Figure 2. Bifurcation diagrams in the (μ,max(A)) plane. Thick and thin lines denote stable and unstable
branches, respectively. A primary branch of uniform amplitude pattern bifurcates from A(X) ≡ 0 when μ = q.
We fix c = 1 and the domain size εL = 10π. � denotes bifurcation points from the uniform branch to the
branch of modulated states. (a) q = 3, for which the primary bifurcation is supercritical. (b) q = 10, for which
the primary bifurcation is subcritical. Note in both cases the existence of a secondary instability leading to a
branch of spatially localized states. Labels in (b) correspond to the different parts of Figure 3.

Figure 3 shows solutions to (2.9) at the four points indicated on the localized branch in
Figure 2(b). Close to the ends of the branch the solution takes on the usual sech-like profile;
at the center it resembles a pair of tanh-like fronts between the trivial state A = 0 and a
nonzero constant value A0. Stable fronts are possible when the two states have the same
“energy”; in the standard description of localized states the energies are equal at a single
value of the driving parameter μ, known as the “Maxwell point.” In the present case we
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Figure 3. Localized solutions A(X) of (2.9) at the four points on the secondary branch of localized states
indicated on Figure 2(b). Parameter values: (a) μ = 9.523; (b) μ = 7.737; (c) μ = 12.373; (d) μ = 12.534.
Domain size εL = 10π, c = 1, q = 10. Note that the horizontal axis is rescaled to [0, 1] in the figures.

expect that the value A0 depends on the driving parameter μ but not on the domain size or
the overall magnitude q of the large-scale mode. These intuitions can be demonstrated with
a straightforward, but surprisingly accurate, calculation to estimate the relation between A0

and μ, as we now show.

Equation (2.9) has a first integral, obtained by multiplying by AX and integrating:

(2.12) E =
μ

2
A2 + 2A2

X − 3

4
A4 +

qP 2

c

1√
1 + cA2

.

Assuming that the localized solution resembles Figure 3(c) and is nearly piecewise constant,
we may neglect the AX term in (2.12); this turns out not to affect the accuracy of the following
calculation in any significant way, while considerably simplifying the computation. Supposing
that the solution is A = A0 
= 0 over a proportion �/L of the domain, and zero on the
remainder, from (2.8) we obtain P = P�, where

(2.13)
1

P�
= 1 +

�

L

(
1√

1 + cA2
0

− 1

)
.
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Thick and thin lines denote stable and unstable branches, respectively. � denotes bifurcation points from the
uniform branch to the branch of modulated states. The “Maxwell curve” given by (2.15) is the dashed red curve.
The central part of the stable branch of localized states is indistinguishable from it.

Comparing the values of E above and below a front connecting the trivial and nontrivial states
in different parts of the domain, we obtain

E|A=0 =
qP 2

�

c
,

E|A=A0 =
μ

2
A2

0 −
3

4
A4

0 +
qP 2

�

c

1√
1 + cA2

0

,

and from (2.9) we also have

(2.14) qP 2
� = (μ− 3A2

0)(1 + cA2
0)

3/2.

Equating E|A=0 = E|A=A0 and eliminating qP 2
� using (2.14), we obtain the following relation

between μ and A0:

cA2
0

(
μ− 3

2
A2

0

)
= 2(μ− 3A2

0)(1 + cA2
0)

(√
1 + cA2

0 − 1

)
.

This can be simplified to the cubic polynomial in A2
0:

(2.15) 144c2A6
0 + (207c− 96c2μ)A4

0 + (72 + 16c2μ2 − 108cμ)A2
0 + 12μ(cμ− 2) = 0.

For μ = 12 we find that this analytic result predicts A0 = 1.7590818, compared to the numer-
ical value from (2.9), corresponding to Figure 3(c), of A0 = 1.759082. Moreover, instead of a
Maxwell point we have a “Maxwell curve” along which stable fronts, and therefore localized
states, exist; see Figure 4. It is worth remarking that (2.15) relates the amplitude A0 only to
the linear driving parameter μ and does not contain the coupling parameter q or the propor-
tion �/L of the domain that contains the localized pattern. As a result, the localized pattern
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amplitude depends only on μ. This is physically reasonable in the magnetoconvection case:
when the magnetic field has been expelled from one part of the fluid domain, the amplitude
of the thermal convection that results is due to the thermal driving alone.

Our final remark in this section is that on combining (2.13) and (2.14) we can relate q
and �/L, assuming that A0 is determined from μ using (2.15):

q = (μ− 3A2
0)(1 + cA2

0)
3/2

(
1 +

�

L

(
1√

1 + cA2
0

− 1

))2

.

Approximating this expression in the limit of “strong coupling and strong driving,” where
q ∼ μ � 3A2

0 � 1, it can be written in the form

q

μ
≈ A3

0

(
1 − �

L

)2

,

which is reminiscent of (4.5) in [13] and indicates that in the strong coupling and strong
driving regime it is some combination of q and μ that determines the width of the localized
state. Note that the amplitude A0 scales in some unspecified way with μ and q, and so this
relation does not indicate a simple power-law scaling exponent, as we discuss further in the
next section.

2.3. Scaling laws in the nonlocal Ginzburg–Landau equation. The location and shape
of the primary and secondary branches evolve continuously between Figures 2(a) and 2(b) as q
is increased, first by the introduction of saddle-node points on the secondary branch, and then
by the subcriticality of the primary branch. Figure 5 displays the bifurcation structure in the
(μ, q) plane; for q � 10 the bifurcation points appear to scale as power-laws with increasing
q, and the region of existence of stable localized states increases in size rapidly. Figure 5 (in
which c = 1) shows that the localized states exist subcritically (i.e., for μ − q < 0) even for
q < 6, where the primary bifurcation is still supercritical.

The scaling law for the saddle-node bifurcation sn2 on the uniform amplitude branch can
be located by eliminating A2

0 between the second condition of (2.11) and (2.10). This yields
the curve

(2.16)

(
cq

5
√

5

2

)2

= (3 + cμ)3,

which agrees closely with numerical calculations and is shown as the red dot-dashed curve in
Figure 5(b). At large q, (2.16) agrees exactly with the numerical results in Figure 5(a).

Fitting the same functional form to the saddle-node curves sn1 and sn3 results in the
scaling laws sn1: q ≈ 0.0927(μ + 3.55)1.987, sn3: q ≈ 0.298(μ + 27.9)0.986 to three significant
figures. These exponents are intriguing, and, while they fit the data extremely well at large q,
they differ significantly from ratios of small integers. It is possible that they can be deduced
using the properties of solutions of (2.9) involving the snoidal and cnoidal special functions.
At small q we note that there is systematic deviation from power-law scalings.
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Figure 5. (a) Bifurcation diagram in the (μ, q) plane showing the power-law behavior of the bifurcation
curves at large q. c = 1, domain size εL = 10π. (b) Enlargement of (a) for small q, plotted in the (μ − q, q)
plane for clarity. sn1 and sn3 refer to saddle-node bifurcations on the branch of localized states. sn2 is the
saddle-node on the primary, uniform amplitude branch. t refers to the linear instability point μ = q. m labels
the modulational instability of the primary branch above the saddle-node point, with the red dot-dashed line
indicating the analytic result (2.16).
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3. Numerical results for slanted snaking. Returning to the Swift–Hohenberg model
(2.1)–(2.2), we find, corresponding to the Ginzburg–Landau analysis, that the modulational
instability leads to branches of localized states for which the periodic pattern is locked to the
modulating envelope. As for the standard snaking scenario, two distinct pairs of branches
persist—one pair where the phase difference between pattern and envelope is 0 or π and one
pair where it is ±π/2. The numerical procedure, again using AUTO [14], was as follows.

Starting at the trivial solution w(x) ≡ 0, either “Dirichlet” w(0) = wxx(0) = w(L) =
wxx(L) = 0 or “Neumann” wx(0) = wxxx(0) = wx(L) = wxxx(L) = 0 boundary conditions
were used to avoid the neutral eigenvalue associated with the translational invariance when
locating the linear instability at r = Q and switch easily onto the uniform amplitude pattern
branch. By continuation along the uniform amplitude branch we located the first modulational
instability (indicated by the lower solid square symbol in Figure 6), and AUTO was able to
switch onto the modulated branch. We now replace the Dirichlet or Neumann boundary
conditions in the numerics with periodic ones, supplemented with a global integral constraint
to fix the overall phase of the solution and ensure that there is no drift in the direction of
the neutrally stable translation mode. The implementation of the integral constraint followed
Rademacher, Sandstede, and Scheel [29]; it was found to be numerically very robust. This
approach also accurately detects the “cross-link” or “ladder” branches [5, 22] of asymmetric
localized states that complete the bifurcation structure. As in the standard homoclinic snaking
scenario, these cross-link branches are never stable; they are omitted from Figure 6 to aid
clarity.

Two continuations, one beginning with Dirichlet boundary conditions and one with Neu-
mann boundary conditions, were carried out. The full snaking bifurcation diagram is obtained
by superimposing the results. This procedure provides an additional check on the numerical
accuracy. Figure 6 indicates that, as expected, these branches are intertwined (around the
“Maxwell curve”) and stretch both below and above the bifurcation points from the uniform
amplitude branch. We call this behavior “slanted snaking.” Figure 7 illustrates the evolution
of the localized states along the snaking branches.

Another feature of Figure 6 not captured by the Ginzburg–Landau reduction is that
the wavelength along the branch of localized states in Figure 6 decreases as r increases;
in consequence the branches of localized states terminate on a different uniform amplitude
primary branch, in this case one with wavelength L/8. This aspect of the bifurcation diagram
is brought out clearly in Figure 8, where the vertical axis is max(w) rather than the L2 norm.

Decreasing r from, say, r = 3.5 on the localized branch therefore results in a stepwise de-
crease in the number of bumps of localized pattern, as the successive saddle-node bifurcations
are passed. As ε decreases the localization becomes increasingly pronounced.

Alternatively we may consider the driving parameter r to be fixed and consider the effect
of increasing the strength of the coupling Q between the large-scale field and the pattern mode.
For the Ginzburg–Landau system this corresponds to a vertical section through Figure 5(a);
the same stepwise series of saddle-node bifurcations is seen in (2.1)–(2.2) when Q is decreased
at fixed r. Figure 9 (for which r = 1) illustrates the location of the lowest two saddle-
node bifurcations on the snaking branch as ε is decreased. Localized states are born in a
modulational instability close to Q = 1 and exist in Q > 1 up to the curve sn1 on which they
undergo the first saddle-node bifurcation on the snaking curve. The branch then turns around
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Figure 6. Slanted snaking in (2.1)–(2.2), c = Q = 1, domain size L = 20π. (a) Branches 10 and 8
denote uniform spatial patterns with wavelengths L/10 and L/8, respectively. Snaking branches bifurcate from
the 10 branch near r = 1 (at the solid square) and extend down to r = 0.21. They then continue up to r ≈ 3.8
(not shown) before returning to terminate on the 8 branch, indicated by a solid square. (b) Enlargement of (a)
showing the characteristic intertwining of the two snaking branches. Thick and thin lines indicate stable and
unstable solutions, respectively. Labels a–d refer to Figure 7.

and continues as Q decreases, up to the second solid line at which the second saddle-node
bifurcation on the snaking curve takes place. Subsequent pairs of saddle-node bifurcations are
not shown; numerical results indicate that the next pair, and possibly others, rather curiously
follows the same power-law scaling with ε as the first pair. As ε increases, the region of
stable localized states shrinks until it disappears for ε > 0.46. For comparison, Figure 9 also
shows the location of the saddle-node bifurcation of the uniform amplitude pattern sn2. The
power-law for the curve sn2 follows that derived in (2.16) for the location of the modulational
instability near the saddle-node bifurcation sn2: the scaling q2 ∝ μ3 for large q and μ implies
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Figure 7. Localized states at four saddle-node bifurcation points in Figure 6(b). (a) and (c) lie on the
φ = π/2 (odd) branch; (b) and (d) lie on the φ = 0 (even) branch. c = Q = 1; L = 20π. Note that the domain
has been rescaled to [0, 1].

(Q/ε2)2 ∝ (r/ε2)3, i.e., Q ∝ ε−1r3/2. This scaling agrees with Figure 9.

For sn1 we found in the Ginzburg–Landau approximation (shown in Figure 5) that
q ∝ μ1.987 for large q, μ. This implies Q/ε2 ∝ (r/ε2)1.987, which yields Q ∝ ε−1.974. For
comparison, Figure 9 indicates the different scaling Q ∝ ε−2.03. This difference is too large
to be explained purely in terms of numerical errors. We believe that the difference is due to
the “beyond-all-orders” terms that determine the width of the homoclinic snaking wiggles in
Figure 6 and that are neglected in the multiple-scales analysis of section 2.

For completeness we note that the lower solid line in Figure 9 follows the power-law
Q ∝ ε−1.31, which has no counterpart in the multiple-scales asymptotics of section 2; clearly
the width of the snake, and therefore this power law exponent also, is influenced by the
beyond-all-orders asymptotic scalings.

4. Discussion. In this paper we have examined a very simple model equation for the
influence of a neutrally stable long-wavelength mode on steady-state pattern formation. Such
a situation is motivated by several physical problems, and we have fixed on model equations
containing symmetries appropriate to the onset of thermal convection in an imposed vertical
magnetic field, a long-studied problem in the literature [7, 6, 27].
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Figure 8. Bifurcation behavior in (2.1)–(2.2) for c = Q = 1 and domain size L = 20π. The bifurcation
curves are as for Figure 6; plotting max(w) against r shows more clearly the excursion of the secondary branch
up to r ≈ 3.8, and the termination of the snaking branches (now superimposed) on the 8 branch. Solid squares
denote the bifurcations from uniform periodic patterns to localized patterns. Thick and thin lines denote stable
and unstable branches, respectively. Red and black lines denote localized and spatially periodic solution branches,
respectively.

We introduce a new approach to the usual weakly nonlinear multiple-scales analysis, taking
the diffusivity of the large-scale mode as the small parameter while allowing order unity
fluctuations in amplitude. We then carry out the multiple-scales expansion to third order
and deduce a nonlocal Ginzburg–Landau equation that describes the dynamics. It is found
that the subcriticality induced by the large-scale mode distorts the usual homoclinic snaking
picture and allows localized states to exist over a much larger region of parameter space than is
possible in its absence. We refer to this distortion of homoclinic snaking as “slanted snaking.”
As a result, the existence of a large-scale mode provides a far more robust physical mechanism
for the stabilization of localized solutions than the “locking” or “pinning” mechanism that
explains their existence in an exponentially small wedge of parameter space in the standard
picture.

In other respects the localized states qualitatively resemble standard homoclinic snaking.
For example, the secondary branches of asymmetric localized states, found by Burke and
Knobloch [5] (called “ladders” in that paper), which link the two snaking branches exist
also in this problem, although for clarity we have omitted them from the figures. For the
parameter values we investigate in detail (ε = 0.1, Q = 1), it is interesting that the lowest
saddle-node point on the snake does not correspond to a single isolated period of the pattern.
This indicates that our coupling terms, of a simple kind that admit analytic investigation, do
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Figure 9. Scaling of the saddle-node bifurcations on the primary and secondary branches of solutions to
(2.1)–(2.2) in the (ε,Q) plane for fixed r = c = 1 and domain size L = 20π. The trivial solution w(x, t) ≡ 0 is
stable for Q > 1. A single localized cell exists between Q = 1 and the saddle-node curve sn1; it is stable between
the two solid curves. Uniform amplitude states exist (subcritically) below the dashed line sn2.

not force the pattern to be quite as localized as convection cells appear to be in simulations
of the full fluid equations [2, 13]. It is quite possible that more complicated coupled terms,
involving extra derivatives of either B(x, t) or w(x, t), deform the snake still further, allowing
only a single convection cell to persist at small r or, equivalently, large Q. Possible forms for
these coupling terms are discussed further in Appendix A.

Overall, these results provide a convincing explanation of the link between homoclinic
snaking and the stepwise reduction in the number of cells in the localized states with increasing
Q as found first by Blanchflower [3] and reproduced in [13] (see Figure 8 therein). Various
features of the full magnetoconvection problem, such as the destabilization of localized steady
states by an oscillatory instability in the quiescent region, are, of course, not reproduced by
this model. But steady-state features are well reproduced, for example, the evidence, from
Figure 9(a) of [13], that the two curves of saddle-node bifurcations that bound the region of
the existence of a single-roll localized state scale in different ways with the small parameter
ε ≡ ζ. This is certainly true for the solid lines in Figure 9.

The exponents of the power-law scalings that we present, in both the multiple-scales
analysis and the full Swift–Hohenberg model, seem to be strongly dependent on the exact
form of the nonlinear coupling terms. A detailed investigation of such dependencies and
possible explanations through the properties of analytic solutions in terms of Jacobi elliptic
functions are left for future work.

The corresponding calculation for systems for which the large-scale mode is a density is
very similar to the analysis presented in detail here. Indeed, the only change required to the
model equations is to take the coupling term to be QBw in (2.1). Brief details of the resulting
calculations are contained in Appendix B. A further extension is to examine systems where it
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appears that the large-scale mode promotes localized activity but the short-scale dynamics is
not “pattern-forming.” A clear example of this is the vertically and horizontally shaken granu-
lar layer experiments of Götzendorfer et al. [17]. In these experiments the vertical excitation of
a granular layer does not result in uniform excitation of the material, but rather in a patch of
highly energetic particles, while the remainder of the domain remains inactive. Götzendorfer
et al. refer to this, slightly fancifully perhaps, as the “sublimation” of the “solid” phase of the
material into a “gaseous” form. The general mechanism is, however, physically clear: there is
a balance between the (rapid) flux of particles from the active part of the layer into the quiet
part as energetic particles are propelled upward and outward, and the natural (slow) trickling
of particles from the quiet part back into the active one. These two processes correspond,
respectively, to the two terms on the right-hand side of (B.2). Moreover, when the layer height
locally exceeds a critical value, the vertical excitation cannot excite particles directly in that
part of the bed; this effect is captured by the damping term Qρw in (B.1). Model equations
capturing exactly these effects were written down by Tsimring and Aranson [32].

There are close connections between this work and that of Matthews and Cox and others
[24, 9, 10, 16, 36]; these authors studied systems essentially equivalent to (2.1)–(2.2) obtained
by applying ∂2

xx to the right-hand side of the standard Swift–Hohenberg equation (1.1), in-
cluding both quadratic and cubic nonlinearities in N(w). In these papers the weakly nonlinear
analysis proceeds by looking for small distortions of the large-scale mode, i.e., a small parame-
ter δ and a long lengthscale X = δx are introduced, before expanding w = δa(X) sinx+O(δ2)
and B = 1 + δ2b(X) + O(δ3). The resulting amplitude equations for a(X) and b(X) enable
the detection of secondary modulational instabilities, as happens here, even in the case that
the initial pattern-forming instability is supercritical, which is analogous to Figure 2(a). How-
ever, these scalings implicitly restrict our attention only to cases of small disturbances to the
distribution of the large-scale mode; the present analysis can, in this sense, go further.

Other physical systems that show related phenomena, and which we intend to examine
in future work, include the numerical results of Tsitverblit and Kit [33] on natural double-
diffusive convection (see, for example, their Figure 1, which appears to show snaking behavior
that does not have the saddle-node points aligned to only two values of the bifurcation parame-
ter). Moreover, model equations for dielectric gas discharge (due to Purwins and collaborators
[31, 28]) and for optical cavity lasers [15] have been proposed which include integral terms.
These integral terms appear to play the same role in enhancing localization in these systems
as the nonlinear diffusion equation for the large-scale mode does in this paper.

Appendix A. Magnetoconvection. In this appendix we briefly sketch the derivation of
an evolution equation for the large-scale mode in the magnetoconvection case, starting from
the governing equations. This justifies the form of our model equation (2.2).

For thermal convection in a vertical magnetic field, the appropriate governing equations
for the fluid velocity u(x, y, z, t), the temperature perturbation θ(x, y, z, t), and the magnetic
field B(x, y, z, t) are the momentum, temperature, and induction equations:

∂tu + u · ∇u = −∇p + σRθẑ + σζQB · ∇B + σ∇2u,

∂tθ + u · ∇θ = w + ∇2θ,

∂tB = ∇× (u × B) + ζ∇2B.
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For simplicity we restrict our attention to two-dimensional solutions, ignoring the y coordinate;
the extension of these calculations to three dimensions would appear to be straightforward.
The temperature variable θ(x, z, t) is the perturbation to the conduction profile T = 1 − z.
The velocity and magnetic fields are solenoidal: ∇ · u = ∇ · B = 0. Note that B is the full
magnetic field—not the perturbation to an initially vertical field of strength unity.

The dimensionless groups are the Rayleigh number R, Chandrasekhar number Q, Prandtl
number σ = ν/κ, and magnetic Prandtl number ζ = η/κ.

We suppose that the boundaries are stress-free and are held at fixed temperatures, and we
constrain the field to be vertical there. These boundary conditions allow a simple analytical
treatment. The linear theory for the onset of thermal convection in a vertical field is well
known [7, 27, 10, 13]. We look for small-amplitude solutions in one horizontal dimension,
taking ζ as our small parameter (i.e., ε = ζ). We propose the solution ansatz

u = (u1 cosπz, 0, w1 sinπz),

θ = θ1 sinπz,

B = (Bx sinπz, 0, Bz cosπz + B0),

where u1, w1, Bx, Bz, and B0 are functions of x and t only. Computing ẑ · ∇ × (u × B) we
obtain equations for the z independent terms and, separately, those that depend on cosπz:

∂tB0 =
1

2
(w1Bx − u1Bz)

′ + ζB′′
0 ,(A.1)

∂tBz = −(u1B0)
′ + ζ(B′′

z − π2Bz),(A.2)

where primes ′ denote ∂x. We assume that the quantities u1, w1, Bx, Bz all vary on a short
spatial scale with wavenumber k, so that we may, at leading order, replace ∂2

xx → −k2, where
it acts on these variables. As a result the solenoidal conditions ∇ ·u = 0 and ∇ ·B = 0 imply
u1 = π/k2∂xw1 and Bx = −π/k2Bz, which allows us to eliminate u1 and Bx from (A.1)–(A.2).
We obtain

∂tB0 = − π

2k2
(w1Bz)

′′ + ζB′′
0 ,(A.3)

∂tBz = − π

k2
(w′

1B0)
′ + ζ(B′′

z − π2Bz).(A.4)

Since the linear eigenfunction for the onset of weakly nonlinear convection involves u1, w1, Bx,
and Bz, it is clear also that Bz does not evolve independently of w1. Looking for steady states
of (A.4), we expect, therefore, that Bz = −π/(k2β2ζ)(w′

1B0)
′ near onset, where β2 = k2 +π2.

Substituting this into (A.3) yields an evolution equation for the large-scale field B0(x, t),
coupling it to the weakly nonlinear convection pattern amplitude w1(x, t):

∂tB0 =
π2

2k4β2ζ

(
w1(w

′
1B0)

′)′′ + ζB′′
0 .

This is of the same form as (2.2), setting c = π2/(2k4β2), except for two extra derivatives in
the first term. Since near onset w1 involves only the single lengthscale 2π/k, and B0 ≈ 1, it
is clear that these derivatives will not qualitatively change the behavior. However, it is quite
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possible that they will alter the exponents of various scaling laws, for example, those shown
in Figure 9. A similar evaluation of the ẑ component of the B · ∇B term, and subsequent
use of the above approximations of Bx and Bz in terms of B0 and w1, yield, heuristically, the
term that couples the large-scale mode back to the vertical velocity:

∂tw1 = · · · + σQπ2

k2β2

(
B′

0

k2
+ B0

)
(w′

1B0)
′.

Appendix B. A density-like large-scale mode. Suppose that a one-dimensional pattern-
forming system is described by the pattern amplitude w(x, t) and a density-like large-scale
mode ρ(x, t), for example, the local layer height in a granular medium or thin film. In this
case the symmetry ρ → −ρ is absent, and the corresponding model equations are

wt = [r − (1 + ∂2
xx)

2]w − w3 −Qρw,(B.1)

ρt = ερxx +
c

ε
(ρw2)xx.(B.2)

As before, we set 1
L

∫ L
0 ρ(x, t)dx ≡ 〈ρ〉 = 1. We restrict our attention to steady solutions,

setting ∂t ≡ 0, and integrate (B.2) twice to obtain

(B.3) ρ =
P

1 + cw2/ε2
, where

1

P
≡

〈
1

1 + cw2/ε2

〉
x

.

Substituting this into (B.1) and looking for steady states, we find

0 = [r − (1 + ∂2
xx)

2]w − w3 − QPw

1 + cw2/ε2
.

We now introduce the multiple-scales ansatz w(x, t) = εA(X) sinx + ε2w2 + ε3w3 + · · · ,
introducing the long lengthscale X = εx. We rescale the parameters r = ε2μ and Q = ε2q
in the standard way. At third order in the expansion an amplitude equation for A(X) is
obtained by multiplying by sinx and integrating over the short lengthscale, denoting the
average 1

2π

∫ 2π
0 · dx ≡ 〈 · 〉. This yields

(B.4) 0 = μA + 4AXX − 3A3 − 2qP

〈
A sin2 x

1 + cA2 sin2 x

〉
x

,

where the constant P is defined as before:

1

P
=

1

εL

∫ εL

0

1

2π

∫ 2π

0

1

1 + cA2 sin2 x
dx dX ≡

〈 〈
1

1 + cA2 sin2 x

〉
x

〉
X

=

〈
1√

1 + cA2

〉
X

.

Carrying out the x-integral in (B.4), we obtain

(B.5) 0 = μA + 4AXX − 3A3 − 2qP (
√

1 + cA2 − 1)

cA
√

1 + cA2
.
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Consideration of the last term in the limit A → 0 indicates that there is no singularity at
small A and that the trivial solution A = 0 is linearly unstable when μ > q.

It can be seen that (B.5) has a first integral,

E =
μ

2
+ 2(AX)2 − 3

4
A4 − 2qP

c

[
logA + tanh−1

(
1√

1 + cA2

)]
,

in which, after some manipulation, the last term on the right-hand side can be rewritten to
give

E =
μ

2
+ 2(AX)2 − 3

4
A4 − qP

c
logF (A),

where F (A) = A2 + 2
c

[
1 +

(
cA2 + 1

)1/2]
. We may also eliminate qP to yield the expression

corresponding to (2.15) that describes the amplitude of a localized state as a function of μ:

(μ− 3A2
0)
√

1 + cA2
0

[
1

2
logF (A0) − log

2√
c

]
=

(
μ

2
− 3A2

0

4

)(√
1 + cA2

0 − 1

)
.

Despite the more complicated functional form, this curve is qualitatively very similar to that
defined by (2.15) and provides an analytic estimate of the “Maxwell curve” in this case.
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Numerical Experiments on Noisy Chains: From Collective Transitions to
Nucleation-Diffusion∗
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Abstract. We consider chains of particles with nearest-neighbor coupling, independently subjected to noise, all
initially in the same well of a symmetric double-well potential. If there are sufficiently few particles,
transitions from one well to another are “collective”; i.e., all particles remain close together as they
make the passage from one well to the other. In longer chains, only a fraction of the particles
make an initial transition, creating a nucleated region that may grow or collapse by diffusion of its
boundaries. Numerical experiments are used to explore the change of the scaling of the passage time
as a function of the length of the chain, which distinguishes the two regimes. A suitable relationship
between the noise amplitude, coupling, and number of particles in the chain yields convergence to
the continuum φ4 or Allen–Cahn stochastic partial differential equations in one space dimension.
We estimate the characteristic width of newly nucleated regions and construct a numerical effective
potential describing the dynamics in the nucleation-diffusion regime.

Key words. stochastics, nucleation, passage time
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1. Introduction. Many spatially extended systems exhibit two locally stable states that
coexist in the sense that, at any one time, different parts of the system are in different states.
Nucleation events are fluctuation-driven transitions of part of the system from one state to
another, creating domains in which the system is in one state. The domain boundaries are
coherent structures [1, 2] that subsequently move about due to fluctuations [3]. The model
system we study here is homogeneous and symmetric; i.e., there is no preferred part of the
system, and, in the long run, each of the two states is present in equal proportion on average.
These properties also mean that there is no a priori natural lengthscale of a newly nucleated
region. Behind the apparent simplicity of the energy landscape lies a challenging problem of
determining the most probable nucleation pathways [4, 5, 6].

In this article, we consider the model system of a chain of overdamped particles, each
coupled to its two neighbors, subject to noise and to the double-well potential with minima
at φ = ±1:

(1.1) V (φ) = −1

2
φ2 +

1

4
φ4.
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The position of the ith particle at time t is a real-valued random variable Φt(i), and the
stochastic differential equation for the ith particle is

(1.2) dΦt(i) =
(
Φt(i) − Φ3

t (i) + k(Φt(i− 1) + Φt(i + 1) − 2Φt(i))
)
dt + (2/β)1/2 dBt(i),

where E(dBt(i)dBt′(j)) = δi−jdt. The index i runs from 1 to N , and we shall always use
periodic boundaries. In our numerical experiments, the whole chain is initially in the left-hand
well of the potential. We record the first t > 0 at which the chain is in the right-hand well.
As a function of N , with k and β fixed, we find that the mean of this time, which we call
the complete passage time, increases exponentially until a certain value and then increases
less rapidly. This change corresponds to a transition from “collective” behavior, where all the
particles surmount the potential barrier together, to “nucleation-diffusion” behavior, where
only a subset of the chain makes the initial transition and the domain subsequently grows by
diffusion of its boundaries. A Java applet that permits interactive numerical experiments is
at http://www.maths.leeds.ac.uk/Applied/stochastic/chain.htm.

Although a discrete system is an appropriate model in many situations, an important
reason for interest in (1.2) is as a finite-difference approximation of a continuum stochastic
partial differential equation (SPDE) in one space dimension. Let

(1.3) k = Δx−2, N =
L

Δx
, and β =

Δx

Θ
.

As Δx → 0, the limit of the set of equations (1.2) is the overdamped φ4 SPDE [7, 8, 1, 9]

(1.4)
∂

∂t
φt(x) =

∂2

∂x2
φt(x) + φt(x) − φ3

t (x) + (2Θ)1/2 ξt(x),

where φt(iΔx) = Φt(i) and x ∈ [0, L]. The last term in (1.4) is space-time white noise:

(1.5) E(ξt(x)ξt′(x
′)) = δ(x− x′)δ(t− t′),

where Θ is thought of as proportional to temperature. We will often refer to (1.3) as it provides
scaling relations among the parameters of the problem and it will help us to understand the
nucleation process in terms of adimensional relations. If, instead of (1.3), we let N = Δx−1

with β and k fixed then, as Δx → 0, we obtain the stochastic Allen–Cahn equation:

(1.6)
∂

∂t
φt(x) = ε2

∂2

∂x2
φt(x) + φt(x) − φ3

t (x) + σ ξt(x),

where ε2 = k/N2, σ = (2Δx/β)1/2, and x ∈ [0, 1]. In the SPDEs, a configuration is a
continuous function of x, φt(x), obtained by fixing t in one realization. At most values of x,
φt(x) is close to either −1 or +1. A narrow region where the configuration crosses through 0
from below is called a kink; one where it crosses from above is called an antikink. The width
of a kink in the φ4 SPDE is order 1; in the Allen–Cahn case it is proportional to ε [10, 11, 12].
We shall concentrate on the φ4 SPDE below.

After a sufficiently long time, in both the continuum SPDEs and the discrete system, a
statistically steady state is attained and maintained by a balance between continual nucleation
of new domains and the diffusion and annihilation of existing ones [13, 14, 3]. Many steady-
state quantities, such as the mean number of kinks per unit length, can be calculated from

http://www.maths.leeds.ac.uk/Applied/stochastic/chain.htm
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the invariant density of the SPDE, by evaluating the partition function [15, 16, 17]. Further
insight has recently been obtained by demonstrating the equivalence between the invariant
density of paths of the SPDE, on the spatial domain [0, L], and the density of paths of a
suitable bridge process [18, 19], with time in the interval [0, L].

Simple models, in which kinks and antikinks are nucleated with a fixed separation, diffuse
and annihilate on collision and give insight into the dynamics that produces and maintains
the stationary density [20, 21, 22, 23]. If kink-antikink dynamics in our symmetric system is
described in terms of a potential as a function of separation, a nucleation event is a fluctuation-
induced escape from a well to a flat region. Büttiker and Christen calculated the nucleation
rate by introducing a parameter analogous to a nucleus size s [20]. The mean kink lifetime is
proportional to s and the nucleation rate is inversely proportional to s, so that the steady-state
kink density is independent of s. More detailed models also calculate the distribution of kink
lifetimes [3, 21, 23]. The initial separation at the instant of nucleation is an input parameter
in these simple models; in order to calculate the appropriate value in the SPDE dynamics, it
is necessary to return the focus to the details of the nucleation process.

1.1. The energy landscape. In chains sufficiently short that transitions are collective,
the complete passage time is most conveniently calculated by considering the energy function
of the discretized system:

(1.7) E(Φt(1), . . . ,Φt(N)) =

N∑
i=1

(
V (Φt(i)) +

1

2
k (Φt(i) − Φt(i− 1))2

)
.

The initial condition is at the energy minimum: E(−1, . . . ,−1) = −N/4. If the transition is
collective, crossing the saddle point on the energy surface at the origin E(0, . . . , 0) = 0 involves
surmounting an energy barrier 1

4N ; the mean time for such a transition is proportional to
exp(1

4βN). On the other hand, if only a part of the system makes the initial transition, the
energy barrier is less than 1

4N ; the nucleation event produces a region with two boundaries.
In the latter case, which we call the “nucleation-diffusion regime,” it is convenient to calculate
the nucleation rate working in the continuum limit, (1.4), where the analogue of (1.7) is the
energy functional [4]

(1.8) E [φt] =

∫ (
V (φt) +

1

2

(
∂

∂x
φt

)2
)

dx.

The energy of a kink is Ek = E [ψ] =
√

8/9 [1]. A kink or antikink has energy E0; a transition
creates one of each and therefore has energy barrier 2E0 and characteristic time exp(2E0

Θ )
[24, 25, 26, 27, 15, 4]. The numerical value of the kink energy depends on the precise potential
used, but the qualitative dynamics requires only a double-well potential with wells of equal
depth. It is also possible to study SPDEs where V (φ) has two (or more) wells of unequal
depth, so that there are stable and metastable states. Then, one can base calculations of
nucleation rates on the idea of a critical nucleus or droplet [27, 28, 29, 30, 31], an extremum
of (1.8), whose length diverges as the asymmetry between wells vanishes.

In an interval containing only one kink, centered at Xt, the configuration can be writ-
ten as φt(x) = ψ(x − Xt) + (Θ/Ek)

1/2 χ(x − Xt), where ψ is a smooth function, satisfying
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V ′(ψ) + ψ′′(x) = 0, with ψ(x) → ±1 as x → ±∞, that gives the shape of an unperturbed
kink. The fluctuating stochastic field χ then has stationary statistical properties [32, 33].

The idea that collective transitions are favored in small domains but another mechanism is
at work in larger domains has also emerged from numerical and analytical studies of minimum-
action transition paths [4, 34, 6, 5]. Optimal transitions consist of nucleation events followed
by propagation of domain walls, with behavior depending on L and on the (periodic, Dirichlet,
or Neumann) boundary conditions.

In this work we locate, by simple numerical experiments, the crossover from collective
transitions to nucleation-diffusion behavior. In the latter regime, the characteristic width
of newly nucleated regions is b = 8E0 and the complete passage time is proportional to
exp(2E0/Θ). This value of b, obtained from the slope of the logarithm of the complete passage
time versus Θ−1, is consistent with numerical observations of the critical value of L at which
the crossover from collective to nucleation-diffusion behavior is found, and with the long-held
hypothesis that the separation between a kink and an antikink at nucleation is several times
the kink width.

Systematic computational studies of the φ4 SPDE, in the limit L → ∞, require low tem-
peratures in order to unambiguously identify kinks; they are computationally costly because
the steady-state density of kinks decreases exponentially with temperature (necessitating very
long chains) and the equilibration time increases exponentially with temperature (necessitat-
ing very long runs). Our aim in this paper is complementary to such studies. We focus on the
dynamics of small- to medium-length chains in order to distinguish the regimes of collective
transitions and of nucleation-diffusion. Although a first-principles theory of nucleation is the
most difficult theoretical challenge, numerical studies that focus only on the measurement of
the nucleation rate have the advantage of not needing to first attain a steady state.

In section 2 we define the complete passage time, our adopted measure of the mean time
for the whole chain to make the transition from one well to another. The key observation is
that there is a critical number of particles in the chain, below which the complete passage
time increases exponentially and above which it increases more slowly. In the course of
deriving theoretical expressions for the complete passage time, we are led to consider the
short-range interaction between kinks and antikinks. This is examined in a second set of
numerical experiments, differing from the first in the initial conditions, which now have a kink
and an antikink relatively close together. Also, in section 2, we use numerical results to make
an estimate of the typical separation, b, of a kink-antikink pair at nucleation. In section 3 we
report on numerical experiments where the distribution of the “center-of-mass” of the chain is
measured by means of long numerical runs and displayed in terms of an “effective potential”
that has the Büttiker–Christen form of two wells separated by a long flat region.

2. Complete passage time. Our first set of numerical experiments measures the time
taken for all particles to make the transition from one minimum to the other. We choose the
initial condition Φ0(i) = −1, i = 1, . . . , N , and denote

(2.1) h = inf

{
t > 0 :

N∑
i=1

Φt(i) = N

}
.

The complete passage time, τ , is defined as the mean of h: τ = E(h).
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Figure 1. Realizations of the coupled-particle system with β = 6 and k = 1, illustrating the two routes to
a complete passage of the chain from one well to another. Upper timeseries: N = 5, collective regime; Lower
timeseries: N = 50, nucleation-diffusion regime.

In Figure 1, the sum
∑

i Φt(i) is plotted as a function of time for two realizations. In the
top part of the figure, N = 5, β = 6, and k = 1. The transition from one well to the other is
collective; all particles in the chain make the transition close together. The second realization,
shown in the lower part of the figure, has N = 50, β = 6, and k = 1. Several episodes are
visible where the sum increases and then falls back to its starting level. These correspond to
nucleation-diffusion episodes: a group of nearby particles makes the transition to the upper
well, creating a region with two boundaries. The boundaries diffuse until the region either
disappears or encompasses the whole chain.

Figure 2 shows τ versus N for k = 1 and four values of β. A data point typically
corresponds to 103 realizations. We observe, in numerical experiments of this type, that
the critical number of particles, at which the crossover from collective to nucleation-diffusion
behavior is found, is independent of β if k is fixed. In Figure 3, three graphs of τ against N
are displayed with different values of k; all have β = 6. The critical number of particles is
seen to be an increasing function of k.

The existence of the SPDE limit implies that the passage time should approach a limit as
k → ∞ (Δx → 0), with L = N/

√
k fixed. In Figure 4, the mean passage time is plotted against

L, using the scaled variables (1.3). Each data set has the same value of Θ = (β
√
k)−1. The

figure shows a much greater degree of universality than we expected: the data corresponding
to large and small values of k are difficult to distinguish on the scale of the figure.

2.1. Analytical expressions. We develop our analytical approximations in the continuum
limit using the scaled variables (1.3). Then the complete passage time, τ(Θ, L), is a function
of the temperature and the length of the domain.

Transitions are collective in sufficiently short chains because there is a single, well-defined,
saddle point on the energy surface, with the whole chain at 0, separating two global minima,
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Figure 2. Complete passage time versus number of particles for k = 1. The critical number of particles is
independent of β. (Statistical errors are approximately the symbol sizes.)

Figure 3. Complete passage time versus number of particles for β = 6. The critical number of particles is
an increasing function of k.

with the whole chain at ±1. The probability per unit time of a transition over the saddle point
is calculated by constructing a nonequilibrium steady-state density which is the equilibrium
density multiplied by a function of the distance along a line connecting the minima via the
saddle [24, 25, 26]. As Θ → 0 and L → 0, τ(Θ, L) → τc(Θ, L), where

(2.2) τc(Θ, L) =
(
Ac(L) + O(Θ−1)

)
exp

(
1

4

L

Θ

)
.
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Figure 4. Complete passage time versus L for Θ = 1
8
. The values of k = 1, k = 4, and k = 16 correspond

to Δx = 1, Δx = 0.5, and Δx = 0.25. The solid line is 4π exp(− L√
2
) exp( 1

4
L
Θ

), valid for collective transitions.

The exponent in (2.2) is the difference between the energy at the saddle point and that at
the minima; the prefactor Ac(L) is sometimes referred to as a frequency factor. Its square
is the ratio of the products of the eigenvalues corresponding to the N stable directions at a
minimum and the N −1 stable directions at the saddle point. Interestingly, the ratio diverges
at L = 2π [34, 12, 35], corresponding to a breakdown of the collective-transition hypothesis.
For our purposes, let us write

(2.3) τ(Θ, L) =
(
A(L) + O(Θ−1)

)
exp

(
f(L)

4Θ

)
,

with A(L) and f(L) to be determined, in the collective regime, the nucleation-diffusion regime,
and the crossover region between the two. According to (2.2), as L → 0, f(L)/L → 1. We
conjecture that, as L increases, f(L) → b and A(L) → A∞ for constants b and A∞ to be
determined. This choice of functional form will be justified a posteriori by comparison with
numerical data.

Next, consider the situation for L > b. Here, we make the hypothesis that nucleation
events, equally likely to happen anywhere, always produce a region of width b. In other words,
there is a constant probability per unit length and time, Γ = (bτn(Θ, b))−1, of a nucleation
event. Let the probability that a region of width x grows to encompass the whole domain be
q(x, L). Then

τ(Θ, L) =
b

L

1

q(b, L)
(τn(Θ, b) + τd(Θ, b, L)) , L > b,

where τd(Θ, b, L) is the mean time spent during a diffusion episode. It is easy to calculate an
upper limit on τd(Θ, b, L) by ignoring the short-range kink-antikink attraction, assuming that
each diffuses with diffusivity Θ/E0 [32, 36]:
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τd(Θ, b, L) <
bLE0

4Θ
.

The strict limit L → ∞ requires a statistical theory of multiple kinks and antikinks and a
different stopping criterion than (2.1); it is not the subject of this article. We concentrate on
small- to medium-length domains that do not contain multiple kink-antikink pairs. In partic-
ular, we choose L sufficiently small that the probability of a second nucleation event during
a diffusion episode is negligible, which is precisely the condition that τn(Θ, b) � τd(Θ, b, L).
The complete passage time then simplifies to

(2.4) τ(Θ, L) � b

L

τn(Θ, b)

q(b, L)
, b � L � L∗,

where L∗ = 4Θ
bE0

exp(b/4Θ). At the temperature ranges of interest here, L∗ is many orders of
magnitude greater than b.

2.2. Short-range kink-antikink interaction. To proceed in the calculation of the complete
passage time, we need to consider the function q(b, L). If we were to ignore the attraction
between kinks and antikinks, their motion would be purely diffusive and the probability that
a region of width x grows to encompass the entire domain of length L would be equal to
the probability that a Brownian motion, started at x > 0, reaches L before 0. Thus, at first
approximation, q(x, L) � q0(x, L), where

(2.5) q0(x, L) =
x

L
.

In order to ascertain the effect on q(x, L) of the short-term interaction between a kink and an
antikink, we performed a set of numerical experiments with initial conditions corresponding
to a domain of width x:

Φ0(i) =

{
1, i ≤ n,
−1, n < i ≤ N,

where n = x/
√
k. Realizations were stopped the first time that either

∑N
i=1 Φt(i) = 0 or∑N

i=1 Φt(i) = N . The probability of the latter outcome is plotted as a function of L in
Figure 5. Based on these numerical data, we devised the following approximation:

(2.6) q(b, L) � b− a

L− 2a
.

The intuitive motivation for the form (2.6) is that two domain walls experience a strong
attraction at separations less than a. The lines in Figure 5 are (2.5) and (2.6), using the
least-squares best fit value of a, which yielded a = 5.4 ± 0.1.

With (2.6), we have the following expression for the complete passage time in the nucle-
ation-diffusion regime as Θ → 0:

(2.7) τ(Θ, L) → 1 − 2a/L

1 − a/b
A∞ exp

(
1

4

b

Θ

)
.
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Figure 5. The effect of the short-range kink-antikink attraction. The probability that an initial region of
width x = 10 grows to encompass the entire domain of length L is plotted against L for k = 1, k = 4, and
k = 9. In all cases Θ = 0.01. The dotted lines are (2.5), which would hold if there were no attraction, and
(2.6).

2.3. Estimating the width b. By comparing the expression (2.7) with numerical data, we
can estimate the value of the parameter b, the characteristic width of nucleation regions. In
particular,

(2.8) τ(Θ, L) → A∞
1 − a/b

exp

(
1

4

b

Θ

)
, b � L � L∗.

That is, the logarithm of the complete passage time is a linear function of Θ−1. The slope is
proportional to b as L/b increases.

Figure 6 contains four plots summarizing numerical data with L = 5, L = 10, L = 20, and
L = 30. The numerical runs were carried out with k = 4. For sufficiently small L, transitions
are collective and (2.2) holds, so that the slope of a graph of ln τ versus Θ−1 is proportional
to L. The first set of numerical data, with L = 5, falls into this regime. As a function of L,
the slope does not increase indefinitely but approaches a well-defined limit. A least-squares
fit of the numerical data for large L gives b = 7.4± 0.1. This value is consistent with the knee
in our numerical curves of complete passage time versus L and with the following argument.

The complete passage time is proportional to exp(1
4
L
Θ) for sufficiently small L and pro-

portional to exp(2E0
Θ ) for long chains. With the ansatz τ ∝ exp(1

4
f(L)
Θ ),

• f(L)/L → 1 as L → 0, and
• f(L) → 8E0 when b � L � L∗,

thus identifying the characteristic mean width of newly nucleated regions as b = 8E0. (In the
Allen–Cahn scaling (1.6), the characteristic width of a newly nucleated region is 8E0ε.)
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Figure 6. Estimating the width, b, from numerical data. For sufficiently small L, the complete passage
time of a domain length L is proportional to exp( 1

4
L
Θ

); when L � b, it is proportional to exp( 1
4

b
Θ

). The solid
line, a least-squares fit to the L = 40 data, has slope corresponding to b = 7.4.

3. Effective potential. Chains, whatever their length, eventually reach a stationary state
where transitions are equally frequent in either direction. In the final set of numerical experi-
ments reported here, we exploit the stationarity of the long-term dynamics by considering the
“center-of-mass” process, defined as

(3.1) φt =
1

N

N∑
i=1

Φt(i),

and we construct its stationary density. In practice, the time for the system to explore all
regions of state space thoroughly is several orders of magnitude greater than the complete
passage time. The stationary density of the center-of-mass is denoted

(3.2) ρ(φ) = lim
t→∞

d

dx
P[φt < φ];

the effective potential, Veff(φ), is defined via ρ(φ) = e−Veff(φ).

At parameter values such that transitions are collective, the effective potential is not
dissimilar to V (φ). In the regime of nucleation-diffusion behavior, on the other hand, a
long plateau appears in the effective potential, terminated at either end by a narrow well.
See Figure 7. The wells are approximately quadratic near the minima, at φ = ±(1 − 1

2
Θ
E0

)

[37, 38, 39]; the width of each well is (Θ/(3N))1/2 [37].

The effective potential takes a pleasingly universal form under the scaling (1.3). In Fig-
ure 8, we plot numerical results, all obtained on chains with L = 100 and Θ = 1

8 . The three
values of k correspond to N = 100, N = 200, and N = 400.



FROM COLLECTIVE TRANSITIONS TO NUCLEATION-DIFFUSION 217

Figure 7. Effective potential: Numerical results with k = 1. Solid lines: β = 8. Dotted lines: β = 10. On
the left, N = 5 and transitions are collective. On the right, N = 100 and the chain exhibits nucleation-diffusion
behavior.

Figure 8. The effective potential for three values of k, with Θ = 1
8

and L = 100. The wide central plateau
corresponds to the freedom of a kink-antikink separation to wander over the majority of the length of the chain
without noticeably affecting the total energy.

The effective potentials, in Figure 8 and on the right in Figure 7, bear a striking resem-
blance to those of Büttiker and Christen [14, 20], introduced to provide an intuitive under-
standing of the dynamics of the nucleation-diffusion regime. A nucleation event is imagined
as an exit from a potential well to a long flat region, which corresponds to the freedom of the
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kink and antikink, once they have attained a certain separation, to wander over large parts
of the chain without affecting the total energy of the configuration. The potential well at
the opposite end of the flat region corresponds to the possibility that the nucleated region
grows to encompass the whole domain; the kink and antikink meet again and annihilate.
Our numerical experiments construct, in a systematic manner, a potential with these useful
illustrative properties.
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Abstract. We consider an important class of nonsymmetric networks that lies between the class of general
networks and the class of symmetric networks, where group theoretic methods still apply—namely,
networks admitting “interior symmetries.” The main result of this paper is the full analogue of
the equivariant Hopf theorem for networks with symmetries. We extend the result of Golubitsky,
Pivato, and Stewart [Dyn. Syst., 19 (2004), pp. 389–407] to obtain states whose linearizations on
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1. Introduction. Recently, a new framework for the dynamics of networks has been pro-
posed, with particular attention to patterns of synchrony and associated bifurcations. See
Stewart, Golubitsky, and Pivato [11], Golubitsky, Pivato, and Stewart [4], Golubitsky, Nicol,
and Stewart [3], and Golubitsky, Stewart, and Török [9]. Here, a network is represented by a
directed graph whose nodes and edges are classified according to associated labels or “types.”
The nodes (or “cells”) of a network G represent dynamical systems, and the edges (“arrows”)
represent couplings. Cells with the same label have “identical” internal dynamics; arrows
with the same label correspond to identical couplings. The “input set” of a cell is the set of
edges directed to that cell. Label-preserving bijections between input sets of cells are called
“input isomorphisms,” and they capture the “local” symmetries of the network. The set of all
these local symmetries has the structure of a groupoid. (A groupoid is an algebraic structure
similar to a group, except that products of elements may not always be defined.)

Coupled cell systems are dynamical systems compatible with the architecture or topology
of a directed graph representing the network. Formally, they are defined in the following way.
Each cell c is equipped with a phase space Pc, and the total phase space of the network is
the Cartesian product P =

∏
c Pc. A vector field f is called “admissible” if its component fc

for cell c depends only on variables associated with the input set of c (domain condition) and
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if its components for cells c, d that have isomorphic input sets are identical up to a suitable
permutation of the relevant variables (pull-back condition).

In the study of network dynamics there is an important class of networks, namely, networks
that possess a group of symmetries. In this context there is a group of permutations of the
cells (and arrows) that preserves the network structure (including cell-types and arrow-types),
and its action on P is by permutation of cell coordinates. Moreover, the coupled cell systems
(ODEs) are of the form

dx

dt
= f(x),

where the vector field f is smooth (C∞) and satisfies

f(γx) = γf(x) ∀ x ∈ P, γ ∈ Γ.

That is, f is “equivariant” under the action of the group Γ on phase space P .
The theory of equivariant dynamical systems (see Golubitsky and coworkers [6, 8]) can be

applied to such dynamical systems. In this theory, a central role is played by the “fixed-point
spaces” of subgroups Σ ⊆ Γ, defined by

Fix(Σ) = {x ∈ P : σx = x ∀ σ ∈ Σ}.

Fixed-point spaces have the important property of flow invariance: they are invariant under
every smooth equivariant vector field f , so that

f(Fix(Σ)) ⊆ Fix(Σ).

See [6, Lemma XIII 2.1] or [8, Theorem 1.17] for the simple proof and the implications for
symmetry-breaking. In this context, there are two main local bifurcation theorems. The
equivariant branching lemma (see Golubitsky, Stewart, and Schaeffer [8, Theorem XIII 3.3])
proves the existence of certain branches of symmetry-breaking steady states; the equivariant
Hopf theorem (see [8, Theorem XVI 4.1]) proves the existence of certain branches of spatio-
temporal symmetry-breaking time-periodic states.

In between the class of general networks and the class of symmetric networks lies an
interesting class of nonsymmetric networks, where group theoretic methods still apply, namely,
networks admitting “interior symmetries.” In this case there is a group of permutations of a
subset S of the cells (and edges directed to S) that partially preserves the network structure
(including cell-types and edge-types), and its action on P is by permutation of cell coordinates.
In other words, the cells in S together with all the edges directed to them form a subnetwork
which possesses a nontrivial group of symmetry ΣS . For example, network G1 (Figure 1 (left))
has exact S3-symmetry, whereas network G2 (Figure 1 (right)) has S3-interior symmetry. This
notion was introduced and investigated by Golubitsky, Pivato, and Stewart [4]. The presence
of interior symmetries places some restrictions on the structure of the network.

The local bifurcations from a synchronous equilibrium can be classified into two types:
“synchrony-breaking” bifurcations and “synchrony-preserving” bifurcations. The synchrony-
breaking bifurcations occur when a synchronous state loses stability and bifurcates to a state
with less synchrony. Such bifurcations can be considered to be generalizations of symmetry-
breaking bifurcations in symmetric coupled cell systems. Golubitsky, Pivato, and Stewart [4]
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(left) G1 (right) G2

Figure 1. (Left) Network G1 with exact S3-symmetry. (Right) Network G2 with S3-interior symmetry.

provided analogues of the equivariant branching lemma and the equivariant Hopf theorem
for coupled cell systems with interior symmetries. The analogue of the equivariant branching
lemma is a natural generalization of the symmetric case, but the analogue of the equivariant
Hopf theorem has novel and rather restrictive features. In particular, instead of proving
the existence of states with certain spatio-temporal symmetries, they prove the existence of
states whose linearizations on certain subsets of cells, near bifurcation, are superpositions of
synchronous states with states having spatial symmetries.

The main result of this paper is the full analogue of the equivariant Hopf theorem for
networks with symmetries (Theorem 4.8). We extend the result of Golubitsky, Pivato, and
Stewart [4] to obtain states whose linearizations on certain subsets of cells, near bifurcation,
are superpositions of synchronous states with states having spatio-temporal symmetries, that
is, corresponding to “interiorly” C-axial subgroups of ΣS × S1. This new version of the Hopf
theorem with interior symmetries includes the previous version as a special case and is in
complete analogy with the equivariant Hopf theorem (see Theorem 4.8). Our proof uses a
modification of the Lyapunov–Schmidt reduction to arrive at a situation where the proof
of the standard Hopf bifurcation theorem can be applied. This completes the program of
generalizing the two main results from equivariant bifurcation theory to the class of networks
with interior symmetries.

Structure of the paper. Section 2 recalls the formal definition of a coupled cell network
and the associated dynamical systems, and states some basic features, including the concept
of a balanced equivalence relation (coloring). We also discuss the symmetry group of a net-
work. Section 3 recalls the definition of interior symmetry given by Golubitsky, Pivato, and
Stewart [4] and gives an equivalent condition, in terms of symmetries of a subnetwork, which
in some cases (no multiple edges and no self-connections) amounts to finding the symmetries
of the subnetwork. We also analyze the structure of these networks and discuss some features
of the admissible vector fields associated with such a class of networks. Section 4 recalls the
notion of synchrony-breaking bifurcation in coupled cell networks. Then we specialize to net-
works with interior symmetries where group theoretic concepts play a significant role, focusing
on the important case of codimension-one synchrony-breaking bifurcations. The main part of
this section gives the statement and proof of the interior symmetry-breaking Hopf bifurcation
theorem (Theorem 4.8) for networks with interior symmetries. We illustrate all the concepts
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and results by a running example of the simplest network with S3-interior symmetry and the
closely related network with exact S3-symmetry (see Figure 1). Finally, we present a numerical
simulation of the states provided by Theorem 4.8 in the case of our running example.

2. Network formalism. First, we recall the formal definition of a coupled cell network
and the associated dynamical systems. For a survey, overview, and examples, see [7]. The
initial definition of coupled cell network [11] was modified in [9] to permit multiple arrows
and self-connections, which turns out to have major advantages. More recently, Stewart [10]
extended the formalism introduced in [9] to include a large class of infinite networks—the
so-called networks of finite type.

2.1. Coupled cell networks. In this paper we consider finite networks and so employ the
“finite multiarrow” formalism for consistency with the existing literature.

Definition 2.1 (see [9]). A coupled cell network G comprises the following:
(a) A finite set C of nodes or cells.
(b) An equivalence relation ∼C on cells in C, called cell-equivalence. The type or cell

label of cell c is its ∼C-equivalence class.
(c) A finite set E of edges or arrows.
(d) An equivalence relation ∼E on edges in E, called edge-equivalence or arrow-equiva-

lence. The type or coupling label of edge e is its ∼E-equivalence class.
(e) Two maps H : E → C and T : E → C. For e ∈ E we call H(e) the head of e and T (e)

the tail of e.
We also require a consistency condition:
(f) Equivalent arrows have equivalent tails and heads:

H(e1) ∼C H(e2), T (e1) ∼C T (e2)

for all e1, e2 ∈ E with e1 ∼E e2.
Example 2.2. We can represent abstract networks by labeled directed graphs. Figure 1

shows two examples. Here the node labels, drawn as the three circles and the square, indicate
the cells; the symbols show that cells 1, 2, 3 have the same type, whereas cell 4 is different, in
both cases. In the network G1 there are three types of edge label, whereas in the network G2

there are five types of edge label, drawn as different styles of arrows. The tail and head of each
edge is, respectively, indicated by the absence or presence of a tip on one end of the arrow.
When an arrow between cells c and d is drawn with tips at both ends, then it represents two
arrows of the same type with opposite orientation between cells c and d.

2.2. Input sets and the symmetry groupoid. Associated with each cell c ∈ C is a canon-
ical set of edges, namely, those that represent couplings into cell c, as described next.

Definition 2.3 (see [9]). If c ∈ C, then the input set of c is the finite set of edges directed
to c,

(2.1) I(c) = {e ∈ E : H(e) = c}.

Definition 2.4 (see [9]). The relation ∼I of input equivalence on C is defined by c ∼I d if
and only if there exists a bijection

(2.2) β : I(c) → I(d)
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such that for every i ∈ I(c),

(2.3) i ∼E β(i).

Any such bijection β is called an input isomorphism from cell c to cell d. The set B(c, d)
denotes the collection of all input isomorphisms from cell c to cell d. The union

(2.4) BG =
⋃

c,d∈C
B(c, d)

is the symmetry groupoid of the network G. A coupled cell network is homogeneous if all
input sets are isomorphic.

The groupoid operation on BG is composition of maps, and in general the composition βα
is defined only when α ∈ B(a, b) and β ∈ B(b, c) for cells a, b, c. This is why BG need not be
a group.

Example 2.5. In our running examples, shown in Figure 1, it is easy to see that both
networks have only two input isomorphism classes of cells: {1, 2, 3} and {4}. The input sets
of cells 1, 2, 3 are isomorphic, since each one of them contains three edges, two of them drawn
as a solid arrow with a circle in the tail and one of them drawn as a dashed arrow with a
square in the tail.

2.3. Admissible vector fields. We now explain how to interpret such diagrams as Figure 1
as being representative of a class of vector fields.

For each cell in C choose a cell phase space Pc, which we assume to be a nonzero finite-
dimensional real vector space. We require

c ∼C d ⇒ Pc = Pd,

and in this case we employ the same coordinate systems on Pc and Pd. The total phase space
is then

P =
∏
c∈C

Pc

with a cell-based coordinate system

x = (xc)c∈C .

If D ⊆ C is any finite set of cells, then we write

PD =
∏
d∈D

Pd

and

xD = (xc1 , . . . , xc�),

where xc ∈ Pc.

For any β ∈ B(c, d) we define the pull-back map

β∗ : PT (I(d)) → PT (I(c))
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by

(2.5) (β∗z)T (i) = zT (β(i))

for all i ∈ I(c) and z ∈ PT (I(d)).

We use pull-back maps to relate different components of a vector field associated with
a given coupled cell network. Specifically, the class of vector fields that are encoded by a
coupled cell network is given by the following definition.

Definition 2.6 (see [9]). A map f : P → P is G-admissible if the following hold:

(a) Domain condition: For all c ∈ C the component fc(x) depends only on the internal
phase space variables xc and the coupling phase space variables xT (I(c)); that is, there

exists f̂c : Pc × PT (I(c)) → Pc such that

(2.6) fc(x) = f̂c(xc, xT (I(c))).

(b) Pull-back condition: For all c, d ∈ C and β ∈ B(c, d)

(2.7) f̂d(xd, xT (I(d))) = f̂c(xd, β
∗xT (I(d)))

for all x ∈ P .

Example 2.7. For the networks G1 and G2 of Figure 1 the cell phase spaces P1, P2, and P3

are identical and equal to Rk, whereas P4 = Rl. The general form of the admissible vector
fields (ODEs) encoded by the network G1 is

ẋ1 = f(x1, x2, x3, x4),

ẋ2 = f(x2, x3, x1, x4),(2.8)

ẋ3 = f(x3, x1, x2, x4),

ẋ4 = g(x4, x1, x2, x3),

where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl, f : R3k × Rl → Rk is a smooth map invariant
under permutation of the second and third arguments, and g : R3k × Rl → Rl is a smooth
map invariant under any permutation of the last three arguments. The general form of the
admissible vector fields (ODEs) associated with the network G2 is

ẋ1 = f(x1, x2, x3, x4),

ẋ2 = f(x2, x3, x1, x4),(2.9)

ẋ3 = f(x3, x1, x2, x4),

ẋ4 = g(x4, x1, x2, x3),

where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl, f : R3k × Rl → Rl is a smooth map invariant under
permutation of the second and third arguments, and g : R3k × Rl → Rl is a general smooth
map.
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2.4. Balanced equivalence relations. An equivalence relation �� on C determines a unique
partition of C into ��-equivalence classes, which can be interpreted as a coloring of C in which
��-equivalent cells receive the same color. Conversely, any partition (coloring) determines a
unique equivalence relation. The corresponding polydiagonal is

(2.10) ��� = {x ∈ P : c �� d ⇒ xc = xd}.

A subspace V of P is called admissibly flow-invariant if f(V ) ⊂ V for all admissible vector
fields f on P .

Definition 2.8 (see [9]). An equivalence relation �� on C is balanced if for every c, d ∈ C
with c �� d there exists β ∈ B(c, d) such that T (i) �� T (β(i)) for all i ∈ I(c). The associated
coloring is called a balanced coloring. In particular, B(c, d) 
= ∅ implies c ∼I d. Hence,
balanced equivalence relations refine input equivalence.

A crucial property of balanced equivalence relations is that they define admissibly flow-
invariant subspaces, and conversely the following holds.

Theorem 2.9 (Stewart, Golubitsky, and Pivato [11]). Let �� be an equivalence relation on a
coupled cell network. Then ��� is admissibly flow-invariant if and only if �� is balanced.

The proof of the above result for finite networks is given in [9, 11] and for networks of
finite type in [10]. The dynamical implication of such flow-invariance is that �� determines a
robust pattern of synchrony : there exist trajectories x(t) of the ODE such that

c �� d ⇒ xc(t) = xd(t) ∀ t ∈ R.

Such trajectories arise when initial conditions x(0) lie in ���. Then the entire trajectory,
for all positive and negative time, lies in ��� and is a trajectory of the restriction f |��� .
The associated dynamics can be steady-state, periodic, even chaotic, depending on f and its
restriction to ���. An example of synchronized chaos generated by this mechanism can be
found in [7].

Since there is always a canonical balanced relation ∼I on every network, let �I denote
the polydiagonal subspace of P associated with the input equivalence relation ∼I , that is,

�I = {x ∈ P : c ∼I d ⇒ xc = xd}.

Then �I is a flow invariant subspace. Solutions of admissible vector fields contained in �I

represent the states of highest degree of synchrony allowed by the network.
Remark 2.10. Whenever self-connections or multiple arrows do not occur it will be conve-

nient to revert to the formalism of [11], but now considered as a specialization of the multiarrow
formalism. Since no two distinct arrows have the same head and tail, we can identify an ar-
row e with the pair of cells (T (e),H(e)). Now the set E of arrows identifies with a subset of
C × C \ {(c, c) : c ∈ C}. Similarly the input set I(c) can be identified with the set of all tail
cells of arrows e that have c as a head cell.

Example 2.11. We continue with our running examples, the networks G1 and G2 of Figure 1.
There is an equivalence relation �� for which 1 �� 2; its equivalence classes are {1, 2}, {3},
and {4}. The corresponding polydiagonal is

��� = {x ∈ P : x1 = x2} = {(x, x, y, z)}.
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On this subspace the differential equations become

ẋ = f(x, x, y, z),

ẋ = f(x, y, x, z),(2.11)

ẏ = f(y, x, x, z),

ż = g(z, x, x, y).

Since the first two equations are identical (recall that the bar over x, y means that they can be
interchanged), ��� is invariant under all admissible vector fields. The relation �� is balanced.
The only condition to verify is that cells 1 and 2, which are ��-equivalent but distinct, have
input sets that are isomorphic by an isomorphism that preserves ��-equivalence classes for
both networks. In both networks the input sets are

I(1) = {(2, 1), (3, 1), (4, 1)} and I(2) = {(1, 2), (3, 2), (4, 2)},

where (c, d) denotes an arrow with tail c and head d (see Remark 2.10). The bijection β :
I(1) → I(2) with β((2, 1)) = (1, 2), β((3, 1)) = (3, 2), and β((4, 1)) = (4, 2) is an input
isomorphism that preserves ��-equivalence classes since 1 �� 2, 3 �� 3, and 4 �� 4. That is, �� is
a balanced relation as claimed. There are two other balanced equivalence relations (different
from ∼I) on the networks G1 and G2. In one of them the equivalence classes are {2, 3}, {1},
and {4}. In the other the equivalence classes are {1, 3}, {2}, and {4}.

2.5. Symmetry groups of networks. We now consider symmetries of networks in the
group theoretic (“global”) sense.

Definition 2.12 (see [1]). Let G be a network. A symmetry of G consists of a pair of bi-
jections γC : C → C and γE : E → E, where γC preserves input equivalence and γE preserves
edge equivalence; that is, for all c ∈ C and e ∈ E,

(2.12) γC(c) ∼I c and γE(e) ∼E e.

In addition, the two bijections must satisfy the consistency conditions

(2.13) γC(H(e)) = H(γE(e)) and γC(T (e)) = T (γE(e))

for all e ∈ E. The set of all γ = (γC , γE) forms a finite group Aut(G) called the symmetry
group of the network of G.

Observe that a symmetry γ preserves input sets in a natural sense. Because of the way
input sets are defined in the multiarrow formalism, the precise relation is

γE(I(c)) = I(γC(c)),

where γ = (γC , γE) ∈ Aut(G).
Remark 2.13. When the network G has no self-connections and multiarrows there is a

simplification of the notion of symmetry due to the following observation. Given a vertex
permutation γC , there is a unique edge permutation γE satisfying the consistency condition
(2.13); that is, γE is implicitly defined by γC since, by Remark 2.10, each arrow e can be
identified with a pair of cells (T (e),H(e)). Thus a symmetry of G is given by a permutation
γ of C such that
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(a) γ(c) ∼I c for all c ∈ C.
(b) (γ(a), γ(b)) ∈ E ⇔ (a, b) ∈ E .
(c) (γ(a), γ(b)) ∼E (a, b) ∀ (a, b) ∈ E .

In this case, the group Aut(G) of symmetries of the network G is a subgroup of the group
Sym(C) of permutations on the set of cells of the network. We shall adopt this convention
throughout the remainder of the paper whenever the network under consideration has no
self-connections and multiarrows.

Example 2.14. Since the networks G1 and G2 of our running example of Figure 1 do not
have multiple arrows and self-connections, Remark 2.13 applies. The group S3 ⊂ S4 consisting
of the transpositions (1 2), (1 3), (2 3), the 3-cycle permutations (1 2 3), (1 3 2), and the identity
is the symmetry group of the network G1. Observe that cell 4 is fixed by the symmetry group.
On the other hand, the network G2 has only the identity permutation as a symmetry because
the arrows (1, 4), (2, 4), and (3, 4) are all different amongst each other.

This last example shows that the definition of symmetry of a network is very rigid. In
the next section we will generalize the definition of symmetry of a network by introducing
the notion of interior symmetry. In this new context the network G2 of our example admits
an action of the permutation group S3 as a group of interior symmetries. This corresponds
to the symmetry group of the subnetwork of G2 obtained by ignoring the arrows (1, 4), (2, 4),
and (3, 4) of G2.

3. Interior symmetry. We present the notion of interior symmetry following [4] and give
an alternative characterization in terms of the symmetries of a subnetwork.

3.1. Interior symmetry groups of networks.
Definition 3.1 (see [4]). Let G be a coupled cell network. Let S ⊆ C be a subset of cells,

and let I(S) = {e ∈ E : H(e) ∈ S}. A pair of bijections σC : C → C and σE : E → E is an
interior symmetry of G (on the subset S) if the following hold:

(a) σC : C → C is an input equivalence-preserving permutation which is the identity map
on the complement C \ S of S in C,

(b) σE : E → E is an edge equivalence-preserving permutation which is the identity map
on the complement E \ I(S) of I(S) in E,

(c) the consistency condition

(3.1) σC(H(e)) = H(σE(e)) and σC(T (e)) = T (σE(e))

is satisfied for every e ∈ I(S).
The set of all interior symmetries of G (on the subset S) forms a finite group ΣS called the
group of interior symmetries of G (on the subset S).

Note that in Definition 3.1 if S = C, then ΣS = Aut(G). Hence, the definition of interior
symmetry of a network is a generalization of a symmetry of a network. That is why we refer to
the elements of Aut(G) as global symmetries of G. The most interesting case is when Aut(G)
is trivial but ΣS is nontrivial for some S.

Example 3.2. We continue with our running example, the two networks G1 and G2 of
Figure 1. We have seen that the network G1 is S3-symmetric and the network G2 has only the
trivial symmetry. However, the group of permutations

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
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is the group of interior symmetries of the network G2 on the subset S = {1, 2, 3}. Observe
that all elements of S3 fix cell 4 and

I(S) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (4, 1), (4, 2), (4, 3)}.

If we assume that the permutations in S3 act as identity on the set of arrows

E \ I(S) = {(1, 4), (2, 4), (3, 4)},

then S3 is the group of interior symmetries of the network G2 on the subset S = {1, 2, 3}.
There is an alternative characterization of interior symmetries using the notion of sym-

metry of a network. The main idea is the following: by “ignoring” some arrows we find a
subnetwork whose symmetry group is the group of interior symmetries of the original network.

Let us be more precise. Given a coupled cell network G and a subset S ⊂ C of cells,
define GS = (C, I(S),∼C ,∼E) to be the subnetwork of G whose set of cells is C (together with
its cell-equivalence ∼C) and whose set of arrows is I(S). The edge-equivalence on I(S) is
obtained by the restriction of the edge-equivalence ∼E on E .

Proposition 3.3. Let G be a coupled cell network and S ⊂ C be a subset of cells of the set of
cells of G. Consider the network GS as defined above. Then the group of interior symmetries
of the network G (on the subset S) can be canonically identified with the group of symmetries
of the network GS :

ΣS ∼= Aut(GS).

Proof. We start by proving that ΣS can be canonically identified with a subset of Aut(GS).
Let σ = (σC , σE) ∈ ΣS be an interior symmetry of G (on the subset S), as in Definition 3.1.
Then, because σC and σE are the identity maps on C \ S and E \ I(S), respectively, it follows
that σ is a symmetry of GS , according to Definition 2.12. Now we show that the above
identification is surjective. Let γ = (γC , γE) ∈ Aut(GS) be a symmetry of GS (in the sense
of Definition 2.12); that is, γE is a permutation on the set I(S). Now we can extend γE to
a permutation σE on E which acts as identity on E \ I(S). The pair σ = (σC , σE), where
σC = γC is an interior symmetry of G (on the subset S) according to Definition 3.1.

The characterization of interior symmetry provided by Proposition 3.3 is particularly
useful when the network does not have multiple arrows and/or self-connections, since by
Remark 2.13, a symmetry is simply a permutation on the set vertices of the underlying graph.

Example 3.4. Consider the two networks G1 and G2 of Figure 1. Let S = {1, 2, 3}. Note
that the network GS obtained from G1 is the same as the one obtained from G2. In Figure 2
we show these three networks. Observe that for the three networks the sets of arrows coming
from the set S = {1, 2, 3} and directed to the complement C \ S = {4} are different.

Let G be a network, and fix a phase space P . Suppose that G admits nontrivial interior
symmetries ΣS on a subset of cells S. Then we can decompose the phase space P as a
Cartesian product P = PS × PC\S , where

PS =
∏
s∈S

Ps and PC\S =
∏

c∈C\S
Pc.
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Figure 2. (Left) Network G1. (Center) Network GS , where S = {1, 2, 3}. (Right) Network G2.

For any x ∈ P we write x = (xS , xC\S), where xS ∈ PS and xC\S ∈ PC\S . If σ = (σC , σE) ∈ ΣS ,
then σC permutes the cells of S and induces an action of ΣS on P by permuting the cell
coordinates

σ(xc)c∈C = (xσ−1
C (c))c∈C .

Since ΣS fixes all cells in C \ S we can write

(3.2) σ(xS , xC\S) = (σxS , xC\S).

As in the case of symmetric networks, we can construct (some) balanced equivalence
relations on a network G from subgroups of the interior symmetry group. Suppose that
K ⊆ ΣS is a subgroup. Then

FixP (K) = {(xS , xC\S) : σxS = xS ∀ σ ∈ K}.

Define the relation ��K on the cells in C by

c ��K d ⇔ ∃ σ = (σC , σE) ∈ K : σC(c) = d.

Then the ��K-classes are the K-orbits on the cells in S, and the corresponding polydiagonal
is

�K = ���K = FixP (K).

The following proposition from [4, Proposition 1, p. 397] is fundamental in the study of
coupled cell networks with interior symmetries.

Proposition 3.5 (Golubitsky, Pivato, and Stewart [4]). Let G be a network admitting a non-
trivial interior symmetry group ΣS and fix a phase space P . Let K be any subgroup of ΣS .
Then ��K is a balanced relation on G. In particular, FixP (K) is a flow invariant subspace for
all G-admissible vector fields.

Proof. Let s1 and s2 be two cells on the same K-orbit. Then there exists an element
σ = (σC , σE) of K such that σC(s1) = s2, and by the consistency condition (3.1) it follows
that the restriction

σE |I(s1) : I(s1) → I(s2)

is an input isomorphism. Since the ��K-equivalence classes are exactly the K-orbits on C it
follows that the input isomorphism σE |I(s1) preserves the ��K equivalence relation. Hence, by



HOPF BIFURCATION WITH INTERIOR SYMMETRIES 231

Theorem 2.9, it follows that �H = FixP (K) is a flow invariant subspace for all G-admissible
vector fields.

Example 3.6. Consider the networks G1 and G2 of Figure 1 and fix a phase space P for both
networks. There are two nontrivial conjugacy classes of subgroups of S3. The first conjugacy
class is represented, for example, by the subgroup generated by a 3-cycle,

Z3 =
〈
(1 2 3)

〉
.

The associated balanced relation has two equivalence classes {1, 2, 3} and {4} given by the
three orbits of Z3 on the set of cells C. The fixed-point subspace of Z3 is

FixP (Z3) = {(x, x, x, y) : x ∈ PS , y ∈ PC\S} = FixP (S3).

The second conjugacy class of subgroups is represented, for example, by the subgroup gener-
ated by a transposition

Z2 =
〈
(1 2)

〉
.

The associated balanced relation has three equivalence classes {1, 2}, {3}, and {4} given by
the three orbits of Z2 on the set of cells C. The fixed-point subspace of Z2 is

FixP (Z2) = {(x, x, y, z) : x, y ∈ PS , z ∈ PC\S}.

The other two subgroups in the conjugacy class of 〈(1 2)〉 are the ones generated by (1 3) and
(2 3). Observe that these three balanced equivalence relations given by orbits of subgroups
are exactly the same balanced equivalence relations previously found by direct methods (Ex-
ample 2.11). Therefore, in our running example all flow-invariant subspaces can be given as
fixed-point subspaces of subgroups.

Remark 3.7. It is not true, even for symmetric networks, that all balanced equivalence
relations are given by orbits of subgroups of the symmetry group of the network. Balanced
equivalence relations that are not of this type are called exotic. For examples of exotic balanced
relations, see Antoneli and Stewart [1, 2].

3.2. Admissible vector fields with interior symmetry. Let G be a network with a non-
trivial interior symmetry group ΣS on a subset of cells S, and fix a phase space P . We have
a natural decomposition

(3.3) P = PS ⊕ PC\S

with coordinates (xS , xC\S). If f : P → P is a G-admissible vector field, then we can write
f = (fS , fC\S), where fS : P → PS and fC\S : P → PC\S . Groupoid-equivariance of the
coupled cell system implies that

(3.4) σfS(xS , xC\S) = fS(σxS , xC\S)

for all σ ∈ ΣS .
A G-admissible vector field f can be written as

(3.5) f(xS , xC\S) =

[
fS(xS , xC\S)

f̃C\S(xS , xC\S)

]
+

[
0

h(xS , xC\S)

]
,
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where f̃C\S , h : P → PC\S and fC\S = f̃C\S + h. The vector field f̃ = (fS , f̃C\S) is the
ΣS-equivariant part of f ; that is, for all σ ∈ ΣS ,

σf̃(x) = f̃(σx),

or more explicitly,

(3.6)

[
σfS(xS , xC\S)

f̃C\S(xS , xC\S)

]
=

[
fS(σxS , xC\S)

f̃C\S(σxS , xC\S)

]
,

since ΣS acts trivially on PC\S . Equation (3.5) can be seen as a decomposition of the vector
field f as the sum of a ΣS-equivariant vector field and a nonequivariant “perturbation” with
null components in S.

Example 3.8. Consider the network G2 of Figure 1. Recall from Example 2.7 the general
form of the ODEs associated with the network G2. Using the decomposition (3.3), we have
xS = (x1, x2, x3) and xC\S = (x4), where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl. Then by (3.5) we can
write a general ODE for the network G2 as

ẋ1 = f(x1, x2, x3, x4),

ẋ2 = f(x2, x3, x1, x4),

ẋ3 = f(x3, x1, x2, x4),

ẋ4 = g(x4, x1, x2, x3) + h(x4, x1, x2, x3),

where f : R3k×Rl → Rk is a smooth map invariant under permutation of the second and third
argument, g : Rl×R3k → Rl is S3-invariant with respect to (x1, x2, x3), and h : Rl×R3k → Rl

is a general smooth map.

Now we introduce another set of coordinates on P , adapted to the action of the interior
symmetry group. By Proposition 3.5 the subspace FixP (ΣS) is flow invariant. Since FixP (ΣS)
is ΣS-invariant and ΣS acts trivially on the cells in C \ S we have that PC\S ⊂ FixP (ΣS). Let

(3.7) U = FixP (ΣS).

The action of the group ΣS decomposes the set S as

S = S1 ∪ · · · ∪ Sk,

where the sets Si (i = 1, . . . , k) are the orbits of the ΣS-action. Let

(3.8) W =

{
x ∈ P : xc = 0 ∀ c ∈ C \ S and

∑
s∈Si

xs = 0 for 1 � i � k

}
.

Since W is a ΣS-invariant subspace of PS and W ∩ U = {0} we can decompose the phase
space P as a direct sum of ΣS-invariant subspaces,

(3.9) P = W ⊕ U.
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In particular, (3.8) implies that vectors in W , when written in coupled cell coordinates, have
zero components on all cells in C \ S.

We can choose coordinates (w, u) with w ∈ W and u ∈ U adapted to the decomposition
(3.9) and write any admissible vector field f as

(3.10) f(w, u) =

[
fW (w, u)
fU (w, u)

]
+

[
0

h(w, u)

]
,

where fU , h : P → U and fW : P → W satisfies

σfW (w, u) = fW (σw, u) ∀ σ ∈ ΣS .

With respect to the decomposition (3.9), the equivariant part of f is written as f̃(w, u) =
(fW (w, u), fU (w, u)), and for all σ ∈ ΣS we have

(3.11)

[
σfW (w, u)
fU (w, u)

]
=

[
fW (σw, u)
fU (σw, u)

]
,

since ΣS acts trivially on U = FixP (ΣS).
Example 3.9. Consider the network G2 of Figure 1. With respect to the decomposi-

tion (3.3) adapted to the network structure, the total phase space P has coordinates xS =
(x1, x2, x3) and xC\S = (x4), where xi ∈ Rk (i = 1, 2, 3), x4 ∈ Rl. Now with respect to the
decomposition (3.9) adapted to the S3-action on P we have that

W = {(w1, w2,−w1 − w2, 0) : w1, w2 ∈ Rk}

and

U = FixP (S3) = {(u1, u1, u1, u2) : u1 ∈ Rk, u2 ∈ Rl}.

In the linear case, we may choose a basis of P adapted to the decomposition (3.9), and
then a G-admissible linear vector field L can be written as

(3.12) L =

[
A 0
C B

]
,

where B = L|U : U → U , C : W → U , and A : W → W satisfies (by (3.11))

Aσ = σA ∀ σ ∈ ΣS .

The spectral properties of L in (3.12) are given by Golubitsky, Pivato, and Stewart [4,
Lemma 1, p. 399]. Since we will use these results several times we reproduce them here.

Lemma 3.10 (see [4]). Let G be a network admitting a nontrivial group of interior symme-
tries ΣS , and fix a total phase space P . Let L : P → P be a G-admissible linear vector field,
and consider the decomposition of L given by (3.12). Then the following hold:

(i) The eigenvalues of L are the eigenvalues of A together with the eigenvalues of B.
(ii) A vector u ∈ U = FixP (ΣS) is an eigenvector of B with eigenvalue ν if and only if u

is an eigenvector of L with eigenvalue ν.
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(iii) If w ∈ W is an eigenvector of A with eigenvalue μ, then there exists an eigenvector v
of L with eigenvalue μ of the form

v = w + u,

where u ∈ U = FixP (ΣS).
(iv) All eigenspaces of A are ΣS-invariant.
Proof. Parts (i), (ii), and (iii) are consequences of the block form (3.12) of L. Part (iv)

follows from the ΣS-equivariance of A.
Example 3.11. We continue our running example, the networks G1 and G2 of Figure 1.

The general form of the admissible linear mappings associated with the networks G1 and G2

of Figure 1 are (in cell coordinates)

L1 =

⎛
⎜⎜⎝
a b b d
b a b d
b b a d
e e e c

⎞
⎟⎟⎠ and L2 =

⎛
⎜⎜⎝

a b b d
b a b d
b b a d
e1 e2 e3 c

⎞
⎟⎟⎠ ,

where a, b are k × k matrices, c is an l × l matrix, d is a k × l matrix, and e, e1, e2, e3 are
l× k matrices. Choosing adequate bases for W and U , the linear mappings L1 and L2 can be
written as

L1 =

⎛
⎜⎜⎝
a− b 0 0 0

0 a− b 0 0
0 0 a + 2b d
0 0 3e c

⎞
⎟⎟⎠

and

L2 =

⎛
⎜⎜⎝

a− b 0 0 0
0 a− b 0 0
0 0 a + 2b d

e1 − e3 e2 − e3 e1 + e2 + e3 c

⎞
⎟⎟⎠ .

4. Synchrony-breaking bifurcations. Now we study local bifurcations in coupled cell net-
works with nontrivial interior symmetries. We are interested in codimension-one synchrony-
breaking bifurcations. Steady-state and Hopf bifurcations in coupled cell networks with inte-
rior symmetries were studied by Golubitsky, Pivato, and Stewart [4].

4.1. Local bifurcations in coupled cell systems. Let G be a coupled cell network, and
fix a phase space P . Let f : P × Rk → P be a smooth k-parameter family of G-admissible
vector fields in P , and assume that the ODE

(4.1)
dx

dt
= f(x, λ)

has a synchronous equilibrium x0 in �I (the polydiagonal subspace of P associated with the
input equivalence relation ∼I). In the present context we may assume that

f(x0, λ) ≡ 0
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and that a bifurcation occurs at λ = 0. Let L = (df)(x0,0) be the linearization of f at (x0, 0),
and denote by Ec the center subspace of L.

Local bifurcations in coupled cell networks can be divided into two types according to
whether or not Ec is contained in the flow-invariant subspace �I .

Definition 4.1. We say that a coupled cell system (4.1) undergoes a synchrony-preserving
bifurcation at a synchronous equilibrium in �I if Ec ⊂ �I and that (4.1) undergoes a
synchrony-breaking bifurcation if Ec 
⊂ �I .

Now we specialize to codimension-one bifurcations; that is, f : P × R → P is a smooth
1-parameter family of G-admissible vector fields in P . These bifurcations fall into two classes:
steady-state bifurcations (L|Ec has a zero eigenvalue) and Hopf bifurcations (L|Ec has a pair
of purely imaginary eigenvalues). The new steady states and periodic solutions that emanate
from the synchrony-preserving bifurcations are themselves synchronous solutions. For the
remainder of this paper we will focus on codimension-one synchrony-breaking bifurcations
from a synchronous equilibrium.

4.2. Local bifurcations with interior symmetry. Interior symmetries introduce genuine
restrictions on the form of the linearization, and this structure can be used to study certain
kinds of synchrony-breaking bifurcations, namely, the bifurcations that break the interior
symmetry.

Let G be a network admitting a nontrivial group of interior symmetries ΣS on S, and fix
a phase space P . First, note that the polydiagonal subspace �I associated with the input
equivalence relation ∼I satisfies

�I ⊆ FixP (ΣS).

Since we are interested in synchrony-breaking bifurcations that also break the interior sym-
metry we may assume that x0 ∈ FixP (ΣS) and that the center subspace Ec(L) associated
with the critical eigenvalues satisfies

(4.2) Ec(L) 
⊂ FixP (ΣS).

However, this is not enough to exclude the possibility of having critical eigenvectors in
FixP (ΣS) in a synchrony-breaking bifurcation. That is, we could have a situation where
some critical eigenvectors belong to FixP (ΣS) and the others are outside FixP (ΣS). Indeed,
it is well known [3] that (nonsymmetric) coupled cell systems generically can exhibit mode
interaction in codimension-one bifurcations. In this paper we make a stronger assumption.
We assume

(4.3) Ec(L) ∩ FixP (ΣS) = {0},

and so we exclude the possibility of having eigenvectors in FixP (ΣS). This situation corre-
sponds to a synchrony-breaking bifurcation that “breaks only the interior symmetry.”

Definition 4.2. Let f : P → P be a G-admissible vector field, and let L = (df)(x0) be the
linearization of f at x0. Consider the decomposition (3.9) of P adapted to the ΣS-action, and
write L in block form as

L =

[
A 0
C B

]
.
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Then the matrix A is called the ΣS-equivariant subblock of L.

If we write f using coordinates (w, u) adapted to the decomposition P = W ⊕ U as

f(w, u) =

[
fW (w, u)
fU (w, u)

]
+

[
0

h(w, u)

]
,

then

A =
(
d(1)fW

)
(w0)

,

where x0 = (w0, u0) and (
d(1)fW

)
(w0)

· w =
(
dfW

)
(w0,u0)

· (w, 0)

for all w ∈ W .

Remark 4.3. It can be shown that the following three conditions are equivalent:

(a) Ec(L) ∩ FixP (ΣS) = {0}.
(b) dimEc(L) = dimEc(A).
(c) All the critical eigenvalues of L come from the ΣS-equivariant subblock A of L.

It is obvious that (a) implies both (b) and (c). On the other hand, to prove that (b) implies (a),
we observe that by Lemma 3.10(iii), we always have dimEc(A) � dimEc(L). Finally, to
prove that (c) implies (a), we observe that the block form of L guarantees that no generalized
eigenvector associated with an eigenvalue coming from subblock A belongs to FixP (ΣS).

In general f is not ΣS-equivariant and L does not commute with ΣS . In particular,
Ec(L) 
⊂ W . However, the block matrix A does commute with ΣS , and thus Ec(A) ⊂ W is
ΣS-invariant. Moreover, if A has purely imaginary eigenvalues, there is a natural action of
ΣS × S1 on Ec(A), where S1 acts by exp(sAt).

Definition 4.4. Consider a 1-parameter family of coupled cell systems (4.1) with interior
symmetry group ΣS on S undergoing a codimension-one synchrony-breaking bifurcation at a
synchronous equilibrium x0 when λ = 0. We say that f undergoes a codimension-one interior
symmetry-breaking bifurcation if the following conditions hold:

(a) All the critical eigenvalues μ of L come from the ΣS-equivariant subblock A of L.
(b) The critical eigenvalues μ extend uniquely and smoothly to eigenvalues μ(λ) of (df)(x0,λ)

for λ near 0.
(c) The eigenvalue crossing condition:

(4.4)
d

dλ
Re(μ(λ))

∣∣∣∣
λ=0


= 0.

More specifically, the bifurcation problem (4.1) is called

• a codimension-one interior symmetry-breaking steady-state bifurcation if, in addition
to the conditions (a), (b), (c) above, the matrix A has a zero eigenvalue and the
associated center subspace is given by

(4.5) E0(A) = ker(A);
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• a codimension-one interior symmetry-breaking Hopf bifurcation if, in addition to the
conditions (a), (b), (c) above, the matrix A is nonsingular, all the critical eigenvalues
(after rescaling time if necessary) have the form ±i, and the associated center subspace
is given by

(4.6) Ei(A) = {x ∈ W : (A2 + 1)x = 0}.

Example 4.5. Consider the networks G1 and G2 of Figure 1. Suppose that for all cells c
we choose the internal phase space to be Pc = C, and so the total phase space is P = C4.
Consider the decomposition of P = W ⊕ U adapted to the S3-action. Then

W = {(w1, w2,−w1 − w2, 0) : w1, w2 ∈ C}

and
U = FixP (S3) = {(u1, u1, u1, u2) : u1, u2 ∈ C},

and W is an S3-simple representation (W = W1 ⊕ W2, where W1,W2 are two isomorphic
S3-absolutely irreducible spaces). Now consider a 1-parameter family f : P × R → P of G-
admissible vector fields on P undergoing a codimension-one interior symmetry-breaking Hopf
bifurcation at an equilibrium point x0 when λ = 0. Since W is an S3-simple representation,
one necessarily has that Ec(A) = W . Moreover, the action of the circle group S1 defined by
exp(sAt) is equivalent to the standard action of S1 on C2, that is,

θ · (z1, z2) = (eiθz1, e
iθz2)

for all θ ∈ S1 and z1, z2 ∈ C.

4.3. Interior symmetry-breaking Hopf theorem. The Hopf bifurcation theorem concerns
periodic solutions to differential equations near a point where the linearization has purely
imaginary eigenvalues.

Let G be a coupled cell network admitting a nontrivial group of interior symmetries ΣS on
a subset S of cells, and choose a total phase space P . Consider a smooth 1-parameter family
f : P × R → P of G-admissible vector fields on P , and assume that

(4.7)
dx

dt
= f(x, λ)

has an equilibrium x0 such that for λ = 0 the linearization L = (df)(x0,0) of f at (x0, 0) is
nonsingular but has purely imaginary eigenvalues.

Before stating the next theorem let us introduce an important concept which generalizes
the notion of a C-axial subgroup from equivariant bifurcation theory.

Definition 4.6. Let G be a coupled cell network admitting a nontrivial group of interior
symmetries ΣS on a subset S. Let P denote the total phase space, and consider the decompo-
sition (3.9) of P adapted to the ΣS-action. Suppose that there is an action of circle group S1

on W which commutes with the action of ΣS . Let E ⊂ W be a ΣS × S1-invariant subspace.
An isotropy subgroup Δ ⊆ ΣS × S1 is called interiorly C-axial (on E) if

dimR FixE(Δ) = 2.
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Now suppose that the family (4.7) undergoes a codimension-one interior symmetry-break-
ing Hopf bifurcation at the equilibrium x0 when λ = 0. Then the center subspace Ec(A) of
the ΣS-equivariant subblock of the linearization L = (df)(x0,0) of f at (x0, 0) is a ΣS-invariant
subspace of W . Therefore, the action of the circle group S1 defined by exp(sAt) commutes
with the action of ΣS , and so there is a well-defined action of ΣS × S1 on W and Ec(A) is a
ΣS × S1-invariant subspace.

Example 4.7. Consider the networks G1 and G2 of Figure 1. Suppose that for all cells c
we choose the internal phase space to be Pc = C, and so the total phase space is P = C4.
Suppose that a smooth 1-parameter family f : P ×R → P of G-admissible vector fields on P
undergoes a codimension-one interior symmetry-breaking Hopf bifurcation at the equilibrium
x0 = 0 when λ = 0. Then Ei(A) = W , where A is the ΣS-equivariant subblock of the
linearization L = (df)(0,0) of f at (0, 0). In Example 4.5 we observed that the action of S1

on W , given by exp(sAt), can be identified with the standard action of S1 on C2. There are
three nontrivial conjugacy classes of isotropy subgroups of S3 × S1 acting on W . The first
conjugacy class of subgroups is represented, for example, by the subgroup

Z2 =
〈
((1 2),1)

〉
.

The fixed-point subspace of Z2 is

FixW (Z2) = {(−w,−w, 2w, 0) : w ∈ C}.

The second conjugacy class of subgroups is represented, for example, by the subgroup

Z̃2 =
〈
((1 2), π)

〉
.

The fixed-point subspace of Z̃2 is

FixW (Z̃2) = {(w,−w, 0, 0) : w ∈ C}.

The third conjugacy class of subgroups is represented, for example, by the subgroup

Z̃3 =
〈
((1 2 3), 2π

3 )
〉
.

The fixed-point subspace of Z̃3 is

FixW (Z̃3) = {(w, ei 2π3 w, ei
4π
3 w, 0) : w ∈ C}.

The main result of this paper is the interior symmetry-breaking Hopf bifurcation theorem.

Theorem 4.8. Let G be a coupled cell network admitting a nontrivial group of interior
symmetries ΣS relative to a subset S of cells, and fix a phase space P . Consider (4.7), where
f : P×R → P is a smooth 1-parameter family of G-admissible vector fields on P . Suppose that
a codimension-one interior symmetry-breaking Hopf bifurcation (see Definition 4.4) occurs at
an equilibrium point x0 ∈ FixP (ΣS) when λ = 0. Let Δ ⊂ ΣS × S1 be an interiorly C-
axial subgroup (on Ec(A)). Then generically there exists a family of small amplitude periodic
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solutions of (4.7) bifurcating from (x0, 0) and having period near 2π. Moreover, to lowest
order in the bifurcation parameter λ, the solution x(t) is of the form

(4.8) x(t) ≈ w(t) + u(t),

where w(t) = exp(tL)w0 (w0 ∈ FixW (Δ)) has exact spatio-temporal symmetry Δ on the cells
in S and u(t) = exp(tL)u0 (u0 ∈ FixP (ΣS)) is synchronous on the ΣS-orbits of cells in S.

We call such a state a synchronously modulated Δ-symmetric wave on S.
Remarks 4.9.
(a) The above theorem asserts no restriction on uj(t) when j ∈ C \ S.
(b) Theorem 4.8 generalizes the interior symmetry Hopf theorem of Golubitsky, Pivato,

and Stewart [4, Theorem 3]. Given a subgroup Δ ⊆ ΣS × S1, we define the spatial
subgroup of Δ to be K = Δ ∩ ΣS . A subgroup Δ is called spatially C-axial if

dimR FixEi(A)(Δ) = dimR FixEi(A)(K) = 2,

where K is the spatial subgroup of Δ. Obviously every spatially C-axial subgroup
is interiorly C-axial. Since the Hopf theorem of [4] is proved for all spatially C-axial
subgroups, it is a special case of Theorem 4.8.

(c) Theorem 4.8 holds if the assumption (4.6) is generalized to: the matrix A is nonsingular
and semisimple, and (after rescaling time if necessary) all the critical eigenvalues have
the form kli (kl ∈ Z).

The proof of Theorem 4.8 follows from a couple of lemmas that we state and prove below.
We start by setting up the framework.

Let C0
2π(P ) be the space consisting of all continuous 2π-periodic mappings from R to

P endowed with the C0 norm, and let C1
2π(P ) be the space consisting of all continuous

differentiable 2π-periodic mappings from R to P endowed with the C1 norm.
By introducing a perturbed period parameter τ we can rescale time again, from t to

s(1 + τ)t, and consider the operator F : C1
2π(P ) × R × R → C0

2π(P ) given by

(4.9) F(x, λ, τ) = (1 + τ)
dx

ds
(s) − f(x(s), λ).

The 2π-periodic solutions of the equation F(x, λ, τ) = 0 near (0, 0, 0) correspond bijectively
to the small amplitude periodic solutions of (4.7) near x0 and with period near 2π. As is well
known, the operator F is S1-equivariant with respect to the phase shift action of S1 on the
spaces C1

2π(P ) and C0
2π(P ); that is, if x ∈ C0

2π(P ) and θ ∈ S1, then(
θ · x

)
(s) = x(s + θ)

and thus

θ · F(x, τ, λ) = F(θ · x, τ, λ).

The linearization of F about the origin is

(4.10) L(x) =
dx

ds
(s) − Lx(s),
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and ker(L) consists of all functions Re(eisv), where v is an eigenvector of L associated with
the eigenvalue i.

In the standard Hopf bifurcation theorem [5, Theorem VIII 3.1] ker(L) is two-dimensional,
and Lyapunov–Schmidt reduction in the presence of symmetry leads to a reduced equation that
can be solved for a unique branch of 2π-periodic solutions as long as the eigenvalues crossing
condition is valid. In the equivariant context, ker(L) may be higher-dimensional—generically
ker(L) is a Γ-simple representation. The proof of the equivariant Hopf bifurcation theorem
[8, Theorem XVI 4.1] proceeds by restricting the Lyapunov–Schmidt reduced equation to the
fixed-point subspace FixEi(L)(Δ) of a C-axial subgroup Δ, which is two-dimensional. Then
the proof is completed as in the standard Hopf bifurcation theorem.

That approach does not work in the context of interior symmetries since in general there
is no action of ΣS × S1 on Ei(L), because the original vector field f (and its linearization
L) is not ΣS-equivariant. Nevertheless, we shall introduce a “modified Lyapunov–Schmidt
procedure” that does work in the context of interior symmetries.

The decomposition in (3.9) induces the decompositions

C0
2π(P ) = C0

2π(W ) ⊕ C0
2π(FixP (ΣS))

and

C1
2π(P ) = C1

2π(W ) ⊕ C1
2π(FixP (ΣS)).

In our modification of the standard Lyapunov–Schmidt procedure we consider the following
action of the group ΣS × S1 on the spaces C0

2π(P ) and C1
2π(P ). Let us write x ∈ C0

2π(P ) as
x(s) = (w(s), u(s)), where w ∈ C0

2π(W ) and u ∈ C0
2π(FixP (ΣS)). Then

(4.11) (δ, θ) · x(s) = (δ, θ) · (w(s), u(s)) =
(
δw(s + θ), u(s)

)
.

The difference from the usual action on the loop space (see, for example, [8]) is that in
(4.11) the group ΣS × S1 acts trivially on C0

2π(FixP (ΣS)) and C1
2π(FixP (ΣS)), respectively.

A straightforward consequence of the above definition is stated in the next lemma for conve-
nience.

Lemma 4.10. For any subgroup Δ of ΣS × S1 we have the decompositions

FixC0
2π(P )(Δ) = C0

2π(FixW (Δ)) ⊕ C0
2π(FixP (ΣS))

and

FixC1
2π(P )(Δ) = C1

2π(FixW (Δ)) ⊕ C1
2π(FixP (ΣS)).

Proof. Let x ∈ C0
2π(P ) be written as x(s) = (w(s), u(s)), where w ∈ C0

2π(W ) and u ∈
C0

2π(FixP (ΣS)). Then (4.11) implies that

C0
2π(FixW (Δ)) ⊕ C0

2π(FixP (ΣS)) ⊆ FixC0
2π(P )(Δ).

Now let (δ, θ) ∈ Δ and suppose that x ∈ FixC0
2π(P )(Δ). Then

(δ, θ) · x(s) = x(s).
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The decomposition x(s) = (w(s), u(s)) yields(
(δw)(s + θ), u(s)

)
= (w(s), u(s));

that is, w(s) ∈ FixW (Δ) and u(s) ∈ FixP (ΣS) for all s ∈ R. Hence

FixC0
2π(P )(Δ) ⊆ C0

2π(FixW (Δ)) ⊕ C0
2π(FixP (ΣS)).

Therefore,
FixC0

2π(P )(Δ) = C0
2π(FixW (Δ)) ⊕ C0

2π(FixP (ΣS)).

The same argument with C1
2π instead of C0

2π gives the other equality.
Lemma 4.11. Let L : P → P be a G-admissible linear mapping. Let L : C1

2π(P )×R×R →
C0

2π(P ) be the linear operator given by (4.10) and Δ ⊂ ΣS × S1 be a subgroup. Then we have
that

L
(
C1

2π(FixP (ΣS))
)
⊆ C0

2π(FixP (ΣS)),

L
(
C1

2π(FixW (Δ))
)
⊆

(
C0

2π(FixW (Δ)) ⊕ C0
2π(FixP (ΣS))

)
and

(4.12) L
(
FixC1

2π(P )(Δ)
)
⊆ FixC0

2π(P )(Δ).

In particular, we can define a linear operator

(4.13) LΔ : FixC1
2π(P )(Δ) −→ FixC0

2π(P )(Δ)

by restriction.
Proof. Note that since the circle group S1 acts on the domain of the mappings, all the

decompositions above are S1-invariant.
First suppose x(s) = (0, u(s)) with u(s) ∈ C1

2π(FixP (ΣS)). Then

L(x) =
du

ds
(s) − L(0, u(s)).

If σ ∈ ΣS , then

σL(x) = σ
du

ds
(s) − σL (0, u(s))

=
dσu

ds
(s) − L (0, u(s))

=
du

ds
(s) − L (0, u(s))

= L(x).

The second equality above follows from the fact that

σ
(
L (0, u)

)
= L (0, u)
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for all σ ∈ ΣS . Therefore, we have L(x(s)) ∈ C0
2π(FixP (ΣS)).

Next suppose that x(s) = (w(s), 0) with w(s) ∈ C1
2π(FixW (Δ)). Since w(s) ∈ W for all

s ∈ R, we have that

(δ, θ) · w(s) = δw(s + θ) = w(s)

for all (δ, θ) ∈ Δ, s ∈ R. Write

L(x) =
(
[L(x)]1(s), [L(x)]2(s)

)
with

[L(x)]1(s) ∈ W ∀ s ∈ R

and

[L(x)]2(s) ∈ FixP (ΣS) ∀ s ∈ R.

Then

[L(x)]1(s) =
dw

ds
(s) −Aw(s)

and

[L(x)]2(s) = −[C w(s) + B 0] = −Cw(s).

Clearly, [L(x)]2(s) ∈ FixP (ΣS). Let (δ, θ) ∈ Δ; then

(δ, θ) · [L(x)]1(s) = (δ, θ) · dw

ds
(s) − (δ, θ) ·Aw(s)

= δ
dw

ds
(s + θ) − δAw(s + θ)

=
dδw

ds
(s + θ) −Aδ w(s + θ)

=
dw

ds
(s) −Aw(s)

= [L(x)]1(s)

and thus [L(x)]1(s) ∈ FixW (Δ). Therefore

L(x) ∈ C0
2π(FixW (Δ)) ⊕ C0

2π(FixP (ΣS)).

Thus by linearity of L and Lemma 4.10 we have

L
(
FixC1

2π(P )(Δ)
)
⊆ FixC0

2π(P )(Δ).

Consider now a 1-parameter family of G-admissible vector fields f(x, λ) such that L =
(df)(x0,0) satisfies the conditions of the definition of interior symmetry-breaking Hopf bifur-
cation (Definition 4.4), where A is the ΣS-equivariant subblock of L.

Lemma 4.12. Let Δ ⊂ ΣS × S1 be a subgroup. Let LΔ : FixC1
2π(P )(Δ) → FixC0

2π(P )(Δ) be
the operator given by (4.13) with L = (df)(x0,0). Then

dimR ker(LΔ) = dimR FixEi(A)(Δ).
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Proof. By Lemma 3.10 and assumption (4.6), ker(LΔ) consists of all functions Re(eisv0),
where v0 is an eigenvector of L associated with the eigenvalue i which can be decomposed as

v0 = w0 + u0,

where u0 ∈ FixP (ΣS) is uniquely determined by an eigenvector w0 ∈ FixW (Δ) of A with
purely imaginary eigenvalue and

(δ, θ) · Re(eisw0) = Re(ei(s+θ) δw0) = Re(eisw0)

for all (δ, θ) ∈ Δ. Hence

w0 ∈ FixW (Δ) ∩ Ei(A) = FixEi(A)(Δ).

By uniqueness of the decomposition v0 = w0 + u0 and the dimension condition (b) of Re-
mark 4.3 we have

dimR ker(LΔ) = dimR FixEi(A)(Δ).

Lemma 4.13. Let us write the 1-parameter family of admissible vector fields f(x, λ) in the
form

(4.14) f(x, λ) =

[
fS(x, λ)

f̃C\S(x, λ)

]
+

[
0

h(x, λ)

]
,

where

f̃(x, λ) =

[
fS(x, λ)

f̃C\S(x, λ)

]
is the ΣS-equivariant part of f . Let F , F̃ be operators on C1

2π(P )×R×R → C0
2π(P ) defined

by formula (4.9) using f and f̃ , respectively. Define

H(x, τ, λ) = h(x(s), λ),

so that
F(x, τ, λ) = F̃(x, τ, λ) −H(x, τ, λ).

Then
F
(
FixC1

2π(P )(Δ) × R × R
)
⊆ FixC0

2π(P )(Δ).

In particular, we may define the operator

(4.15) FΔ : FixC1
2π(P )(Δ) × R × R −→ FixC0

2π(P )(Δ)

by restriction, and the linearization of FΔ about the origin is the linear operator LΔ given by
the formula (4.13), where L = (df)(x0,0).

Proof. The ΣS-equivariance of f̃ implies that F̃ is ΣS × S1-equivariant (see [8, Lemma
XVI 3.2]). It follows then that

F̃
(
FixC1

2π(P )(Δ) × R × R
)
⊆ FixC0

2π(P )(Δ).
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Then it is enough to show that

H
(
FixC1

2π(P )(Δ) × R × R
)
⊆ FixC0

2π(P )(Δ).

Now let x(s) ∈ FixC1
2π(P )(Δ). Recall that h : P → PC\S and PC\S ⊂ FixP (ΣS). Therefore,

H(x, τ, λ)(s) = h(x(s), λ) ∈ FixP (ΣS) (s ∈ R)

for all λ, τ ∈ R. By Lemma 4.10 we have that

C0
2π(FixP (ΣS)) ⊂ C0

2π(FixW (Δ)) ⊕ C0
2π(FixP (ΣS)) = FixC0

2π(P )(Δ),

and the result follows.
Remark 4.14. Equation (4.12) of Lemma 4.11 can derived directly from the above lemma.
Proof of Theorem 4.8. Consider the operator

FΔ : FixC1
2π(P )(Δ) × R × R −→ FixC0

2π(P )(Δ).

The linearization of FΔ about the origin is the linear operator LΔ. Now we invoke the
assumption that Δ is C-axial for the natural ΣS × S1-action on Ei(A), which together with
Lemma 4.12 implies that

dimR ker(LΔ) = 2.

Now we may proceed as in the proof of the standard Hopf bifurcation theorem. If we identify
ker(LΔ) ∼= C, then the action of S1 on ker(LΔ) is equivalent to the standard the action of
S1 on C. The Lyapunov–Schmidt reduction applied to FΔ yields a S1-equivariant bifurcation
equation,

φ : C × R × R → C.

Moreover, the assumptions of the definition of codimension-one interior symmetry-breaking
bifurcation are exactly the conditions necessary to carry out the proof.

Table 1
Branches of synchronously modulated Δ-symmetric waves supported by the network G2 and the associated

subgroup. The hat over a variable indicates that ŵ has twice the frequency.

Subgroup Form of solution to lowest order in λ

Z2 (w1(t) + u(t), w1(t) + u(t), w2(t) + u(t), v(t))

Z̃2 (w1(t) + u(t), w1(t + 1
2
) + u(t), ŵ(t) + u(t), v(t))

Z̃3 (w1(t) + u(t), w1(t + 1
3
) + u(t), w1(t + 2

3
) + u(t), v(t))

Example 4.15. Consider the network G2 of Figure 1. Suppose that for all cells c we choose
the internal phase space to be Pc = C. Then the total phase space is P = C4. Suppose that
a smooth 1-parameter family f : P × R → P of G-admissible vector fields on P undergoes
a codimension-one interior symmetry-breaking Hopf bifurcation at the equilibrium x0 = 0
when λ = 0. Then Ei(A) = W , where A is the ΣS-equivariant subblock of the linearization
L = (df)(0,0) of f at (0, 0). By Theorem 4.8 there are three branches of synchronously
modulated Δ-symmetric waves associated with the three conjugacy classes of interiorly C-
axial subgroups of ΣS × S1 (see Table 1). Observe that the first periodic state of Table 1 is
associated with a spatially C-axial subgroup, as is predicted by [4, Theorem 3]. The third
periodic state of Table 1 is an approximate rotating wave.
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4.4. Numerical simulation. In this last section we illustrate the conclusions of Exam-
ple 4.15 with a numerical simulation. In order to write down an explicit coupled cell sys-
tem associated with network G2 we choose the internal phase space of all four cells to be
Pc = C ∼= R2.

Consider the coupled cell system

ẋ1 = g(x1, x2, x3) + 2x4,

ẋ2 = g(x2, x3, x1) + 2x4,

ẋ3 = g(x3, x1, x2) + 2x4,

ẋ4 = −x4 + e1x1 + e2x2 + e3x3,

(4.16)

where g : (R2)3 → R2 is given by

g(x, y, z) = −x + (a− 2b2)x‖x‖2 + b1 (y + z) + b2 (y‖y‖2 + z‖z‖2)

+ a (x‖y‖2 + x‖z‖2) + b3 (y‖y‖4 + z‖z‖4)

and a, b1(λ), b2, b3, e1, e2, e3 are 2× 2 matrices with b1 depending smoothly on a parameter λ.
Let f be the vector field defined by (4.16). Observe that the origin is an equilibrium point for
all λ,

f(0, λ) ≡ 0.

The linearization of f at (0, λ) is given by (as 2 × 2 block matrix)

L(λ) =

⎛
⎜⎜⎝
−1 b1 b1 2
b1 −1 b1 2
b1 b1 −1 2
e1 e2 e3 −1

⎞
⎟⎟⎠ ,

where ±c represents ±
(
c 0
0 c

)
.

We need to choose the coefficients b1 and e1, e2, e3 in order to have purely imaginary
eigenvalues for some λ coming from the subblock A when L is written in the form (3.12). The
following values will do the job:

b1(λ) =

(
−1 − λ −1.5

1.5 −1

)

and any values between −1 and 1 for the entries of the matrices e1, e2, e3.

The spectrum of the matrix L(λ) has the following properties:

(1) For λ < 0 all eigenvalues of L(λ) have negative real parts.
(2) For λ = 0 the matrix L = L(0) has two pairs of eigenvalues ±i, and the remaining

eigenvalues have negative real parts. Moreover, the eigenvectors associated with the
purely imaginary eigenvalues are not in Fix(S3).

(3) For λ > 0 all eigenvalues of L(λ) whose associated eigenvectors are in Fix(S3) have
negative real parts, and the remaining eigenvalues have positive real parts.
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Thus (4.16) undergoes an interior symmetry-breaking Hopf bifurcation when λ = 0, giving
rise to one branch of periodic solutions for each one of the three interiorly C-axial subgroups
of S3 × S1, as in Table 1, when λ > 0. However, depending on the choice of the coefficients
a, b2, and b3 of g, one can make at least one of these periodic solutions be stable. In our
simulations we have chosen the following coefficients:

a =

(
−0.5 0

0 −0.5

)
,

(1) for a solution with (interior) symmetry Z̃3:

b2 =

(
0.6 2
2 0.6

)
, b3 =

(
0 0
0 0

)
.

(2) for a solution with (interior) symmetry Z̃2:

b2 =

(
−0.6 1

1 −0.6

)
, b3 =

(
0.2 −0.7
−0.7 0.2

)
.

(3) for a solution with (interior) symmetry Z2:

b2 =

(
−0.6 0

0 −0.6

)
, b3 =

(
0 0.7

0.7 0

)
.

The coefficients e1, e2, and e3 represent the coupling that breaks the S3-symmetry. If
e1 = e2 = e3, then the coupled cell system (4.16) is admissible for the network G1 of Figure 1,
and so it is S3-symmetric. On the other hand, if e1 
= e2 
= e3, then the coupled cell system
(4.16) is admissible for the network G2 of Figure 1 and has genuine S3-interior symmetry.

In the following we present the results of numerical simulations obtaining the three types
of periodic solutions mentioned above, for both of the networks G1 and G2 of our running
example. In Figures 3, 4, and 5 we superimpose the time series of all four cells, which are
identified by colors:

1 = blue, 2 = red, 3 = green, 4 = black.

The upper panels show the first components, and the lower panels show the second compo-
nents. The left panels refer to network G1 with exact S3-symmetry, and the panels on the right
refer to network G1 with S3-interior symmetry. Finally, in Figure 6 we present the solution
with interior symmetry Z̃3 of network G2, i.e., the approximate rotating wave from Figure 3
(right), viewed in difference coordinates:

x1 − x2 = blue, x2 − x3 = green, x3 − x1 = red.

Acknowledgment. We thank Marty Golubitsky for useful discussions.
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Figure 3. Solutions with Z̃3 (interior) symmetry. (Left) Network G1 with exact S3-symmetry. (Right)
Network G2 with S3-interior symmetry.
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Figure 4. Solutions with Z̃2 (interior) symmetry. (Left) Network G1 with exact S3-symmetry. (Right)
Network G2 with S3-interior symmetry.
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Figure 5. Solutions with Z2 (interior) symmetry. (Left) Network G1 with exact S3-symmetry. (Right)
Network G2 with S3-interior symmetry.
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Figure 6. Approximate rotating wave in network G2, viewed in difference coordinates: x1 − x2, x2 − x3,
and x3 − x1.
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Surface Gap Solitons at a Nonlinearity Interface∗

Tomáš Dohnal† and Dmitry Pelinovsky‡

Abstract. We demonstrate existence of waves localized at the interface of two nonlinear periodic media with
different coefficients of the cubic nonlinearity via the one-dimensional Gross–Pitaevsky equation.
We call these waves the surface gap solitons (SGSs). In the case of smooth symmetric periodic
potentials, we study analytically bifurcations of SGSs from standard gap solitons and determine
numerically the maximal jump of the nonlinearity coefficient allowing for SGS existence. We show
that the maximal jump vanishes near the thresholds of bifurcations of gap solitons. In the case of
continuous potentials with a jump in the first derivative at the interface, we develop a homotopy
method of continuation of SGS families from the solution obtained via gluing of parts of the standard
gap solitons and study existence of SGSs in the photonic band gaps. We explain the termination of
the SGS families in the interior points of the band gaps from the bifurcation of linear bound states
in continuous nonsmooth potentials.

Key words. surface gap solitons, Gross–Pitaevsky equation, nonlinear Schrödinger equation, nonlinearity in-
terface
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DOI. 10.1137/060676751

1. Introduction. We are concerned with localized waves at the interface of two periodic
nonlinear media called surface gap solitons (SGSs). One of the first publications on optical
solitons propagating along material interfaces is [17], where the interface of a linear and a
focusing Kerr nonlinear medium is studied. In the last two years relevant publications in the
context of nonlinear optics have dealt, for instance, with discrete surface solitons in nonlinear
waveguide arrays [4, 10, 16], SGSs at the interface of a uniform and a periodic medium with the
defocusing cubic nonlinearity [7], and surface vortex solitons at the interface of two periodic
media with different mean values of the refractive index and with saturable nonlinearity [5, 6].
One of the typical models employed in the theory of gap solitons is the one-dimensional
nonlinear Schrödinger (NLS) equation with cubic nonlinearity and periodic potential called
the Gross–Pitaevsky equation.

We investigate here the existence of surface waves at the interface of two media with
identical periodic linear parts of the refractive index and with different cubic nonlinearities.
It is known that for most photonic materials a variation in the nonlinear part of the refractive
index n2 is necessarily accompanied by a larger change in the linear part n0. Nevertheless,
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certain materials exhibit large variations in n2 accompanied by small variations in n0; see
[1, 15]. Localized states have been studied theoretically in media with constant n0 and spatially
periodic n2 in [3].

Each of the two periodic nonlinear media supports at least two families of standard gap
solitons in every bounded nonempty frequency gap. One family is always unstable, while the
other can be stable depending on the locations of spectral bands and bifurcations of eigenvalues
from the band edges [13]. The potentially stable family looks like a single-humped envelope
soliton with exponential decay and oscillations near the central peak. Multihumped envelope
solitons may also exist in such periodic nonlinear media, but we shall focus herein on existence
of a single-humped solution localized near the interface between the two periodic nonlinear
media.

The paper is organized as follows. Section 2 reviews Floquet theory for the governing
Gross–Pitaevsky equation and summarizes the results on existence of gap solitons. In section 3
we study the existence of SGSs for a smooth symmetric periodic potential function and find
the maximal allowed jump in the nonlinearity coefficient between the two media for existence
of SGSs. Section 4 discusses bifurcations and existence of SGSs for a continuous potential
function with a derivative jump at the nonlinearity interface. Section 5 concludes the paper
with conjectures on the stability of SGSs.

2. Background: Floquet theory and gap soliton existence. We consider the one-dimen-
sional periodic cubic Schrödinger equation in the form

(2.1) iut = −uxx + V (x)u− Γ(x)|u|2u, x ∈ R, t ≥ 0,

where x and t are the spatial and temporal variables, respectively, V (x) is a real, continuous,
and d-periodic potential, and Γ(x) = Γ± for ±x > 0 is a real nonlinearity coefficient with
constants Γ+ and Γ−. The positive values of Γ(x) correspond to the focusing nonlinearity and
the negative values of Γ(x) to the defocusing nonlinearity.

We are interested in the existence of stationary solutions of (2.1) localized near the inter-
face at x = 0 and having the form

(2.2) u(x, t) = e−iωtφ(x) s.t. φ : R → R, φ → 0 as |x| → ∞.

The function φ(x) has to satisfy the second-order nonautonomous ODE

(2.3) −φ′′ − ωφ + V (x)φ− Γ(x)φ3 = 0,

which can be cast in the Hamiltonian form with the Hamiltonian function

(2.4) H[φ] =
1

2

[
(φ′)2 + ωφ2 − V (x)φ2

]
+

1

4
Γ(x)φ4.

Since Γ(x) is discontinuous at x = 0, φ(x) is a weak solution of the ODE (2.3) in φ ∈
C2(R+ ∪ R−), such that the second derivative φ′′(x) may have a jump at x = 0. The contin-
uously differentiable solution φ ∈ C1(R) is a critical point of the energy functional

Eω[φ] =
1

2

∫
R

[
|φ′|2 + ω|φ|2 − V (x)|φ|2

]
dx +

1

4

∫
R

Γ(x)|φ|4dx,
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such that the first variation E′
ω[φ] recovers the ODE (2.3).

Replacing t by z in (2.1) and (2.2), the x-localized solution u(x, z) can be viewed as a
spatial soliton propagating along the direction z and localized in the transverse direction x.
The parameter ω plays the role of the propagation constant. Other applications of the ODE
(2.3) occur in the theory of stationary solutions of the nonlinear Maxwell and Klein–Gordon
equations in one dimension.

As we show below, the localized solutions of the ODE (2.3) decay exponentially as |x| → ∞
only if ω belongs to the frequency gaps in the continuous spectra of the operator L := −∂xx +
V (x) called the photonic band gaps. To do so, we recall the basic Floquet theory (see [2, 9])
for the Hill equation

(2.5) Lψ(x) = −ψ′′(x) + V (x)ψ(x) = ωψ(x), x ∈ R.

The bounded solutions ψ(x) of the Hill equation (2.5) are usually called Bloch functions.
Given a real, continuous, and d-periodic potential V (x), bounded solutions ψ(x) exist for ω
in a union of (possibly disjoint) spectral bands

Σ := [ω0, ω1] ∪ [ω2, ω3] ∪ [ω4, ω5] ∪ . . . ,

where ω2n−2 < ω2n−1 ≤ ω2n, n ∈ N, and ωn → ∞ as n → ∞. The set Σ represents the
complete (purely continuous) spectrum of the operator L [2]. We shall assume for simplicity
that all spectral bands are disjoint with ω2n−1 < ω2n, n ∈ N, such that all finite frequency
gaps are nonempty.

For a fixed ω in the interior point of Σ, both fundamental solutions of the second-order
ODE (2.5) are quasi-periodic in x and have the representation ψ = p±(x)e±ikx, where p±(x) =
p±(x + d) and k ∈

[
0, πd

]
. The parameter k parameterizes the frequency parameter ω, such

that we shall use the notation ω = ω2n,2n+1(k) for the spectral band in ω ∈ [ω2n, ω2n+1]. If
the nth band is separated from the (n + 1)th band (i.e., ω2n−1 < ω2n and ω2n+1 < ω2n+2),
then ω′

2n,2n+1(k) = 0 and ω′′
2n,2n+1(k) �= 0 at the endpoints k = 0 and k = π

d [8].
When ω = ωn, one of the solutions ψ = ψn(x) is either d-periodic (corresponding to k = 0)

or d-antiperiodic (corresponding to k = π
d ), and the other fundamental solution ψ(x) grows

linearly in x. For a fixed ω ∈ R \Σ the two fundamental solutions of (2.5) grow exponentially
in either x or −x and have the representation ψ = u±(x)e±κx, where u±(x) is either periodic
or antiperiodic and κ = κ(ω) ∈ R+. The functions u±(x) are periodic (antiperiodic) if the
bounded solutions ψn(x) are periodic (antiperiodic) at the band edges ω2n−1 and ω2n, which
surround the band gap.

Suppose that φ(x) is a localized solution of the ODE (2.3). It is then obvious from
the linearized analysis that the solution φ(x) decays exponentially as |x| → ∞ only if ω ∈
R \ Σ. It was shown under fairly general assumptions (see [13] and references therein) that
the families of gap solitons of the ODE (2.3) with constant coefficient Γ(x) = Γ0 undertake
a local bifurcation from all points ω = ω2m, m ≥ 0, to the left if Γ0 > 0 and from all points
ω = ω2m+1, m ≥ 0, to the right if Γ0 < 0 (the term local bifurcation means that ‖φ‖L∞ → 0
as ω → ωn). This conjecture was rigorously proved in [11], where existence of exponentially
decaying gap solitons in H1(R) was confirmed in every finite frequency gap ω ∈ (ω2m−1, ω2m),
m ∈ N, and in the semi-infinite frequency gap ω < ω0 for Γ0 > 0. We use this result but
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simplify our consideration by working with the class of symmetric potentials V = V0(x), where
V0(−x) = V0(x) on x ∈ R. In particular, we shall perform numerical computations with

(2.6) V0(x) = sin2
(πx

d

)
, d = 10,

which has a minimum at x = 0, i.e., at our interface location. The spectral bands and gaps of
V0(x) are approximated numerically from the Hill equation (2.5). For instance, the first five
band edges of the potential (2.6) are located as follows:

ω0 ≈ 0.283, ω1 ≈ 0.291, ω2 ≈ 0.747, ω3 ≈ 0.843, ω4 ≈ 1.057.

As seen in Figure 1 of [13], the Bloch functions ψ = ψn(x) at the band edges ω = ωn, n ≥ 0,
have the following symmetry properties:

ψn(−x) = ψn(x), n ∈ {0, 1, 4, 5, 8, 9, . . .},
ψn(−x) = −ψn(x), n ∈ {2, 3, 6, 7, . . .}.

(2.7)

Symmetry properties (2.7) can be proved for any even potential V0(−x) = V0(x). Indeed, since
the Hill equation (2.5) is symmetric with respect to reflection x �→ −x and admits only one
linearly independent bounded eigenfunction ψ = ψn(x) at ω = ωn, the function ψn(x) must
be either even or odd in x. By the trace of the monodromy matrix [2], the periodic functions
ψn(x) correspond to the set n ∈ S+ with S+ = {0, 3, 4, 7, 8, . . .}, and the antiperiodic functions
ψn(x) correspond to the set n ∈ S− with S− = {1, 2, 5, 6, . . .}. By Sturm’s theorem [2], the
periodic functions ψn(x) with n ∈ S+ have exactly indS+(n) − 1 nodes on x ∈

(
−d

2 ,
d
2

)
,

where indS+(n) is the order number of n in the set S+. For instance, ψ0(x) has no nodes
(positive definite), ψ3(x) has one node, ψ4(x) has two nodes, etc. Combining the symmetry
with respect to reflections and the number of nodes, we conclude that the set of eigenfunctions
{ψn(x)}n∈S+ alternates the symmetry in x, such that ψ0(x) is even, ψ3(x) is odd, ψ4(x) is
even, etc. Similarly, the antiperiodic functions ψn(x) with n ∈ S− have exactly indS−(n) − 1
nodes on x ∈

(
−d

2 ,
d
2

)
. For instance, ψ1(x) has no nodes, ψ2(x) has one node, etc. We

conclude again that the set of eigenfunctions {ψn(x)}n∈S− alternates the symmetry in x, such
that ψ1(x) is even, ψ2(x) is odd, etc.

Altogether, this set of facts is summarized in Table 1.

Table 1
Properties of the Bloch functions ψn(x) and gap soliton bifurcations at the first eight band edges of an even

potential V0(−x) = V0(x).

n 0 1 2 3 4 5 6 7

symmetry even even odd odd even even odd odd

periodicity S+ S− S− S+ S+ S− S− S+

# nodes on
(
− d

2
, d

2

)
0 0 1 1 2 2 3 3

sign of Γ0 for local bifurcation 1 −1 1 −1 1 −1 1 −1

Let φ0(x) be a single-humped solution of the ODE (2.3) with Γ(x) = Γ0 and V (x) = V0(x)
which bifurcates from the band edge ω = ωn. By the local bifurcation theory [13], it inherits
the symmetry properties (2.7) of the Bloch function ψn(x). Therefore, φ0(−x) = φ0(x) for
branches of gap solitons to the left of ωn with n = {0, 4, 8, . . .} (for Γ0 > 0) and to the right
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of ωn with n = {1, 5, 9, . . .} (for Γ0 < 0), while φ0(−x) = −φ0(x) for branches of gap solitons
to the left of ωn with n = {2, 6, . . .} (for Γ0 > 0) and to the right of ωn with n = {3, 7, . . .}
(for Γ0 < 0). See Figures 2–3 in [13] for gap solitons φ0(x) in the potential (2.6).

In this paper, we shall consider the existence of SGSs in the ODE (2.3) with piecewise
constant coefficient Γ(x) = Γ± for ±x > 0 and potential V (x) of the following two classes:

(2.8) (i) V = V0(x), (ii) V = V0(x− δ)χ(−∞,0) + V0(x + δ)χ[0,∞),

where χ[a,b] = 1 on x ∈ [a, b] and zero otherwise, while 0 < δ < d. Here V0(x) is a smooth,
even, d-periodic function on x ∈ R. We note that V (x) in (ii) is continuous and even on x ∈ R

but smooth and periodic only on each ±x > 0.
One can develop a general shooting method for numerical approximations of SGSs from the

condition that a localized solution φ(x) of the second-order ODE (2.3) with ω ∈ (ω2m−1, ω2m),
m ∈ N, decays to zero at infinity according to two fundamental solutions p±(x)e∓κx as
x → ±∞, where κ = κ(ω) is a positive number. Solving the ODE (2.3) with Γ(x) = Γ+ for
a general initial value φ(0) and φ′(0) to x > 0 and the same ODE with Γ(x) = Γ− to x < 0,
one can construct a continuously differentiable solution φ(x) on x ∈ R which decays to zero
as x → ±∞ if and only if the projections to the growing fundamental solutions p±(x)e±κx are
zero at infinity. The system of two constraints for two initial values constitutes a well-posed
problem of numerical analysis. This numerical approach was adopted in recent work [18].
Practical implementations of this algorithm are unclear as the shooting method may depend
sensitively on starting approximations of the initial value and may require long computational
time to search through all appropriate initial values. In addition, the ODE solvers of the
shooting method may develop numerical instabilities in approximations of growing solutions.

Due to these reasons, we shall develop an alternative view on numerical approximations of
SGSs, starting with local bifurcation analysis and using the homotopy continuation method
to trace the solution families along parameters ω, Γ±, and δ. Using these analytical and
numerical results, we have obtained the following main results.

(1) We prove analytically that any gap soliton for Γ+ = Γ− can be continued to the SGS
for sufficiently small |Γ+ − Γ−| under a nondegeneracy assumption.

(2) We prove analytically that the maximal difference |Γ+ −Γ−| leading to SGS existence
converges to 0 when ω approaches the band edge which features the local bifurcation
of a gap soliton.

(3) SGSs are computed numerically when the potential V (x) is given by (2.8)(i), and the
maximal |Γ+ − Γ−| allowing their existence is found. Our numerical results confirm
the analytical results (1)–(2) above.

(4) Existence of SGSs for V (x) in (2.8)(ii) with Γ+ > 0 and Γ− < 0 is studied. We
numerically show that local bifurcations may occur from a countable set of points in
the parameter domain (ω, δ) ∈ (ω2m−1, ω2m) × (0, d), m ∈ N.

(5) We numerically compute the points of local bifurcation of SGSs for the potential
(2.8)(ii) and use the homotopy continuation of the bifurcating solution. As a result,
we show that the family of SGSs exists typically in a subset of the plane (ω, δ).

(6) We analytically show that the termination of families of SGSs for the potential (2.8)(ii)
is related to existence of linear bound states for the nonsmooth potential.

Results (1)–(3) are reported in section 3, and results (4)–(6) are described in section 4.
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3. Bifurcations of SGSs for smooth potentials. In this section we study continuation of
SGSs from gap solitons existing for Γ+ = Γ− in the case of a smooth potential function V (x).
A prototypical example of such potential is the symmetric function V0(x) in (2.8)(i).

3.1. Existence of bifurcations from gap solitons. Let γ = (Γ+ + Γ−)/2 and ν = (Γ+ −
Γ−)/2. Then, the ODE (2.3) can be rewritten in the form

(3.1) F (φ, ν) = −φ′′ − ωφ + V (x)φ− γφ3 − ν sign(x)φ3 = 0,

where F (φ, ν) : H1(R) × R �→ H−1(R) is a nonlinear operator acting on a function φ(x) in
space H1(R) and parameter ν ∈ R.

We assume that there exists a solution φ0(x) ∈ H1(R) for ω ∈ R \ Σ and some γ and
V (x), such that F (φ0, 0) = 0. The Jacobian DφF (φ0, 0) is given by the Schrödinger operator
L : H2(R) �→ L2(R), where

(3.2) L = −∂2
x − ω + V (x) − 3γφ2

0(x).

Since ω ∈ R\Σ, we have φ2
0(x) → 0 exponentially fast as |x| → ∞, such that the term −3γφ2

0(x)
is a relatively compact perturbation to the unbounded operator L−ω, where L = −∂2

x+V (x).
By a standard argument (see Corollary 2 in section XIII.4 in [14]), the essential spectrum of L
and (L−ω) coincide. Since ω ∈ R\Σ, the zero point is isolated from the essential spectrum of
L. If we further assume that L has the trivial kernel in H1(R), then L is invertible on L2(R).
Since the translational invariance is broken if V (x) �= 0, L generally has the trivial kernel,
unless a bifurcation of branches of gap solitons occur. By the standard analysis based on the
implicit function theorem, there exists a unique smooth continuation of φν(x) from φ0(x) in
H1(R) for sufficiently small ν, such that F (φν , ν) = 0 and φν(x) → φ0(x) in H1(R) as ν → 0.

In other words, we have proved above that if a gap soliton exists for Γ+ = Γ− and
ω ∈ R \ Σ and the linearized operator L is nondegenerate, then the gap soliton is uniquely
continued into the SGS for small nonzero |Γ+−Γ−|. We confirm this prediction via numerical
analysis of the ODE (2.3) with V (x) in (2.8)(i) for ω taken in the semi-infinite band gap
and the first two finite gaps. Numerical approximations of φ0(x) for Γ+ = Γ− are obtained
from the Newton–Raphson iterations and the homotopy continuation method. The initial
guess for the Newton iteration is taken from an asymptotic expansion leading to the NLS
approximation [13] when ω is close to the local bifurcation threshold ωn. After a successful
convergence for one such ω we use a standard homotopy continuation and generate a family
of gap solitons φ0(x) parameterized by ω. The discretization of the ODE (2.3) is based on a
fourth-order central difference approximation of ∂xx on a truncated domain with zero Dirichlet
boundary conditions.

3.2. Numerical computations of SGSs. We now proceed to construct SGSs, i.e., solutions
φ(x) of the second-order ODE (2.3) with Γ+ �= Γ−. When φ0(x) is obtained for a given value
of ω, we can apply the numerical homotopy continuation of the solution by deviating Γ− from
Γ+. At each step, the SGS φ(x) is thus found via Newton’s iterations. The final value of Γ−,
up to which the iteration converges, is denoted by Γ∗.

Figure 1 shows the values of Γ∗ for Γ+ = +1 (a) and Γ+ = −1 (b). The computational
tolerance in Γ∗ is 0.006 inside the band gaps and 0.002 near the band edges. In the case
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Figure 1. The values of Γ∗ for SGSs originating from symmetric GS families of the first three frequency
gaps of V (x) = sin2(πx/10). In (a) the upper inset zooms in and the lower inset zooms out on the graph in the
semi-infinite gap. The points A–L are referenced in Figure 2.

Γ+ = 1, local bifurcations of small-amplitude gap solitons occur from the lower band edges.
Figure 1(a) shows that the SGSs exist in the semi-infinite gap, as well as in the first two
frequency gaps. In the case Γ+ = −1, local bifurcations of gap solitons occur from the upper
band edges. Figure 1(b) shows that the SGSs exist in the first and second frequency gaps.
The two insets of Figure 1(a) show that Γ∗ decreases quickly as ω moves away from the edge
of the first band and that the convergence Γ∗ ↑ 1 as ω ↑ ω0 is smooth. We further see from
Figure 1 that the interval of existence shrinks as ω approaches the value ωn for any band
edge, where gap solitons undertake a local bifurcation. In addition, the interval of existence
is extremely large in the semi-infinite gap (−∞, ω0), but it becomes narrow in the finite gaps
(ω2m−1, ω2m) for m ≥ 1.

For comparison, the family of SGSs in the gap (ω1, ω2) exists for −0.24 < Γ∗ < 1 in the
case Γ+ = +1 and −1 < Γ∗ < 0.47 in the case Γ+ = −1. The family of SGSs in the gap
(ω3, ω4) exists in a very narrow region of 0.92 < Γ∗ < 1 in the case Γ+ = +1 and in a bigger
interval −1 < Γ∗ < 0.37 in the case Γ+ = −1 (similarly to that in the first gap).

Figure 2 shows profiles of SGSs which correspond to the twelve points labeled A–L in
Figure 1. The solid lines correspond to the gap solitons from which the homotopy in Γ− is
started (i.e., points A, D, G, and J). Clearly, the total power and maximum amplitude of the
SGSs increase as |Γ+ −Γ−| increases. Also notice that the profiles become more concentrated
on the half x > 0 in the case Γ+ = +1 (see Figure 2 (a–b)) and on the half x < 0 in the
case Γ+ = −1 (see Figure 2 (c–d)) as |Γ+ − Γ−| increases. This is in accord with the law
of refraction: when Γ+ = +1 and Γ− decreases from 1, the half x > 0 becomes relatively
more focusing and therefore attracts more energy of the soliton, while when Γ+ = −1 and Γ−
increases from −1, the situation is the opposite.

3.3. Asymptotic analysis near gap soliton bifurcation points. Now we shall explain why
the existence interval shrinks to zero when ω approaches the value ωn where a local bifurcation
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Figure 2. The profiles of SGSs corresponding to the points A–L in Figure 1. Values of ω are A–C: 0.26,
D–F : 0.55, G–I: 0.6, J–L: 0.96. Values of Γ− are A: 1, B: −3.9, C: −15.3, D: 1, E: 0.38, F : −0.235, G:
−1, H: −0.45, I: 0.002, J : −1, K: −0.4, L: 0.164.

of gap solitons occurs. As ω → ωn, we have ‖φ0‖L∞ → 0 and L → (L−ωn). Since the operator
(L−ωn) is not invertible, the implicit function theorem cannot be used and the solution φ0(x)
cannot be continued beyond ν = 0. In order to give a more precise explanation of this
phenomenon, we adopt the NLS approximation for local bifurcation of gap solitons from [13]
(see also the review in [12]). In particular, we consider an asymptotic solution to the ODE
(2.3),

ω = ωn + ε2 Ω + O(ε4),

φ(x) = εA(X)ψn(x) + ε2 A′(X)ψ̃n(x) + ε3 φ(3)(x,X) + O(ε4),
(3.3)

where X = ε x, ε << 1, the function A(X) and parameter Ω are defined below, and ψn and
ψ̃n are the d-periodic (or d-antiperiodic) Bloch functions and generalized Bloch functions,
respectively, of the Hill equation (2.5) for ω = ωn, such that

(3.4) (L− ωn)ψn = 0, (L− ωn)ψ̃n = 2ψ′
n.

The correction term φ(3)(x,X) at O(ε3) solves the nonhomogeneous problem

(3.5) (L− ωn)φ(3) = ΩAψn + A′′ψn + 2A′′ψ̃′
n + Γ(X)A3ψ3

n.

To ensure boundedness of φ(3)(x,X) with respect to the variable x, and, hence, legitimacy of
the expansion (3.3), one has to apply the Fredholm alternative which imposes the orthogonality
condition of the right-hand side of (3.5) with respect to ψn(x) on x ∈ [0, d]. The orthogonality
condition is written as

(3.6) ΩA + μA′′ + ρΓ(X)A3 = 0,
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where

μ = 1 + 2
(ψ̃′

n, ψn)

(ψn, ψn)
, ρ =

(ψ2
n, ψ

2
n)

(ψn, ψn)
,

and we have used the standard L2 inner product (·, ·) over one period x ∈ [0, d]. It is shown
in [13] that μ = 1

2ω
′′
2n,2n+1(k) with either k = 0 or k = π

d at the point ω = ωn, where
ω2n,2n+1(k) is the dispersion relation between ω ∈ [ω2n, ω2n+1] and k ∈ [0, πd ].

Due to the nature of the nonlinearity interface, the function Γ(X) is the same as Γ(x),
i.e., Γ(X) = Γ± for ±X > 0. We shall prove that no localized solution of the ODE (3.6) exists
under the condition Γ− �= Γ+. Indeed, consider the Hamiltonian of the ODE (3.6):

(3.7) H[A] =
1

2

[
μ(A′)2 + ΩA2

]
+

1

4
ρΓ(X)A4.

If A(X) solves the ODE (3.6), then

d

dX
H[A(X)] =

1

4
ρΓ′(X)A4(X) =

1

4
ρ(Γ+ − Γ−)δ(X)A4(X),

where δ(X) is the Dirac delta-function. If A(X) is a localized solution on X ∈ R, then the
integration on X ∈ R gives the constraint

0 = lim
x→+∞

H[A(X)] − lim
x→−∞

H[A(X)] =
1

4
ρ(Γ+ − Γ−)A4(0),

since H[A(X)] → 0 if A(X), A′(X) → 0 as |X| → ∞. Therefore, A(0) = 0 if Γ+ �= Γ−.
Consider now H[A(X)] on X > 0. It is clear from the decaying conditions as X → ∞
that H[A(X)] = const = 0, which together with the fact that A(0) = 0 leads to 0 =
limX↓0 H[A(X)] = 1

2μ|A′(0)|2, such that A′(0) = 0. The only solution of the ODE (3.6)
with A(0) = A′(0) = 0 is the zero solution A(X) ≡ 0.

If Γ+ = Γ− = Γ0 and sign(μ) = sign(ρΓ0) = − sign(Ω), the ODE (3.6) has the standard
sech-soliton decaying as |X| → ∞. However, the result above shows that the sech-soliton with
Γ+ = Γ− cannot be homotopically continued to a decaying solution of (3.6) for Γ+ �= Γ−.
This proves that Γ∗ → Γ+ as ω → ωn, where ωn is a local bifurcation value.

4. Bifurcations of SGSs for nonsmooth potentials. In this section, we study local bifur-
cations of solutions of the ODE (2.3) when V (x) is a continuous function with the jump in the
first derivative at the nonlinearity interface. The prototypical example of such potentials is
given by (2.8)(ii), where V0(x) is an even potential (in our numerical computations we use V0

from (2.6)). We shall consider the existence of SGSs under the normalization Γ+ = −Γ− = +1.

4.1. SGS numerical construction via gluing. The point (δ∗, ω∗) in the parameter domain
δ ∈ (0, d) and ω ∈ (ω2m−1, ω2m), m ∈ N, is defined to be a point of a local bifurcation of SGSs
according to the following two-step algorithm.

(i) Construction of continuous solutions. Let φ±(x;ω) denote the family of single-humped
gap solitons parameterized by ω ∈ (ω2m−1, ω2m) and centered at x = 0 corresponding to (2.3)
with Γ(x) ≡ Γ±, respectively. These families bifurcate from the points ω = ω2m for Γ+ > 0
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Figure 3. Two-step search for (ω∗, δ∗) in the gap (ω1, ω2). (a) Result of step (i)—parametrization of the
families of continuous solutions (4.1): black line ωA(δ), gray line ωB(δ). (b) Step (ii)—search for δ∗: solid
black φ′

+(δ;ωA), dashed black φ′
−(−δ;ωA), solid gray −φ′

+(δ;ωB), and dashed gray φ′
−(−δ;ωB). Labeled points

correspond to SGSs.

and ω = ω2m−1 for Γ− < 0. In order to find continuous solutions, we now study for each fixed
δ ∈ (0, d) the two functions

fA(ω) = φ−(−δ;ω) − φ+(δ;ω), fB(ω) = φ−(−δ;ω) + φ+(δ;ω)

and find their zeros denoted by ωA,B = ωA,B(δ), respectively. For each δ existence of zeros of
either fA(ω) or fB(ω) is guaranteed by continuity of φ± as functions of ω and by the fact that
φ−(−δ;ω2m−1) = φ+(δ;ω2m) = 0 and φ−(−δ;ω2m) �= 0, φ+(δ;ω2m−1) �= 0. Moreover, several
zeros of these functions may occur for the same δ.

When a zero ωA(δ) or ωB(δ) is found, a δ-parameterized family of continuous solutions
φA(x; δ) or φB(x; δ), respectively, is constructed by gluing two individual gap solitons:

φA(x; δ) = φ−(x− δ;ωA)χ(−∞,0) + φ+(x + δ;ωA)χ[0,∞),

φB(x; δ) = φ−(x− δ;ωB)χ(−∞,0) − φ+(x + δ;ωB)χ[0,∞).
(4.1)

The functions φA,B(x; δ) decay as |x| → ∞ and are smooth in x everywhere except at the
nonlinearity interface x = 0, where they generally have a jump in the first derivative.

Note that it is important to consider both φA and φB due to the sign invariance of the
ODE (2.3). Each sign produces a branch of continuous solutions of the ODE (2.3).

Figures 3 (a) and 4 (a) present the numerically computed ωA,B(δ) for δ ∈ (0, d) in the
gaps (ω1, ω2) and (ω3, ω4), respectively. The lack of smoothness in the curves in these figures
is due to an insufficient resolution in the search algorithm and can be corrected with a finer
resolution. Note that when ωA,B(δ) is multiple-valued, as seen in Figures 3 (a) and 4 (a), we
may have several decaying solutions φA(x) and/or φB(x) for the same δ.

(ii) Construction of SGSs. Next, we search for continuously differentiable solutions within
the above family φA,B(x; δ). To ensure the continuity of the first derivative of φ(x; δ) at x = 0,
we search for zeros of the two functions

gA(δ) = φ′
−(−δ;ωA) − φ′

+(δ;ωA), gB(δ) = φ′
−(−δ;ωB) + φ′

+(δ;ωB).
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Figure 4. Analogous to Figure 3 but for the gap (ω3, ω4).

If a zero of either gA(δ) or gB(δ), denoted by δ∗, exists, then the function φA(x; δ∗) or φB(x; δ∗),
respectively, in (4.1) has a continuous first derivative across the point x = 0. Figures 3 (b)
and 4 (b) present the numerical results on computing δ∗. The labeled intersection points O,
P , Q, R, S, and T correspond to zeros of gA,B(δ). They are found as intersection points of
solid and dashed curves of the same color. The solid black line shows the plot of φ′

+(δ;ωA),
and the dashed black line shows φ′

−(−δ;ωA). Similarly, the solid gray line plots −φ′
+(δ;ωB),

and the dashed gray line plots φ′
−(−δ;ωB). Therefore, an intersection of a solid black and

a dashed black line (points O,Q, S) gives zeros δ∗ of gA(δ) and, thus, a solution φA(x; δ∗).
Similarly, an intersection of a solid gray and a dashed gray line (points P,R, T ) gives zeros δ∗
of gB(δ) and, thus, a solution φB(x; δ∗).

Table 2 shows the approximate computed values of δ∗ and corresponding ω∗ = ωA,B(δ∗)
at the points O–T for branches A,B of solutions given by (4.1). Note that additional points
(δ∗, ω∗) can be obtained by generalizing the above functions fA,B and gA,B to

fjA(ω) = φ−(−(jd + δ);ω) − φ+(jd + δ;ω), fjB (ω) = φ−(−(jd + δ);ω) + φ+(jd + δ;ω)

and

gjA(δ) = φ′
−(−(jd + δ);ωA) − φ′

+(jd + δ;ωA), gjB (δ) = φ′
−(−(jd + δ);ωB) + φ′

+(jd + δ;ωB)

for j ∈ {1, 2, . . .} with V still defined as in (2.8)(ii). Nontrivial points (ω∗, δ∗) may exist for
any such j. For example, we have found one such point for j = 1. The computed value is
(ω∗, δ∗) ≈ (0.73, 7.33), and the resulting SGS corresponds to the point Z in Figure 5(a). Such
additional solutions are SGSs of smaller amplitude compared to those for j = 0.

Table 2
Bifurcation points for SGSs in the domain ω ∈ (ω1, ω2) ∪ (ω3, ω4) and δ ∈ (0, d).

Point O P Q R S T

Branch of solution A B A B A B

ω∗ 0.58 0.70 0.94 0.97 1.03 1.03

δ∗ 1.54 9.66 0.78 3.24 7.97 9.57
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Figure 5. (a) SGS continuation curves, total power versus frequency, in the gap (ω1, ω2). Labeled points
O,P correspond to those in Figure 3 (b). Point Z is discussed in section 4.1. Points OL, PL, and ZL are SGS
termination points. (b) Point spectrum of the linear Schrödinger operator inside (ω1, ω2) for all δ ∈ (0, d).
Solid/dashed lines: eigenvalues with even/odd eigenfunctions.

0.85 0.9 0.95 1 1.05
0

1

2

3

4

5

6

7

(a)

ω

||φ
(x

;δ
*,ω

)|
|2

0.85 0.9 0.95 1 1.05
0

2

4

6

8

10

ω

δ
(b)

 

 

ψ even

ψ odd

T S

Q

R

Q
L

R
L
T

L
S

L

Q
L

R
L

S
L

T
L

Figure 6. (a) SGS continuation curves, total power versus frequency, in the gap (ω3, ω4). Labeled points
Q–T correspond to those in Figure 4 (b). Points QL–TL are SGS termination points. (b) Point spectrum of
the linear Schrödinger operator inside (ω3, ω4) for all δ ∈ (0, d). Solid/dashed lines: eigenvalues with even/odd
eigenfunctions.

4.2. Numerical homotopy continuation of SGSs. Assuming the existence of a point
(ω∗, δ∗), we have constructed the SGS of the ODE (2.3), where the potential function V (x)
is given by (2.8)(ii) and (ω, δ) = (ω∗, δ∗). The SGS denoted as φ∗(x) is represented by one of
the functions in (4.1) with (ω, δ) = (ω∗, δ∗). Each of these solutions can be used as a starting
point for a numerical homotopy continuation to generate a family of SGSs parameterized
by ω ⊂ (ω2m−1, ω2m) for a given value of δ = δ∗. Similarly, for a fixed ω = ω∗ a family
parameterized by δ ⊂ (0, d) can be constructed. Under the same assumption that the operator
L = −∂2

x − ω∗ + V (x) − 3Γ(x)φ2
∗(x) is invertible, the implicit function theorem implies that

there exists a unique smooth continuation of the particular solution φ∗(x) to the family of
solutions along parameters ω and δ.

We restrict our numerical studies to the continuation in ω. Numerical results of such
continuation from the SGSs at points O–T are shown in Figures 5 (a) and 6 (a). The curves
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plot the total soliton power ‖φ‖2
L2(R) as a function of frequency ω for fixed δ = δ∗. Note that

each curve corresponds to a different value of δ∗ and hence a different potential V (x). The
values of δ∗ can be read in Table 2. Termination of a continuation curve is defined when the
total power of the soliton becomes zero or when Newton iteration convergence fails. As the
figures show, the latter case is always accompanied by the slope of the continuation curve
becoming infinite, suggesting a violation of the implicit function theorem assumptions. The
former termination case is studied in the following subsection.

4.3. Analysis of termination points of SGSs. We shall now consider the termination
points of the solution families plotted in Figures 5 (a) and 6 (a), where the soliton power
becomes zero. The points are labeled OL–TL, and their corresponding values of δ and ω are
given in Table 3.

Table 3
Termination points for the six SGS families in Figures 5 (a) and 6 (a).

Point OL PL QL RL SL TL

δ 1.54 9.66 0.78 3.24 7.97 9.57

ω 0.65 0.70 0.98 1.02 1.03 1.03

The termination points are expected to be related to the existence of nontrivial bound
states in the (point) spectrum of the Schrödinger operator for the same potential V (x), i.e.,
with exponentially decaying solutions of the linear ODE

(4.2) −ψ′′ − ωψ + V (x)ψ = 0, ψ : R �→ R,

for V (x) in (2.8)(ii) and ω ∈ R\Σ. The point spectrum is nonempty due to the singularity of
V (x) at x = 0.

4.3.1. Numerical results. Results of numerical computations of the point spectrum con-
tained in the first two finite gaps (ω1, ω2) and (ω3, ω4) are shown in Figures 5 (b) and 6 (b)
for all values δ ∈ [0, d]. The eigenfunctions ψ are either even (solid lines) or odd (dashed
lines). For the six values of δ corresponding to the SGS families in Figures 5 (a) and 6 (a)
the eigenvalues are marked by black dots and are in perfect agreement with the values of ω at
the termination points OL–TL. The symmetry (even/odd) of the bound states at OL–TL also
matches that of the eigenfunctions at the marked points in the point spectrum. The eigenvalue
curve originating as well as ending at ω2 in Figure 5 (b) corresponds to the termination point
ZL of the SGS family for j = 1 in Figure 5 (a). The termination point ZL for the same value
of δ is shown by a triangle.

4.3.2. Bifurcation analysis for |δ| small. In this subsection we consider bifurcations of
point spectrum of the Schrödinger operator from the band edges for small values of |δ| (or,
due to the d periodicity of V , equivalently for δ near 0 from above and near d from below).
This analysis will prove the existence of the spectral curves near δ = 0 and δ = 10 in Figures
5 (b) and 6 (b), i.e., the existence of curves with points OL and QL locally to δ = 0 and the
curves with points PL and TL locally to δ = 10.
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In order to construct solutions of the spectral problem (4.2), we first consider exponentially
decaying solutions of the ODE on the half-line

−ψ′′
+ − ωψ+ + V0(x + δ)ψ+ = 0, ψ+ : R+ �→ R.

By using the fundamental solution of the Hill equation (2.5), we can express ψ+(x) in the
form ψ+ = e−κxu−(x+ δ), where u−(x) are periodic or antiperiodic bounded solutions of the
Hill equation (2.5) with V (x) = V0(x).

As V (x) is even, the function ψ+(x) admits a symmetric (even) reflection about x = 0 if
ψ′

+(0) = 0, which is equivalent to the condition

G1(δ, κ) = u′−(δ) − κu−(δ) = 0,

and it admits an antisymmetric (odd) reflection about x = 0 if ψ+(0) = 0, which is equivalent
to the condition

G2(δ, κ) = u−(δ) = 0.

Since eigenvalues of the spectral problem (4.2) are simple and the eigenfunctions are either
even or odd, all eigenvalues of the spectral problem (4.2) in the band gaps ω ∈ R\Σ are
defined by zeros of the functions G1(δ, κ) and G2(δ, κ) in κ for a given value of δ, where κ ≥ 0
and the values of κ are related to the values of ω in the band gaps. Both functions G1,2 are
analytic in δ ∈ R and periodic with period d. Both functions admit analytic continuation in
the parameter κ ∈ R+ [8].

If δ = 0, the only zeros of G1(δ, κ) and G2(δ, κ) occur at κ = 0, i.e., at the band edges
ω = ωn. Indeed, if G1(0, κ) = 0, then ψ′

+(0) = 0, such that ψ+(x) = ψn(x) is an even
function on x ∈ R. However, ψ+(x) decays exponentially as x → ∞ and grows exponentially
as x → −∞ if κ > 0. Therefore, G1(0, κ) = 0 is equivalent to κ = 0. A similar argument
works for G2(0, κ) = 0.

(i) Bifurcation of even eigenfunctions. Let us first consider the zeros of G1(δ, κ). Com-
puting the derivatives of G1(δ, κ) in δ and κ at (δ, κ) = (0, 0), we obtain

∂δG1(0, 0) = u′′−(0) = ψ′′
n(0) = (V0(0) − ωn)ψn(0),

∂κG1(0, 0) = −ψ̃′
n(0) − ψn(0),

where ψ̃n is the generalized Bloch function; see (3.4). The fact that ψ̃n = −∂u−
∂κ

∣∣
κ=0

is clear
from differentiation of (2.5) with respect to κ.

It is found in [12] that

D(x) = ψn(x)ψ̃′
n(x) − ψ′

n(x)ψ̃n(x) + ψ2
n(x)

is constant in x, i.e., D(x) = D(0), and that

(4.3) D(0) =
1

2
ω′′

2n−1,2n(k)(ψn, ψn),

where either k = 0 or k = π
d at the bifurcation point ω = ωn. Since ψ′

n(0) = 0, D(0) =

ψn(0)(ψ̃′
n(0)+ψn(0)), and the leading-order approximation for the root of G1(δ, κ) near (δ, κ) =
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(0, 0) is given by

δ =
ψ̃′
n(0) + ψn(0)

ψn(0)(V0(0) − ωn)
κ + O(κ2) =

D(0)

ψ2
n(0)(V0(0) − ωn)

κ + O(κ2),

where ψn(0) �= 0 (which is met since ψ′
n(0) = 0). Using (4.3) and the facts that ωn > 0 and

V0(0) = 0 for the numerical example (2.6), we get

δ = −
ω′′

2n−1,2n(k)(ψn, ψn)

2ψ2
n(0)ωn

κ + O(κ2).

Therefore, the bifurcation occurs for δ > 0 if ω′′
2n−1,2n(k) < 0 (e.g., for ω to the right of ω1)

and for δ < 0 if ω′′
2n−1,2n(k) > 0 (e.g., for ω to the left of ω0 and ω4); see Table 1. Note that

the negative values of δ correspond to the values of δ below the level δ = d due to periodicity
of the function G1(δ, κ) in δ. The above local existence analysis for even bound states is
confirmed by the solid lines near δ = 0 in Figure 5 (b) and near δ = d = 10 in Figure 6 (b).

(ii) Bifurcation of odd eigenfunctions. Similarly to (i), we study the zeros of G2(δ, κ). We
compute the derivatives of G2(δ, κ) in δ and κ at (δ, κ) = (0, 0),

∂δG2(0, 0) = u′−(0) = ψ′
n(0),

∂κG2(0, 0) = −ψ̃n(0),

such that the leading-order approximation for the root of G2(δ, κ) near (δ, κ) = (0, 0) is given
by

δ =
ψ̃n(0)

ψ′
n(0)

κ + O(κ2) = −
ω′′

2n−1,2n(k)(ψn, ψn)

2(ψ′
n(0))2

κ + O(κ2),

where ψ′
n(0) �= 0 (which is met since ψn(0) = 0). From the expansion, we conclude that the

bifurcation occurs for δ > 0 if ω′′
2n−1,2n(k) < 0 (e.g., for ω to the right of ω3) and for δ < 0 if

ω′′
2n−1,2n(k) > 0 (e.g., for ω to the left of ω2). The dashed lines near δ = 0 in Figure 6 (b) and

near δ = d = 10 in Figure 5 (b) confirm this analysis.
Note that there are curves in Figures 5 (b) and 6 (b) which do not bifurcate from δ = 0 and

δ = d = 10 but still bifurcate from the band edge ω = ωn. Bifurcations of these curves cannot
be confirmed from the analytical theory above, unless the values of G1,2(δ; 0) for 0 < δ < d
are approximated numerically.

5. Conclusion. We have employed methods of bifurcation theory for the existence problem
of SGSs supported by the nonlinearity interface and the periodic potential. Two bifurcation
problems are considered numerically. The first bifurcation takes place from the standard gap
solitons existing at the zero jump of the nonlinearity coefficient. The second bifurcation takes
place from the bound state consisting of parts of two standard gap solitons glued together
in a continuously differentiable SGS. Three asymptotic results are described in the article.
We show that the standard gap solitons can be continued generally for small jumps in the
nonlinearity coefficient. On the contrary, no SGSs for nonzero jump of the nonlinearity co-
efficient exist in the NLS approximation which is valid near the band edges. In addition, we
analytically study bifurcations of eigenvalues of the Schrödinger operator with a nonsmooth
potential from band edges of the Hill equation.
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One can argue that the SGSs bifurcating from a standard gap soliton or a gluing com-
bination of two gap solitons inherit stability properties of gap solitons in the neighborhood
of the local bifurcation points. Stability of standard gap solitons was considered analytically
and numerically in [13]. The stability properties can change far from the bifurcation points.
Detailed computations of stability of the SGSs will be the subject of a forthcoming work.

Acknowledgment. Dmitry Pelinovsky thanks the people at ETH Zürich for hospitality
during his visit.

REFERENCES
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Bounded Solutions of Nonlocal Complex Ginzburg–Landau Equations for a
Subcritical Bifurcation∗
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Abstract. Stable periodic solutions of a system of two nonlocal coupled complex Ginzburg–Landau (CGL)
equations describing the dynamics of a subcritical Hopf bifurcation in a spatially extended system
are found analytically in the limit of large dispersion coefficients. The domains in the parameter
space where these solutions exist and are stable are determined. It is shown that the existence and
stability depend on the sign of the coupling parameter and on the ratio of the dispersion coefficients.
Numerical simulations of the system of nonlocal coupled CGL equations confirm the analytical results
and exhibit other bounded dynamic regimes, such as standing waves and spatio-temporal chaos.
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1. Introduction. A Ginzburg–Landau equation,

(1.1) At = μA + (α1 + iα2)Axx + (β1 + iβ2)A|A|2,

for the amplitude of an unstable mode A(x, t) as a function of slow temporal and spatial
variables describes the behavior of a system near a Hopf bifurcation point. This has been a
subject of continuing attention over the last three decades [1]. Most works address various
types of solutions in the case of a supercritical bifurcation (μ = 1, β1 < 0). However, in
applications, subcritical bifurcations (β1 > 0) occur as often as supercritical ones. Indeed,
subcritical Hopf bifurcations are found in convection in binary fluids [7, 13, 14, 15, 20, 24], in
nonlinear optics and lasers [16, 19, 22], in directional solidification [5], in combustion [2, 17],
and in many other applications including lesser known examples of explosive crystallization
fronts [25] and frontal polymerization [4].

One might expect that unless higher order nonlinear saturation terms are accounted for
in the equations, all the solutions for μ = 1 in case of a subcritical bifurcation will blow
up in a finite time. In this case, the amplitude equations would be of little use as a means
to describe the behavior of the original system. However, this is not necessarily the case.
Beginning with the work by Hocking and Stewartson [8], bounded solutions were found for
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the supercritical parameter value μ = 1 in the case of a subcritical bifurcation β1 > 0 under
certain conditions on the magnitude of the coefficients of the equation. These results were
apparently forgotten [1] and then rediscovered and extended by Bretherton and Spiegel [3] and
Schöpf and Kramer [23]. Further extensions of these results can be found in [10, 11, 16, 21, 22].

The works cited above were performed for a single complex Ginzburg–Landau (CGL)
equation (1.1). However, for a large class of systems with reflection symmetry, a more com-
plete description of a Hopf bifurcation problem in the case of a short-wave instability involves
a system of two nonlocal coupled Ginzburg–Landau equations for the amplitudes of two coun-
terpropagating waves, A±(x, t) [12, 18]:

A+
t = μA+ + (α1 + iα2)A

+
xx + (β1 + iβ2)A

+|A+|2 + (p1 + ip2)A
+〈|A−|2〉,(1.2a)

A−
t = μA− + (α1 + iα2)A

−
xx + (β1 + iβ2)A

−|A−|2 + (p1 + ip2)A
−〈|A+|2〉.(1.2b)

Here the coupling term involves the averaged quantities defined as

〈f〉 = lim
L→∞

1

2L

∫ L

−L
f(x)dx,

where x is the spatial variable. The averaging procedure is defined for any positive, locally
integrable function that is bounded for −∞ < x < ∞. For a periodic function f(x), the
average coincides with the average over a period. The averaged terms appear in the equations
due to the fact that the effect of one wave on the other, traveling with a group velocity in
the opposite direction on the intermediate time scale, enters only through its average on the
slowest time scale.

We emphasize that it is these equations rather than equations with local cubic coupling
that generically arise in the case of Hopf bifurcation in systems with right-left symmetries.
Ginzburg–Landau equations with local coupling in the nonlinear terms cannot be derived from
the original equations except in the nongeneric case of an asymptotically small group velocity
of waves. Thus, in order to understand the dynamics of systems undergoing subcritical Hopf
bifurcations, nonlocal coupled CGL equations must be considered, as is done in this paper.

As noted in [23], in the limit α2 → ∞, β2 → ∞, (1.1) reduces to the nonlinear Schrödinger
(NLS) equation, which has a continuum of soliton solutions that reduces to a discrete set when
the equation is perturbed. The method used in [23] allows one to find not only soliton solutions
but also spatially periodic solutions of (1.1) in the case of large α2 and β2. In this paper, we
extend the analysis done in [23] to the system of equations (1.2) and show that the system
(1.2) may have stable, bounded solutions for the supercritical parameter value μ = 1 in the
case of a subcritical bifurcation β1 > 0 under the assumption that α2 and β2 are sufficiently
large. We also perform numerical simulations that confirm our analytical results.

2. Periodic solutions. Equations (1.2) can be rescaled as

A+
t = A+ + (1 + iα)A+

xx + (1 + iβ)A+|A+|2 + (p + ipi)A
+〈|A−|2〉,(2.1a)

A−
t = A− + (1 + iα)A−

xx + (1 + iβ)A−|A−|2 + (p + ipi)A
−〈|A+|2〉(2.1b)

(we retain the same notation for the amplitudes A±). It is convenient to write these equations
in the real form by substituting

A±(x, t) = R±(x, t) exp
(
iΘ±(x, t)

)
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into (2.1) and separating real and imaginary parts to obtain

R±
t = R± + R±

xx −R±(Θ±
x )2 − α(2R±

x Θ±
x + R±Θ±

xx) + (R±)3 + pR±〈(R∓)2〉,(2.2a)

R±Θ±
t = R±Θ±

xx + 2R±
x Θ±

x + α(R±
xx −R±(Θ±

x )2) + β(R±)3 + piR
±〈(R∓)2〉.(2.2b)

The superscript ± means that each of the equations (2.2) includes two equations, one with
the upper superscript and the other with the lower superscript. Note that the terms 〈(R∓)2〉
do not depend on x. Thus, the change of variables

Θ̃± = Θ± − pi

∫
〈(R∓)2〉 dt

allows us to eliminate the term proportional to pi in (2.2b). We retain the same notation,
Θ±, for the phase but set pi = 0 in (2.2b).

We consider the case when the coefficients α and β in the equations are large and set

α =
1

ε
, β =

F

ε
, |ε| � 1, F = O(1).

The equations then take the form

R±
t = R± + R±

xx −R±(Θ±
x )2 − 1

ε

(
2R±

x Θ±
x + R±Θ±

xx

)
+ (R±)3 + pR±〈(R∓)2〉,(2.3a)

R±Θ±
t = R±Θ±

xx + 2R±
x Θ±

x +
1

ε

(
R±

xx −R±(Θ±
x )2

)
+

F

ε
(R±)3.(2.3b)

Multiplying (2.3a) by ε2 and (2.3b) by ε and taking the sum of the resulting equations yield

(2.4a) ε2R±
t + εR±Θ±

t = ε2R± +(1+ ε2)[R±
xx−R±(Θ±

x )2] + (F + ε2)(R±)3 + ε2pR±〈(R∓)2〉.

Multiplying (2.3a) by ε and (2.3b) by ε2 and taking the difference of the resulting equations
yield

(2.4b) −εR±
t +ε2R±Θ±

t = −εR±+(1+ε2)[R±Θ±
xx+2R±

x Θ±
x ]+ε(F−1)(R±)3−εpR±〈(R∓)2〉.

We seek the solution of (2.4) as an expansion in powers of ε,

R± = R±
0 + ε2R±

2 + . . . , Θ± =
1

ε
Θ±

−1 + εΘ±
1 + . . . .

Substituting the expansions into (2.4) and collecting like powers of ε, we obtain

O(ε−2) : R±
0 (Θ±

−1)
2
x = 0,(2.5a)

O(ε−1) : R±
0 (Θ±

−1)xx + 2(R±
0 )x(Θ

±
−1)x = 0,(2.5b)

O(ε0) : R±
0 (Θ±

−1)t = (R±
0 )xx + F (R±

0 )3,(2.5c)

O(ε) : −(R±
0 )t + R±

0 (Θ±
−1)t = −R±

0 + R±
0 (Θ±

1 )xx + 2(R±
0 )x(Θ

±
1 )x(2.5d)

+ (F − 1)(R±
0 )3 − pR±

0 〈(R∓
0 )2〉.
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Equations (2.5a) and (2.5b) imply that Θ±
−1 does not depend on x and is a function of t only,

Θ±
−1 = Θ±

−1(t). We assume that F > 0 and γ±(t) ≡ (Θ±
−1)t > 0, in which case (2.5c) has a

family of solutions

(2.6) R±
0 (x, t) =

[
2γ±(t)

[2 −m±(t)]F

]1/2

dn

([
γ±(t)

[2 −m±(t)]

]1/2

x|m±(t)

)
.

Here 0 < m± < 1 is any function of t, and dn(u|m) is the Jacobi elliptic function that varies
between (1−m)1/2 and 1 with the period 2K(m), where K(m) is the complete elliptic integral
of the first kind. Thus, (2.6) represents a spatially periodic solution with the period

(2.7) λ± = 2K(m±(t))

[
2 −m±(t)

γ±(t)

]1/2

.

In what follows we assume that the period λ± of the solution is constant, i.e., that there is a re-
lation (2.7) between the time-dependent functions m±(t) and γ±(t). We remark that m± → 1

implies K(m±) → ∞ and the solution (2.6) degenerates into the pulse (2γ±/F )1/2 sech(γ
1/2
± x),

whereas m± → 0 corresponds to small harmonic oscillations.
Next we multiply (2.5d) by R±

0 to rewrite it as

(2.8) [(R±
0 )2(Θ±

1 )x]x = −1

2
[(R±

0 )2]t + (1 + γ±)(R±
0 )2 − (F − 1)(R±

0 )4 + p(R±
0 )2〈(R∓

0 )2〉.

The local wavenumber (Θ±
1 )x must be a bounded function, from which, taking into account

that R±
0 is periodic, we can draw a number of important conclusions. First, the integral of

the right-hand side of (2.8) over this period must vanish. Indeed, suppose this is not the case
and the integral over a period is equal to a �= 0. Then integrating (2.8) over N periods of R±

0 ,
from x to x + Nλ±, yields

(2.9) (R±
0 )2(Θ±

1 )x
∣∣
x+Nλ± − (R±

0 )2(Θ±
1 )x

∣∣
x

= aN.

Since
(R±

0 )2
∣∣
x+Nλ± = (R±

0 )2
∣∣
x

due to periodicity of R±
0 , we obtain

(2.10) (Θ±
1 )x

∣∣
x+Nλ± = (Θ±

1 )x
∣∣
x

+
aN

(R±
0 )2|x

.

That N can be arbitrarily large implies that (Θ±
1 )x is unbounded, contrary to our assumption

about the local wavenumber. Thus, a = 0, and using (2.10) with N = 1 we arrive at another
important conclusion that (Θ±

1 )x is periodic with period λ±. Moreover, since R±
0 is an even

function, (Θ±
1 )x defined by (2.5d) is an odd one, and hence the phase Θ±

1 is even and periodic
with the same period as R±

0 .
Upon some calculations using∫ K(m)

0
dn2 u du = E(m),

∫ K(m)

0
dn4 u du =

2

3
(2 −m)E(m) − 1

3
(1 −m)K(m),
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the condition that the integral of the right-hand side of (2.8) over the period vanishes yields

d

dt

[
K±E±
λ2
±F

]
= (1 + γ±)

2K±E±
λ2
±F

− 16(K±)4(F − 1)

3λ4
±F

2

[
2(2 −m±)

E±
K±

− (1 −m±)

]
(2.11)

+ 16p
K±E±
λ2
±F

K∓E∓
λ2
∓F

.

Here K± = K(m±), E± = E(m±), and E(m) is the complete elliptic integral of the second
kind. Using (2.7) to eliminate λ±, the above equation can be written as

(2.12) D±
1

γ±

dγ±
dt

= 1 −B±γ± + pC∓γ∓,

where

D± = D(m±), D(m) =
1

4E(m)

E2(m) − (1 −m)K2(m)

E(m) − 2(1 −m)K(m)/(2 −m)
> 0,

B± = B(m±), B(m) =
1

3F

[
F − 4 − 2(F − 1)

(1 −m)K(m)

(2 −m)E(m)

]
,

C± = C(m±), C(m) =
2

F

E(m)

(2 −m)K(m)
> 0.

The critical points γs± of (2.12), i.e., the solutions of

−B+γ
s
+ + pC−γ

s
− = −1,(2.13a)

−B−γ
s
− + pC+γ

s
+ = −1,(2.13b)

are given by

(2.14) γs+ =
1

C+

Γ− + p

Γ−Γ+ − p2
, γs− =

1

C−

Γ+ + p

Γ−Γ+ − p2
,

where

(2.15) Γ± = Γ(m±), Γ(m) = B(m)/C(m).

These critical points γs± are time-independent, as the corresponding m± are (see (2.7)).
The behavior of the function Γ(m) is important for subsequent calculations and is shown
in Figure 1. One can show that Γ(0) = −1 and

Γ ∼ (4 ln 2 − ln(1 −m))(F − 4)/12 as m → 1.

For F > 4, Γ(m) is a monotonically increasing function that has one zero at m = m0, which
depends on F . The function m0(F ) is shown in Figure 2. It monotonically decreases from
m0 = 1 at F = 4 to zero as F → ∞. For F < 4, Γ(m) < 0 for all 0 < m < 1. It has a
single maximum if 2 < F < 4 and is a monotonically decreasing function if 0 < F < 2. Thus



270 VOLPERT, NEPOMNYASHCHY, STANTON, AND GOLOVIN

(6)

(5)

(4)

(3)

(2)

(1)

–2

–1

0

1
Γ

0.2 0.4 0.6 0.8 1
m

Figure 1. The graph of the function Γ(m) defined by (2.15) for various values of F . The curves are plotted
for F = 1 (curve (1)), F = 2 (curve (2)), F = 3 (curve (3)), F = 4 (curve (4)), F = 5 (curve (5)), and F = 6
(curve (6)).
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Figure 2. The graph of the functions m0(F ).

we obtain a two-parameter (m+,m−) family of solutions (2.14) that determine the amplitude
(2.6). The corresponding wavelengths are given by (2.7). Since γs± are required to be positive,
there are certain conditions on the choice of the parameters m+ and m−. To describe these
conditions, we consider the cases p > 0 and p < 0 separately. Consider first p > 0. Then,
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Figure 3. Existence regions for F = 10 and three different values of p > 0. See text.

since C± > 0, the stationary equations (2.13) imply that m± must be such that

(2.16) Γ± > 0, p2 < p2
e(m+,m−) ≡ Γ+ Γ−,

which, in turn, requires F > 4 (otherwise, Γ(m) < 0 for 0 < m < 1) and m± > m0. Thus,
for p > 0, positive critical points γ± exist only if F > 4 and for parameter values m± that
lie in the square m0 < m+ < 1, m0 < m− < 1 subject to the condition p < pe. This result
is illustrated by Figure 3, where the existence regions are shown in the (m+,m−)-plane for
F = 10 and three different values of p > 0. The existence regions are marked by S, since all
the existing solutions are stable, as shown in the next section. The existence region is bounded
by the curve pe(m+,m−) = p and the line segments m+ = 1, m0 < m− < 1 and m− = 1,
m0 < m+ < 1. Note that the ends of the curve pe(m+,m−) = p are the points (m0, 1),
(1,m0), which is not necessarily seen on the scale of the figure. To better understand the form
of the solution R±

0 , we consider a point (m+,m−) close to one of the existence boundaries. As
(m+,m−) approaches the existence boundary pe(m+,m−) = p, γs± → ∞. As a result, λ± → 0,
and R±

0 in (2.6) goes to infinity so that the solution (2.6) has the form of an array of closely
spaced spikes. As (m+,m−) approaches other existence boundaries, the form of the solution
is different. Consider the case m+ → 1, m0 < m− < 1 (the case m− → 1, m0 < m+ < 1 is
similar). Then both γs+ and γs− have finite limits. As a result, λ+ → ∞, and, as mentioned
earlier, R+

0 degenerates into a pulse

R+
0 =

√
2γ+

F
sech(x

√
γ+).

Different types of solutions corresponding to different values of m± are shown in Figure 4.
Figure 3 also shows that decreasing p increases the existence region. In the limit p → 0, the
existence region occupies the entire square m0 < m± < 1. The evolution of the existence
region for other values of F > 4 as p varies is similar to that for F = 10. The main difference
is the size of the square m0 < m± < 1, since m0 depends on F (see Figure 2).

Next, consider the case p < 0. We distinguish between two subcases, F > 4 and F < 4.
As discussed earlier, an important difference between them is in the behavior of the function
Γ(m). Consider first F > 4, so that Γ is a monotonically increasing function of m. Suppose
m1 is such that Γ(m1) = −p. Then the critical points γs± are positive if either m1 < m± < 1
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Figure 4. Different types of solutions (2.6), (2.14) for F = 10, p = 0.1.
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Figure 5. Existence regions for F = 10 and three different values of p < 0. See text.

(in which case both the numerators and denominators in (2.14) are positive) or 0 < m± < m1

and p2
e(m+,m−) < p2 (in which case both the numerators and denominators in (2.14) are

negative). Note that the condition p2
e < p2 gives a restriction on the range of m± only if

−1 < p < 0. Otherwise, it is satisfied for all 0 < m± < m1. Figure 5 illustrates these results
for F = 10 and three different values of p. Here the vertical and horizontal lines inside the unit
square are m+ = m1 and m− = m1, respectively. Curves (1) and (2) represent the boundaries
p2
e(m+,m−) = p2. Existence regions are marked by S as, for these parameter values, all the

existing solutions are stable. For other parameter values, the solutions may be unstable, as
discussed in the next section. We observe that increasing |p| results in the broadening of the
existence region inside the 0 < m± < m1 square. At |p| = 1, curve (2) disappears so that, for



NONLOCAL CGL EQUATIONS 273

 

(2)
(1)

N

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(a) p = −0.4

 

S

(2)

(1)

N

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(b) p = −0.7

 

S

(2)

(1)

N

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(c) p = −0.9

 

S

(2)

(1)

N

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(d) p = −0.99

 

S

(1)

U

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(e) p = −1.5

 

S

(1)

U

0

0.2

0.4

0.6

0.8

1

m_

0.2 0.4 0.6 0.8 1
m+

(f) p = −2.75

Figure 6. Existence and stability regions for F = 3.9 and six different values of p < 0. Here (1) is the
stability boundary p2

s = p2; (2) is the existence boundary p2
e = p2. N denotes the region where solution does

not exist; S denotes the region where the solution exists and is stable; U denotes the region where the solution
exists and is unstable. See text.

|p| > 1, the existence regions are the two squares, 0 < m± < m1 and m1 < m± < 1.

For F < 4, Γ(m) < 0, so that the numerators in (2.14) are negative, and for γs± > 0,
the denominator must be negative as well, i.e., p2

e(m+,m−) < p2. This condition implies
that |p| > max0<m<1 Γ(m). It is convenient to consult the graph of Γ(m) (see Figure 1) to
understand the evolution of the existence regions as p varies. For 2 < F < 4, Γ(m) has a
local maximum. Thus, if |p| is less than this maximum value, there are no solutions. If |p|
slightly exceeds the maximum, an existence island appears. It broadens as |p| increases. As
p reaches Γ(0) = −1, the existence region occupies the entire unit square with the exception
of a little region of sufficiently large m±. These results are illustrated in Figures 6 and 7,
where the evolution of the existence region as p varies is shown for F = 3.9 and F = 3.1,
respectively. Here curve (2) is the existence boundary p2

e = p2. The nonexistence region is
marked by N . The existence region is marked by either S or U , depending on whether the
solution is stable or unstable (stability is discussed in the next section). Note that the little
region of nonexistence that occurs for sufficiently large m± is not seen on the scale of Figures
6 and 7.

Finally, as shown in the next section, for 0 < F < 2 all the solutions are unstable, and
therefore we do not discuss this case here.

We remark that the existence of bounded solutions and their stability (see section 3) are
analyzed based on the first several terms of the expansions in powers of ε. We expect that
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Figure 7. Existence and stability regions for F = 3.1 and six different values of p < 0. Here (1) is the
stability boundary p2

s = p2; (2) is the existence boundary p2
e = p2. N denotes the region where solution does

not exist; S denotes the region where the solution exists and is stable; U denotes the region where the solution
exists and is unstable. See text.

the higher-order terms will not significantly change the existence and stability properties.
Though we do not have a rigorous proof of this statement, we believe that, unlike solitary
waves, which are described by nongeneric homoclinic/heteroclinic solutions in the x-space
and therefore their very existence is sensitive to the equation perturbations (see, e.g., [9]), the
cnoidal waves correspond to periodic solutions which are generic in systems with the x → −x
symmetry, and thus we expect that the influence of the higher-order terms will not lead to
drastic changes. Our expectation that the higher-order terms will not significantly change the
existence and stability properties is somewhat backed up by our direct numerical simulations
of the system (2.1) presented below. Though exhaustive numerical studies that would cover
the entire parameter space have not been performed, the computations for selected parameter
values agree with the analytical results that do not account for higher-order terms.

3. Stability. In this section, we study stability of the critical points γs± of the system
(2.12). Thus, we analyze the stability of the solutions (2.6) with respect to a specific class
of perturbations. Specifically, we restrict our stability analysis to the perturbations that are
periodic with constant periods λ± and keep the shape of the cnoidal wave (2.6). Therefore,
the results of the stability analysis presented in this section give the necessary conditions for
stability of solutions (2.6) rather than the sufficient conditions. In general, one could impose
perturbations of an incommensurate period and get a modulational instability of the periodic
wave. This is beyond the scope of the present paper.
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Instabilities in the CGL equations in the NLS limit can be thought of as being of two
kinds. One is the instability inherited from the NLS equation. The other is the instability
due to the presence of nonconservative terms in the CGL equations. As a solution of the
NLS equation, the cnoidal wave (2.6) is stable within the class of solutions with the same
period (and the same Floquet exponent; see [6] and the references therein). Thus, all the
instabilities that we obtain in this section for solutions of the CGL equations, with respect to
the disturbances with the same period, have nothing to do with the NLS equation; they are
specifically due to the presence of nonconservative terms in the equations.

In the case of general perturbations that do not have to be of the same period as the
solution, the cnoidal solutions of the NLS equation are unstable in the focusing case F > 0
that is considered in this paper (again, see [6] and the references therein). This instability is
inherited by the Ginzburg–Landau equations. We observe it in our numerical computations
that are described below. However, we do not perform any stability analyses in this paper to
discover these instabilities.

It is convenient to rewrite (2.11) as an equation for m±. Using (2.7) to eliminate γ±, we
reduce (2.11) to

(3.1) D̂±
dm±
dt

= 1 − 8a±
λ2
±F

+
8pb∓
λ2
∓F

,

where

D̂± = D̂(m±), a± = a(m±), b± = b(m±),

D̂(m) =
E2(m) − (1 −m)K2(m)

4m(1 −m)K(m)E(m)
, a(m) = E(m)K(m)Γ(m), b(m) = E(m)K(m).

We linearize (3.1) about its critical point ms
±,

m± = ms
± + eσtm̃±,

and assume that the periods λ± are fixed and time-independent to obtain the dispersion
relation

σ2D̂+D̂− + σ

[
D̂−

8

Fλ2
+

da+

dm+
+ D̂+

8

Fλ2
−

da−
dm−

]
(3.2)

+
64

(Fλ+λ−)2

[
da+

dm+

da−
dm−

− p2 db+
dm+

db−
dm−

]
= 0.

We remark that D̂ > 0, and for F > 4, the function a(m) is an increasing function of m,
0 < m < 1. Thus, the coefficient of σ to the first power in the quadratic equation (3.2) is
positive provided F > 4. The stability boundary in this case is determined by

(3.3) p2 =
da+

dm+

da−
dm−

[
db+
dm+

db−
dm−

]−1

≡ p2
s, ps > 0.

Finally, if F > 4, the critical point is stable if |p| < ps and unstable otherwise.
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Figure 8. The graphs of the functions f(m) (curve (1)) and Γ(m) (curve (2)). Here F = 10.

In order to determine how the stability of the critical point depends on parameter values,
we turn to various cases considered in the previous section. Let us first consider the case
p > 0. Then, as discussed in the previous section, F > 4 in order for the critical points to be
positive. Thus, the stability condition is |p| < ps. It is easy to see that

f(m) ≡ da(m)

dm

/
db(m)

dm
= Γ +

dΓ

dm
b(m)

[
db(m)

dm

]−1

> Γ.

Thus, pe < ps so that all the existing solutions in the case p > 0 are stable.

Consider next the case p < 0 and F > 4. All the solutions m± such that m0 < m± < 1
are stable. Indeed,

p2
s = f(m+)f(m−) > Γ+Γ− > Γ2(m1) = p2.

Stability of solutions in the other existence region, 0 < m± < m1, p
2
e < p2, depends on the

parameter values. It is convenient to analyze the stability by comparing the graphs of f(m)
and Γ(m) (Figure 8). We remark that the function f(m) is positive for 0 < m < 1, has one
minimum, and goes to infinity as m approaches 1:

f(m) ∼ (4 ln 2 − ln(1 −m))(F − 4)/6, m → 1.

If |p| is less than the minimum of the function f(m), then any existing solution is stable,
because p2 < f(m−)f(m+) = p2

s in this case. The onset of instability occurs at |p| = min f(m).
For |p| slightly above this value, there is a little island of unstable solutions, which, as |p|
increases, gradually occupies the entire existence region 0 < m± < m1. For |p| > f(0) =
2F − 6, only a small corner near the point m± = m1 is stable. The minimum of the function
f(m) can be accurately approximated as

min
0<m<1

f(m) ≈ 3

2
(F − 4).
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Figure 9. Evolution of the instability region (marked by U) for F > 4 as p varies. Here F = 10. See text
for a detailed discussion.

For F = 10, the approximation yields the value of 9, while the numerical value (see Figure 8)
is 9.6. This explains why the solutions depicted in Figure 5 are all stable: the values of |p|
there are less than the minimum of f . The stability results are illustrated in Figure 9 for
F = 10 and larger values of |p|. As follows from the above discussion, the instability first
occurs at |p| ≈ 9.6, and for |p| = 10.5 the unstable solutions occupy a noticeable region in
the upper right corner of the 0 < m± < m1 square; see Figure 9(a). As |p| increases, the
instability region expands. Note that in this figure, we do not see the m1 < m± < 1 square
that was shown in Figure 5. Indeed, for |p| large, the value of m1 is so close to 1 that this
square is not seen on the scale of the figure (one can use the asymptotic expression in (2.16)
to see that for |p| = 10, m1 differs from 1 by less than 10−7).

Next, consider the case p < 0 and 0 < F < 5/2. In this case da/dm < 0. Indeed, the
condition da/dm < 0 can be written as F < F∗(m), where F∗(m) can be explicitly found.
The function F∗(m) is a monotonically increasing function of m, 0 < m < 1, which varies
from F∗(0) = 5/2 to F∗(1) = 4, so that da/dm < 0 for 0 < F < 5/2. Since da/dm < 0, the
coefficient of the linear term in σ in the quadratic equation (3.2) is negative, so that there is
a positive solution σ of (3.2), and all the existing solutions m± are unstable.

It turns out that all the solutions in the case p < 0 and 5/2 ≤ F < 3 are also unstable.
This follows from the fact that in this case p2

s < p2
e. To better understand it, consider again

Figure 7. Here we see that in order for the solutions to become stable, the relative positions
of curves (1) and (2) have to change. The above inequality, p2

s < p2
e, means that the curves

will never change their relative positions. This inequality is equivalent to

f(m+)

Γ(m+)

f(m−)

Γ(m−)
< 1,

which is true if
f(m)

|Γ(m)| < 1,

i.e., if
f̂ ≡ f(m) + Γ(m) < 0.

One can see that f̂ is a monotonically decreasing function of m with f̂(0) = 2F − 6. Thus,
f̂ < 0 for all 0 < m < 1 if F ≤ 3.



278 VOLPERT, NEPOMNYASHCHY, STANTON, AND GOLOVIN

(3)

(2)

(1)

–1.5

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1

m

m*

Figure 10. The graphs of the functions Γ(m) (curve (1)), da/dm (curve (2)), and f(m) (curve (3)). Here
F = 3.1. Note that da/dm and f(m) become equal to zero at the same point m = m∗.

Finally, consider the case p < 0 and 3 < F < 4. In order for the solution (m+,m−) to be
stable, we need

(3.4) f(m+)f(m−) > p2

and the coefficient of the linear in σ term in (3.2) to be positive, i.e.,

(3.5)
D̂+

λ2
−

da−
dm−

+
D̂−
λ2

+

da+

dm+
> 0.

Figure 10 illustrates the following result: the solution (m+,m−) is stable if m± < m∗ and
(3.4) is satisfied; otherwise, it is unstable. Indeed, if m± > m∗, then da±/dm± < 0, and
condition (3.5) is not satisfied; if one of the numbers m+, m− is greater than m∗ and the
other one is less than m∗, then f(m+) and f(m−) have different signs, and condition (3.4)
is not satisfied. If m± < m∗, then da±/dm± > 0, so that (3.5) is satisfied, which proves the
above statement.

The main conclusion that follows from this stability analysis is that increasing |p| decreases
the stability region. At |p| = f(0) = 2F − 6 the stability region shrinks to zero. No stable
solutions exist for |p| > 2F − 6.

The evolution of the stability boundary as p varies is shown in Figures 6 and 7 for F = 3.9
and F = 3.1, respectively.

4. Numerical simulations. In this section, we verify the stability and existence of our
analytical solution through numerical simulations. We have used a pseudospectral code with
periodic boundary conditions. A semi-implicit scheme has been used with a Crank–Nicolson
method to handle the linear terms and with an Adams–Bashforth method for the nonlinear
terms.

We first examine the case F > 4. Using (2.6) perturbed with small-amplitude noise as an
initial condition, the solutions were observed to be stable for chosen values of m± in the stable
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Figure 11. Plots of the analytic solution (dashed) and the stable numerical solution (solid); here ε = 0.1
and m± = 0.9.

regions shown in Figures 3, 5, and 9. A plot of the stable solution together with the analytical
solution is shown in Figure 11. If the initial condition is taken to be small-amplitude noise,
the system eventually evolves to a standing wave regime whose period is equal to the domain
length (see Figure 12). The standing wave regime manifests itself as a periodic alternation
of relatively long time intervals of nearly homogeneous spatial distributions of variables and
short intervals of strongly inhomogeneous distributions characterized by the formation of
wavenumber kinks and by phase-slip events. The oscillations in both waves, A+ and A−,
are synchronized in time but not in space, due to the nonlocal nature of the coupling. For
p < −min f(m), there exists a region of unstable solutions, as seen in Figure 9. In this region,
the solution destabilizes to the standing waves similar to those shown in Figure 12. One can
see that the spatial structure of this standing wave contains a wavenumber kink corresponding
to a phase slip. We note that the formation of the standing waves shown in Figure 12 is the
finite-domain effect: with the increase of the computational domain length L the solution
never stabilizes to the standing waves but stays chaotic, as shown in Figure 13. This chaotic
behavior consists of wiggling localized pulses accompanied by phase slips.

We next examine the case F < 4. In this case, solutions do not exist for p > 0, and
numerical simulations using small-amplitude noise as an initial condition blow up in finite
time. For p < 0, the solutions (2.6) were observed to be stable for values of m± in the stable
regions seen in Figures 6 and 7. For values of m± in the unstable regions, the solutions blow
up in finite time. This is also the case for all solutions with F < 3.

It should be noted that in all cases, the solutions destabilize as m± approaches existence
boundaries. As m± → 1, the solution (2.6) becomes an array of pulse-like peaks with λ± → ∞.
The tails of these peaks then approach 0 and destabilize, since the trivial solution (A± = 0)
is unstable. Eventually the solution evolves to standing waves. Conversely, as m± approaches
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Figure 12. Spatio-temporal plots of R± and Θ±
x for F = 10, p = 0.1, m± = 0.9, L = λ± = 1.3779 showing

alternating standing waves.

the other existence boundary, λ± → 0, and the solution amplitude tends to infinity. Since the
amplitude was assumed to be an O(1) quantity, our analysis is no longer valid in this case. In
the corresponding numerical simulations the solution blows up in finite time. It should also
be noted that stable solutions were observed only for initial conditions with one period in the
domain. In the case of starting with multiple periods, the solution then evolves to standing
waves in a small domain or to chaotic behavior in large domains.

5. Conclusions. We have investigated the spatio-temporal dynamics of a system with
subcritical Hopf bifurcation with reflection symmetry described near the instability threshold
by a system of two nonlocally coupled CGL equations (2.1). We have shown that in the limit
of large dispersion coefficients α and β, the system (2.1) may have bounded solutions corre-
sponding to periodically modulated waves in the original physical system. These solutions
are generalizations of the solutions of a single subcritical CGL equation found in [23]. In
the parameter space, corresponding to the periods of the modulation waves and the coupling
coefficient, we have found the regions where these solutions exist. We have shown that the ex-
istence of the solutions essentially depends on the sign of the coupling parameter and the ratio
of the dispersion coefficients. We have performed a linear stability analysis and have found
the necessary conditions for the stability of these solutions. We have also performed numerical
simulations of the system (2.1). We have shown that for the parameters corresponding to the
stability domain and the initial conditions close enough to the analytical solution (2.6), the
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Figure 13. Spatio-temporal plot of R± and zero level sets of Re(A±) (blue) and Im(A±) (red) for L =
13.779, F = 10, p = 0.1, α = 20, ε = 1/α = 0.05 showing chaotic behavior.

system indeed evolves toward this solution. However, for different initial conditions, as well
as for the parameter values for which (2.6) is unstable, we have found that the system evolves
toward standing waves, spatio-temporal chaos, or a finite-time blow-up, depending on the size
of the computational domain.

We would also like to discuss two possible extensions of this work that were suggested by
one of the anonymous referees of the paper. These extensions are beyond the scope of the
present paper and may be a subject of a separate study.

The first extension addresses a supercritical Hopf bifurcation; i.e., we consider μ = −1
instead of μ = 1 in (1.2). In this case, solutions of the same type as (2.6) are expected to
exist. Indeed, their characteristics and stability are governed by the same equation (2.11)
with the only difference being that the factor (F − 1) in the second term of the right-hand
side of the equation is replaced by (F + 1). Of course, the existence and stability conditions
for the supercritical solutions will be different from those for subcritical solutions. However,
if F is large, the relative difference between the factors (F + 1) and (F − 1) is small, and
all the characteristics of the sub- and supercritical solutions will be very similar. This brings
up an interesting question of why the criticality, which is typically a determining parameter
in Hopf bifurcations, is not as crucial in the NLS limit. We believe that the reason for this
is that the cnoidal waves we study are actually not created just by the Hopf bifurcation.
They are basically the solutions of the NLS equation and, in fact, form a family of neutrally
stable solutions. The Ginzburg–Landau nonconservative terms do not create these solutions,
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as usually the Hopf bifurcation does, but rather create a slow dynamics inside this already
existing family. Since what we study is exactly this dynamics, all the nonconservative terms
are as important as the criticality, and the final results depend equally strongly on both the
criticality and such parameters as F and p rather than the criticality itself.

The other extension addresses (2.1) in the case when the coefficients α and β have different
signs, i.e., the parameter F = β/α < 0. This case can be called defocusing by analogy with
the terminology for the NLS equation, while the case F > 0 that has been considered in this
paper is the focusing case. In the defocusing case, solutions of the dn type (see (2.6)) do
not exist. However, one can find bounded solutions of the sn type in this case, both for sub-
and supercritical bifurcations. All the characteristics and stability of these solutions can be
studied similarly to how the dn-type solutions are studied in this paper.

Acknowledgment. The authors would like to thank an anonymous referee for useful com-
ments that are reflected in this version of the paper.
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Abstract. This study is on the role of synchronous and asynchronous dispersals in a discrete-time single-species
population model with dispersal between two patches, where predispersal dynamics are compen-
satory or overcompensatory and dispersal is synchronous or asynchronous or mixed synchronous and
asynchronous. It is known that single-species dispersal-linked population models behave as single-
species single-patch models whenever all predispersal local dynamics are compensatory and dispersal
is synchronous. However, the dynamics of the corresponding model connected by asynchronous and
mixed synchronous-asynchronous dispersals depend on the dispersal rates, intrinsic growth rates,
and the parameter that models the possible modes of dispersal. The species becomes extinct on
at least one patch when the asynchronous dispersal rates are high, while it persists when the rates
are low. In mixed synchronous-asynchronous systems, depending on the model parameters, the
pioneer species either becomes extinct on all patches or persists on all patches. Overcompensatory
predispersal dynamics with synchronous dispersal can lead to multiple attractors with fractal basin
boundaries. However, the associated models with either asynchronous or mixed synchronous and
asynchronous dispersals exhibit multiple attractors with fewer numbers of distinct attractors. That
is, the long-term dynamics of synchronous dispersal-linked systems can be more sensitive to initial
population sizes than that of the corresponding asynchronous and mixed synchronous-asynchronous
systems. Also, synchronous, asynchronous, and mixed synchronous-asynchronous dispersals can
“stabilize” the local patch dynamics from overcompensatory to compensatory dynamics. In our
mixed synchronous-asynchronous model, the dominant mode of dispersal usually drives the dynam-
ics of the full system.
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1. Introduction. In host-parasite systems, the timing of density effects and parasitism can
have a profound impact on the population dynamics [35]. Doebeli made a similar observa-
tion in a two-patch, single-species, dispersal-linked model of coupled Smith–Slatkin difference
equations. He showed that differences in the timing of reproduction and dispersal enhance
the stabilizing effect of dispersal [7]. Hastings [22], Gyllenberg, Söderbacka, and Ericsson [17],
Doebeli [7, 8], Gonzalez-Andújar and Perry [15], and Castillo-Chavez and Yakubu [5, 44] have
studied single-species discrete-time dispersal-linked models that implicitly assume no differ-
ence in the timing of reproduction and dispersal (dispersal synchrony). Their work showed that
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the interaction between local dynamics and symmetric synchronous dispersal can lead to the
replacement of chaotic local dynamics by periodic dynamics for some initial population sizes.

In this paper, we introduce a single-species two-patch dispersal-linked model where predis-
persal dynamics are compensatory (equilibrium dynamics) or overcompensatory (oscillatory
dynamics) and dispersal is synchronous or asynchronous or mixed synchronous and asyn-
chronous [2, 3, 39, 44, 45]. The novelty of our model is in the embedding of synchronous
and asynchronous models into a single framework. Depending on a single continuous param-
eter, the model is capable of exhibiting synchronous dispersal, asynchronous dispersal, and
mixed synchronous and asynchronous dispersals. Under dispersal synchrony (that is, where
there is no asynchronous dispersal), our model reduces to that of Hastings [22, 23], Gyllen-
berg, Söderbacka, and Ericsson [17], Doebeli [7, 8], and Castillo-Chavez and Yakubu [5, 44],
whereas it reduces to a model of Doebeli when dispersal is asynchronous (that is, where there
is no synchronous dispersal) [7, 8].

A large number of researchers have carried out extensive studies on the interplay between
local dynamics and dispersal in dispersal-linked models. Early work on this was done by
Cohen and Levin [6], Gadgil [14], Hastings [23], Levin [27, 28], Levin and Paine [29], and Levins
[30, 31], and later work was done by Allen [1], Doebeli [7], Doebeli and Ruxton [8], Earn, Levin,
and Rohani [9], Gonzalez-Andújar and Perry [15], Gyllenberg, Söderbacka, and Ericsson [17],
Hanski [18], Hanski and Gilpin [19], Hastings [22], and Castillo-Chavez and Yakubu [4, 5, 44].
In this paper, we focus on the impact of synchronous and asynchronous modes of dispersals
on local populations with discrete nonoverlapping generations [7, 8, 9, 15, 17, 22, 44]. In
particular, we extend Doebeli’s idea that the detailed timing of dispersal can affect the global
dynamics of dispersal-linked systems [7, 8].

We review, in section 2, the impact of compensatory and overcompensatory dynamics on
“unstructured” single-species, single-patch discrete-time models. The Beverton–Holt [2, 3, 4,
5, 11, 12, 13, 20, 21, 38], bobwhite quail “hump-with-tail” [10, 44], Ricker [4, 7, 8, 22, 24,
25, 32, 33, 34, 35, 36, 37, 40, 44, 45], and Smith–Slatkin [20, 36, 41, 45] models are used
to describe either compensatory or overcompensatory dynamics. Only pioneer species are
considered (pioneer species are species that persist at very small population sizes when left in
isolation with no outside interference) [11, 12, 13].

In section 3, three basic single-species dispersal-linked models consisting of two subpopu-
lations (with nonoverlapping generations) connected by one of the three modes of dispersals
(synchronous, asynchronous, and mixed synchronous-asynchronous dispersals) are introduced.
To understand the behavior of the mixed synchronous-asynchronous model, in section 4, we
review prior work on the model with dispersal synchrony. Single-species dispersal-linked pop-
ulation models under the same qualitative local compensatory dynamics are known to behave
as single-patch systems whenever dispersal is synchronous [5, 44]. When predispersal local
dynamics are overcompensatory, dispersal synchrony can fracture the basins of attraction
through its support of multiple attractors. We highlight, in section 4, the possible structures
of the coexisting attractors where local populations (in the absence of dispersal) live on either
a preselected n-cycle attractor or a chaotic attractor (overcompensatory dynamics). Hastings
and others have observed similar multiple attractors in synchronous models [4, 5, 22, 44].

The model under dispersal asynchrony is studied in sections 5 and 6. We show, in section 5,
that the dynamics of the full system depend on the asynchronous dispersal rates. The species
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becomes extinct on at least one patch when asynchronous dispersal rates are high, while it
persists when the rates are low. In sharp contrast to dispersal synchrony, dispersal asynchrony
impacts compensatory local dynamics [7, 23, 28, 29].

The difference in the timing of reproduction and dispersal enlarges the asynchrony of inter-
actions, and Doebeli predicted the “likelihood” of simple system dynamics due to asynchronous
dispersal [7]. In general, dispersal can give rise to multiple attractors with interesting basin
structures, whenever the local patch dynamics are overcompensatory [4, 5, 7, 9, 16, 19, 22, 26,
44]. In section 6, several examples are introduced to show that dispersal-linked models with
“unstructured” overcompensatory predispersal patch dynamics connected by asynchronous
symmetric or asymmetric dispersal support multiple attractors with a smaller number of dis-
tinct attractors than the corresponding model under dispersal synchrony. We use MATLAB
and the Dynamics software of Nusse and Yorke to study the differences among the structures of
the attractors and the differences between the synchronous and asynchronous cases [39]. Our
results show that asynchronous dispersal can stabilize or shift the predispersal local dynamics
from an attracting period four to a period two or to a fixed point or to a limit cycle attractor.
That is, both synchronous and asynchronous dispersals can generate period-doubling reversals
in dispersal-linked models under overcompensatory dynamics.

Models under mixed synchronous-asynchronous dispersals are studied in sections 7, 8,
and 9. As in synchronous models, in mixed models, the pioneer species either persists on all
patches or becomes extinct on all patches. In section 7, we derive conditions for the extinction
(respectively, persistence) of the species on all patches. Mixed synchronous-asynchronous
systems under compensatory and overcompensatory local dynamics are studied in sections 8
and 9, respectively. When the local dynamics are overcompensatory, mixed models exhibit
multiple attractors with a smaller number of distinct attractors than the corresponding model
under dispersal asynchrony. Section 10 discusses some possible implications of the results
of this paper, and relevant mathematical details of all technical terms are collected in the
appendix.

2. Predispersal local patch dynamics. In this section, we review single-species discrete-
time population models without dispersal. As in [7, 22, 44], the equation for the local dynamics
in each Patch i ∈ {1, 2} at generation t after reproduction but before dispersal is modeled by

(1) xi(t + 1) = xi(t)gi(xi(t)) (i = 1, 2),

where xi(t) denotes the population size and the per capita growth functions, gi : [0,∞) →
(0,∞) are assumed to be strictly decreasing, positive, and twice differentiable (C2 on [0,∞)),
where gi(0) > 1 and limxi→∞ gi(xi) < 1. System (1) is a discrete-time, single-species, popu-
lation model with two (uncoupled) patches. It describes the population dynamics of pioneer
species [4, 5, 11, 12, 13, 44].

Predispersal Patch i local reproduction function fi(xi) = xigi(xi) describes the local dy-
namics of the species, where xi is the measure of the size of the population in the patch. Each
fi has a unique positive fixed point denoted by Xi. Since gi is a strictly decreasing continuous
function, fi(xi) > xi whenever 0 < xi < Xi and fi(xi) < xi whenever xi > Xi. Consequently,
Ii ≡ fi([0, Xi]) is a global attractor. That is, every initial population eventually reaches a
limit in Ii.
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We focus on two types of local dynamics—compensatory and overcompensatory dynamics.
Definition 1. Patch i predispersal local dynamics are compensatory whenever all positive

population sizes approach the positive equilibrium at Xi monotonically under fi iterations
[4, 38, 44].

Definition 2. Patch i predispersal local dynamics are overcompensatory whenever some pos-
itive population sizes “overshoot” the positive equilibrium at Xi under fi iterations (that is,
f

′
i (Xi) < 0) [4, 38, 44].

If fi increases monotonically from zero with the rate of increase slowing down as xi gets
large, then all population sizes “undershoot” the globally attracting positive equilibrium, and
by Definition 1 Patch i local dynamics are compensatory. The Beverton–Holt stock recruit-
ment model, fi(xi) = aixi

1+bixi
, portrays compensatory dynamics in Patch i whenever ai > 1

and bi > 0 [4, 44, 45]. If fi is an orientation-reversing one-hump map with a stable positive
fixed point (respectively, an unstable positive fixed point), then the return to the stable fixed
point takes the form of damped oscillations (respectively, the local behavior near the unstable
fixed point takes the form of divergent oscillations), and by Definition 2 Patch i dynamics
are overcompensatory. Whenever ri > 1 and fi is Ricker’s model, fi(xi) = xi exp(ri − xi),
then the dynamics in Patch i are overcompensatory [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 20,
21, 22, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 45]. In general, fi supports either an n-cycle
(nonchaotic) attractor with n > 1 or a chaotic (interval) attractor whenever Patch i dynamics
are overcompensatory and the positive fixed point is unstable.

A detailed description of functions under compensatory or overcompensatory dynamics
requires the introduction of the concept of an α-monotone concave map.

Definition 3. fi is an α-monotone concave map if f
′
i (xi) > 0 and f

′′
i (xi) < 0 for each

xi ∈ [0, α) [4, 38, 44].
Patch i population is under compensatory dynamics at population sizes in the interval

[0, α) whenever fi is an α-monotone concave map with a unique positive fixed point in the
open interval (0, α) (see [44, Definition 3]). The bobwhite quail “hump-with-tail” model
fi(xi) = xi(ki + Ki

1+xi
ni ), the Ricker model fi(xi) = xi exp(ri − xi), and the Smith–Slatkin

model fi(xi) = aixi

1+(bixi)li
describe overcompensatory and compensatory dynamics (depending

on parameter values). If li = 1 and ai > 1, the Smith–Slatkin model reduces to the Beverton–
Holt model, an ∞-monotone concave map (compensatory dynamics [2, 36, 42, 44]).

3. Synchronous and asynchronous dispersal-linked two-patch model. Hastings [22],
Gyllenberg, Söderbacka, and Ericsson [17], Doebeli [7, 8], Yakubu and Castillo-Chavez [44],
and others have studied discrete-time single-species dispersal-linked population models that
implicitly assume that the timing of reproduction and dispersal do not differ from patch to
patch. A two-patch version of these models with dispersal synchrony is given by the following
system of coupled nonlinear difference equations:

(2)
x1(t + 1) = (1 − d1)f1(x1(t)) + d2f2(x2(t)),
x2(t + 1) = d1f1(x1(t)) + (1 − d2)f2(x2(t)).

}

In system (2), reproduction occurs prior to dispersal within each generation and in each patch.
After reproduction, the constant fraction d1 ∈ (0, 1) of the population disperses from Patch 1
to Patch 2 while the constant fraction d2 ∈ (0, 1) disperses from Patch 2 to Patch 1.
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Doebeli, in 1995, studied a simple two-patch discrete-time model of coupled Smith–Slatkin
single-species ecological models where the timing of reproduction and dispersal differs from
patch to patch. In Doebeli’s two-patch model, in each generation reproduction occurs in
Patch 1 first, followed by the dispersal, from Patch 1 to Patch 2, of the fraction d1 of the
population. As a result, Patch 2 population experiences the effects of its own density as well
as that of the newly dispersed individuals from Patch 1 to Patch 2. In Patch 2, the fraction
d2 of the population disperses from Patch 2 to Patch 1 after reproduction [7]. The dynamics
of the two-patch system under asynchronous dispersal are then described by the following
system of coupled nonlinear difference equations:

(3)
x1(t + 1) = (1 − d1)f1(x1(t)) + d2x2(t)g2(x2(t) + d1f1(x1(t))),
x2(t + 1) = (1 − d2)x2(t)g2(x2(t) + d1f1(x1(t))),

}

where 0 < d1, d2 < 1 and f1(x1) = x1g1(x1).

In Doebeli’s simple model with dispersal asynchrony, at the next generation, the popula-
tion size in Patch 1 is increased by the dispersal from Patch 2. However, unlike the Patch 1
population size, the population size in Patch 2 at the next generation is not increased by the
dispersal from Patch 1. By their own nature, such simple models do not incorporate many
of the important biological factors. However, they often provide useful insights to help our
understanding of complex processes.

To embed synchronous and asynchronous dispersals into a single framework, we let the
constant parameter γ ∈ [0, 1] span the range of possible modes of dispersal, where γ = 0 implies
synchronous dispersal, γ = 1 implies asynchronous dispersal, and γ ∈ (0, 1) implies mixed
synchronous and asynchronous dispersal. This leads to the following equations describing the
dispersal phase:

(4)
x1(t + 1) = F1(x1(t), x2(t)) = (1 − d1)f1(x1(t)) + d2x2(t)g2(x(t)),
x2(t + 1) = F2(x1(t), x2(t)) = (1 − γ)d1f1(x1(t)) + (1 − d2)x2(t)g2(x(t)),

}

where

x(t) = x2(t) + γd1f1(x1(t)).

Unlike Doebeli’s model, in models (2) and (4), at the next generation the population size
in Patch 1 is increased by the dispersal from Patch 2, while that of Patch 2 is increased by the
dispersal from Patch 1. In each generation, reproductions in Patch 2 of models (3) and (4)
experience crowding from the dispersal from Patch 1.

The vector of population densities x(t) = (x1(t), x2(t)) is written as x = (x1, x2) so that
the dispersal-linked function is

F : R
2
+ → R

2
+,

where

F (x1, x2) = (F1(x1, x2), F2(x1, x2)).

Then F t is the dispersal-linked function composed with itself t times. F t
i (x) is the ith com-

ponent of F t evaluated at the point x in R
2
+. In system (4), F t gives the population densities

in generation t.
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When γ = 0 (respectively, γ = 1), dispersal is synchronous (respectively, asynchronous),
and system (4) reduces to system (2) (respectively, system (3)). Dispersal is symmetric when
d1 = d2, while it is asymmetric when d1 �= d2. When there are no dispersals, d1 = d2 = 0
and system (4) reduces to the uncoupled system (1). The predispersal basic demographic
reproductive number in each patch (d1 = d2 = 0) is

�i
d = gi(0).

�i
d > 1 guarantees the successful invasion and survival of the discretely reproducing population

in Patch i, while �i
d < 1 guarantees the extinction of the initial population in the patch (no

dispersal). We assume throughout that the species is a pioneer in each Patch i ∈ {1, 2}. That
is, �i

d > 1.
In system (4), there is no population explosion.
Lemma 1. In system (4), the positive cone is positively invariant and no point has an

unbounded orbit.

4. Dispersal synchrony in two-patch models. In this section, we consider system (4) with
only dispersal synchrony (that is, system (2) or system (4) with γ = 0). Others have studied
synchronous dispersal models, and in this section we review some of these prior works. When
all local dynamics are compensatory, Yakubu and Castillo-Chavez proved that system (2)
supports a positive equilibrium that attracts all positive initial population sizes [44]. That
is, when all local dynamics are compensatory, the qualitative dynamics of system (2) with
symmetric or asymmetric synchronous dispersal between patches is qualitatively equivalent
to those of each of the local single patches before dispersal. With synchronous symmetric
dispersal and symmetric initial population sizes, system (2) behaves as a single patch system
whenever the local reproduction functions are identical (f1 = f2) and the predispersal local
dynamics are either compensatory or overcompensatory.

In 1993, Hastings [22] and Gyllenberg, Söderbacka, and Ericsson [17] used two identical lo-
gistic difference equations in system (2) with parameters in the chaotic regime to illustrate that
synchronous dispersal-linked population models are capable of supporting multiple attractors
with complicated attraction-basin boundaries. In a recent paper, Yakubu and Castillo-Chavez
studied the role of synchronous dispersal in generating multiple attractors where local dynam-
ics are overcompensatory [44]. They focused on situations where the local populations (in the
absence of dispersal) live on either a preselected n-cycle attractor or a chaotic attractor.
Yakubu and Castillo-Chavez supported the results of Hastings and obtained that synchronous
dispersal can force the preselected (chaotic or nonchaotic) attractor to coexist with one or
more “new” attractors (multiple attractors). Example 1 illustrates multiple attractors in sys-
tem (2) with synchronous symmetric dispersal, where the local dynamics are governed by the
Ricker model. In Example 1, we choose the values of the parameters so that the predispersal
local dynamics and the full system dynamics under synchronous symmetric dispersal are as
listed in Table 1.

Example 1. Consider system (2) with the Ricker model

fi(xi) = xi exp(ri − xi)

for each i ∈ {1, 2}. Set the following parameter values:

r = r1 = r2 ∈ (2, 2.52) and d1 = d2 = 0.03.
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Table 1
Predispersal local dynamics versus postdispersal synchronous dynamics.

r values Predispersal attractors Synchronous attractors

1. (2, 2.53) 2-cycle two 2-cycles (see Fig. 1)

2. (2.53, 2.59) 4-cycle 4- and 2-cycles

3. (2.66, 2.68) 8-cycle 8-, 4-, and 2-cycles

4. (2.69, 2.6901) 16-cycle 16-, 8-, 4-, and 2-cycles

5. (2.695, 2.701) chaotic attractor four attractors (see Fig. 2)

Figure 1. Two coexisting attractors: Symmetric 2-cycle (red dots) and an asymmetric 2-cycle (blue dots)
in the (x1, x2)-plane, where r1 = r2 = 2.1 and d1 = d2 = 0.03. Figure 1 is plotted over 3000 time steps.

Figure 2. Four attractors: Symmetric 4-piece chaotic attractor (blue region), asymmetric 4-cycle (green
dots), asymmetric 16-cycle (red dots), and a period-2 limit cycle (black region), where r1 = r2 = 2.7 and
d1 = d2 = 0.03. Figure 2 is plotted over 5000 time steps.

The predispersal local dynamics in Example 1, fi(xi) = xi exp(ri − xi), have a stable pos-
itive fixed point at Xi = ri whenever 0 < ri < 2 [44]. As ri is increased past 2, the fixed point
Xi undergoes a period-doubling bifurcation route to chaos [33, 34, 35, 39]. In Example 1,
the predispersal identical local patches are on a 2-cycle attractor (overcompensatory dynam-
ics), and the full system with symmetric dispersal supports multiple attractors—a symmetric
2-cycle attractor coexisting with an asymmetric 2-cycle attractor (see Figure 1 and Table 1).
To study the impact of increasing the identical intrinsic growth rates, r = r1 = r2, the
symmetric dispersal rates are kept fixed at d1 = d2 = 0.03 while r is increased past 2.52.
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Figure 3. Basins of attraction of two coexisting 2-cycle attractors, where the parameters are exactly as in
Figure 1. The white region is the basin of attraction of the black “specks” ( 2-cycle) in the figure, and the black
region is the basin of attraction of the other coexisting attractor. On the horizontal axis 0 ≤ x1 ≤ 4, and on
the vertical axis 0 ≤ x2 ≤ 4. Figure 3 is plotted over 5000 time steps.

When r ∈ (2.53, 2.59), the predispersal identical local patches are on a 4-cycle attrac-
tor, and the full system with symmetric dispersal supports two coexisting attractors con-
sisting of a symmetric 4-cycle attractor and an asymmetric 2-cycle attractor (see Table 1).
At r ∈ (2.6, 2.65), the predispersal identical local patches are on a 4-cycle attractor, while
the full system with symmetric dispersal supports three coexisting attractors consisting of
a symmetric 4-cycle attractor, an asymmetric 4-cycle attractor, and an asymmetric 2-cycle
attractor (see Table 1). For values of r ∈ (2.66, 2.68), the predispersal identical local patches
are on an 8-cycle attractor, and the full system with symmetric dispersal supports three coex-
isting attractors consisting of a symmetric 8-cycle attractor, an asymmetric 4-cycle attractor,
and an asymmetric 2-cycle attractor (see Table 1). At r ∈ (2.69, 2.6901), the predispersal
identical local patches are on a 16-cycle attractor, while the full system with symmetric dis-
persal supports four coexisting attractors consisting of a symmetric 16-cycle attractor, an
asymmetric 8-cycle attractor, an asymmetric 4-cycle attractor, and an asymmetric 2-cycle
attractor (see Table 1). When r ∈ (2.695, 2.701), the predispersal identical local patches are
on a chaotic attractor, and the full system with symmetric dispersal supports four coexist-
ing attractors consisting of a symmetric chaotic attractor, a period-2 limit cycle attractor,
an asymmetric 4-cycle attractor, and an asymmetric 16-cycle attractor (see Figure 2 and
Table 1).

The qualitative structure and number of the attractors in dispersal-linked population
models are the result of a complex interaction between the dispersal rate and predispersal
local patch dynamics. The basins of attraction, the set of all population sizes that eventually
settle into an attractor under iteration, may provide critical information on a variety of issues
including the final attractor observed. In Example 1, the Dynamics software of Nusse and
Yorke is used to study the nature of the basins of attraction of the multiple attractors in
Figures 1 and 2 [39]. As in [44], Figures 3 and 4 highlight that the basins of attraction
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Figure 4. Basins of attraction of the 4 attractors, where the parameters are exactly as in Figure 2. On the
horizontal axis 0 ≤ x1 ≤ 6, and on the vertical axis 0 ≤ x2 ≤ 6. Figure 4 is plotted over 5000 time steps.

Figure 5. The full system shifts from two 2-cycle attractors (red 2-cycle and blue 2-cycle) to a single
(red) 2-cycle attractor or to a single (red) fixed point attractor with synchronous asymmetric dispersal, where
r1 = r2 = 2.1 and d1 = 0.03 while d2 is varied continuously between 0.03 and 1.

become thinner and their boundaries exhibit increasing fractal structures as the number of
attractors increases or as the period of the attractors increases.

4.1. Asymmetric dispersal synchrony. In Figures 1, 2, 3, and 4, only synchronous sym-
metric dispersal is assumed. To illustrate the impact of synchronous asymmetric dispersal
on Figure 1, we keep the parameters fixed at r = 2.1 and d1 = 0.03, while d2 is varied con-
tinuously between 0 and 1 (see Figure 5). The full system stabilizes or shifts from the two
coexisting 2-cycle attractors to a single 2-cycle attractor (saddle-node bifurcation reversal) or
to a single fixed point attractor (period-doubling reversal). Similarly, when the predispersal
local dynamics are chaotic, asymmetric dispersal synchrony can change the number and na-
ture of the coexisting attractors. For example, when r = 2.7, d1 = 0.03, and d2 = 0.7, the full
system appears to support a single attractor, an attracting fixed point at (4.308, 1.513) where
the predispersal local dynamics are chaotic (see Figure 6).
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Figure 6. The full system shifts from four coexisting attractors to a single fixed point attractor with
synchronous asymmetric dispersal, where r1 = r2 = 2.7 and d1 = 0.03 while d2 is varied continuously between
0.03 and 1.

As in [44], Figures 5 and 6 highlight that for most values of asymmetric dispersal rates
(d1 �= d2) simple dynamics are supported in the full system, in sharp contrast to Figures 1,
2, 3, and 4, where dispersal is symmetric and multiple attractors with complicated basins of
attraction are supported. That is, asymmetry enhances the stabilizing effect of dispersal in
system (2), where dispersal is completely synchronous.

5. Dispersal asynchrony in two-patch models. The work of Doebeli shows the depen-
dence of the dynamics of dispersal-linked models on asynchronous dispersal rates where the
predispersal local dynamics are chaotic (overcompensatory dynamics) and are governed by
the Smith–Slatkin model [7]. In this section, we consider system (4) with only dispersal asyn-
chrony (that is, system (3) or system (4) with γ = 1), where the predispersal dynamics are
noncyclic (compensatory), cyclic, and chaotic (overcompensatory). Next, we show that the
species becomes extinct (respectively, persists) on at least one patch when the asynchronous
dispersal rates are high (respectively, low). We collect these in the following result.

Theorem 1. In system (3), we have the following:
(i) (1 − d2)�2

d < 1 implies that the ω-limit set of every positive population vector is a
subset of [0,∞) × {0}. Hence, the species becomes extinct in Patch 2.

(ii) (1 − d1)�1
d > 1 and (1 − d2)�2

d > 1 imply that (0, 0) is unstable and there is no
catastrophic extinction of the species in both Patches 1 and 2.

(iii) �d = max{(1 − d1)�1
d, (1 − d2)�2

d} < 1 implies that (0, 0) is globally asymptotically
stable. Hence, the species becomes extinct in both Patches 1 and 2.

(iv) (1 − d1)�1
d > 1 and (1 − d2)�2

d < 1 imply that (g−1
1 ( 1

1−d1
), 0) is a globally stable fixed

point in (0,∞)× [0,∞) whenever the Patch 1 dynamics are compensatory. Hence, the
species persists in Patch 1, while it becomes extinct in Patch 2.

The proof of Theorem 1 is in the appendix.
The four cases in Theorem 1 are not exhaustive. For example, conditions for the per-

sistence of the species in both Patches 1 and 2 via a stable positive equilibrium population
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vector can be obtained if one assumes the persistence of the species in Patch 2 where the asyn-
chronous dispersal rates are low and the local dynamics are compensatory. To illustrate this
in the simplest setting, we assume that the predispersal Patch 1 local population has reached
the positive equilibrium X1, and we let f1(x1) ≡ X1 [43, 46]. Then system (3) reduces to the
system

(5)
x1(t + 1) = (1 − d1)X1 + d2x2(t)g2(x2(t) + d1X1),
x2(t + 1) = (1 − d2)x2(t)g2(x2(t) + d1X1).

}

If the dispersal rate from Patch 2 to Patch 1 is low, then system (5) supports a globally
stable positive equilibrium whenever the predispersal local patch dynamics are compensatory
and the Patch 1 carrying capacity is small. That is, dispersal asynchrony like dispersal syn-
chrony is capable of supporting the persistence of the pioneer species in all patches. We
summarize these in the following result.

Theorem 2. In system (5), let each local patch dynamics be modeled by fi, an α-monotone
concave map, with the positive fixed point Xi ∈ (0, α). If (1 − d2)�2

d > 1, then the positive
equilibrium population vector,(

(1 − d1)X1 +
d2

1 − d2

(
g−1
2

(
1

1 − d2

)
− d1X1

)
, g−1

2

(
1

1 − d2

)
− d1X1

)
,

is globally attracting whenever X1 <
g−1
2 ( 1

1−d2
)

d1
. That is, the dispersal-linked system supports

a globally stable positive fixed point whenever the predispersal local patch dynamics are com-
pensatory.

The proof of Theorem 2 is in the appendix.

In Example 2, we use compensatory local dynamics via the Beverton–Holt model to illus-
trate the dependence of the dynamics of system (3) on the asynchronous dispersal rates.

Example 2. Consider system (3) with

fi(xi) =
aixi

1 + bixi

for each i ∈ {1, 2}. Set the following parameter values:

a1 = 2, a2 = 2.1, b1 = b2 = 1, and d1 = d2 = 0.01.

In Example 2, the local dynamics in both patches are compensatory, where g1(0) = a1,

g2(0) = a2, X1 = 0.01, X2 = 0.1, (1 − d2)�2
d > 1, and X1 <

g−1
2 ( 1

1−d2
)

d1
. Consequently, the

resulting system with symmetric dispersal asynchrony supports a globally stable positive equi-
librium population vector at (1.002, 1.069) (Theorem 2). We study the impact of increasing
the dispersal parameters on Example 2. In Figures 7, 8, and 9 the parameters a1, a2, b1, and
b2 are kept fixed at their current values.

In Figure 7, symmetric dispersal is assumed and d1 = d2 is varied continuously between
0 and 1. The population in each patch decreases to zero monotonically with increasing sym-
metric dispersal rates (see Figure 7). That is, when the symmetric dispersal rate is high and
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Figure 7. When the symmetric dispersal rate d1 = d2 is low the species persists in both Patches 1 and 2.
However, when d1 = d2 > 0.53 it becomes extinct in both Patches 1 and 2.

Figure 8. Persistence in both Patches 1 and 2 with asymmetric dispersal asynchrony.

�d < 1, the species becomes extinct in both Patches 1 and 2 (Theorem 1), and when the
symmetric dispersal rate is low and �d > 1, the species persists in both Patches 1 and 2.

Asymmetric dispersal is assumed in Figures 8 and 9. In Figure 8, d1 is fixed at d1 = 0.01
while d2 is varied continuously between 0 and 1. As the values of d2 increase, the Patch 2
population decreases monotonically to zero while the Patch 1 population first increases to a
maximum value before decreasing monotonically to the carrying capacity in Patch 1. As in
Figure 7, the species persists in both Patches 1 and 2 when the asymmetric dispersal rate is
low. In contrast to Figure 7, when the dispersal rate from Patch 2 to Patch 1 is high and
(1 − d1)�1

d > 1, the species persists in Patch 1, while it is extinct in Patch 2 (Theorem 1
and Figure 8). In Figure 8, this explains the sudden leveling of the graphs of x1 and x2 at
high levels of d2. In Figure 9, d2 is fixed at d2 = 0.01 while d1 is varied continuously between
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Figure 9. Persistence in both Patches 1 and 2 with asymmetric dispersal asynchrony.

0 and 1. As the values of d1 increase, the population in Patch 1 decreases monotonically to a
very small positive value, while the Patch 2 population first decreases to a positive minimum
value before increasing monotonically to a value close to the carrying capacity in Patch 2 (see
Figure 9). In Figure 9, for all values of the asymmetric dispersal rates, the species persists in
both Patch 1 and Patch 2.

Figures 7, 8, and 9 show that dispersal asynchrony is capable of shifting the local dynamics
from persistence of the pioneer species to its extinction on at least one patch. Thus, dispersal
asynchrony impacts local patch dynamics. Clearly, these new results have highlighted only a
few possibilities with the selected examples.

6. Multiple attractors: Asynchronous versus synchronous symmetric dispersal. Popu-
lation models with “unstructured” overcompensatory predispersal local patch dynamics con-
nected by either asynchronous or synchronous dispersals are capable of supporting multiple
attractors. However, asynchronous symmetric dispersal-linked models are more likely to sup-
port multiple attractors with smaller numbers of distinct attractors than the corresponding
models under dispersal synchrony. In this section, we use examples to highlight the differences
among the attractors and the differences between the asynchronous and synchronous cases.

6.1. Symmetric dispersal asynchrony. In this section, we consider the asynchronous dis-
persal model, system (3), with symmetric dispersal (that is, d1 = d2 = d), where the per
capita growth rates are identical (that is, g1 = g2 = g). Doebeli, in 1994, used two identi-
cal Smith–Slatkin difference equations with parameters in a chaotic regime to describe the
predispersal local dynamics, where the asynchronous dispersal is symmetric [7].

In section 3, we generated multiple attractors in synchronous systems under symmetric
dispersal (d1 = d2), where the identical predispersal local reproduction function is the Ricker
model [10, 37, 44]. To study the corresponding asynchronous symmetric dispersal case, we
repeat those results using system (3) and the identical Ricker model as the predispersal local
dynamics, where asynchronous dispersal is symmetric. As in Example 1, in Example 3 we
choose the values of the parameters so that the predispersal local dynamics and full system
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Table 2
Predispersal local dynamics versus postdispersal asynchronous dynamics.

r values Predispersal attractors Asynchronous attractors

1. (2, 2.06) 2-cycle a fixed point

2. (2.07, 2.09) 2-cycle a limit cycle

3. (2.098, 2.2) 2-cycle a 2-cycle (Fig. 10)

4. (2.6, 2.65) 4-cycle two 4-cycles

5. (2.66, 2.68) 8-cycle two 4-cycles

6. (2.69, 2.6901) 16-cycle 8-cycle and 4-cycle

7. (2.695, 2.701) chaotic 8-cycle and 4-cycle (Fig. 11)

8. 2.8 chaotic two chaotic attractors (Fig. 12)

Figure 10. A single 2-cycle (black dots) attractor in system (3) with g(xi) = exp(r − xi) and symmetric
asynchronous dispersal, where the parameters are exactly as in Figure 1. Figure 10 is plotted over 3000 time
steps.

Figure 11. Multiple attractors in system (3) with g(xi) = exp(r−xi) and symmetric asynchronous dispersal:
A 4-cycle (red dots) attractor coexisting with an 8-cycle (blue dots) attractor, where the parameters are exactly
as in Figure 2. Figure 11 is plotted over 3000 time steps.

under asynchronous symmetric dispersal are as listed in Table 2.
Example 3. Consider system (3) with the Ricker predispersal identical local dynamics

g(xi) = exp(r − xi).

Set the following parameter values:
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Figure 12. Multiple chaotic attractors in system (3), with g(xi) = exp(r−xi) and symmetric asynchronous
dispersal. A 2-piece chaotic attractor along the diagonal (red region) coexisting with a 4-piece chaotic attractor
off the diagonal (blue region), where r = 2.8 and d = 0.03 in Example 3. Figure 12 is plotted over 5000 time
steps.

r ∈ (2, 2.52) and d = d1 = d2 = 0.03.

For values of the parameter r ∈ (2, 2.52), the predispersal identical local patches are on
a 2-cycle attractor, and the full system with symmetric dispersal synchrony supports two
2-cycle attractors (see Table 1). However, the dynamics of the corresponding system under
symmetric dispersal asynchrony depends on the value of r. It supports a single fixed point
attractor when r ∈ (2, 2.06), a single limit cycle attractor when r ∈ (2.07, 2.09), a single
2-cycle attractor when r ∈ (2.098, 2.2) (no multiple attractors; see Figure 10), and two 2-cycle
attractors when r ∈ (2.3, 2.5). At r ∈ (2.6, 2.65), the predispersal identical local patches are
on a 4-cycle attractor, and the full system with symmetric dispersal asynchrony supports two
4-cycle attractors, where the corresponding synchronous model supports a 4-cycle attractor
coexisting with a 2-cycle attractor. When r ∈ (2.66, 2.68), the predispersal identical local
patches are on an 8-cycle attractor, and the full system with symmetric dispersal synchrony
supports three 4-cycle attractors, where the corresponding asynchronous model supports two
4-cycle attractors. For values of r ∈ (2.69, 2.6901), the predispersal identical local patches are
on a 16-cycle attractor, and the full system with symmetric dispersal synchrony supports four
attractors, where the corresponding asynchronous model supports an 8-cycle attractor coex-
isting with a 4-cycle attractor. At r ∈ (2.695, 2.701), the predispersal identical local patches
are on a chaotic attractor, and the full system with symmetric dispersal synchrony supports
four attractors, where the corresponding asynchronous model supports an 8-cycle attractor
coexisting with a 4-cycle attractor (see Table 2 and Figure 11). Figure 12 demonstrates that
population models under dispersal asynchrony are capable of supporting coexisting chaotic
attractors.

As in Figures 3 and 4, the Dynamics software of Nusse and Yorke is used to study the
nature of the basins of attraction of the multiple attractors in Figure 11 (see Figure 13) [39].

Figures 1, 2, 3, 4, 10, 11, 12, and 13 together with Tables 1 and 2 illustrate that asyn-
chronous symmetric dispersal-linked models support multiple attractors with simpler basins of
attraction than the corresponding synchronous symmetric ones. However, in both dispersal-
linked models, our results show that the boundary between the initial population sizes leading
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Figure 13. Basins of attraction of the two coexisting 4-cycle and 8-cycle attractors in Figure 11, where
the parameters are exactly as in Figure 2. The black region is the basin of attraction of the 4-cycle (four black
“specks” in the white region) and the white region is that of the 8-cycle. On the horizontal axis 0 ≤ x1 ≤ 4,
and on the vertical axis 0 ≤ x2 ≤ 4. Figure 13 is plotted over 5000 time steps.

to each of the coexisting attractors is a fractal that fills up the entire set of initial population
sizes. Consequently, both deterministic dispersal-linked models exhibit sensitive dependence
of the long-term dynamical behavior on initial population sizes. Fractal basin boundaries have
been studied in synchronous dispersal-linked models [5, 22, 44], epidemic models [4], as well
as in physics [16, 26, 39].

6.2. Asymmetric dispersal asynchrony. In Example 3, asynchronous symmetric dispersal
is assumed. To illustrate the impact of asynchronous asymmetric dispersal we now assume
asymmetric dispersal in system (3), where the per capita growth rates are identical (that is,
g1 = g2 = g and d1 �= d2).

As in Examples 1 and 3, we use the Ricker model as predispersal local population dy-
namics. To study the impact of asynchronous asymmetric dispersal on Figure 10, we keep
the parameters in Example 3 fixed at r = 2.1 and d1 = 0.03 while d2 is varied continuously
between 0 and 1 (see Figures 14 and 15). The full system stabilizes or shifts from the single
2-cycle attractor to a single limit cycle attractor (discrete Hopf bifurcation) or to a single fixed
point attractor.

Similarly, when the predispersal local dynamics are chaotic, asymmetric dispersal asyn-
chrony can change the number and nature of the coexisting attractors (see Figure 16). Figures
14, 15, and 16 highlight that the stabilizing effect of dispersal is much larger with asymmetry.
Thus, asynchronous or synchronous asymmetric dispersals can stabilize or shift the local dy-
namics from a stable cycle or to a stable fixed point or to a stable limit cycle. However, high
asynchronous dispersal rates can lead to the extinction of the species on at least one patch
(Theorem 1).

7. Mixed synchronous-asynchronous dispersals in two-patch models. In this section
and the next two sections, we consider system (4) with mixed synchronous and asynchronous
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Figure 14. After period-doubling reversals and Hopf bifurcation, Patch 2 population decreases monotonically
to zero, while Patch 1 population increases monotonically to a maximum value before decreasing to the Patch 1
predispersal 2-cycle dynamics, where r1 = 2.1, d1 = 0.03, and d2 is varied continuously between 0 and 1.

Figure 15. A limit cycle attractor with asymmetric dispersal asynchrony, where r1 = 2.1, d1 = 0.03, and
d2 = 0.032.

dispersals (that is, system (4) with 0 < γ < 1). Recall that there is no population explosion in
system (4). Consequently, by regular perturbation analysis at the endpoints γ = 0 and γ = 1,
one obtains that when γ is sufficiently small (respectively, large) the qualitative dynamics of
the dispersal-linked system under mixed synchronous and asynchronous dispersals are similar
to that of the corresponding system under only synchronous (respectively, asynchronous)
dispersal.

If γ = 0 and dispersal is synchronous (0 < d1, d2 < 1), it is known that the species
always persists in both patches, where g1(0), g2(0) > 1 [44]. However, if γ = 1 and dispersal is
asynchronous, then the species does not always persist in both patches (Theorem 3). If γ �= 1 in
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Figure 16. Period-doubling reversals and Hopf bifurcation, where r1 = 2.8, d1 = 0.03, and d2 is varied
continuously between 0 and 1 (predispersal local dynamics is chaotic; see Figure 12).

system (4), then x1 > 0 or x2 > 0 implies that F1(x) > 0 and F2(x) > 0. Consequently, in the
mixed synchronous-asynchronous dispersal model with γ �= 1, the single species either persists
in both patches or becomes extinct in both patches. As in the model with asynchronous
dispersal, in this section we obtain conditions that guarantee the extinction of the species in
both Patches 1 and 2 of the mixed synchronous-asynchronous dispersal model.

Theorem 3. In system (4), if γ ∈ (0, 1), then

(1 − γ)d1d2�1
d�2

d <
(
1 − (1 − d1)�1

d

) (
1 − (1 − d2)�2

d

)
implies that (0, 0) is globally asymptotically stable, where (1 − di)�i

d < 1 for each i ∈ {1, 2}.
Hence, the species becomes extinct in both Patches 1 and 2.

The proof of Theorem 3 is in the appendix.
By Theorem 3, when the product of the dispersal rates (d1 and d2), the intrinsic growth

rates (�1
d and �2

d), and (1−γ) is smaller than the product of
(
1−(1−d1)�1

d

)
and

(
1−(1−d2)�2

d

)
,

then the species becomes extinct in all patches. In the next section, we use the Beverton–
Holt model to provide examples of species extinction and persistence in mixed synchronous-
asynchronous models.

8. Mixed synchronous-asynchronous dispersal models and compensatory dynamics.
Mixed synchronous-asynchronous systems can exhibit species persistence in both Patches 1
and 2. To illustrate this with a simple example, we proceed as in system (3) and assume that
the predispersal Patch 1 local population has reached the positive equilibrium X1, and we let
f1(x1) ≡ X1 [43, 46]. Then the mixed model, system (4), reduces to

(6)
x1(t + 1) = (1 − d1)X1 + d2x2(t)g2(x2(t) + γd1X1),
x2(t + 1) = (1 − γ)d1X1 + (1 − d2)x2(t)g2(x2(t) + γd1X1).

}
System (6) supports a globally stable positive equilibrium whenever the predispersal local
patch dynamics are compensatory. We summarize these in the following result.
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Theorem 4. In system (6), let each local patch dynamics be modeled by fi, an α-monotone
concave map, with the positive fixed point Xi ∈ (0, α). Then the positive equilibrium population
vector, (

(1 − d1)X1 +
d2

1 − d2
(X̂2 − (1 − γ)d1X1), X̂2

)
,

is globally attracting, where X̂2 is the unique positive solution of the equation

(1 − γ)d1X1 + (1 − d2)x2g2(x2 + γd1X1) = x2.

That is, the dispersal-linked mixed system supports a globally stable positive fixed point when-
ever the predispersal local patch dynamics are compensatory.

The proof of Theorem 4 is similar to that of Theorem 2 and is omitted.
In Example 4, we use compensatory local dynamics and the Beverton–Holt model to

study the dependence of the dynamics of system (4) on the mixed synchronous-asynchronous
dispersal rates.

Example 4. Consider system (4) with

fi(xi) =
aixi

1 + bixi

for each i ∈ {1, 2}. Set the following parameter values:

a1 = 2, a2 = 2.1, b1 = b2 = 1, γ = 0.95, and d1 = d2 = 0.01.

As in Example 2, in Example 4 the local dynamics in both patches are compensatory and
the system exhibits a globally stable positive equilibrium population vector at (1.002, 1.070)
(Theorem 4). When symmetric dispersal is assumed and d1 = d2 is varied continuously
between 0 and 1, as in the asynchronous dispersal model the population in each patch de-
creases to zero monotonically with increasing values of the symmetric dispersal coefficients
(see Figure 7). In particular, when d1 = d2 > 0.7,

(1 − γ)d1d2�1
d�2

d <
(
1 − (1 − d1)�1

d

) (
1 − (1 − d2)�2

d

)
and the species becomes extinct in both patches (Theorem 3).

When γ = 1, d1 = d2 > 0.53, and all the other parameters remain at their current values
in Example 4, dispersal is asynchronous and the species becomes extinct in both patches (Fig-
ure 7 and Theorem 1). To illustrate species persistence in mixed synchronous-asynchronous
dispersal models, where the species is extinct in the associated asynchronous dispersal model,
we keep all parameters fixed at their current values and let γ = 0.75 in Example 4. With this
choice of parameters, the species persists for all values of the symmetric dispersal coefficients
d1 = d2 ∈ (0, 1) (see Figure 17).

As in asynchronous dispersal models, our numerical explorations show that asymmetric
mixed synchronous-asynchronous dispersals are capable of shifting the population dynamics
from persistence to extinction in both patches. Furthermore, our results show that in mixed
systems the parameter that spans the range of possible modes of dispersal is also capable of
forcing a similar shift from extinction to persistence of the species in all patches.
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Figure 17. Persistence in both Patches 1 and 2 with symmetric mixed synchronous-asynchronous dispersal,
where γ = 0.75, d1 = d2 ∈ (0, 1), and all other parameters remain fixed at their current values in Example 4.

Figure 18. Example 5 has two coexisting 2-cycle attractors for values of γ ∈ [0.0.45) and only a single
2-cycle attractor for values of γ ∈ (0.45, 1).

9. Mixed synchronous-asynchronous dispersal models and overcompensatory dynam-
ics. The qualitative dynamics of mixed synchronous-asynchronous dispersal systems are simi-
lar to those of the associated synchronous (respectively, asynchronous) dispersal systems when
γ, the parameter that spans the range of possible modes of dispersal, is close to 0 (respec-
tively, close to 1). In this section, we highlight the possible behaviors of mixed synchronous-
asynchronous systems, where the local dynamics are overcompensatory and are governed by
the Ricker model.

Example 5. Consider system (4) with the Ricker model

fi(xi) = xi exp(ri − xi)

for each i ∈ {1, 2}. Set the following parameter values:

r = r1 = r2 = 2.1, γ ∈ [0, 1], and d = d1 = d2 = 0.03.

With our choice of parameters, Example 4 exhibits two coexisting 2-cycle attractors (see
Example 1 and Figures 1 and 18) when γ ∈ [0, 0.45). That is, for these values of the parame-
ters, the qualitative dynamics of the system with mixed synchronous-asynchronous dispersals
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Figure 19. The full mixed system shifts from a 2-cycle attractor to a limit cycle attractor, and then to a
fixed point attractor, where r1 = r2 = 2.1 and γ = 0.4 while d1 = d2 is varied continuously between 0 and 1.

Figure 20. The full mixed system shifts from a 2-cycle attractor to a limit cycle attractor back to a 2-cycle
attractor, and then to a fixed point attractor, where r1 = r2 = 2.1, γ = 0.4, and d1 = 0.03 while d2 is varied
continuously between 0 and 1.

are the same as those of the corresponding system with only dispersal synchrony. Furthermore,
our simulations show that the full system shifts from the two (multiple) 2-cycle attractors to
a single 2-cycle attractor (see Example 3 and Figures 10 and 18) when γ ∈ [0.45, 1]. In this
case, the qualitative dynamics of the mixed synchronous-asynchronous dispersal model are
the same as those of the corresponding system with only asynchronous dispersal.

To study the impact of symmetric mixed synchronous-asynchronous dispersals on Exam-
ple 5, we let γ = 0.4 and vary d continuously between 0 and 1 while r is kept fixed at 2.1.
Figure 19 shows that with increasing values of d, the mixed system shifts from a 2-cycle
attractor to a limit cycle attractor and then to a fixed point attractor.

Mixed models under asymmetric dispersals can exhibit qualitative dynamics that are dif-
ferent from those of the associated mixed models under symmetric dispersal. To demonstrate
this difference, we let r1 = r2 = 2.1, γ = 0.4, and d1 = 0.03, and we vary d2 continuously
between 0 and 1 (see Figures 19 and 20). Unlike Figure 19, Figure 20 shows that with increas-
ing values of the asymmetric dispersal coefficient d2, the mixed system shifts from a 2-cycle
attractor to a limit cycle attractor and then returns to a 2-cycle attractor. This return to a
2-cycle attractor after a limit cycle attractor is different from the bifurcations in Figure 19
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Figure 21. Three coexisting attractors in Example 6: Two 4-cycle (red and black dots) attractors coexisting
with an 8-cycle (blue dots) attractor. Figure 21 is plotted over 3000 time steps.

Figure 22. Basins of attraction of the three coexisting attractors in Figure 21. Figure 22 is plotted over
5000 time steps.

with the symmetric mixed dispersal. However, with increasing values of the asymmetric dis-
persal coefficient, as in Figure 19, the 2-cycle attractor undergoes a period-doubling reversal
bifurcation (see Figure 20).

Recall that Figures 1, 2, 3, 4, 10, 11, 12, and 13 and Tables 1 and 2 demonstrate that
synchronous dispersal-linked systems can be more sensitive to initial population sizes than
the corresponding asynchronous ones. Next, we use an example with an intermediate value of
the parameter γ to illustrate that mixed dispersal-linked systems can be more (respectively,
less) sensitive to initial population sizes than the corresponding asynchronous (respectively,
synchronous) systems.

Example 6. In Example 5, set the following parameter values:

r1 = r2 = 2.7, γ = 0.5, and d1 = d2 = 0.03.

Figure 21 exhibits the three coexisting attractors (two 4-cycle attractors and an 8-cycle
attractor) of Example 6, and Figure 22 shows their basins of attraction. However, the asso-
ciated synchronous model of Example 6 (γ = 0) has four coexisting attractors (see Figures 2
and 4), while the associated asynchronous model (γ = 1) has two coexisting attractors (see
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Figures 11 and 13). These examples illustrate that when predispersal dynamics are cyclic,
then synchronous-asynchronous dispersal-linked mixed systems become more sensitive to ini-
tial population sizes as the values of γ decrease.

10. Conclusions. In this paper, we generalize the classical single species, discrete-time,
two-patch synchronous dispersal linked-model to a mixed synchronous-asynchronous dispersal
model which includes a model of Doebeli for asynchronous dispersal. We extend an idea of
Doebeli and show how the detailed timing of dispersal can affect the global dynamics of
dispersal-linked systems [7, 8]. The dynamics of discrete-time population models connected
by either asynchronous or mixed synchronous-asynchronous dispersals depend on the dispersal
rates and the predispersal local patch dynamics. In asynchronous models, the species becomes
extinct on at least one patch when the dispersal rates are high, while it persists when the
dispersal rates are low. However, in mixed synchronous-asynchronous systems, depending on
the dispersal rates, the range of possible modes of dispersals, and the intrinsic growth rates
in the two patches, the pioneer species either persists in all patches or becomes extinct in all
patches.

The results of Hastings and Levin on continuous-time metapopulation models and those
of Yakubu and Castillo-Chavez on discrete-time models connected by synchronous dispersal
predict that an equilibrium population is stable only if it corresponds to a stable equilibrium
within each patch [22, 29, 44]. Our results support this prediction for two-patch discrete-
time models under asynchronous dispersal rates as long as the dispersal rate from Patch 2 to
Patch 1 is low and the predispersal local patch dynamics are compensatory.

Local unstructured populations under compensatory or overcompensatory dynamics tend
to support single attractors; that is, the population has a single outcome. However, in
dispersal-linked population models with overcompensatory local dynamics, both synchronous
and asynchronous dispersals can fracture the basins of attraction through their support of
multiple attractors. Hastings [22] and Yakubu and Castillo-Chavez [44] showed that both
symmetric and asymmetric synchronous dispersals are capable of generating multiple attrac-
tors where the predispersal local patch dynamics are overcompensatory. Our results show
that asynchronous dispersal-linked systems support multiple attractors with a smaller num-
ber of distinct attractors than the corresponding synchronous systems. The interactions via
dispersal of various forms of intraspecific competition has not only led to the generation of
a dynamical landscape capable of supporting multiple attractors but also has aided our un-
derstanding of the role that initial population sizes play in the ultimate fate (life-history) of
dispersal-linked systems. As the complexity of the local dynamics increases, dispersal-linked
deterministic systems exhibit sensitive dependence of the long-term behavior on the initial
population sizes. The smaller number of distinct attractors makes synchronous dispersal-
linked systems more sensitive to initial population sizes than the corresponding asynchronous
systems [5, 16, 22, 26, 44]. Complex overcompensatory local dynamics give rise to sensitive
dependence of mixed dispersal-linked dynamics on initial population sizes when the domi-
nant dispersal mode is synchronous. However, our results show that mixed dynamics are less
sensitive to initial population sizes when the dominant dispersal mode is asynchronous.

Asymmetric dispersal is capable of stabilizing or shifting the predispersal local dynamics
from overcompensatory to compensatory dynamics. Thus, asymmetry enhances the stabilizing
role of dispersal in synchronous, asynchronous, and mixed synchronous-asynchronous models.
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Our results show that it is possible for the long-term qualitative dynamics of models
with mixed synchronous-asynchronous dispersals to be identical to that of the corresponding
model with either only dispersal synchrony or only dispersal asynchrony. That is, in mixed
synchronous-asynchronous models, the dominant mode of dispersal is capable of driving the
population dynamics of the dispersal-linked systems.

Appendix.
Proof of Lemma 1. Recall that F1(x) = (1 − d1)f1(x1) + d2x2g2(x2 + γd1f1(x1)) and

F2(x) = (1− γ)d1f1(x1) + (1− d2)x2g2(x2 + γd1f1(x1)), where x = (x1, x2) ∈ R
2
+. Since each

gi > 0, 0 ≤ γ ≤ 1, and 0 < di < 1, we have F1(x) > 0 and F2(x) > 0 whenever x1, x2 > 0.
That is, the positive cone is positively invariant.

Next, we show that for each i ∈ {1, 2} the sequence {F t
i (x)}t≥0 is bounded. By the

monotonicity condition on g2 and the fact that 0 < d1, d2 < 1, we obtain that

F1(x) + F2(x) ≤ f1(x1) + f2(x2).

If xi ≤ max Ii, then fi(xi) = xigi(xi) ≤ max Ii, but if xi > max Ii, then fi(xi) = xigi(xi) <
xi, where Ii ≡ fi([0, Xi]). As a result,

F1(x) + F2(x) ≤

⎧⎪⎪⎨
⎪⎪⎩

max I1 + max I2 if x1 ≤ max I1 and x2 ≤ max I2,
x1 + max I2 if x1 > max I1 and x2 ≤ max I2,
max I1 + x2 if x1 ≤ max I1 and x2 > max I2,
x1 + x2 if x1 > max I1 and x2 > max I2.

Hence, each sequence {F t
i (x)}t≥0 is bounded. Consequently, no point in system (4) has an

unbounded orbit.
Proof of Theorem 1. By Lemma 1, the ω-limit set of every point in [0,∞) × [0,∞) is

nonempty. As a result, we consider an arbitrary point y = (y1, y2) ∈ [0,∞) × [0,∞). Let
x = (x1, x2) ∈ ω(y). By definition, there exists ni → +∞ such that Fni(y) → x as ni → +∞.

To prove (i), we need to show that Fni
2 (y) → 0 as ni → +∞. Define the function

V : R
2
+ → R+ by V (y1, y2) = y2. Next, we show that V is a Lyapunov function for system (3).

Hence, it decreases to a limit point with second coordinate zero.
If y2 > 0, then V (F (y)) < (1 − d2)�2

dy2 and V (F (y)) < V (y) whenever (1 − d2)�2
d < 1.

Therefore, for all points y = (y1, y2) satisfying y2 > 0 we know that V (F (y)) < V (y). If x2 > 0,
then V (F (x)) < V (x). However, this is impossible for an ω-limit point. This proves (i).

To prove (ii), notice that the eigenvalues of the Jacobian matrix DF (0, 0) are (1 − d1)�1
d

and (1− d2)�2
d. Consequently, (0, 0) is unstable whenever (1− d1)�1

d > 1 and (1− d2)�2
d > 1.

Furthermore, F1(x) ≥ (1 − d1)f1(x1) and (1 − d1)�1
d > 1 imply that {0} is an unstable fixed

point of the one-dimensional map f̂1(x1) = (1−d1)f1(x1). Also, (1−d1)�1
d > 1 implies that f̂1

has a unique positive fixed point, denoted by X̂1. Moreover, f̂1(x1) > x1 whenever 0 < x1 <
X̂1 and f̂1(x1) < x1 whenever x1 > X̂1. Consequently, Î1 ≡ f̂1([0, X̂1]) is a global attractor;

that is, every initial population eventually reaches a limit in Î1. Let Ĵ1 ≡ f̂1

(
[X̂1,max Î1]

)
,

where max Î1 is the largest endpoint of Î1. Notice that the smallest endpoint of Ĵ1, min Ĵ1, is

positive. That is, min Ĵ1 > 0. Furthermore, limt→∞ F t
1(x) ≥ limt→∞ f̂ t

1(x1) ≥ min Ĵ1 for any
x1 > 0. Hence, the species persists in Patch 1.
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To prove (iii) and (iv), notice that when Patch 2 is empty (that is, when (1− d2)�2
d < 1),

the Patch 1 population is governed by the “limiting equation” F1(x) = (1 − d1)f1(x1). That
Patch 1 dynamics are compensatory implies that (0, 0) is globally stable when �d < 1, while
(0, 0) is unstable and (g−1

1 ( 1
1−d1

), 0) is globally stable when (1−d1)�1
d > 1 and (1−d2)�2

d < 1.
This completes the proof.

The following result is useful in the proof of Theorem 2.
Lemma 2. Let f̂2(x2) = (1 − d2)x2g2(x2 + d1X1). If Patch 2 dynamics are compensatory

and (1 − d2)�2
d > 1, then f̂2 is orientation-preserving and all positive densities approach the

positive equilibrium at X̂2 = g−1
2 ( 1

1−d2
) − d1X1 monotonically under f̂2 iterations.

Proof of Lemma 2. First, notice that (1− d2)�2
d > 1 implies that f̂2 has a unique positive

fixed point at X̂2. To prove the result, we need to show that X̂2 is globally stable in (0,∞). If

we know that f̂2 cannot support 2-cycles, then Sharkovskii’s theorem implies that f̂2 cannot
have cycles except for a fixed point. Using the monotonicity condition on g2 and the fact that
X̂2 > 0, we obtain that zero and infinity are repellors under f̂2 iterations. Since no point
overshoots X2, we obtain that the unique positive fixed point of f̂2, X̂2 is globally stable in
(0,∞) and no point overshoots it under f̂2 iterations.

Now, we prove that f̂2 cannot support 2-cycles. Suppose that f̂2 has a 2-cycle. Since
Patch 2 predispersal local dynamics are compensatory and (1 − d2)�2

d > 1, we have that the

fixed point X̂2 must be unstable and (f̂2)
′
(X̂2) < −1. That is, (f̂2)

′
(X̂2) = (1− d1)(g2(X2) +

X̂2g
′
2(X2)) < −1. Since gi(Xi) = 1 and X̂2 = X2 − d1X1, we have

(1 − d1)f
′
2(X2) = (1 − d1)(1 + X2g

′
2(X2))

≤ (1 − d1)(1 + (X̂2 + d1X1)g
′
2(X2)) < −1 + (1 − d1)d1X1g

′
2(X2) < 0.

This contradicts the fact that (1 − d1)f
′
2(X2) > 0 (compensatory dynamics). As a result, f̂2

cannot support 2-cycles. This establishes Lemma 2.
Proof of Theorem 2. Notice that system (4) is essentially a one-dimensional system. By

Lemma 2, limt→∞ F t
2(x) = (g−1

2 ( 1
1−d2

) − d1X1) for each point x = (x1, x2) ∈ (0,∞) × (0,∞).

Consequently, limt→∞ F t
1(x) = (1 − d1)X1 + d2

1−d2
(g−1

2 ( 1
1−d2

) − d1X1), and the positive fixed
point is globally asymptotically stable in (0,∞) × (0,∞).

Proof of Theorem 3. To prove Theorem 3, we proceed as in the proof of Theorem 1 and
define the function V : R

2
+ → R+ by

V (y1, y2) = y1 + by2,

where

0 <
d2�2

d

1 − (1 − d2)�2
d

< b <
1 − (1 − d1)�1

d

(1 − γ)d1�1
d

.

Next, we show that V is a Lyapunov function for system (4), where γ �= 0, 1. Hence, it
decreases to a limit point with both coordinates equal to zero.

V (F (y)) = ((1 − d1) + (1 − γ)bd1) f1(y1) + (d2 + b(1 − d2))y2g2(y2 + γd1f1(y1)). If y =
(y1, y2) �= (0, 0), then

V (F (y)) < ((1 − d1) + (1 − γ)bd1)�1
dy1 + (d2 + b(1 − d2))�2

dy2.
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With our choice of the positive constant b, we have

((1 − d1) + (1 − γ)bd1)�1
d < 1

and
(d2 + b(1 − d2))�2

d < b.

Hence V (F (y)) < V (y) whenever 0 <
d2�2

d

1−(1−d2)�2
d
<

1−(1−d1)�1
d

(1−γ)d1�1
d

. Therefore, for all points

y = (y1, y2) �= (0, 0) we know that V (F (y)) < V (y). Now, proceed exactly as in the proof of
Theorem 1 to complete the proof.

Acknowledgment. The author thanks the referees for their useful suggestions.

REFERENCES

[1] L. J. Allen, Persistence, extinction, and critical patch number for island populations, J. Math. Biol., 24
(1987), pp. 617–625.

[2] M. Begon, J. L. Harper, and C. R. Townsend, Ecology: Individuals, Populations and Communities,
Blackwell Science, Malden, MA, 1996.

[3] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,
Texts Appl. Math. 40, Springer-Verlag, New York, 2001.

[4] C. Castillo-Chavez and A. A. Yakubu, Dispersal, disease and life-history evolution, Math. Biosci.,
173 (2001), pp. 35–53.

[5] C. Castillo-Chavez and A. A. Yakubu, Intraspecific competition, dispersal and disease dynamics
in discrete-time patchy environments, in Mathematical Approaches for Emerging and Reemerging
Infectious Diseases: An Introduction to Models, Methods and Theory, C. Castillo-Chavez, S. Blower,
P. van den Driessche, D. Kirschner, and A.-A. Yakubu, eds., Springer-Verlag, New York, 2001, pp.
165–181.

[6] D. Cohen and S. A. Levin, The interaction between dispersal and dormancy strategies in varying
and heterogeneous environments, in Mathematical Topics in Population Biology, Morphogenesis and
Neurosciences, E. Teramoto and M. Yamaguti, eds., Springer-Verlag, Berlin, 1987, pp. 110–122.

[7] M. Doebeli, Dispersal and dynamics, Theoret. Population Biol., 47 (1995), pp. 82–106.
[8] M. Doebeli and G. D. Ruxton, Evolution of dispersal rates in metapopulation model: Branching and

cyclic dynamics in phenotype space, Evolution, 5 (1997), pp. 1730–1741.
[9] D. J. Earn, S. A. Levin, and P. Rohani, Coherence and conservation, Science, 290 (2000), pp. 1360–

1364.
[10] P. L. Errington, Some contributions of a fifteen year local study of the northern bobwhite to a knowledge

of population phenomena, Ecol. Monogr., 15 (1945), pp. 1–34.
[11] J. E. Franke and A.-A. Yakubu, Extinction and persistence of species in discrete competitive systems

with a safe refuge, J. Math. Anal. Appl., 23 (1996), pp. 746–761.
[12] J. E. Franke and A.-A. Yakubu, Geometry of exclusion principles in discrete systems, J. Math. Anal.

Appl., 168 (1992), pp. 385–400.
[13] J. E. Franke and A.-A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems,

J. Math. Biol., 30 (1991), pp. 161–168.
[14] M. Gadgil, Dispersal: Population consequences and evolution, Ecology, 52 (1971), pp. 253–261.
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Abstract. We investigate the existence, characteristic multipliers, and stability of periodic solutions to a Hamil-
tonian vector field which is a small perturbation of a vector field tangent to the fibers of a circle
bundle. Our primary examples are the planar lunar and spatial lunar problems of celestial mechan-
ics, i.e., the restricted three-body problem where the infinitesimal is close to one of the primaries.
By averaging the perturbation over the fibers of the circle bundle one obtains a Hamiltonian system
on the reduced (orbit) space of the circle bundle. Our goal in the first part of the paper is to state
and prove results which have hypotheses on the reduced system and have conclusions about the
full system. Starting with the classical work of Reeb, we give a summary of lemmas, corollaries,
and theorems about the existence, characteristic multipliers, and stability of periodic solutions to
Hamiltonian systems which are perturbations of circle bundle flows. By reformulating the classical
results in modern language and giving alternative proofs in place of the original proofs, we are able
to infer new consequences of these classical results. The second part of the paper is devoted to
applications of the general results. We apply these general results to the planar and spatial lunar
problem. After scaling, the lunar problem is a perturbation of the Kepler problem, which after
regularization is a circle bundle flow. We find the classical near-circular periodic solutions and the
near-rectilinear periodic solutions. Then we compute their approximate multipliers and show that
there is a “twist.” However, the twist is too degenerate to apply the classical KAM theorem on
invariant tori. We also find symmetric periodic solutions which are continuations of elliptic solutions
of the Kepler problem.
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1. Introduction. For us the lunar problem is the circular restricted three-body problem
where the infinitesimal is close to one of the primaries. After scaling the restricted problem,
the lunar problem is a perturbation of the Kepler problem, and Moser [39] has shown that
the Kepler problem after regularization is a circle bundle flow. Thus, the lunar problem is a
prototype for Hamiltonian systems that arise as perturbations of circle bundle flows.

By averaging the perturbation over the fibers of the circle bundle, Reeb [43] and Moser [39]
obtained a Hamiltonian vector field on the base (or reduced) space; see also [32, 33]. They
were able to give sufficient conditions for the existence of periodic solutions by looking at the
system on the base alone.
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Since then a number of papers have appeared which analyze systems by looking at the
reduced system only; see [7, 16, 21, 27, 28, 29, 41] and the many references therein. One starts
with a small parameter which is a measure of the perturbation of an integrable system where
all solutions are periodic. Then one normalizes (or averages) the perturbation term-by-term
in the small parameter. After a finite number of terms have been normalized, the higher-order
perturbations are truncated, giving an approximation of the full system. This approximation
is well defined on the lower-dimensional reduced space. Being lower-dimensional, sometimes
just two-dimensional, the system on the reduced space is easier to understand. But not all
the features of the full system are accurately reflected by the reduced system; it typically does
not display the breakdown of invariant tori, ergodic regions, solenoids, etc.

Our goal in the first part of the paper is to state, prove, and apply results which have hy-
potheses on the reduced system and have conclusions about the full system. Starting with the
work of Reeb, we give in section 2 a summary of lemmas, corollaries, and theorems about the
existence, characteristic multipliers, and parametric stability of periodic solutions for Hamil-
tonian systems which are perturbations of circle bundle flows. Some of the results are old,
some are just extensions, and a few are new. Lemma 2.1 is the key to an original direct proof
of Reeb’s theorems using symplectic geometry arguments. Corollary 2.3 constitutes a new ap-
plication of Krein–Gel’fand theory [47] about the stability of linear Hamiltonian vector fields
with periodic coefficients. Theorem 2.5 connects, through Lemma 2.1, the theory of reduction
in Hamiltonian systems with the existence of KAM tori in a simple way. Theorem 2.6, about
the existence of symmetric periodic solutions, is also new.

The second part of the paper is devoted to applying these general results to the lunar
problem. In section 3 we apply these general results to the planar lunar problem and in
section 4 to the spatial lunar problem. In the planar problem we find Hill’s classical near-
circular periodic solutions, compute their approximate multipliers, and then show that there
is a “twist” term. The twist is of too high an order in the perturbation parameter to apply the
classical KAM theorem. We also find symmetric periodic solutions which are continuations
of elliptic solutions of the Kepler problem.

For the spatial problem we again find the classical Hill periodic solutions, but also the near-
rectilinear periodic solutions, and we compute their approximate multipliers. These solutions
are shown to be parametrically stable and elliptic. Again we compute a twist term for all
these periodic solutions. We pay particular attention to the near-rectilinear periodic solutions
and show that they are not collision orbits.

2. Averaging theorems. Here we summarize some general results from the classic pa-
per by Reeb [43] on averaging Hamiltonian systems on manifolds, along with some obvious
corollaries. We also extend these results to systems with discrete symmetries.

Let (M,Ω) be a symplectic manifold of dimension 2n, H0 : M → R a smooth Hamiltonian
which defines a Hamiltonian vector field Y0 = (dH0)

# with symplectic flow φt
0 (see [1]). Let

I ⊂ R be an interval such that each h ∈ I is a regular value of H0 and N0(h) = H−1
0 (h) is a

compact connected circle bundle over a base space B(h) with projection π : N0(h) → B(h).
Assume the vector field Y0 is everywhere tangent to the fibers of N0(h); i.e., assume that
all the solutions of Y0 in N0(h) are periodic. There is no loss of generality [22] in assuming
that all these periodic solutions have periods smoothly depending only on the value of the
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Hamiltonian; i.e., the period is a smooth function T = T (h) (sometimes the dependence on h
will be omitted in the notation).

For example, consider a pair of harmonic oscillators

ẍ + x = 0, ÿ + y = 0,

which may be written as the Hamiltonian system

ẋ =
∂H

∂u
= u, u̇ = −∂H

∂x
= −x, ẏ =

∂H

∂v
= v, v̇ = −∂H

∂y
= −y,

with Hamiltonian

H =
1

2
(x2 + u2) +

1

2
(y2 + v2).

In polar coordinates

r2 = x2 + u2, θ = tan−1 u/x, ρ2 = y2 + v2, φ = tan−1 v/y,

the equations become

ṙ = 0, θ̇ = −1, ρ̇ = 0, φ̇ = −1,

and they admit the two integrals r and ρ.
The energy level E = H−1(1

2) is a 3-sphere and is invariant under the flow. All the
solutions are 2π-periodic, and so the orbits are circles. Thus the 3-sphere is a union of circles.
We can use polar coordinates to coordinatize the sphere provided we are careful to observe
the proper conventions.

Starting with the polar coordinates r, θ, ρ, φ for R
4, we note that on the 3-sphere,

E = r2 + ρ2 = 1; so we may discard ρ and take 0 ≤ r ≤ 1. We will use r, θ, φ as coordinates
on S3. Now r, θ with 0 ≤ r ≤ 1 are just polar coordinates for the closed unit disk. For each
point of the open disk, there is a circle with coordinate φ (defined mod 2π), but when r = 1,
ρ = 0; so the circle collapses to a point over the boundary of the disk. The geometric model
of S3 is two solid cones with points on the boundary cones identified, as shown in Figure 1a.
Through each point in the open unit disk with coordinates r, θ there is a line segment (the
dashed line) perpendicular to the disk. The angular coordinate φ is measured on this segment,
φ = 0 is the disk, φ = π is the upper boundary cone, and φ = −π is the lower boundary cone.
Each point on the upper boundary cone with coordinates r, θ, φ = π is identified with the
point on the lower boundary cone with coordinates r, θ, φ = −π.

In this model there are two special orbits where r = 0 and ρ = 0. Other than these two
special circles, on each orbit, as θ increases by 2π, so does φ. Thus, each such orbit meets the
open disk where φ = 0 (the shaded disk in Figure 1b) in one point. We can identify each such
orbit with the unique point where it intersects the disk. One special orbit meets the disk at
the center, and so we can identify it with the center. The other is the outer boundary circle,
which is a single orbit. When we identify this circle with a point, the closed disk with its
outer circle identified with a point becomes a 2-sphere.

Thus, the 3-sphere S3 is the union of circles. The quotient space obtained by identifying
a circle with a point is a 2-sphere (the Hopf fibration of S3).
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(a) A model of S3 (b) An orbit on S3

Figure 1. S3 as a circle bundle over S2.

Let D be the open disk φ = 0 (the shaded disk in Figure 1b). The union of all the orbits
which meet D is a product of a circle and a 2-disk, so each point not on the special circle r = 1
lies in an open set that is the product of a 2-disk and a circle. By reversing r and ρ in the
discussion above, the circle where r = 1 has a similar neighborhood. So locally the 3-sphere
is the product of a disk and a circle, but the sphere is not the product of a 2-manifold and a
circle (the sphere has a trivial fundamental group, but such a product would not).

In higher dimensions, consider n harmonic oscillators all with frequency 1; i.e., let M =
R

2n, H0 = 1
2

∑n
1 (x2

i + y2
i ), and N = H−1

0 (h) = S2n−1 (the sphere of radius
√

2h). Then
all solutions are 2π-periodic and B is the complex projective (n − 1)-space, CP

n−1. CP
1 is

homeomorphic to the 2-sphere, so when n = 2 the reduced space is B = S2 as illustrated
above.

Another example is the geodesic flow on the n-sphere Sn; i.e., M = TSn (the tangent
bundle of the sphere), H0 : M → R : vp �→ |vp| (H0(vp) is the length of the vector vp ∈ TpM),
N = {vp ∈ TSn : |vp| = h} (the h-sphere bundle), and B is G2,n+1, the Grassmannian
manifold of oriented 2-planes in R

n+1 (see, for instance, [38]). If n = 2, then B is S2, whereas
it is S2 × S2 when n = 3.

2.1. Reeb’s theorems. Here we state and prove two of Reeb’s theorems in more modern
terminology. Our proof gives more of the Hamiltonian structure and therefore leads to further
applications.

Theorem 2.1. The base space B inherits a symplectic structure ω from (M,Ω); i.e., (B,ω)
is a symplectic manifold.

This is the original reduction theorem. Now let us look at a perturbation of this situation.
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Let ε be a small parameter, H1 : M → R be smooth, Hε = H0 + εH1, Yε = Y0 + εY1 = dH#
ε ,

Nε(h) = H−1
ε (h), and φt

ε be the flow defined by Yε.

Let the average of H1 be

H̄ =
1

T

∫ T

0
H1(φ

t
0)dt,

which is a smooth function on B(h), and let φ̄t be the flow on B(h) defined by Ȳ = dH̄#.

A critical point of H̄ is nondegenerate if the Hessian at the critical point is nonsingular,
and the function H̄ is a Morse function if all its critical points are nondegenerate. The index
of a nondegenerate critical point p of H̄ is the dimension of the maximal linear subspace where
the Hessian of H̄ at p is negative definite.

Theorem 2.2. If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B with p ∈ N0, then
there are smooth functions p(ε) and T (ε) for ε small with p(0) = p, T (0) = T , and p(ε) ∈ Nε,
and the solution of Yε through p(ε) is T (ε)-periodic.

If H̄ is a Morse function, then Yε has at least χ(B) periodic solutions, where χ(B) is the
Euler–Poincaré characteristic of B.

The proof of Theorem 2.2 yields additional corollaries. The essence of the proof of the
local part of Theorem 2.2 is the existence of symplectic coordinates for a tubular neighborhood
of the orbit through p. Here we give the proof of the existence of these coordinates.

Lemma 2.1. Let p ∈ N0(h), with h ∈ I fixed. Then there are symplectic coordinates
(I, θ, y), valid in a tubular neighborhood of the periodic solution φt

0(p) of Y0(h), where (I, θ)
are action-angle coordinates and y ∈ N, where N is an open neighborhood of the origin in
R

2n−2. The point p corresponds to (I, θ, y) = (0, 0, 0).

In these coordinates H0 is a function of I only; i.e., H0 = H0(I). A local cross section is
θ = α, and a local cross section in an energy level is θ = α, I = β, where α, β are constants.
In addition, y ∈ N are coordinates in the cross section in the energy level.

The Hamiltonian is

(1) Hε(I, θ, y) = H0(I) + εH1(I, θ, y) = H0(I) + εH̄(I, y) + O(ε2).

Proof. By the Hamiltonian flow box theorem [36, 40] there are local symplectic coordinates
u = (u1, . . . , u2n) for M in a neighborhood W of p such that p corresponds to uj = 0,
j = 1, . . . , 2n (note that we locate p at the origin). The Hamiltonian is H0 = un+1 (so we
take h = 0), and Y0 is the differential equation

u̇1 = ∂H0/∂un+1 = 1, u̇j = 0, j = 2, . . . , 2n.

A local cross section to the flow of Y0 is Σ = {u : u1 = 0} ∩W , and a local cross section in an
energy level H−1(0) is σ = {u : u1 = un+1 = 0} ∩W .

The validity of these coordinates can be extended to a tubular neighborhood U = {φt
0(q) :

q ∈ Σ, t ∈ R} of the Y0-orbit through p. Let Z = Σ × R, and let η : Z → U : (q, t) → φt
0(q)

be a symplectic map. The vector field Y0 on U lifts to u̇1 = 1, u̇j = 0, j = 2, . . . , 2n, on Z.

Recall that we assume that the period T depends smoothly on the value of H0, which
in these coordinates means that the period depends smoothly on un+1, i.e., that T (un+1) is
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smooth. Let F (w) satisfy dF/dw = −2π/T (w), and let f = F−1. Change variables on Z
from {u1, un+1} to {I, θ} by

I = f(un+1), θ = − u1

f ′(un+1)
.

One checks that dI ∧ dθ = du1 ∧ dun+1, so this is a symplectic change of variables. Since
I = f(un+1), we have H0 = un+1 = F (I) and θ̇ = −F ′(I) = 2π/T (I). Thus, when t increases
by T (I), the variable θ increases by 2π and so can be considered as an angular variable.
Therefore, (I, u2, . . . , un, θ, un+2, . . . , u2n) is a full set of symplectic coordinates for Z and,
via η, a full set of symplectic coordinates for U . Let v = (u2, . . . , un, un+2, . . . , u2n). So the
Hamiltonian is

(2) Hε(I, θ, v) = H0(I) + εH1(I, θ, v).

We use the method of Lie transforms to effect the average. Let W1(I, θ, v) be the solution
of

H1 + {H0,W1} = H1 +
∂H0

∂I

∂W1

∂φ
= H̄,

that is,

W1 =

∫ θ ∂H0

∂I

−1

{H1 − H̄}dθ.

Since H̄ is the mean value of H1, the function W1 is 2π-periodic in θ. Let us change variables
by v = V (I, θ, y, ε), where V (I, θ, y, ε) is the solution of

dv

dε
= J∇yW1(I, θ, y), v(0) = y,

where J denotes the skew-symmetric matrix

J =

[
0 E

−E 0

]

and E stands for the identity matrix. Since V is the solution of a Hamiltonian equation, the
change of variables is symplectic, and since W1 is 2π-periodic in θ, so is V . The resulting
Hamiltonian becomes

Hε(I, θ, y) = H0(I) + εH̄(I, y) + O(ε2)

by the theory of Lie transforms (cf. [36, p. 168ff]).
The proofs of Theorems 2.1 and 2.2 follow from this lemma.
Proof of Reeb’s theorems. First, each orbit of H0 in the level set H−1

0 (0) intersects σ once,
so σ can be considered a coordinate patch on the base space B, and y provides symplectic
coordinates for σ. Thus, B has an atlas of symplectic charts, and therefore B is a symplectic
manifold. This proves Theorem 2.1.

Up to terms of order ε the equations are

İ = O(ε2), θ̇ = 2π/T (I) + O(ε2), ẏ = εJ∇yH̄(I, y) + O(ε2).
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The return time for θ to increase from 0 to 2π is T +O(ε2), and the section map in an energy
level (I = 0) is P : σ → σ : y �→ P (y), where P (y) = y + εTJ∇yH̄(0, y) + O(ε2). A fixed
point of P gives rise to a periodic solution, and so we must solve P (y) = y or, equivalently,
TJ∇yH̄(0, y) + O(ε) = 0. By hypothesis y = 0 is a nondegenerate critical point of H̄ when
I = 0 or ∇yH̄(0, 0) = 0 and ∂2H̄/∂y2(0, 0) is nonsingular. Thus by the implicit function
theorem there is a function ȳ(ε) = O(ε) such that P (ȳ(ε)) = ȳ(ε). This fixed point of P is
the initial condition for the periodic solution asserted in Theorem 2.2.

2.2. Corollaries. Only the last sentence in Theorem 2.2 gives a truly global result. Those
conversant with Morse theory [13] will see that there is a sharper global result.

Corollary 2.1. Let H̄ be a Morse function, let βj be the jth Betti number of B, and let Cj

be the number of critical points of index j. Then Cj ≥ βj or, better yet,

(3)

C0 ≥ β0,
C1 − C0 ≥ β1 − β0,

C2 − C1 + C0 ≥ β2 − β1 + β0,
· · ·

Ck − Ck−1 + Ck+2 − · · · ± C0 ≥ βk − βk−1 + βk+2 − · · · ± β0 (k < 2n− 2),
C2n−2 − C2n−3 + C2n−4 − · · · + C0 = β2n−2 − β2n−3 + β2n−4 − · · · + β0 = χ(B).

For these better inequalities on a Morse function, see [37]. The lower estimate on the
number of periodic solutions in Theorem 2.2 is χ(B), the alternating sum of the Betti numbers
which could be 0 or negative, whereas the Morse inequalities Cj ≥ βj give a lower estimate
which is the sum of the Betti numbers. Moreover, the estimates give some information on
the number of critical points of various indices. For example, Milnor [37] remarks that if
Cj+1 = Cj−1 = 0, then Cj = βj .

The nontrivial characteristic multipliers of the periodic solution given in Theorem 2.2 are
the eigenvalues of

P =
∂P

∂y
(ȳ(ε)) = E + εTJ

∂2H̄
∂y2

(0, 0) + O(ε2),

where E is the identity matrix. The eigenvalues of the Hamiltonian matrix

(4) A = J
∂2H̄
∂y2

(0, 0)

are the characteristic exponents of the critical point of Ȳ at p̄ on B. Thus, the lemma also
yields the following corollary.

Corollary 2.2. Let p be as in Theorem 2.2 and let the characteristic exponents of Ȳ (p̄) be
λ1, λ2, . . . , λ2n−2. Then the characteristic multipliers of the periodic solution through p(ε) are

1, 1, 1 + ελ1T + O(ε2), 1 + ελ2T + O(ε2), . . . , 1 + ελ2n−2T + O(ε2).

This result was used in [33]. We shall say that a periodic solution is elliptic or linearly
stable if the monodromy matrix is diagonalizable and all its eigenvalues have unit modulus.

One must be careful in applying this corollary, because it gives only an approximation
of the characteristic multipliers. Consider the case 2H̄ = (u2

1 + v2
1) − (u2

2 + v2
2), where y =
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(u1, u2, v1, v2), so the eigenvalues are i, i,−i,−i. When T = 1, Corollary 2.2 says that the
multipliers are 1, 1, 1+εi+O(ε2), 1+εi+O(ε2), 1−εi+O(ε2), and 1−εi+O(ε2), which looks
like an elliptic periodic solution. But higher-order terms can change the stability. Consider
now a perturbation of this example, namely, 2H̄ = (u2

1 + v2
1) − (u2

2 + v2
2) + 2εv1v2. Now

the estimates of the multipliers would be 1, 1, 1 + εi + 1
2ε

2 + O(ε3), 1 + εi − 1
2ε

2 + O(ε3),
1− εi+ 1

2ε
2 +O(ε3), and 1− εi− 1

2ε
2 +O(ε3), which gives an unstable periodic solution. The

solution of this problem lies in the Krein–Gel’fand concept of parametric stability [47], which
we briefly summarize below.

For the moment consider the linear constant coefficient Hamiltonian system

(5) ẏ = Cy = J∇H(y), H =
1

2
yTSy,

where S is a symmetric matrix and C = JS is a Hamiltonian matrix. System (5) (or the
Hamiltonian matrix C) is stable if all its solutions are bounded for all t, and it is said to be
parametrically stable or strongly stable if it and all sufficiently small linear constant coefficient
Hamiltonian perturbations of it are stable. If system (5) is parametrically stable, then it
is stable, and it is stable if and only if C is diagonalizable and has only purely imaginary
eigenvalues.

Let ±α1i,±α2i, . . . ,±αsi be the eigenvalues of the stable matrix C, and Vj , j = 1, . . . , s,
be the maximal real linear subspace where C has eigenvalues ±αji. So Vj is a C-invariant
symplectic subspace, C restricted to Vj has eigenvalues ±αji, and R

2n = V1 ⊕ V2 ⊕ · · · ⊕ Vs.
Let Hj be the restriction of H to Vj .

Theorem 2.3 (see [47]). System (5) is parametrically stable if and only if
• all the eigenvalues of C are purely imaginary,
• C is nonsingular,
• C is diagonalizable over the complex numbers, and
• the Hamiltonian Hj is positive or negative definite for each j.

Thus, 2H = (u2
1 +v2

1)+(u2
2 +v2

2) is parametrically stable, as the corresponding eigenvalues
are ±i (double); hence H1 = H is positive definite. The Hamiltonian 2H = (u2

1+v2
1)−4(u2

2+v2
2)

has eigenvalues ±i and ±2i, so 2H1 = u2
1 + v2

1 is positive definite and 2H2 = −4(u2
2 + v2

2) is
negative definite; therefore, H is parametrically stable. However, 2H = (u2

1 + v2
1) − (u2

2 + v2
2)

has eigenvalues ±i (double), and, as H1 = H is not positive or negative definite, it cannot be
parametrically stable.

Now consider the linear T -periodic Hamiltonian system

(6) ẏ = D(t)y = J∇H(y), H =
1

2
yTR(t)y,

where R(t) = R(t+T ) is symmetric and D(t) = JR(t) is Hamiltonian. The periodic system (6)
is stable if all its solutions are bounded for all t, and it is said to be parametrically stable or
strongly stable if it and all sufficiently small linear T -periodic Hamiltonian perturbations of
it are stable. The monodromy matrix is M = Z(T ), where Z(t) is a fundamental matrix
solution of (6). If the system is parametrically stable, then it is stable, and (6) is stable if and
only if its monodromy matrix is diagonalizable and has only eigenvalues (multipliers) of unit
modulus.
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Let β±1
1 , β±1

2 , . . . , β±1
s be the eigenvalues of M and Vj , j = 1, . . . , s, be the maximal

real linear subspace where M has eigenvalues β±1
j . So Vj is an M -invariant symplectic

subspace, M restricted to Vj (denoted by Mj) is symplectic and has eigenvalues β±1
j , and

R
2n = V1 ⊕ V2 ⊕ · · · ⊕ Vs.

For periodic systems we need to define the analogue of the quadratic form Hj . There are
at least three ways to do this: (1) define a bilinear form on the eigenvectors corresponding
to β±1

j [47], (2) use Floquet theory and take logs of M , or (3) use a Cayley transformation.
All three ways yield the same result, and we choose the latter because of its simplicity. The
particular Möbius transformation

Ψ : z �→ w = (z − 1)(z + 1)−1, Ψ−1 : w �→ z = (1 + w)(1 − w)−1

is known as the Cayley transformation. One checks that Ψ(1) = 0, Ψ(i) = i, and Ψ(−1) = ∞,
and so Ψ takes the unit circle in the z-plane to the imaginary axis in the w-plane, the interior
of the unit circle in the z-plane to the left half w-plane, etc. Ψ can be applied to any matrix
B which does not have −1 as an eigenvalue, and if λ is an eigenvalue of B, then Ψ(λ) is an
eigenvalue of Ψ(B).

Lemma 2.2. If M is a symplectic matrix which does not have eigenvalue −1, then C =
Ψ(M) is a Hamiltonian matrix. Moreover, if M has only eigenvalues of unit modulus and is
diagonalizable, then C = Ψ(M) has only purely imaginary eigenvalues and is diagonalizable.

Proof. Simply check.
Mj is the restriction of M to Vj and is a symplectic matrix, so Cj = Ψ(Mj) is a Hamiltonian

matrix and Sj = JCj is a symmetric matrix.
Theorem 2.4 (see [47]). System (6) is parametrically stable if and only if
• all the eigenvalues of M have unit modulus,
• M does not have eigenvalue +1 or −1,
• M is diagonalizable over the complex numbers, and
• the symmetric matrix Sj is positive or negative definite for each j.

Corollary 2.3. If one or more of the λj of Corollary 2.2 is real or has nonzero real part,
then the periodic solution through p(ε) is unstable.

If the matrix A in (4) is the coefficient matrix of a parametrically stable system, then the
periodic solution through p(ε) is elliptic. In particular, if p̄ is a nondegenerate maximum or
minimum of H̄, then the periodic solution through p(ε) is elliptic. If H̄ is a Morse function,
then there are at least two elliptic periodic solutions, since H̄ must have a nondegenerate
maximum and minimum.

The authors believe this application of Krein–Gel’fand theory to be new.
Proof. The first sentence is obvious. Recall that the nontrivial multipliers are the eigen-

values of the symplectic matrix P = E + εTA + O(ε2). Applying Cayley’s transformation to
P yields the Hamiltonian matrix

A = Ψ(P) = Ψ(E + εTA + O(ε2)) =
1

2
εTA + O(ε2) =

1

2
εT (A + O(ε)).

If A is the matrix of a parametrically stable system, the matrix A+O(ε) is stable for all small
ε, and hence so is A. Thus all eigenvalues of P = Ψ−1(A) have unit modulus.
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2.3. KAM tori. One can also detect invariant tori using KAM theory.

Theorem 2.5. Let p be as in Theorem 2.2 and suppose there are symplectic action-angle
variables (I1, . . . , In−1, θ1, . . . θn−1) at p̄ in B such that

(7) H̄ =

n−1∑
k=1

ωkIk +
1

2

n−1∑
k=1

n−1∑
j=1

CkjIkIj + H#,

where the ωk are nonzero, Ckj = Cjk, and H#(I1, . . . , In−1, θ1, . . . θn−1) is at least cubic in
I1, . . . , In−1.

Assume that detCkj �= 0. That is, assume the system has been put into Birkhoff normal
form and the “twist” condition is satisfied. Furthermore, assume dT/dh �= 0; i.e., assume the
period varies with H0 in a nontrivial way.

Then near the periodic solutions given in Theorem 2.2 there are invariant KAM tori of
dimension n. In particular, when n = 2, the periodic solution of Theorem 2.2 is orbitally
stable.

Proof. In the tubular neighborhood constructed in Lemma 2.1, a full set of symplectic
coordinates is (I, I1, . . . , In−1, θ, θ1, . . . θn−1) and the Hamiltonian is

H = H0(I) + ε

⎧⎨
⎩

n−1∑
k=1

ωkIk +
1

2

n−1∑
k=1

n−1∑
j=1

CkjIkIj

⎫⎬
⎭ + · · · ,

and the theorem follows by Theorem 14 on page 185 of [5].

This is just one of many KAM theorems. We place it here because of its simplicity. We
will return to KAM-type results in subsequent papers.

2.4. Symmetric periodic solutions. In some cases the problem admits a discrete sym-
metry. Let R : M → M be an antisymplectic involution; i.e., R∗Ω = −Ω and R2 is the
identity map of M . Then F = {p ∈ M : R(p) = p} is a Lagrangian submanifold of M . The
system defined by H0 (or Hε) is reversible or admits R as a symmetry if H0 ◦ R = H0 (or
Hε ◦R = Hε).

Now R maps an orbit of Y0 into itself and so is well defined on B. Let R̄ be R on B, so
R̄ : B → B, R̄∗ω = −ω, R̄2 is the identity map on B, and H̄ ◦ R̄ = H̄. Let F̄ = {p ∈ B :
R̄(p) = p}.

A classical result [8] is the following lemma.

Lemma 2.3. If a solution of Y0 (or Yε) starts on F at time t = 0 and returns to F after
time t = T , then the solution is 2T -periodic, and its orbit is mapped onto itself by R.

Similarly, if a solution of Ȳ starts on F̄ at time t = 0 and returns to F̄ after time t = T ,
then the solution is 2T -periodic and its orbit is mapped onto itself by R̄.

These statements follow from the general identities

(8) φt
ε ◦R = R ◦ φ−t

ε , φ̄t ◦ R̄ = R̄ ◦ φ̄−t.

Such periodic solutions are called symmetric periodic solutions. Let φ̄t(p̄) be a symmetric
2τ -periodic solution of Ȳ and q̄ = φ̄τ (p̄); then there are symplectic coordinate systems (ξ, ζ)
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and (X,Z) for B̄ at p̄ and q̄ with (ξ(p̄), ζ(p̄)) = (0, 0) and (X(q̄), Z(q̄)) = (0, 0) such that

R̄(ξ, ζ) = (ξ,−ζ) and R̄(X,Z) = (X,−Z)

(see [34]). Locally F̄ is given by ζ = 0 near p̄ and by Z = 0 near q̄. Let φ̄t(ξ, ζ) =
(X(t, ξ, ζ), Z(t, ξ, ζ)). In these coordinates the solution is a symmetric periodic solution if
Z(τ, 0, 0) = 0. Such a periodic solution is called a nondegenerate symmetric periodic solution
if

det
∂Z

∂ξ
(τ, 0, 0) �= 0.

In general, a nondegenerate symmetric periodic solution persists under small symmetric
perturbations. However, in our case the problem is somewhat degenerate, requiring the use of
the method and implicit function theorem of Arenstorf [2, 3, 4]. But first we present another
lemma. For simplicity let n = 2.

Lemma 2.4. Let H0 admit R as a symmetry, and let p and (I, θ, y) be as in Lemma 2.1.
If p ∈ F , then R(I, θ, y) = (I,−θ, R̄(y)) and R(I, π + θ, y) = (I, π − θ, R̄(y)).

Let n = 2 and φ̄t(p̄) be a nondegenerate symmetric 2τ -periodic solution of Ȳ . There
exists a set of symplectic action-angle variables (I1, θ1) for B̄, valid in a neighborhood of
{φ̄t(p̄) : 0 ≤ t ≤ τ}, such that H̄ is independent of θ1. Thus H̄ = H̄(I, I1), and in these
coordinates R̄(I1, θ1) = (I1,−θ1) and R̄(I1, π + θ1) = (I1, π − θ1), so F̄ = {(I1, θ1) : θ1 ≡ 0
mod π}.

If the periodic solution corresponds to I = I1 = 0, then the solution is nondegenerate if

∂2H̄
∂I2

1

(0, 0) �= 0.

Since the reduced space B depends on H or I, we have coordinates such that

(9) Hε = H0(I) + εH̄(I, I1) + O(ε2).

Proof. By Lemma 2.3 we have φt
0(p) = Rφ−t

0 (p) since R(p) = p. By construction, θ is t
measured from p, so R : θ �→ −θ. Also, R(I, π+θ, y) = (I,−π−θ+2π, R̄(y)) = (I, π−θ, R̄(y)).

The proof of the existence of the action-angle variables (I1, θ1) for B follows the proof of
Lemma 2.1 and the paragraph above.

Theorem 2.6. Let ∂H0/∂I be nonzero, let n = 2, and let p̄ ∈ B̄ with R̄(p̄) = p̄ be an initial
point for a nondegenerate τ -periodic solution of Ȳ . Let p ∈ M with R(p) = p be a point on
the orbit which projects to p̄. Let α, β be positive integers with α fixed, β large, and ε small.

Then near the initial condition p, the flow of Yε has a symmetric periodic solution where
T (ε) = ατ + O(ε) = βT + O(ε).

Arenstorf’s method of establishing the existence of symmetric periodic solutions has been
around for a long time and has been applied to several problems [3, 4, 14, 25]. The authors
believe that the above theorem is new at this level of generality.

Proof. Choose coordinates (I, I1, θ, θ1) by Lemma 2.4 so that

Hε = H0(I) + εH̄(I, I1) + O(ε2),
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and the equations of motion are

İ = O(ε2), θ̇ = −∂H0

∂I
(I) + O(ε),

İ1 = O(ε2), θ̇1 = −ε
∂H̄
∂I1

(I, I1) + O(ε2).

Since these equations are autonomous, we may take the fast angle θ as the independent
variable so that the equations become

(10)
∂I

∂θ
= 0,

∂I1
∂θ

= 0,
∂θ1

∂θ
= εG(I, I1) = ε

{
∂H0

∂I
(I)

}−1 ∂H̄
∂I1

(I, I1),

plus O(ε2) terms. For the moment, ignore the O(ε2) terms and seek a symmetric periodic
solution of the approximate equations. Let α and β be relatively prime integers, ν = G(0, 0)−1,
and set ε = να/β. Start with initial conditions I = I1 = θ1 = 0 and integrate the approximate
equations on θ from 0 to βπ to obtain the approximate solution

I = 0, I1 = 0, θ1 = απ.

This approximate solution satisfies the symmetry conditions and so to this level of approxi-
mation is a symmetric periodic solution.

Fixing α and taking β large, the parameter ε becomes small, and so we might expect that
this approximate solution could be continued into the full problem. However, the problem is
complicated by the fact that taking β large corresponds to integrating the equations over a
large variation of θ. As Arenstorf has observed, the usual implicit function theorem cannot
be applied since one cannot set ε = 0 to find an approximate solution. Thus, we must follow
Arenstorf and make careful estimates.

First, we fix the integer α and the initial condition I = 0 once and for all. Let the
superscript f denote the full solution of (10) including O(ε2) terms, the superscript a the
approximate solution, and the superscript e the error term. Integrate the full equations with
initial condition I1 = K, and integrate from θ = 0 to θ = βπ to obtain

(11) θf1 (βπ, ε,K) = θa1(βπ, ε,K) + θe1(βπ, ε,K),

where θa1(βπ, ε,K) = εβπ G(0,K).
The error term θe1 is due to the O(ε2) terms appended to (10). Bounding these O(ε2)

terms by Cε2, and taking the O(ε)-Lipschitz constant of the θ1-flow to be Lε, we apply to θe1
a standard Gronwall estimate of the form {u(0) = 0 and d|u|/dθ ≤ Lε|u| + Cε2} ⇒ |u(θ)| ≤
εC(eεLθ − 1)/L (see, e.g., Hartman [23]) to conclude that

(12) |θe1| ≤ εC(eεLβπ − 1)/L.

A similar estimate holds for the first partial derivatives of θe1.
The approximate equation has solution θa1(βπ, ε,K) = απ by taking ε = να/β and K = 0.

Also by assumption ∂θa1/∂K is nonzero. From the estimate (12) the error term can be made
arbitrarily small by taking β large with ε = να/β, since in this case the estimate (12) reads
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|θe1| ≤ Cνα(eLναπ − 1)/(Lβ). Similarly, the derivatives of θe1 can be made small by taking β
large. These estimates ensure that we remain in a compact neighborhood of the approximate
solution. Thus, the implicit function theorem of Arenstorf [2, 3, 4] applies, and there exists
β0 such that if β > β0, then there is a solution Ks(β) such that

θf1 (βπ, να/β,Ks(β)) = απ.

This gives the initial conditions for a symmetric periodic solution.

2.5. Weinstein’s theorem. For completeness we add this much deeper global result on
the existence of periodic solutions which is not a corollary of Reeb’s theorems. Let X be a
topological space; then the category of X in the sense of Lusternik–Schnirelmann, cat(X), is
the smallest number of open sets that are contractible in X and that cover X [26, 31]. One
of the main uses of this concept is in the theorem that says that every smooth function on a
compact manifold M has at least cat(M) critical points. Weinstein extended the connection
between critical points of functions and periodic solutions of Hamiltonian systems to prove
the following theorem.

Theorem 2.7. Assume B is compact and simply connected in the sense that H1(B,R) = 0,
where H1(B,R) is the one-dimensional cohomology group of B over the real numbers, and let
� = cat(B) be the Lusternik–Schnirelmann category of B. Then for small ε the flow of Yε
has at least � periodic solutions with periods near T (there is no nondegeneracy assumption)
[45, 46].

The n-sphere Sn has category 2 and all other compact manifolds have category greater
than 2. For X = Sn × Sn, we produce three contractible open sets that cover X, so
cat(Sn × Sn) = 3. (We illustrate this in Figure 2 for the case n = 1.)

It is helpful to think of X as a cellular complex. Starting with two n-cells, identify one
point in one cell with one point in the other cell to form the wedge product (or wedge sum) of
two spheres Sn ∨Sn. (The wedge product of two circles is thus a figure eight, as in Figure 2a;
for a precise definition of Sn ∨ Sn, see [24, p. 10].) Now attach a 2n-cell to Sn ∨ Sn to form
X (Figure 2b). Take the 2n-cell to be the first contractible set. For the second set, delete
one point from each of the two spheres in Sn ∨ Sn. This set is Dn ∨ Dn and can easily be
“fattened up” to an open set in Sn × Sn. These two sets cover all but the two points deleted
from Sn × Sn. For the third set, choose any contractible open set in X that covers these
two points. (Figure 2c shows sets that could be fattened up to form the second and third
contractible open sets for n = 1.)

3. The planar lunar problem.

3.1. The Hamiltonians. For us the lunar problem is the restricted three-body problem
where the infinitesimal particle is close to one of the primaries [35, 36]. Note that, in this con-
text, the terminology “lunar problem” means that the zero mass point can move about either
primary, which is more general than the way it is historically defined, where the infinitesimal
mass point moves only about the smaller primary (or secondary).

Here we summarize the normalization and reduction as given in [42] and then apply the
general theorems from section 2. Figure 3 is a sketch of the planar lunar problem in the
rotating frame—the projection on the x1 x2-plane. The primary bodies are point particles
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(a) S1 ∨ S1

(b) Attaching the 2-cell to S1 ∨ S1 to form S1 × S1

(c) The second and third contractible sets (before “fattening”)

Figure 2. The Lusternik–Schnirelmann category of S1 × S1.
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2

x

x1

Figure 3. The lunar problem.

with masses m1 and m2 and are located at the points (−μ, 0) and (1 − μ, 0), respectively.
Parameter μ = m1/(m1 +m2) (it is assumed that m1 ≥ m2). The motion of the infinitesimal
particle is confined to either one of the yellow regions around the primaries. The points
L1, . . . , L5 are the equilibria of the restricted three-body problem in the rotating frame. The
infinitesimal particle touches neither L1 nor L2.

We start with the Hamiltonian of the planar circular restricted three-body problem in
rotating coordinates given by

(13) H =
1

2
(y2

1 + y2
2) − (x1y2 − x2y1) −

μ√
(x1 − 1 + μ)2 + x2

2

− 1 − μ√
(x1 + μ)2 + x2

2

.

We now change coordinates in order to bring H into suitable form. First we perform the
linear change from y2 and x1 to y2 − μ and x1 − μ, respectively, to bring one primary to the
origin. Then, we introduce a small parameter ε by replacing y = (y1, y2) by ε−1(1 − μ)1/3y
and x = (x1, x2) by ε2(1 − μ)1/3x. By doing so we restrict H to a particular case where the
infinitesimal particle is moving around one of the primaries. This change is symplectic with
multiplier ε−1(1 − μ)−2/3; thus H must be replaced by ε−1(1 − μ)−2/3H.

In the next step, we scale time by dividing t by ε3 and multiplying H by ε3. Then we
expand the resulting Hamiltonian in powers of ε to get

(14) Hε =
1

2
(y2

1 + y2
2) −

1√
x2

1 + x2
2

− ε3(x1y2 − x2y1) +
1

2
ε6μ(−2x2

1 + x2
2) + · · · .

The zeroth-order term is the Hamiltonian of the Kepler problem and the O(ε3) term is due to
the rotating coordinates. It is not until O(ε6) that the second primary influences the motion.
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Moser has shown [39] that the n-dimensional Kepler problem can be regularized and the
regularized flow is equivalent to the geodesic flow on Sn. Let us be more specific for our case.
Let K = H0 be the Hamiltonian of the planar Kepler problem defined on (R2 \ {0}) × R

2,
K0 = {(x, y) ∈ (R2 \ {0})×R

2 : K(x, y) = −1
2}. Let S2 be the unit sphere, Ŝ2 the unit sphere

punctured at the north pole, TS2 (T Ŝ2) the tangent bundle of the (punctured) 2-sphere, and
T0S

2 = {v ∈ TS2 : ‖v‖ = 1} (T0Ŝ
2 = {v ∈ T Ŝ2 : ‖v‖ = 1}) the unit (punctured) sphere

bundle.
The elliptic domain E is the set of points in K0 which gives rise to elliptic orbits. All the

solutions of the Kepler problem in E are periodic with the same period. Thus E is a circle
bundle but is not compact. The base is two punctured disks, as we show below.

Moser constructs a symplectic diffeomorphism from (R2 \{0})×R
2 onto T Ŝ2 which, when

restricted to K0, maps onto T0Ŝ
2. After changing the time variable for the Kepler problem,

the diffeomorphism takes Kepler flow on K0 to the geodesic flow on T0Ŝ
2. The geodesic flow

on T0Ŝ
2 obviously extends to all of T0S

2 and is considered the regularized Kepler problem.
All the geodesics on T0S

2 are periodic, so T0S
2 is a circle bundle with base S2. Moser shows

that a small perturbation of the Kepler problem can be carried over as a small perturbation of
the geodesic problem. He then shows that the average of the perturbation over the geodesic
flow defines a smooth flow on the base. We next proceed to construct this flow on the base.

Now express (14) in mixed polar and Delaunay coordinates (see, for instance, [9, 18]) so
that the Hamiltonian becomes

Hε = − 1

2L2
− ε3G− 1

4
ε6μr2

(
1 + 3 cos(2ϑ)

)
+ · · · .

Here, (�, g, L,G) are the usual Delaunay variables, � the mean anomaly, g the argument of the
pericenter, and L the square of the semimajor axis. G is the third component of the angular
momentum vector G = (0, 0, G); thus 0 ≤ |G| ≤ L and G can be positive, negative, or zero.
This is a coordinate system on E . Finally, (r, ϑ) are the usual polar coordinates.

We eliminate the mean anomaly � to a certain order by means of a special Lie transfor-
mation well suited for perturbed Kepler problems, the so-called normalization of Delaunay
[18, 19]. We arrive at

(15) Hε = − 1

2L2
− ε3G +

1

8
ε6 μL2

(
3G2 − 5L2 + 15 (G2 − L2) cos(2g)

)
+ · · · .

Here only finitely many terms have been put into normal form. This normalization is effectively
the average of the perturbations over the periodic orbits of the Kepler problem in E .

The base space (or reduced space or orbit space) for the regularized Kepler problem is a
2-sphere S2 [39]. Figure 4 may be helpful in visualizing this base space. The flow is given
by the circles around the poles on the sphere. A coordinate system for the reduced space is
a = G + LA, where A is the Laplace–Runge–Lenz vector. One has A = e (cos g, sin g, 0) and
then a1 = e cos g, a2 = e sin g, and a3 = G on E , where e =

√
1 −G2/L2 is the eccentricity.

One can check that |a| = L and the vector a uniquely determines an orbit of the Kepler
problem on the energy level h = −1/(2L2). Each point on the sphere a2

1 + a2
2 + a2

3 = L2

corresponds to a bounded orbit of the Kepler problem. Points (0, 0,±L) correspond to the
circular orbits, the circle a3 = 0 (the equator, or the green circle in Figure 4) corresponds
to collision orbits, and the other points on the sphere correspond to elliptic orbits. The



PERIODIC SOLUTIONS AND AVERAGING 327

a
2

a
3

1a

Figure 4. The base space for the regularized Kepler problem.

complement of (0, 0,±L) ∪ {a3 = 0} is the reduced space of the elliptic domain E .
Now compute from (15) the Hamiltonian on the reduced space of E . Use cos(2g) =

(a2
1 − a2

2)/(L
2 −G2), so

Hε = − 1

2L2
− ε3a3 +

1

8
ε6μL2

(
3a2

3 − 5L2 − 15(a2
1 − a2

2)
)

+ · · · .

We first drop the higher-order nonnormalized terms and then use a2
3 = L2 −a2

1 −a2
2, dropping

additive constants and dividing by ε3 to get the Hamiltonian

(16) H̄ = −a3 −
3

4
ε3μL2 (3a2

1 − 2a2
2) + · · · .

We note that this Hamiltonian is well defined and smooth on the exceptional set (0, 0,±L) ∪
{a3 = 0}. Since Moser proved that the averaged (normalized) Hamiltonian of the perturbation
is defined and smooth on all of S2, (16) is the Hamiltonian on the full reduced space S2.

To obtain the equations of motion, note that {a1, a2} = a3, {a2, a3} = a1, {a3, a1} = a2,
and ȧj =

∑
l {aj , al}∂H̄/∂al. So the equations of motion become

ȧ1 = a2 + 3ε3 μL2 a2 a3 + · · · ,
ȧ2 = −a1 + 9

2 ε
3 μL2a3 a1 + · · · ,

ȧ3 = −15
2 ε3 μL2 a1 a2 + · · · .

(17)

3.2. Analysis of equilibria. We now apply the results of section 2 to the Hamiltonians for
the planar lunar problem. Just from the facts that B = S2 = {a2

1+a2
2+a2

3 = L2}, H1(S2) = 0,
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and the Lusternik–Schnirelmann category of S2 is 2, by Weinstein’s theorem, Theorem 2.7,
we conclude that there are at least two periodic solutions of the corresponding flow defined by
Yε with period near T = 2πL3. This applies to any (small) perturbation of the planar Kepler
problem.

Looking at the Hamiltonian on B yields more information about these periodic solutions.
The Hamiltonian (16) has two nondegenerate critical points, a maximum at a = (0, 0,−L)
and a minimum at a = (0, 0, L), which by Reeb’s theorem, Theorem 2.2, and Corollaries 2.2
and 2.3 correspond to elliptic periodic solutions of the planar restricted three-body problem of
period T (ε) = T + O(ε3). (Note that (0, 0,−L) and (0, 0, L) are parametrically stable points
according to Corollary 2.3, as they are respectively a minimum and a maximum.) These are
the classical Hill’s orbits of the restricted problem, which are the continuation of the circular
solutions of the Kepler problem (see [12, 36] and the references therein). The maximum
gives the prograde orbit, which is located at the north pole of the sphere in Figure 4 (it
is represented by a red point), and the minimum provides the retrograde orbit (the south
pole in Figure 4). The index of (0, 0,−L) is 2, whereas the index of (0, 0, L) is 0. Hence
C0 = C2 = 1 and Cj = 0 for j /∈ {0, 2}. The Betti numbers of S2 are β0 = β2 = 1, and the
others are zero. Moreover, the Euler–Poincaré characteristic of S2 is 2, which is consistent
with the Betti and Cj numbers. Thus, for all j, Cj = βj , and the Morse inequalities (given in
Corollary 2.1) become equalities. Note that in this case the Lusternik–Schnirelmann category
and the Euler–Poincaré characteristic of S2 yield the same estimate, which coincides with the
number of critical points of the Hamiltonian H̄.

Since H̄ = −a3 + · · · the linearized equations about (0, 0,±L) are

ȧ1 = a2, ȧ2 = −a1,

and so the characteristic exponents at these critical points are ±i (see Figure 4).
Thus, these near-circular periodic solutions are elliptic with characteristic multipliers 1,

1, 1 + ε3Ti + O(ε6), and 1 − ε3Ti + O(ε6).
As a last step, we have to undo the initial scalings and the shift to return to the Hamilto-

nian H. Taking into account that the periodic solutions are near-circular, they have approxi-
mate radii |x| ≈ L2 and periods near 2πL3. Hence, because of the scalings, we conclude that
the periodic solutions of H have radii |x| ≈ ε2L2 and periods T (ε) ≈ 2πε3L3.

3.3. A twist condition. To see if Theorem 2.5 applies at (0, 0,±L) we need several changes
of variables. We start by moving the equilibria (0, 0,±L) to the origin of a coordinate system.
Therefore, we define

ā1 = a1, ā2 = a2, ā3 = a3 ∓ L,

and then we introduce (local) symplectic coordinates Q and P as

Q =
√

2
L ā1√

2L± ā3
=

√
2
√
L∓G cos g,

P = ±
√

2
L ā2√

2L± ā3
= ±

√
2
√
L∓G sin g.

By recalling that (�, g, L,G) are symplectic variables, it is almost straightforward to check
that {Q,P} = 1; thus Q has the role of a coordinate, whereas P corresponds to its conjugate
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momentum. These coordinates are valid in the hemispheres ±a3 > 0 (i.e., ±G < L).

Now, to write H̄ in these coordinates, first note that

1

2
(Q2 + P 2) = L∓G = L∓ a3,

and also

a2
1 =

Q2

2L2
(L± a3), a2

2 =
P 2

2L2
(L± a3).

Making this change of variables and dropping additive constants gives

H̄ = ±1

2
(Q2 + P 2) − 3

16
ε3μ(2P 2 − 3Q2)(P 2 + Q2 − 4L) + · · · .

Change to action-angle variables by

Q =
√

2I1 cos θ1, P =
√

2I1 sin θ1

(note that dQ ∧ dP = dI1 ∧ dθ1) to get

H̄ = ±I1 −
3

4
ε3μ I1 (2L− I1) (−2 + 5 cos2 θ1) + · · · ,

and then average over θ1 to get

H̄ = ±I1 −
3

8
ε3μ I1 (2L− I1) + · · · .

Note that the second derivative of H̄ with respect to I1 is

(18)
∂2H̄
∂I2

1

=
3

4
ε3 μ,

and it does not vanish. Thus there is a twist term, but the hypothesis of Theorem 2.5 does
not hold, as there is an additional ε3 in front of the twist term.

This suggests, but does not prove, that these near-circular periodic solutions are stable and
enclosed by invariant KAM tori.

We push the normalization up to order ε8 in order to prove that the periodic solutions
associated with the equilibria (0, 0,±L) are not circular but have a small eccentricity. The
terms factorized by ε8 are

(19) 5
32ε

8 μ (1 − μ)1/3 eL4 cos g
(
13G2 − 7L2 − 35 (G2 − L2) cos(2 g)

)
.

Now, after incorporating these terms into the Hamiltonian Hε given by (15), the equilibria
(0, 0,±L) are transformed to

(
∓15

16
ε5 μ (1 − μ)1/3 L6, 0, ±

√
256L2 − 225ε10μ2(1 − μ)2/3L12

16

)
.



330 P. YANGUAS, J. PALACIÁN, K. MEYER, AND H. S. DUMAS

Now the above equilibria do not correspond to circular solutions because their eccentricity
is given by e = 15

16ε
5 μ (1−μ)1/3 L5 + · · · . The magnitude of their angular momentum vector is

G = ±L∓ 225
512ε

10 μ2 (1−μ)2/3 L11+· · · . This implies that the periodic solutions associated with
(0, 0,±L) are indeed elliptic periodic solutions whose projections onto configuration space yield
elliptic orbits with eccentricity close to zero. The inclination is zero for the periodic solution
related to (0, 0, L), while it is π for the periodic solution related to (0, 0,−L). This proves
that up to terms of order ε8 the periodic solutions are near-circular periodic solutions.

Thus, these equilibria correspond to near-circular elliptic periodic orbits.

3.4. Continuation of elliptic orbits. The planar restricted three-body problem is sym-
metric in the line of syzygy; i.e., R : (x1, x2, y1, y2) → (x1,−x2,−y1, y2) is an antisym-
plectic involution that leaves the Hamiltonian (13) invariant. The Lagrangian subspace
F = {(x1, 0, 0, y2)} corresponds to orthogonal crossings of the line of syzygy. In Delaunay
variables R : (�, g, L,G) → (−�,−g, L,G) and F = {(0, 0, L,G)}.

On the reduced space R̄ : (a1, a2, a3) → (a1,−a2, a3) or R̄ : (Q,P ) → (Q,−P ). The La-
grangian subspace F̄ is the meridian circle {(a1, 0, a3)} or {(Q, 0)}. A point on F̄ corresponds
to a symmetric elliptic orbit of the Kepler problem and the periodic solution on H̄ = constant
corresponds to a family of precessing Keplerian ellipses which start and end at a symmetric
ellipse.

By Theorem 2.6 the existence of symmetric periodic solutions which are the continuation of
this family of precessing Keplerian ellipses is ensured because, according to (18), the condition
∂2H̄
∂I2

1
�= 0 holds. These are the periodic solutions obtained by Arenstorf in [3].

4. The spatial lunar problem.

4.1. The Hamiltonians. The Hamiltonian of the spatial problem is given in the rotating
frame by

H =
1

2
(y2

1 + y2
2 + y2

3) − (x1y2 − x2y1) −
μ√

(x1 − 1 + μ)2 + x2
2 + x2

3

− 1 − μ√
(x1 + μ)2 + x2

2 + x2
3

.

We change variables, scale time, and scale the Hamiltonian in the same way as in the planar
case in order to arrive to the lunar case of the spatial restricted circular three-body problem
(see [25]). After expanding in powers of the small parameter, we end up with the system

Hε =
1

2
(y2

1 + y2
2 + y2

3) −
1√

x2
1 + x2

2 + x2
3

− ε3 (x1y2 − x2y1) +
1

2
ε6 μ (−2x2

1 + x2
2 + x2

3) + · · · .

Now we have a perturbation of the spatial Kepler problem. Moser has shown that the three-
dimensional Kepler problem can be regularized and the regularized flow is equivalent to the
geodesic flow on S3. We proceed just as in the planar problem to find and analyze the averaged
equations on the reduced space.

The following step consists in expressing Hε in such a way that we can perform Lie
transformations conveniently (see [17]). We use polar-nodal coordinates (r, ϑ, ν,R,G,N) and
Delaunay coordinates (�, g, ν, L,G,N). The angle ϑ is the argument of the latitude, and ν
is the argument of the node. The coordinate R is the momentum conjugate to the radial
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variable r, G = |G| is the magnitude of angular momentum, and N is the third component
of the angular momentum G, so 0 ≤ |N | ≤ G ≤ L. Expressing Hε in these variables, we get

Hε = − 1

2L2
− ε3 N +

1

8
ε6 μ r2

(
1 − 3 c2 − 3 (1 − c2) cos(2ϑ)

− 3
(
1 − c2 + (1 + c2) cos(2ϑ)

)
cos(2 ν) + 6 c sin(2 ν) sin(2ϑ)

)
+ · · · ,

where c = N/G. After performing the normalization of Delaunay to a fixed finite order, we
arrive at the Hamiltonian

Hε = − 1

2L2
− ε3N +

1

16
ε6 μL4

(
(2 + 3 e2)

(
1 − 3 c2 − 3 (1 − c2) cos(2 ν)

)
− 15 e2 cos(2 g)

(
1 − c2 + (1 + c2) cos(2 ν)

)
+ 30 c e2 sin (2 g) sin(2 ν)

)
+ · · · ,

(20)

where e =
√

1 −G2/L2. This normal form Hamiltonian was calculated previously in [42]. The
transformed Hamiltonian, after truncating higher-order terms, depends on the two angles g
and ν and their associated momenta G and N , respectively, whereas L is an integral of motion.
Applying reduction theory, once higher-order terms have been dropped, Hε is defined on the
orbit space, or base space, which is the four-dimensional space S2 × S2 [39].

We can use the set of variables given by a = (a1, a2, a3) and b = (b1, b2, b3) with the
constraints a2

1+a2
2+a2

3 = L2 and b21+b22+b23 = L2 to parameterize S2×S2, where a = G+LA
and b = G − LA. We recall that G is the angular momentum vector and A is the Laplace–
Runge–Lenz vector; moreover, |a| = |b| = L. Notice that the ai and bi belong to the interval
[−L,L]. The explicit expressions for a and b in terms of Delaunay variables are found in
Coffey, Deprit, and Miller [11] and in Cushman [15].

In particular, 2G = ((a1 + b1)
2 + (a2 + b2)

2 + (a3 + b3)
2)1/2, so G = 0 in S2 × S2 if and

only if a1 + b1 = a2 + b2 = a3 + b3 ≡ 0, a2
1 + a2

2 + a2
3 = L2, and b21 + b22 + b23 = L2. Thus,

the subset of S2 × S2 given by R = {(a,−a) ∈ R
6 | a2

1 + a2
2 + a2

3 = L2} is a two-dimensional
set homeomorphic to S2 consisting of the rectilinear trajectories. In Delaunay elements the
circular orbits satisfy the condition G = L, and in terms of a and b this implies that a1 = b1,
a2 = b2, and a3 = b3. So the circular orbits define the two-dimensional set homeomorphic to
S2 given by C = {(a,a) ∈ R

6 | a2
1 + a2

2 + a2
3 = L2}. Similarly, equatorial trajectories satisfy

G = |N | and are given by the two-dimensional set E = {(a,b) ∈ R
6 | a2

1 + a2
2 + a2

3 = L2,
b1 = −a1, b2 = −a2, b3 = a3}, which is again homeomorphic to S2. Just as in the planar
case, the introduction of these invariants extends the use of the Delaunay variables, as we
can include equatorial, circular, and rectilinear solutions [41]. The other points on S2 × S2

correspond to elliptic orbits of the Kepler problem.

After several simplifications and manipulations over Hε, including the dropping of the
constant term −1/(2L2) and division by ε3, we arrive at

H̄ = −1

2
(a3 + b3) −

1

8
ε3 μL2

(
3 a2

1 − 3 a2
2 − 3 a2

3 − 12 a1 b1 + 3 b21

+ 6 a2 b2 − 3 b22 + 6 a3 b3 − 3 b23
)

+ · · · .
(21)
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The Poisson structure on S2 × S2 in these coordinates is

{a1, a2} = 2 a3, {a2, a3} = 2 a1, {a3, a1} = 2 a2,

{b1, b2} = 2 b3, {b2, b3} = 2 b1, {b3, b1} = 2 b2, {ai, bj} = 0.

The corresponding equations of motion are

ȧ1 = a2 − 3
2 ε

3 μL2 (a3 b2 − a2 b3) + · · · ,
ȧ2 = −a1 + 3

2 ε
3 μL2 (2a1 a3 − 2 a3 b1 − a1 b3) + · · · ,

ȧ3 = −3
2 ε

3 μL2 (2 a1 a2 − 2 a2 b1 − a1 b2) + · · · ,
ḃ1 = b2 + 3

2 ε
3 μL2 (a3 b2 − a2 b3) + · · · ,

ḃ2 = −b1 − 3
2 ε

3 μL2 (a3 b1 + 2 a1 b3 − 2 b1 b3) + · · · ,
ḃ3 = 3

2 ε
3 μL2 (a2 b1 + 2 a1 b2 − 2 b1 b2) + · · · .

(22)

We stress that the equations of motion are global in the whole base space B. Including terms
of order ε3 is enough to determine the relative equilibria of H̄.

4.2. Analysis of equilibria. Let us now turn to the application of the results of section 2
to the spatial lunar problem. Just from the facts that B = S2 × S2 = {a2

1 + a2
2 + a2

3 = L2,
b21 +b22 +b23 = L2}, H1(S2×S2) = 0, and the Lusternik–Schnirelmann category of S2×S2 is 3,
by Weinstein’s theorem, Theorem 2.7, we can conclude that there are at least three periodic
solutions of the corresponding flow defined by Yε with period near T = 2πL3. This holds for
any perturbation of the spatial Kepler problem.

Looking at the Hamiltonian on B yields more information about these periodic solutions.
The Hamiltonian (21) starts as H̄ = −1

2(a3 + b3) + · · · , so it has a nondegenerate maximum
at (a,b) = (0, 0,−L, 0, 0,−L) and a nondegenerate minimum at (a,b) = (0, 0, L, 0, 0, L),
which by Reeb’s theorem, Theorem 2.2, and Corollary 2.2 correspond to elliptic periodic
solutions of the spatial restricted three-body problem of period T (ε) = T + O(ε3). These
are the circular equatorial motions already encountered in the planar case. It also has two
nondegenerate critical points of index 2 at (a,b) = (0, 0,±L, 0, 0,∓L) which correspond to
rectilinear motions whose projection in the coordinate space leads to periodic orbits in the
vertical axis x3. They correspond to the rectilinear trajectories found by Belbruno [6] for
small μ.

The Betti numbers of S2 × S2 are β0 = β4 = 1, β2 = 2, and all the others are zero. As we
have seen, H̄ is a Morse function and has the minimum number of critical points consistent
with the Morse inequalities found in Corollary 2.1.

Near the critical points we can use (a1, a2, b1, b2) as coordinates on B = S2 × S2. From
the equations (22) one sees that the characteristic exponents of all four critical points of Yε
at the four equilibria are ±i (double). Thus, by Corollary 2.2, the characteristic multipliers
of the corresponding periodic solutions are 1, 1, 1 + ε3 T i, 1 + ε3 T i, 1− ε3 T i, and 1− ε3 T i
plus terms of order ε6. As we have said, the maxima and minima at (0, 0,±L, 0, 0,±L) give
rise to elliptic periodic solutions, but since the minimax critical points at (0, 0,±L, 0, 0,∓L)
have not been shown to be parametrically stable, we cannot conclude at this point that they
give rise to elliptic periodic solutions. The deeper analysis of the next subsection is needed to
decide the stability of those periodic solutions arising from the minimax critical points.
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4.3. Linear stability and the twist condition. The aim of this section is the analysis of
the linear stability of the families of periodic solutions established before, using the methods
given in section 2. We also check that the twist condition needed for the possible existence of
invariant tori is too degenerate. Finally, we also deal with the nonlinear stability of the four
critical points of S2 × S2. We start with the points related to the periodic near-rectilinear
solutions.

4.3.1. Points (0, 0,±L, 0, 0,∓L). After moving the origin to the point of interest
through

a1 = ā1, a2 = ā2, a3 = ā3 ± L, b1 = b̄1, b2 = b̄2, b3 = b̄3 ∓ L,

we introduce the local transformation

Q1 =
ā2√

±ā3 + 2L
, Q2 =

b̄2√
∓b̄3 + 2L

,

P1 = ∓ ā1√
±ā3 + 2L

, P2 = ± b̄1√
∓b̄3 + 2L

,

with inverse

ā1 = ∓P1

√
2L− P 2

1 −Q2
1, ā2 = Q1

√
2L− P 2

1 −Q2
1, ā3 = ∓(P 2

1 + Q2
1),

b̄1 = ±P2

√
2L− P 2

2 −Q2
2, b̄2 = Q2

√
2L− P 2

2 −Q2
2, b̄3 = ±(P 2

2 + Q2
2).

The variables (Q1, Q2, P1, P2) are a canonical set for which Q1, Q2 can be interpreted as
coordinates, whereas P1 and P2 represent their associated momenta, respectively.

The resulting Hamiltonian is obtained after putting H̄ in terms of Qi and Pi and dropping
constant terms. We get

H̄ = ±1
2(P 2

1 + Q2
1) ∓ 1

2(P 2
2 + Q2

2) − 3
4ε

3 μL2
(
3L (P 2

1 + P 2
2 ) + L (Q2

1 + Q2
2)

+ (2P1 P2 + Q1 Q2)
√

2L− P 2
1 −Q2

1

√
2L− P 2

2 −Q2
2

− (P 2
2 + Q2

1) (P 2
2 + Q2

2) − P 2
1 (P 2

1 + P 2
2 + Q2

1 + Q2
2)
)

+ · · · .

The Hamiltonian H̄ is valid in a neighborhood of the points (0, 0,±L, 0, 0,∓L).
Next we scale variables through the change Q̄j = ε−3/2 Qj and P̄j = ε−3/2 Pj for j ∈ {1, 2}.

To make the change canonical we must divide H̄ by ε3. Expanding this Hamiltonian in powers
of ε (and keeping the same name for it), we arrive at the Hamiltonian

H̄ = ±1
2(P̄ 2

1 + Q̄2
1) ∓ 1

2(P̄ 2
2 + Q̄2

2) − 3
4ε

3 μL3
(
3(P̄ 2

1 + P̄ 2
2 ) + 4P̄1 P̄2 + Q̄2

1 + Q̄2
2 + 2Q̄1 Q̄2

)
+ 3

8ε
6 μL2

(
2(P̄ 4

1 + P̄ 3
1 P̄2 + P̄ 2

1 P̄ 2
2 + P̄1 P̄

3
2 + P̄ 4

2 ) + 2P̄2 (P̄1 + P̄2) Q̄
2
1

+ (P̄ 2
1 + P̄ 2

2 ) Q̄1 Q̄2 + 2(P̄ 2
1 + P̄1 P̄2 + P̄ 2

2 ) Q̄2
2 + Q̄1 Q̄2 (Q̄1 + Q̄2)

2
)

+ · · · .

The eigenvalues associated with the linear differential equation given through the quadratic
part of H̄ are the expressions

(23) ±
√

1 + 20ε̄2 + 2
√

5ε̄
√

3 + 20ε̄2 i = ±ω1 i, ±
√

1 + 20ε̄2 − 2
√

5ε̄
√

3 + 20ε̄2 i = ±ω2 i,
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where ε̄ stands for 3
4ε

3 μL3 and ω1 > 1 > ω2 > 0. Note that ω1 = ω2 = 1 when ε = 0, and the
quadratic part of H̄ is in 1-1 resonance. However, we now see that when ε �= 0 the eigenvalues
are distinct.

These equilibria are parametrically stable and correspond to elliptic periodic solutions.

We keep ε small but positive so that we may perform further normalization. By doing so,
both ω1 and ω2 remain close to 1 but different from it. As the corresponding set of eigenvectors
forms a basis of R

4, the quadratic part of H̄ may be brought into normal form through a
canonical change of variables. This linear change has to be applied to H̄. The columns of
the transformation matrix are the eigenvectors related to ±ω1i and ±ω2i multiplied by scale
constants chosen to make the change symplectic. We do not give the explicit expression for
this change because it is lengthy and the procedure is standard; see, for instance, [10, 30].
Defining the new variables by (q1, q2, p1, p2) and using the same name for the Hamiltonian, its
quadratic part becomes

±ω1 i q1 p1 ∓ ω2 i q2 p2.

Next we introduce action-angle variables (I1, I2, ϕ1, ϕ2) by means of

q1 =
√
I1/ω1 (cosϕ1 − i sinϕ1), q2 =

√
I2/ω2 (cosϕ2 − i sinϕ2),

p1 =
√
ω1 I1 (sinϕ1 − i cosϕ1), p2 =

√
ω2 I2 (sinϕ2 − i cosϕ2).

It is easy to check that dq1 ∧ dp1 + dq2 ∧ dp2 = dI1 ∧ dϕ1 + dI2 ∧ dϕ2. This transformation
brings the quadratic terms of H̄ to ±ω1 I1 ∓ ω2 I2, while its quartic terms are converted into
a finite Fourier series in ϕ1 and ϕ2 whose coefficients are homogeneous quadratic polynomials
in I1 and I2. We do not give the Hamiltonian because it is enormous.

Now we average H̄ over ϕ1 and ϕ2, arriving in both cases at

H̄ = ±ω1 I1 ∓ ω2 I2 +
(7ω6

1 + 13ω4
1 + 13ω2

1 + 3)(ω2
1 − 1)2

30μL4 ω2
1 (ω2

1 + 2)2 (2ω2
1 + 1)

I2
1

+
2(ω2

1 − 1)2 (ω4
1 − 14ω2

1 − 5) (2ω2
2 + 1)

135μL4 ω1 (ω2
1 + 2)2 ω2

I1 I2

+
(7ω6

2 + 13ω4
2 + 13ω2

2 + 3)(ω2
2 − 1)2

30μL4 ω2
2 (ω2

2 + 2)2 (2ω2
2 + 1)

I2
2 + · · · .

The coefficients of I2
1 , I

2
2 and I1, I2 may be expressed in terms of ε̄, and, after expanding

them in powers of ε̄ about 0, one obtains a formula starting in ε̄2. The generating function
responsible for this averaging step is too big to be reproduced here, but it is a finite Fourier
series in the angles ϕ1 and ϕ2.

Now we can compute the determinant of the Hessian associated with H̄. Using the con-
straint which relates ω1 and ω2 through (23) given by

ω2 =

√
4 − ω2

1

2ω2
1 + 1

,

we get
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det

⎡
⎢⎢⎢⎣

∂2H̄
∂I2

1

∂2H̄
∂I1∂I2

∂2H̄
∂I2∂I1

∂2H̄
∂I2

2

⎤
⎥⎥⎥⎦ =

(ω2
1 − 1)6 (7ω8

1 − 28ω6
1 − 534ω4

1 − 604ω2
1 − 137)

225μ2 L8 ω2
1 (ω2

1 − 4) (ω2
1 + 2)4 (2ω2

1 + 1)2
+ · · · ,

which does not vanish since the (positive) real roots of the determinant occur for ω1 = 1
or ω1 = 3.37369 . . . , but as ε does not vanish, ω1 remains greater than 1. Unfortunately,
Theorem 2.5 does not apply since the twist condition is at a higher order in ε.

This suggests, but does not prove, that there are families of invariant 3-tori around these
periodic solutions.

We leave the question of the existence of invariant KAM tori about these periodic solu-
tions to a future paper. However, we can say something about the stability of the equilibria
(0, 0,±L, 0, 0,∓L) of the reduced system on the base space.

For the analysis of the stability of these equilibria we use Arnold’s theorem [44]. We fix
ε small and positive for this analysis. We need to find H̄4, i.e., the quartic terms of H̄, and
then compute

H̄4(−ω2, ω1) = det

⎡
⎢⎢⎢⎢⎢⎣

∂2H̄4

∂I2
1

∂2H̄4

∂I1∂I2
ω1

∂2H̄4

∂I2∂I1

∂2H̄4

∂I2
2

ω2

ω1 ω2 0

⎤
⎥⎥⎥⎥⎥⎦

=
(ω2

1 − 1)2 (ω12
1 − 16ω10

1 + 66ω8
1 − 268ω6

1 − 275ω4
1 − 132ω2

1 − 24)

15μL4 ω2
1 (ω2

1 − 4) (2ω4
1 + 5ω2

1 + 2)2
.

Since this term does not vanish for ω1 close to (but larger than) 1, Arnold’s theorem applies,
and so the following statement holds.

The equilibrium points (0, 0,±L, 0, 0,∓L) are stable on the reduced space S2 × S2.
Now, if higher-order terms are included in the Hamiltonian (20), we see that the equilibria

(0, 0,±L, 0, 0,∓L) are distorted a bit. Specifically, the terms factorized by ε8 are

5
64 ε

8 μ (1 − μ)1/3 e2 L6 (cos g cosh− c sin g sinh)

×
(
−18 − 31 e2 + 5 c2 (6 + e2) + 5 (1 − c2) (6 + e2) cos(2h)

+ 35 e2 cos(2 g) (1 − c2 + (1 + c2) cos(2h)) − 70 c e2 sin(2 g) sin(2h)
)
.

(24)

Thus, after incorporating terms of order ε8, the equilibria are transformed to(
±105

16 ε5 μ (1 − μ)1/3 L6, 0, ±
√

256L2−11025 ε10 μ2 (1−μ)2/3 L12

16 ,

±105
16 ε5 μ (1 − μ)1/3 L6, 0, ∓

√
256L2−11025 ε10 μ2 (1−μ)2/3 L12

16

)
.

Hence, it is not difficult to deduce that these equilibria correspond to near-rectilinear solutions
whose eccentricity is given by e = 1− 11025

512 ε10 μ2 (1−μ)2/3 L10 + · · · . The magnitude of their
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angular momentum vector is G = 105
16 ε5 μ (1 − μ)1/3 L6 + · · · , and its third component is

N = −33075
512 ε13 μ3 (1 − μ)2/3 L14 + · · · . This implies that the periodic solutions associated

with (0, 0,±L, 0, 0,∓L) are indeed elliptic periodic solutions such that their projections in
configuration space yield elliptic orbits with eccentricity close to 1 and inclination angles
given by ± cos−1(−315

32 ε8 μ2 (1 − μ)1/3 L8 + · · · ).
Thus, these equilibria correspond to elliptic periodic orbits close to rectilinear orbits.

Moreover, it can be proved that the projection of the periodic orbits onto configuration
space lies in the plane defined by x2 and x3. More precisely, in (the averaged) Cartesian
variables x1, x2, x3, y1, y2, y3, the coordinates of these periodic orbits up to terms of order ε10

are(
0,±105

8y3
ε5 μ (1−μ)1/3 L6,∓ 2

y2
3

±33075

512
ε10 μ2 (1−μ)2/3 L12, 0,−105

32
ε5 μ (1−μ)1/3 L6 y2

3, y3

)
.

We remark that y3 acts as the parameter of the periodic solution.

Next, the points related to the periodic near-circular equatorial solutions are analyzed.

4.3.2. Points (0, 0,±L, 0, 0,±L). We first move the Hamiltonian to the origin by

a1 = ā1, a2 = ā2, a3 = ā3 ± L, b1 = b̄1, b2 = b̄2, b3 = b̄3 ± L;

then we change variables by

Q1 =
ā2√

±ā3 + 2L
, Q2 =

b̄2√
±b̄3 + 2L

,

P1 = ∓ ā1√
±ā3 + 2L

, P2 = ∓ b̄1√
±b̄3 + 2L

,

with inverse

ā1 = ∓P1

√
2L− P 2

1 −Q2
1, ā2 = Q1

√
2L− P 2

1 −Q2
1, ā3 = ∓(P 2

1 + Q2
1),

b̄1 = ∓P2

√
2L− P 2

2 −Q2
2, b̄2 = Q2

√
2L− P 2

2 −Q2
2, b̄3 = ∓(P 2

2 + Q2
2).

The change of variables is canonical, with Q1 and Q2 as coordinates and P1 and P2 as their
associated momenta.

The resulting Hamiltonian is obtained after writing H̄ in terms of Qi and Pi and dropping
constant terms, so

H̄ = ±1
2(P 2

1 + Q2
1) ± 1

2(P 2
2 + Q2

2) − 3
4ε

3 μL2
(
L (P 2

1 + P 2
2 ) − L(Q2

1 + Q2
2)

− (2P1 P2 −Q1 Q2)
√

2L− P 2
1 −Q2

1

√
2L− P 2

2 −Q2
2

− (P 2
2 −Q2

1) (P 2
2 + Q2

2) − P 2
1 (P 2

1 − P 2
2 + Q2

1 −Q2
2)
)

+ · · · .

The Hamiltonian H̄ is valid in a neighborhood of (0, 0,±L, 0, 0,∓L).
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Now we scale by Q̄j = ε−3/2 Qj and P̄j = ε−3/2 Pj for j ∈ {1, 2}. The canonical structure
is preserved by dividing H̄ by ε3. After expansion of this Hamiltonian in powers of ε we obtain

H̄ = ±1
2(P̄ 2

1 + Q̄2
1) ± 1

2(P̄ 2
2 + Q̄2

2) − 3
4ε

3 μL3
(
P̄ 2

1 + P̄ 2
2 − 4P̄1 P̄2 − Q̄2

1 − Q̄2
2 + 2Q̄1 Q̄2

)
+ 3

8ε
6 μL2

(
2(P̄ 4

1 − P̄ 3
1 P̄2 − P̄ 2

1 P̄ 2
2 − P̄1 P̄

3
2 + P̄ 4

2 ) + (P̄ 2
1 + P̄ 2

2 ) Q̄1 Q̄2

+ 2(P̄ 2
1 − P̄1 P̄2 + P̄ 2

2 ) (Q̄2
1 − Q̄2

2) + Q̄1 Q̄2 (Q̄1 − Q̄2)
2
)

+ · · · .

For (0, 0, L, 0, 0, L) the eigenvalues associated with the linear differential equation given
through the quadratic part of H̄ are

(25) ±
√

1 + 2ε̄ i = ±ω1 i, ±
√

1 − 2ε̄− 24ε̄2 i = ±ω2 i

with ε̄ = 3
4ε

3 μL3 and ω1 > 1 > ω2 > 0. For the point (0, 0,−L, 0, 0,−L) the eigenvalues are

(26) ±
√

1 − 2ε̄ i = ±ω1 i, ±
√

1 + 2ε̄− 24ε̄2 i = ±ω2 i.

In this case ω2 > 1 > ω1 > 0. We remark that if ε = 0, then ω1 = ω2 = 1; thus the quadratic
part of H̄ is in 1-1 resonance. So we keep ε small but positive so that we can apply KAM
theory. As a consequence, ω1 and ω2 are close to 1 but different from it.

The eigenvectors related to ω1 and ω2 form a basis of R
4; thus the quadratic part of H̄ is

brought into normal form through a canonical change of variables. This linear change must
be applied to H̄. The columns of the matrix are the eigenvectors scaled so that the matrix
is symplectic. After defining the new variables by (q1, q2, p1, p2), the quadratic part of H̄
becomes

±ω1 i q1 p1 ± ω2 i q2 p2.

The values of the frequencies ω1 and ω2 are given in (25) if the quadratic part is ω1 i q1 p1 +
ω2 i q2 p2, whereas if the quadratic part is −ω1 i q1 p1 − ω2 i q2 p2, we take the frequencies
from (26). From now on when we refer to (0, 0, L, 0, 0, L) we assume that ω1 and ω2 are as
in (25), and when we study the point (0, 0,−L, 0, 0,−L) we take the frequencies from (26).

We have

q1 =
√
I1/ω1 (cosϕ1 − i sinϕ1), q2 =

√
I2/ω2 (cosϕ2 − i sinϕ2),

p1 =
√
ω1 I1 (sinϕ1 − i cosϕ1), p2 =

√
ω2 I2 (sinϕ2 − i cosϕ2),

and the change satisfies dq1 ∧ dp1 + dq2 ∧ dp2 = dI1 ∧ dϕ1 + dI2 ∧ dϕ2. This transforms
the quadratic terms of H̄ into ±ω1 I1 ± ω2 I2, while the quartic terms are converted into a
finite Fourier series in ϕ1 and ϕ2 whose coefficients are homogeneous quadratic polynomials
in I1 and I2.

Now we average H̄ over ϕ1 and ϕ2. For the two equilibria we obtain

H̄ = ω1 I1 + ω2 I2 −
(ω2

1 − 1)2 (ω2
1 + 3)

24μL4 ω2
1

I2
1 − (ω2

1 − 1)2 (21ω2
1 − 13)

6μL4 ω1 ω2
I1 I2

− (6ω2
1 − 5)2 (48ω4

1 + 62ω2
1 − 93)

1728μL4 ω2
2

I2
2 + · · · .
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In both cases the coefficients of I2
1 , I

2
2 and I1, I2 may be expressed in terms of ε̄, and expanding

them in powers of ε̄ around 0 yields expressions starting in ε̄2. The generating functions
computed in the averaging process in the two cases are enormous, but they are finite Fourier
series in the angles ϕ1 and ϕ2.

At this point we can compute the determinants of the Hessian associated with H̄. First
we calculate the constraint relating ω1 to ω2 through ε̄ using (25) or (26), obtaining in both
situations

ω2 =
√

(2ω2
1 − 1) (−3ω2

1 + 4).

We end up with the same expression for the points (0, 0, L, 0, 0, L) and (0, 0,−L, 0, 0,−L),
which is

det

⎡
⎢⎢⎢⎣

∂2H̄
∂I2

1

∂2H̄
∂I1∂I2

∂2H̄
∂I2∂I1

∂2H̄
∂I2

2

⎤
⎥⎥⎥⎦ =

(ω2
1 − 1)4 (24ω6

1 − 1811ω4
1 + 1918ω2

1 − 403)

144μ2 L8 ω2
1 ω

2
2

+ · · · .

The determinant vanishes when ω1 ∈ {0.536925 . . . , 0.88488 . . . , 1, 8.62479 . . .}. However, ω1

is near 1 (either above or below, but it never reaches this value as ε cannot be zero). Again
Theorem 2.5 does not apply since the twist occurs at too high an order in ε.

This suggests, but does not prove, that there are families of invariant 3-tori around these
periodic solutions.

Again, we leave the question of the existence of invariant KAM tori about these periodic
solutions to a future paper. However, we can easily say something about the stability of the
equilibria (0, 0,±L, 0, 0,±L) of the reduced system on the base space. Since the Hamiltonian
H̄ is positive or negative definite at these points, the classical theorem already known to
Dirichlet [20, 36] applies.

The equilibrium points (0, 0,±L, 0, 0,±L) are stable on the reduced space S2 × S2.
Finally, we prove that the near-circular equatorial periodic solutions are indeed equatorial

but not circular periodic solutions. We start by taking into account the terms of the averaged
Hamiltonian given through (24). Hence, the equilibria (0, 0,±L, 0, 0,±L) are refined, yielding(

∓15
16ε

5 μ (1 − μ)1/3 L6, 0, ±
√

256L2−225 ε10 μ2 (1−μ)2/3 L12

16 ,

±15
16 ε

5 μ (1 − μ)1/3 L6, 0, ±
√

256L2−225 ε10 μ2 (1−μ)2/3 L12

16

)
.

As a consequence of the above, the given equilibria no longer correspond to circular solutions,
because their eccentricity is e = 15

16ε
5 μ (1 − μ)1/3 L5 + · · · . The magnitude of their angular

momentum vector is G = L− 225
512ε

10 μ2 (1−μ)2/3 L11+· · · , and the third component of angular

momentum is N = ±L∓ 225
512ε

10 μ2 (1−μ)2/3 L11 + · · · . This means that the periodic solutions
associated with (0, 0,±L, 0, 0,±L) are indeed elliptic periodic solutions whose projections in
configuration space yield elliptic orbits with eccentricity close to zero; the inclination for the
solution related to (0, 0, L, 0, 0, L) is zero, whereas it is π for the periodic solution related
to (0, 0,−L, 0, 0,−L). This proves that up to terms of order ε8 the periodic solutions are
near-circular periodic solutions of equatorial type.
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Thus, these equilibria correspond to elliptic periodic orbits remaining in the same plane as
the two primaries.
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Abstract. We analyze discrete-time dynamical systems subjected to an additive noise and their deterministic
limit. In this work, we will introduce a notion by which a discrete-time stochastic system has
something like a Markov partition for deterministic systems. For a chosen class of noise profiles,
the Frobenius–Perron (FP) operator associated to the noisy system is exactly represented by a
stochastic transition matrix of a finite size K. This feature allows us to introduce for these stochastic
systems a basis Markov partition, defined herein, irrespectively of whether the deterministic system
possesses a Markov partition or not. We show that in the deterministic limit, corresponding to
K → ∞, the sequence of invariant measures of the noisy systems tends, in the weak sense, to the
invariant measure of the deterministic system. Thus, by introducing a small additive noise one may
approximate transition matrices and invariant measures of deterministic dynamical systems.
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1. Introduction. Markov partitions for deterministic dynamical systems serve a central
role for determining their symbolic dynamics [3, 4, 5] whose grammar is described by a finite
sized transition matrix that generates a so-called sofic shift [6, 14]. The conditions for such a
projection were defined by Bowen for Anosov hyperbolic systems [3, 4] and stated succinctly
for interval maps as a partition whose elements are each a homeomorphism onto a finite union
of its elements [3, 5]. We remark here that a defining property in both cases is that the set of
characteristic functions defined over the elements of the Markov partition project the transfer
operator exactly onto an operator of finite type; that is, a matrix results, whereas an infinite
matrix would be expected for a non-Markov system. We argue here that this should be the
defining property of any generalization of Markov partitions, that is, a set of basis functions
which project the Frobenius–Perron (FP) operator exactly onto a finite-rank matrix with no
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residual. We present results here explicitly for random dynamical systems of the interval [0, 1]
and generalizations to the L-torus [0, 1]L.

In physical literature on dynamical systems one often distinguishes a “natural” invariant
measure of a hyperbolic system, which is stable with respect to an external noise [2, 7]. In
mathematics this measure is known as the Sinai–Ruelle–Bowen (SRB) measure, and under
certain assumptions one may rigorously prove its uniqueness [10]. Although the overall idea
that adding the noise improves the convergence to the SRB measure is well known in the
physics community, this work attempts to provide a more solid mathematical framework for
this statement. In particular, for a certain class of the noise profiles, we are in position to
characterize this convergence quantitatively.

First we recall the FP operator for a deterministic transformation. Associated with a
discrete dynamical system acting on initial conditions, x ∈ M (say, a manifold M ⊂ �n),

τ : M → M,

x �→ τ(x),(1)

is another dynamical system over L1(M), the space of densities of ensembles of initial condi-
tions

Pτ : L1(M) → L1(M),

ρ(x) �→ [Pτρ](x).(2)

This FP operator (Pτ ) is defined through a continuity equation [16],

(3)

∫
τ−1(B)

ρ(x)dx =

∫
B

[Pτρ](x)dx,

where B is a measurable subset of M , while PDF ρ(x) belongs to L1(M). Equation (3) may
be formally rewritten using the Dirac delta function:

(4) [Pτρ](x) =

∫
M

δ(x− τ(y))ρ(y)dy.

This heuristic form is particularly suitable for further investigation of dynamical systems with
additive noise; see (6).

Now consider the stochastically perturbed dynamical system

τν : M → M,

x �→ τ(x) + ξ,(5)

where ξ is a random variable with PDF ν, which is applied once per each iteration. We assume
that the realizations ξn of ξ added to subsequent iterations form an identical independently
distributed (i.i.d.) sequence. The random part ξ is assumed to be independent of state x which
we tacitly assume to be relatively small, so that the deterministic part τ has primary influence.
The “stochastic FP operator” has a form similar to that of the deterministic case [16],

(6) [Pτνρ](x) =

∫
M

ν(x− τ(y))ρ(y)dy,
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where the deterministic kernel, the delta function in (2), now becomes a stochastic kernel
describing the PDF of the noise perturbation. We will denote the stochastic FP operator as PP
below. In the case that the random map (5) arises from the usual continuous Langevin process,
the infinitesimal generator of the FP operator for normal ν corresponds to a general solution
of a Fokker–Planck equation [16]. The FP operator formalism is particularly convenient in
that it allows for an arbitrary noise distribution ν to be incorporated in a direct and simple
way. Within the formalism, we can also study multiplicative noise (x → ητ(x), modeling
parametric noise). The kernel-type integral transfer operator is K(x, y) = ν(x/τ(y))/τ(y) for
x ∈ �+, which can then also be finitely approximated as described in the next section and
usefully reordered to a canonical block reduced form. In more generality, the theory of random
dynamical systems [1] clearly classifies those random systems which give rise to explicit transfer
operators with corresponding infinitesimal generators, and there are well-defined connections
between the theories of random dynamical systems and of stochastic differential equations.

The main aim of this work is to investigate a class of stochastically perturbed dynamical
systems for which the FP operator is represented by a finite stochastic transition matrix of size
N . Such dynamical systems will be called basis Markov in analogy to deterministic dynamical
systems possessing a Markov partition [15, 25], for which the associated FP operator is finite.
The deterministic limit of the stochastic system corresponds to the divergence of the matrix
size. In this limit, N → ∞, the sequence of invariant measures of the stochastic systems acting
in the N -dimensional Hilbert space converges, in the weak sense, to the invariant measure of
the corresponding deterministic system.

The paper is organized as follows. The Ulam–Galerkin method of approximating the
infinite dimensional FP operator and the concept of the Markov partition for a deterministic
system are reviewed in sections 2 and 3, respectively. In section 4 we introduce the notion of
basis Markov stochastic systems, while in section 5 we analyze a particular example of random
systems perturbed by an additive noise with cosine profile. In section 6 we construct a fairly
general example of the transition densities satisfying our assumptions (20). The key result on
convergence of the invariant measures for stochastic and deterministic systems is proved in
section 7. A discussion of isospectral matrices used to describe the FP operator is relegated
to the appendix.

2. Ulam–Galerkin’s method: Approximating the infinite dimensional operator. A Gal-
erkin method may be used to approximate the FP operator by a Markov operator of finite
rank. Formally, projection of the infinite dimensional linear space L1(M) results from dis-
cretely indexed basis functions {φi(x)}∞i=1 ⊂ L1(M) onto a finite dimensional linear subspace
generated by a subset of the basis functions,

(7) ΔN = Span({φi(x)}Ni=1).

This projection,

(8) p : L1(M) → ΔN ,

is realized optimally by the Galerkin method in terms of the inner product, which we choose
to be integration:

(9) (f, g) ≡
∫
M

f(x)g(x)dx ∀f, g ∈ L2(M).
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Specifically, the infinite dimensional “matrix” is approximated by the N ×N matrix,

(10) Ai,j = ([Pτφi], φj) =

∫
M

[Pτφi](x)φj(x)dx, 1 ≤ i, j ≤ N.

One approximates ρ(x) through a finite linear combination of basis functions:

(11) ρ(x) �
N∑
i=1

diφi(x).

The historically famous Ulam method [17, 27] for deterministic dynamical systems is equiv-
alent to the interpretation for finding the fraction of the box Bi which maps by τ to Bj ;
the Ulam matrix is equivalent to the Galerkin matrix by using (10) and choosing the basis
functions to be the family of characteristic functions

(12) φi(x) = 1Bi(x) =

{
1 if x ∈ Bi,
0 else.

Specifically, we choose the ordered set of basis functions to be in terms of a nested refinement
of boxes {Bi} covering M . Though Galerkin’s and Ulam’s methods are formally equivalent in
the deterministic case, we are of the opinion that the Galerkin description is a more natural
description in the stochastic setting.

3. Markov partitions of deterministic systems, and exact projection. In this section,
we discuss that a Markov partition is special for the FP operator of a deterministic dynamical
system in that characteristic functions supported over those partition elements lead to an
exact projection of the FP operator onto an operator of finite rank, a matrix.

For a one-dimensional transformation of the interval, the definition of a Markov parti-
tion [24] (see also [15, 25]) can be found in more recent references [3, 10, 18].

Definition. A map of the interval τ : [a, b] → [a, b] is Markov if there is a finite partition
{Ij}Nj=1 such that

1. ∪N
j=1 Ij = [a, b] (covering property),

2. int(Ij) ∩ int(Ik) = ∅ if j �= k (no overlap property),

3. τ(Ij) = ∪q(j)
i=1 Ik(j)

i
for some k

(j)
i ∈ {1, 2, . . . , N}, i = 1, 2, . . . , q(j) (a grid interval maps

completely across a union of intervals without “dangling ends” property).
It is not hard to show that the set of characteristic functions forms a finite basis set of

functions

(13) {φj(x)} = {1Ij (x)}Nj=1,

such that Galerkin projection (10) is exactly onto an operator of finite rank or a matrix Ai,j .
That is, (10) simplifies to

Ai,j = ([Pτφi], φj) =

∫
M

[Pτφi](x)φj(x)dx,

=

∫
M

∫
M

δ(x− τ(y))φi(y)φj(x)dydx

=

∫
Ij

∫
Ii

δ(x− τ(y))dydx, 1 ≤ i, j ≤ N.(14)
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If the map τ is in addition piecewise linear on its Markov partition, then Pτ [φi(x)] is a linear
combination of φj(x).

Similarly, there is a well-defined notion of an Anosov diffeomorphism with a Markov
partition [3, 4, 9, 23], and so for such systems, it can be shown that characteristic functions
supported over the corresponding Markov partition create a basis set such that (10) results
in an operator of finite rank.

We take these observations as motivation for the following definition, which is meant to
generalize the notion of a Markov partition to stochastic systems.

Definition. Let {M,B, μ} be a measure space and a transformation τ : M → M be measur-
able. Then the transformation τ is “basis Markov” if there exists a finite set of basis functions
{φi(x)}Ni=1 : M → [0, 1] ∈ L1(M) such that the FP operator is operationally closed within ΔN ,
where ΔN = Span({φi(x)}Ni=1). That is, for any density ρ ∈ ΔN , its image [Pτρ](x) belongs
to ΔN .

Remark 1. If a transformation τ is basis Markov, then, if we perform Galerkin’s method,
Ai,j = (Pτ [φi], φj)N×N , with that basis set, it allows that, for any initial density which can be
written as a linear combination of these basis functions,

(15) ρ0(x) =

N∑
i=1

ciφi(x),

or stated simply,

(16) ρ0(x) ∈ ΔN .

The action of the FP operator on such initial densities, ρ1(x) = Pτ [ρ0(x)], has the matrix
presentation,

(17) c′ = A · c, where ρ1(x) =

N∑
i=1

c′iφi(x),

and is well known as a linear operator from an N -dimensional vector space into itself. This
emphasizes that the FP operator projects exactly to an operator of finite rank—a matrix.

Note that for a general finite set of functions, if we take a general linear combination of
those functions and then apply the FP operator, we do not expect that the resulting density
can be written as a (finite) linear combination of basis functions.

The following is a direct consequence of our definition of basis Markov in relationship to the
usual definition of a Markov map, stating the sense in which basis Markov is a generalization.

Remark 2. Equation (14) implies that any piecewise linear Markov map, together with
the characteristic functions supported over the partition elements, is basis Markov.

4. Basis Markov stochastic systems: A general case due to separable noise. We analyze
a dynamical system τ defined on an interval M = [0, 1] with both ends identified and subjected
to a specific form of the additive noise,

(18) x′ = τ(x) + ξ.
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To specify the special case of the stochastic dynamical system written in (5), the stochastic
perturbation will be characterized by the transition density P(x, y) of a transition from point
x to y induced by noise. Describing the dynamics in terms of a probability density ρ(x) its
one-step evolution is governed by the stochastic FP operator,

(19) ρ′(x) = [PPρ](x) =

∫
M

P
(
τ(y), x

)
ρ(y)dy.

We will denote this stochastic FP operator by the symbol PP , referring to (6) in all that
follows. The operator PP acts on every probability density defined on M , and, in general, it
cannot be represented by a finite matrix. However, in what follows we shall analyze a certain
class of noise profiles for which such a representation is possible.

Definition. The stochastic system of equations (19) is called basis Markov if there exists a
finite set of basis functions {φi(x)}Ni=1 : M → [0, 1] ∈ L1(M) such that the FP operator PP is
operationally closed within ΔN , where ΔN = Span({φi(x)}Ni=1).

We assume that the transition probability, P(x, y) ≥ 0, satisfies the following properties
[21, 22]:

(a) P(x, y) ≡ P(x− y) = P(ξ),

(b) P(x, y) ≡ P(x mod 1, y mod 1),

(c) P(x, y) =
N∑

m,n=0

Amn un(x) vm(y)(20)

for x, y ∈ R and some finite N . Property (a) ensures that the distribution of the random
variable ξ does not depend on the position x, while the periodicity condition is provided
in (b). A noise profile fulfilling property (c) is called separable (decomposable), and it allows
us to represent the dynamics of an arbitrary system with such a noise in a finite dimensional
Hilbert space. Here A = (Amn)m,n=0,...,N is a yet undetermined real matrix of expansion
coefficients. Note that A characterizes the noise and does not depend on the deterministic
dynamics τ . We assume that the functions un, n = 0, . . . , N , and vm, m = 0, . . . , N , are
continuous in M = [0, 1) and linearly independent, and we can express f ≡ 1 as their linear
combinations. Both sets of functions span bases in an N+1 Hilbert space. Their orthogonality
is not required.

This term separable noise is concocted in analogy to separable states in quantum mechanics
and separable probability distributions, since such a property was called N +1-separability by
Tucci [26]. Making use of this crucial feature of the noise profile we may expand the kernel of
the FP operator (19):

ρ′(y) = [PPρ](y) =

∫ 1

0

N∑
m,n=0

Amnun(τ(x))vm(y)ρ(x)dx(21)

=

N∑
m,n=0

Amn

[∫ 1

0
un(τ(x))ρ(x)dx

]
vm(y)(22)

=

N∑
n=0

[∫ 1

0
un(τ(x))ρ(x)dx

]
ṽn(y)
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for y ∈ M , where

(23) ṽn =

N∑
m=0

Amnvm.

Thus, any initial density is projected by the FP operator PP into the vector space spanned
by the functions ṽm, m = 0, . . . , N .

Assuming that a given density ρ(x) belongs to this space, we can expand it in this basis,

(24) ρ(x) =

N∑
m=0

qm ṽm(x).

Expanding ρ′ in an analogous way, we will describe it by the vector 	q ′ = {q′0, . . . , q′N}.
Let B denote a matrix of integrals,

(25) Bnm =

∫ 1

0
un(τ(x))vm(x)dx,

where n,m = 0, . . . , N . Observe that B depends directly on the system τ and on the noise
via the basis functions u and v. Making use of this matrix, the one-step dynamics (23) may
be rewritten in a matrix form

(26) q′n =

N∑
m=0

Dnm qm, where D = BA

and A is implied by (20). In this way we have arrived at a representation of the FP operator
PP by a matrix D of size (N + 1) × (N + 1), the elements of which read

(27) Dnm =

∫ 1

0
un(τ(x))ṽm(x)dx, n,m = 0, . . . , N.

With (26), we now see that random dynamical systems with noise satisfying condition (20)
allow a finite dimensional subspace which is preserved.

Although the probability is conserved under the action of PP , the matrix D need not be
stochastic. This is due to the fact that the functions {ṽm(x)} forming the expansion basis
in (24) were not normalized. We shall then compute their norms,

(28) sm =

∫ 1

0
ṽm(y)dy =

N∑
n=0

Amnbn,

where

(29) bn =

∫ 1

0
vn(y)dy.

Let K ≤ N+1 denote the number of nonzero components of the vector 	s, and let k = 1, . . . ,K
runs over all indexes n ∈ 0, . . . , N + 1, for which sk �= 0. Then the rescaled vectors,

(30) Vk(y) := ṽk(y)/sk,
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are normalized:

(31)

∫ 1

0
Vk(y)dy = 1.

The normalization condition
∫ 1
0 ρ(x)dx = 1 implies

(32)

∫ 1

0

N∑
m=0

qlṽm(x)dx =

N∑
m=0

qmsm =

K∑
k=1

qksk = 1.

The same is true for the transformed density,

(33)
∑
k

q′ksk = 1.

Hence this scalar product is preserved during the time evolution. Making use of the rescaled
coefficients

(34) ck := qksk,

the dynamics (26) reads

(35) c′k = q′ksk =
∑
j

Dkj qjsk =
∑
j

Dkj
sk
sj

qjsj =:
∑
j

Tkj cj .

By construction the coefficients ck sum to unity. Since some of them can in general be negative,
the transition matrix

(36) Tkj ≡ Dkj
sk
sj

=
∑
ii′

Dkj
Akisi
Aji′si′

need not be stochastic. In the above equation, all indices run from 1 to K and the coefficients
sk are nonzero by construction.

It is interesting to distinguish a special class of noises for which all functions corresponding
to nonzero values of the components sk are nonnegative: ṽk(x) ≥ 0 for x ∈ [0, 1] and k =
1, . . . ,K. This implies that for any probability density ρ its expansion coefficients qk in (24)
are not negative. Furthermore, the normalization constants of ṽk are nonnegative, sk > 0,
k = 1, . . .K, and so are the coefficients ck and c′k given in (34), (35). Hence vectors c and c′

form normalized K-point probability distributions, and so in this case the transition matrix
T of size K is stochastic. The dimensionality K ≤ N + 1 is determined by the parameter N
and the choice of the basis functions {vl(x)} entering (20).

5. A special case: Cosine noise. We will now discuss a particularly simple case of the
separable noise described above and introduced in [21]. Let

(37) PN (ξ) = CN cosN (πξ),
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Figure 1. The cosine noise of (37) closely resembles a normal noise profile, but with finite support. Several
values of N are shown, with decreasing standard deviation with increasing N .

where N is even (N = 0, 2, . . .), and with the normalization constant

(38) CN =
√
π

Γ[N/2 + 1]

Γ[(N + 1)/2]
.

See Figure 1, in which we can see the decreasing standard deviation with respect to increasing
N . This type of noise reminds us of a normal distribution, but of compact support.

The parameter N controls the strength of the noise measured by its variance

(39) σ2 =
1

2π2
Ψ′

(
N

2
+ 1

)
=

1

12
− 1

2π2

N/1∑
m=1

1

m2
,

where Ψ′ stands for the derivative of the digamma function.
For the expansion (20) we use basis functions

um(x) = cosm(πx) sinN−m(πx),

vn(y) = cosn(πy) sinN−n(πy),(40)

where x ∈ M and m,n = 0, . . . , N . Expanding the cosine as a sum to the Nth power in (37),
we find that the (N + 1) × (N + 1) matrix A defined by (20) is diagonal:

(41) Amn = amδmn, with am = CN

(
N

m

)
.

Integrating trigonometric functions, we find the coefficients

(42) bm =

∫ 1

0
cosm(πx) sinN−m(πx)dx =

2

πN

Γ[(m + 1)/2] Γ[(N −m + 1)/2]

Γ(N/2)
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Figure 2. The transition kernel PN (f(x), y) for the logistic map τ(x) = 4x(1 − x), with N = 20 and with
cosine noise due to N = 20; compare to Figure 1. Note the periodicity of x of period 1.

and

(43) sm = ambm,

which are nonzero only for even values of m. Hence the size K ×K of the transition matrix
reads

(44) K = N/2 + 1,

and the expression (36) takes the form

(45) Tkj = Dmn
ambm
anbn

, where k, j = 1, . . . ,K, m = 2(k − 1), n = 2(j − 1).

For the noise (37) discussed here all functions ṽm for even m, which contribute to the
matrix T , are nonnegative; hence, as discussed in the previous section, the transition matrix
T is stochastic. We find in this case that the transition kernel reminds us of a fuzzy but
periodically repeated version of the map. See Figure 2. However, the FP operator embeds to
a transition matrix T , which “appears” roughly as a different form of the original map; see
Figure 3.
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Figure 3. The stochastic matrix T150 shown, from (36), exactly represents the stochastic FP operator of
the stochastic tent map (47) with trig noise (37) and basis set (40) using N = 150. Note that T (150) is a matrix
of size N/2 + 1 = 150/2 + 1 = 76 square. Compare to the matrices in (48) of smaller N .

There is an interesting correspondence between the spectra of eigenvalues of the two
matrices D and T . Since T is stochastic, its largest eigenvalue is equal to unity. Moreover, it
is the only eigenvalue with modulus one, which follows from the fact that the kernel P(x, y)
vanishes only for x − y = 1/2 (mod 1), and the two-step probability function is everywhere
positive:

(46)

∫
M

P(x, z)P(z, y)dz > 0 for x, y ∈ M

(see [16, Th. 5.7.4]). A particularly useful consequence and simplification is that the eigenstate
corresponding to the largest eigenvalue of the matrix represents the invariant density of the
system, ρ∗ = Pf (ρ∗); this can be easily found numerically by diagonalizing T .

All of the other eigenvalues are included inside the unit circle and their moduli |λi| charac-
terize the decay rates. It is worth emphasizing that the spectra of both matrix representations
of the FP operator, by matrices D of size (N + 1) × (N + 1) used in [20, 21, 22] and the sto-
chastic T matrices of size (N/2+1)× (N/2+1) developed here, coincide up to the additional
N/2 eigenvalues which are equal to zero; see the appendix for details.

For concreteness let us discuss an exemplary one-dimensional dynamical system, a tent
map:
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(47) τ(x) :=

{
2x if 0 ≤ x ≤ 1/2,

2(1 − x) if 1/2 ≤ x ≤ 1.

Simple integration allows us to obtain the analytic form of the transition matrix T (N) for the
tent map (47) perturbed by additive noise characterized by small values of N ,

T (2) =
1

2

[
1 1
1 1

]
, T (4) =

1

24

⎡
⎣ 11 3 11

6 6 6
7 15 7

⎤
⎦ , T (6) =

1

320

⎡
⎢⎢⎣

145 25 25 145
69 45 45 69
51 75 75 51
55 175 175 55

⎤
⎥⎥⎦ .

(48)

In the simplest case N = 2 the transition matrix is bistochastic, but it is not so for
larger N . However, for this system, the matrix T (N) is of rank one for arbitrary value of the
noise parameter N . The spectrum of T contains one eigenvalue equal to unity and all others
equal to zero. This implies that every initial density is projected onto an invariant density
already after the first iteration of the map. This is not the case for other dynamical systems
τ , including the logistic map τr(x) = rx(1 − x), for which the spectrum contains several
resonances—eigenvalues of moduli smaller than one—which describe the decaying modes of
the system [21].

In this way we have established a relation between a sequence of noisy systems τN and
the deterministic dynamical system τ . A stochastic system (18) with the noise profile (37) for
a fixed noise parameter N is described by a stochastic matrix T (N) of size K = N/2 + 1 and
acts in the Hilbert space HK .

We have shown that the sequence of transition matrices T (N) corresponds to the dynamical
system τ in the sense that the sequence μN of the invariant measures of T (N) converges weakly
to the τ -invariant measure μ in the deterministic limit N → ∞. Furthermore, for any initial
density ρ the sequence of vectors ρ′N transformed by PPN

converges weakly to the density
transformed by the FP operator associated with τ . Observe that the above property holds
not only for one-dimensional systems but also for dynamical system τ in higher dimensional
measure spaces.

6. General example. In this section we construct a fairly rich family of transition densities
satisfying the assumptions (20). Let {gN}N≥1 be a sequence of C2 (this condition can be
weakened) nonnegative functions with support in [−1/2, 1/2] such that gN (−1/2) = gN (1/2)
for all N ≥ 1 and which converges to Dirac’s delta δ0 as N → ∞.

Each gN , which can be also seen as a 1-periodic function on the whole real line, can be
approximated by its partial Fourier sum arbitrarily close in the supremum norm. Let

(49) hN (ξ) = cS(N) + a0,N + 2

S(N)∑
s=1

(as,N cos(2sπξ) + bs,N sin(2sπξ))

be an approximation obtained from Fourier approximation by shifting it up by a small constant
cS(N) to ensure hN ≥ 0 on [−1/2, 1/2]. We have cS(N) → 0 as S(N) → ∞. We can make the
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functions hN also converge to Dirac’s delta δ0 as N → ∞. Using the functions hN we define
a family of densities:

(50) PN (ξ) = hN (ξ)/

∫ 1/2

−1/2
hN (t)dt, N = 1, 2, 3, . . . ,

and then a family of transition densities

PN (x, y) = PN (x− y), N = 1, 2, 3, . . . .

Since

cos(2sπ(x− y)) = cos(2sπx) cos(2sπy) + sin(2sπx) sin(2sπy),

sin(2sπ(x− y)) = sin(2sπx) cos(2sπy) − cos(2sπx) sin(2sπy),

it is clear that the assumptions (20)(c) are satisfied with un(x) equal to cos(2sπx) or sin(2sπx)
and vm(y) equal to cos(2sπy) or sin(2sπy) for 0 ≤ s ≤ S(N). It is also clear that for each
x ∈ [0, 1], PN (x, ·) converges to Dirac’s delta δx as N → ∞. To have the condition (3) of the
next section satisfied it is enough to start with even functions gN .

Example. Let g(ξ) = (0.2 + x2) exp(−x2) and gN (ξ) = Ng(Nξ), restricted to [−1/2, 1/2]
and extended periodically to the whole real line, N ≥ 1. Then, the gN ’s are positive and
converge to Dirac’s δ0 as N → ∞. In particular, let us consider g6. Its Fourier approximation,
with S(6) = 5, is

1.24032 + 1.14838 cos(2πξ) − 0.470309 cos(4πξ) − 0.530699 cos(6πξ)

− 0.163161 cos(8πξ) − 0.0225748 cos(10πξ).

We have used such a poor approximation to make the example simpler. We can choose
constant cS(6) = 0 and after normalization we obtain

P6(ξ) = 1 + 0.92587 cos(2πξ) − 0.37918 cos(4πξ) − 0.42787 cos(6πξ)

− 0.131547 cos(8πξ) − 0.01820 cos(10πξ).

See the transition density in Figure 4.

We have

P6(x− y) = 1 + 0.92587 cos(2πx) cos(2πy) + 0.92587 sin(2πx) sin(2πy)

− 0.37918 cos(4πx) cos(4πy) − 0.37918 sin(4πx) sin(4πy)

− 0.42787 cos(6πx) cos(6πy) − 0.42787 sin(6πx) sin(6πy)

− 0.131547 cos(8πx) cos(8πy) − 0.131547 sin(8πx) sin(8πy)

− 0.01820 cos(10πx) cos(10πy) − 0.01820 sin(10πx) sin(10πy).

See the transition kernel in Figure 5.
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Figure 4. The transition density P6(ξ).

Figure 5. The transition kernel P6(τ(x), y) for the logistic map τ(x) = 4x(1 − x), with S(6) = 5.

In the notation of section 4 let us define

u0(x) = 1,

u2s+1(x) = cos(2(s + 1)sπx), s = 0, 1, 2, 3, 4,

u2s(x) = sin(2sπx), s = 1, 2, 3, 4, 5,

v0(y) = 1,

v2s+1(y) = cos(2(s + 1)πy), s = 0, 1, 2, 3, 4,

v2s(y) = sin(2sπy), s = 1, 2, 3, 4, 5.
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Then, matrix A = (Amn)0≤m,n≤10 is the diagonal matrix with the diagonal

[1, 0.92587, 0.92587,−0.37918,−0.37918,−0.42787,−0.42787,−0.131547,−0.131547,

−0.01820,−0.01820],

and we have
ṽm = Ammvm, m = 0, 1, . . . , 10.

Let us consider the dynamics given by the logistic map τ : x �→ 4x(1 − x). Matrix D
defined in (27) and representing FP operator PP6 is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0.2441 −0.3096 0 −0.08859 0 −0.1209 0 −0.01639 0 −0.0007850 0
−0.1717 0.2016 0 −0.1313 0 0.00547 0 0.01382 0 0.001494 0
0.1752 −0.1940 0 −0.09397 0 0.06079 0 0.02395 0 −0.002347 0
−0.1372 0.1658 0 −0.0159 0 0.06947 0 −0.02997 0 −0.004869 0
0.1436 −0.1506 0 −0.07445 0 0.08111 0 −0.006781 0 −0.002915 0
−0.1178 0.1397 0 0.00971 0 0.02136 0 −0.02983 0 0.001684 0
0.1246 −0.1268 0 −0.06176 0 0.07547 0 −0.01636 0 −0.0003029 0
−0.1051 0.1223 0 0.01799 0 −0.00139 0 −0.01922 0 0.002802 0
0.1116 −0.1116 0 −0.05331 0 0.06756 0 −0.01849 0 0.001108 0

−0.09589 0.1098 0 0.02112 0 −0.01226 0 −0.01162 0 0.002350 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)

The eigenvalues of D are

1,−.4086428809, 0.0800412,−0.0117582, 0.00331119,−0.000739709, 0, 0, 0, 0, 0.

Although in this case all eigenvalues of D are real, in general they are complex. Since matrix D
is real, the eigenvalues are placed symmetrically with respect to the real axis. The eigenvector
for eigenvalue 1 is

w = [1, 0.164834,−0.154604, 0.139482,−0.107445, 0.116956,−0.0938748, 0.102202,

−0.0843296, 0.0918404,−0.0772548],

and it provides a rough approximation
∑10

m=0 w[m]ṽm(ξ) to the τ -invariant density. A much
better approximation shown in Figure 6 is obtained by taking the same noise profile for N = 40
and S = 30, which results in matrix D of size 2S + 1 = 61.

For a comparison we performed Ulam’s approximation of the invariant density of τ using
an N × N matrix with N = 61. For φm = N · 1[(m−1)/N,m/N ], Ulam’s probabilistic matrix
U = {Uij} can be obtained by putting

Uij = (1/N)

∫ 1

0
φi(t)φj(τ(t))dt, 1 ≤ i, j ≤ N.

We found the 1-eigenvector w of U , and the function fN =
∑N

m=1 w[m]φm is Ulam’s approxi-
mation to τ -invariant density. It is shown in Figure 7.
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Figure 6. An approximation to the invariant density of the logistic map (dashed line) obtained as an
invariant density of transition matrix D of size 61 × 61 (solid line).

Figure 7. An approximation to the invariant density of the logistic map (dashed line) obtained by Ulam’s
method with 61 × 61 matrix (solid line).

The L1 errors of approximation were comparable: 0.17 for Ulam’s method and 0.20 for
our method. Our method produces a smooth approximating function which is nicer for a
smooth invariant density. Our method is also more general in the sense that it can be used to
approximate not only the invariant density itself but also the invariant density of a random
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perturbation of a map by a possibly very strange perturbing distribution. This was shown in
the example above. On the other hand, Ulam’s method is definitely simpler and its theoretical
properties are well studied.

7. Approximation by basis Markov maps. While not all maps and noise profiles allow for
the map to be basis Markov, in this section we will show that a non–basis Markov map may
be weakly well approximated by basis Markov maps. In this sense, the finite approximations
offered by basis Markov maps can be thought of as a good description of the general behavior,
since the invariant measures of the finite approximations due to the basis Markov maps have
weak-∗ limits to the invariant measures of the general maps.

Let us consider a family of the transition probabilities PN (·, ·) such that, for each x ∈ M ,
PN (x, ·) converges to Dirac’s delta δx as N → ∞.

We require the following assumptions about the transition probabilities PN (·, ·):
1. PN (·, ·) is measurable as a function of two variables.
2. For every x we have

∫
M PN (x, y)dy = 1.

3. For every y ∈ M we have ∫
M

PN (x, y)dx = 1.

4. Let B(x, r) = {y : |x− y| < r} and

(52) pN (x, r) =

∫
M\B(x,r)

PN (x, y)dy.

Then, for any r > 0,

pN (r) = sup
x∈M

pN (x, r) → 0 as N → +∞.

Assumptions 1–3 are typical for probability measures, while assumption 4 is also rather
mild, and it is easy to check that all four assumptions are satisfied by the cosine noise (37).

Under these assumptions, the following can be easily proved.

Proposition. Let M = [0, 1]. For any ρ ∈ L1(M) we have

(53)

∫
M

ρ(x)PN (x, y)dx → ρ(y) as N → ∞

in L1(M).

In Theorem 1 below we assume that the transformation τ : [0, 1] → [0, 1] is continuous.
This assumption can be weakened (say, to piecewise continuous) if we impose additional
restrictions on the transition probabilities PN (say, such that all measures μN and their weak
limits are continuous measures; see, for example, [8]).

Theorem 1. Let the transformation τ be continuous. Under the assumptions 1, 2, and 4,
it follows that if μN is an invariant measure of the stochastic perturbation of transformation f
defined by the transition probability PN , then every weak-∗ limit point of the set {μN : N ≥ 1}
is an f-invariant measure.

This theorem can be proved following the ideas of Khasminskii [12].
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A more precise result can be proved under more restrictive assumptions on the transfor-
mation τ .

Theorem 2. Let the transformation τ be piecewise C2 and piecewise expanding, i.e., |τ ′| >
2, where it exists. Then, under the assumptions 1–4, every weak-∗ limit point of the set
{μN : N ≥ 1} is a τ -invariant absolutely continuous measure.

This result was proved in Theorem I.B. of [8]. The perturbations we consider are of
“convolution type” and since we treat an interval as a circle an extra factor of 2 does not
occur. The example of the famous W -map [11] shows that the condition |τ ′| > 2 cannot be
weakened.

8. Concluding remarks. In this work we have introduced the concept of basis Markov
stochastic systems, for which the associated FP operator is finite. This property resembles
the class of deterministic systems with a Markov partition. However, the Markov partition is
characteristic to a very special class of deterministic systems, while the basis Markov property
is related to the kind of stochastic perturbation. It holds for any deterministic system τ ,
subjected to an additive noise with a profile satisfying the separability condition (20). In this
way such a random dynamical system can be described by a stochastic transition matrix of a
finite size K, which diverges in the deterministic limit.

We have shown an intimate relationship between the sequence of stochastic matrices which
act in the space of K-point probability distributions and the FP operator Pτ of the determinis-
tic system, which acts in the infinite dimensional space: In the deterministic limit K → ∞ the
invariant densities of stochastic matrices converge in a weak sense to the invariant measure
of the deterministic system τ . Thus, constructing the transition matrices T and decreas-
ing the noise strength (and increasing the dimensionality K), one may construct arbitrary
approximations of the FP operator Pτ .

Some discussion regarding generality is in order. While it is not clear at this stage how
many families of examples exist that satisfy the properties in (20), we presented a concrete
example in section 5, the cosine noise example, (37), with corresponding basis functions (40).
We find this example instructive due to its general appearance as similar to the familiar
Gaussian distribution and the fact that it provides a finite representation of the FP operator Pτ

by a stochastic transition matrix T . Furthermore, in section 6 we presented a general technique
of designing one-dimensional noise profiles which satisfy the separability conditions (20).

Note that the described method is not restricted to one-dimensional systems. On the
contrary, the entire construction can be directly applied to a general case of multidimensional
dynamical systems. In particular, the definition (20)(c) of separable noise profiles works for
the case of an L-dimensional system, provided the variables x and y represent vectors with L
components each.

If the dynamical system acts on the L-torus, for example, M = [0, 1]L, one can take the
Cartesian product of the cosine noise (37) setting

(54) PN (ξ1, . . . , ξL) = CL
N cosN (πξ1) cosN (πξ2) · · · cosN (πξL),

where ξk = xk − yk and k = 1, . . . , L. This form of the additive noise was used in [20] to
analyze a two-dimensional system (a variant of the baker map) and to compare the spectral
properties of the FP operator associated with the classical stochastic system with properties
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of the propagator of the corresponding quantum evolution. In such a case the deterministic
limit of the classical noisy system, K → ∞, is related to the classical limit, � → 0, of the
corresponding quantum dynamics.

Note that for basis Markov stochastic systems, the transition matrices T exactly describe
the action of the dynamical system with additive noise on densities. Thus our construction
differs from an approach applied in [13, 19, 28], where a finite dimensional description of the
density dynamics of a deterministic system was achieved by truncation of an infinite transition
operator Pτ to the finite dimension K. The effect of such a truncation may also be regarded
as a kind of noise depending on the matrix size K and the base, in which Pτ is represented.
On the other hand, in our case a suitable choice of the noise profile added to the deterministic
system distinguishes a relevant basis, in which the FP operator of the perturbed system is
finite.

Appendix. Isospectral matrices. In this appendix we show that the matrix D defined
by (27) and used in [20, 21, 22] to represent the FP operator and the stochastic transition
matrix T share the same nonzero part of the spectrum. We make use of the following algebraic
result.

Lemma. Let A be a square matrix of size N × N and 	s a vector of length N containing
only nonzero entries. Then the matrix

(55) Bjk ≡ Ajk
sj
sk

has the same spectrum as A.

(There is no summation over repeating indices.)

Proof. To study equation det(B − λ1) = 0 we start analyzing an exemplary term PB of
the determinant. It consists of a product of N elements Bi,σ(j), where σ(i) stands for a certain
permutation of the indices. The product of N factors of the type si/sσ(i) is equal to unity so
that

(56) PB
σ =

∏
i

Bi,σ(i) =
∏
i

Bi,σ(i)
s1s2 · · · sN
s1s2 · · · sN

=
∏
i

Ai,σ(i).

Thus every term contributing to the free coefficient of the characteristic equation will be the
same, PB

σ = PA
σ ; hence these coefficients for both matrices A and B are equal. Since the

diagonal elements of both matrices coincide, Bjj = Ajj , all terms forming the coefficients
standing by an arbitrary power of λ are the same for both matrices. Therefore, characteristic
equations for both matrices are equal and so are their spectra.

Treating all nonzero elements of the vector sk, k = 1, . . . ,K, as vector 	s, we may apply
the lemma to (36) and obtain equivalence of the spectrum of T and the nonzero part of the
spectrum of D. Since integrals (25) vanish for odd values of m, every second column of D is
equal to zero, and the remaining N/2 eigenvalues of D are equal to zero.
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mension, Birkhäuser Boston, Boston, 1997.
[6] R. Fischer, Sofic systems and graphs, Monatsh. Math., 80 (1975), pp. 179–186.
[7] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, UK,

1998.
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Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example∗

Martin Krupa†, Nikola Popović‡, and Nancy Kopell§

Abstract. Mixed-mode dynamics is a complex type of dynamical behavior that is characterized by a com-
bination of small-amplitude oscillations and large-amplitude excursions. Mixed-mode oscillations
(MMOs) have been observed both experimentally and numerically in various prototypical systems
in the natural sciences. In the present article, we propose a mathematical model problem which,
though analytically simple, exhibits a wide variety of MMO patterns upon variation of a control
parameter. One characteristic feature of our model is the presence of three distinct time-scales, pro-
vided a singular perturbation parameter is sufficiently small. Using geometric singular perturbation
theory and geometric desingularization, we show that the emergence of MMOs in this context is
caused by an underlying canard phenomenon. We derive asymptotic formulae for the return map in-
duced by the corresponding flow, which allows us to obtain precise results on the bifurcation (Farey)
sequences of the resulting MMO periodic orbits. We prove that the structure of these sequences is
determined by the presence of secondary canards. Finally, we perform numerical simulations that
show good quantitative agreement with the asymptotics in the relevant parameter regime.

Key words. mixed-mode oscillations, canard mechanism, singular perturbations, three time-scales, geometric
desingularization
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1. Introduction. Mixed-mode dynamics is a complex type of dynamical behavior that
is characterized by a combination of small-amplitude oscillations and large-amplitude ex-
cursions of relaxation type. Mixed-mode oscillations (MMOs) are frequently encountered in
multiscale dynamical systems, i.e., in systems of differential equations in which the relevant
variables evolve over several distinct scales. Consequently, typical MMO patterns in such
systems consist of oscillatory sequences in which amplitudes of different orders of magnitude
alternate. Historically, MMOs were first observed in experiments on the well-known Belousov–
Zhabotinsky reaction [38]. They have since been found both experimentally and numerically
in numerous other contexts in the natural sciences. Examples include prototypical systems
from chemical kinetics, electrocardiac dynamics, neuronal modeling, and laser dynamics, as
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well as from various other disciplines; see, e.g., [10, 16, 23, 27, 29, 30, 32, 31] for details and
references.

Among the various mechanisms which have been proposed to explain the occurrence of
MMOs are the break-up of an invariant torus [21] and the loss of stability of a Shilnikov
homoclinic orbit [16]. MMOs have also been linked to slow passage through a delayed Hopf
bifurcation (cf., e.g., [22]) as well as to the subcritical Hopf-homoclinic bifurcation [12, 13].
In the present article, we consider another explanation for the emergence of MMOs, namely,
the so-called canard mechanism. To the best of our knowledge, this idea was first brought
forward by Milik et al. [27]. More recently, in [2], it was extended to accommodate more
general classes of systems that exhibit canard dynamics.

The classical canard phenomenon [1, 5, 8, 9] was first described in the framework of
two-dimensional fast-slow systems, i.e., of systems with one fast and one slow variable; a
prototypical example is the system of equations given by

v′ = −z + f2v
2 + f3v

3,(1.1a)

z′ = ε(v − λ).(1.1b)

(Here, f2 > 0 and f3 < 0 are real constants, 0 < ε � 1 and λ are small parameters, and the
prime denotes differentiation with respect to time t.)

The term canard explosion [20] is customarily used to denote a transition in (1.1) from
a stable equilibrium through a family of small-amplitude cycles and subsequently to a large-
amplitude relaxation oscillation. Notably, this transition occurs within an exponentially small
range (in ε) of the relevant control parameter, λ. The basic mechanism of a canard explosion
can be described as follows: under the above assumptions, the “fast nullcline” S0 for (1.1),
which is given by z = f(v) := f2v

2 + f3v
3, is an S-shaped curve. Moreover, S0 is a curve of

equilibria for the layer problem obtained for ε = 0 in (1.1) and is (normally) hyperbolic away
from the two fold points where f ′(v) = 0; in particular, the origin is one such point. Rewriting
(1.1) in terms of the slow time τ = εt, one finds that the corresponding “slow nullcline” is
given by v = λ. As λ passes through 0, this slow nullcline moves through the lower fold point
of S0 at the origin, which triggers the onset of the canard explosion; see Figure 1. Finally, for
λ > 0 sufficiently “large,” the dynamics of (1.1) enters the relaxation regime.

One important notion that arises in the study of a canard explosion in (1.1) (as well as
in other, related systems) is that of a maximal canard. In general, a canard is a solution of
(1.1) which originates in the attracting portion of the fast nullcline S0 and which then crosses
over to the repelling one; cf. again Figure 1. Maximal canards are canard trajectories that
remain O(ε)-close to the unstable part of S0 until they reach the upper fold; they mark the
transition from small-amplitude (nonrelaxation) oscillations to large-amplitude oscillations of
relaxation type during a canard explosion.

One of the main goals in this article is to show how systems that exhibit mixed-mode-type
behavior can be constructed from systems that undergo a canard explosion by replacing the
parameter moving the slow nullcline with a dynamical variable. In other words, we will argue
that the emergence of MMOs in such systems is triggered by a “slow passage through a canard
explosion.” More specifically, consider a system of the form
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v

z

S0

{v = λ}

(a) λ < 0.

v

z

S0{v = λ}

(b) λ ≈ 0.

v

z

S0

{v = λ}

(c) λ ≈ 0.

v

z

{v = λ}

S0

(d) λ > 0.

Figure 1. Nullcline movement leading to a canard explosion: As the slow nullcline passes through the
origin, one observes a transition from (a) a stable equilibrium via a family of canard solutions ( (b) “headless
canard,” (c) “canard with head”) to (d) a full-scale relaxation oscillation.

v′ = −z + f2v
2 + f3v

3,(1.2a)

z′ = ε(v − w),(1.2b)

w′ = ε
(
μ + φ(v, z, w)

)
,(1.2c)

where μ > 0 and φ = O(v, z, w) is a smooth function that will be specified in the following,
and note that the new slow variable w in (1.2) assumes the role of λ in (1.1). Let S0 denote
the (two-dimensional) critical manifold for (1.2), which is defined by the constraint z = f(v).
Finally, let �− = {(0, 0, w)} and �+ = {(−2f2

3f3
, 0, w)} denote the lower and upper fold lines

for (1.2), respectively, and note that �± are determined by imposing f ′(v) = 0, in addition
to z = f(v). Away from these fold lines, S0 is normally hyperbolic; it consists of the two
attracting sheets

(1.3) Sa−
0 =

{
(v, z, w)

∣∣ v < 0, z < 0
}

and Sa+
0 =

{
(v, z, w)

∣∣ v > −2f2
3f3

, z >
4f3

2

27f2
3

}
,
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Sa+
0

Sa−
0

Sr
0

z

w

v

�−

�+

Γ0
ε

Γ1
ε

Figure 2. The geometry of system (1.2): Critical manifold S0 with sheets Sa±
0 and Sr

0 , fold lines �±, and
canard trajectories Γ0

ε and Γ1
ε.

as well as of a repelling sheet which is given by

(1.4) Sr
0 =

{
(v, z, w)

∣∣ 0 < v < −2f2
3f3

, 0 < z <
4f3

2

27f2
3

}
;

see Figure 2 for an illustration. (Note that, due to f2 > 0 and f3 < 0, there holds −2f2
3f3

> 0
in (1.3) and (1.4).) The singular limit of ε = 0 in (1.2) is described by the dynamics of the
reduced problem on the critical manifold S0.

By standard Fenichel theory [11], for ε > 0 sufficiently small and (v, z, w) in some bounded
subset of R

3, the critical manifold will perturb to a slow manifold Sε away from �±. We will
denote the sheets of Sε corresponding to Sa−

0 , Sa+
0 , and Sr

0 by Sa−
ε , Sa+

ε , and Sr
ε , respectively.

In analogy to the maximal canard encountered in (1.1), we define the so-called strong
canard Γ0

ε for (1.2) as follows: once the two sheets Sa−
ε and Sr

ε are chosen, they are unique
up to exponentially small terms in ε [11]. Then, Γ0

ε can be defined, for ε > 0 small, as the
intersection of the continuation of these two sheets into the fold region. Moreover, as we
will show in section 2, this intersection is transverse, which implies that Γ0

ε is well defined.
It was postulated in [27] that the strong canard forms the boundary between two regions of
very different dynamical behavior, in that it separates small-amplitude oscillations from large
oscillations of relaxation type. We will confirm this postulate in the context of (1.2); in that
sense, Γ0

ε can be interpreted as the “organizing center” for the emergence of MMOs in (1.2).

The detailed structure of the MMO trajectories that will be observed in (1.2) depends
strongly on certain features of the specific equations under consideration. One important
aspect concerns the properties of the global return mechanism, defined by the interplay of μ
and φ in (1.2c), and in particular how far back the value of w is reset by that return.



MMOs IN THREE TIME-SCALE SYSTEMS 365

If, during the return phase, w becomes O(1) and negative (i.e., if μ+φ is not close to zero),
the dynamics of (1.2) in the initial phase of the passage near the lower fold is of “node type,”
which means that there is strong contraction without any oscillatory behavior. That initial
contractive phase is followed by oscillatory dynamics which can give rise to MMOs; however,
most of the resulting oscillations are of very small amplitude. The class of these so-called
canards of folded-node type is rather well understood and was analyzed in detail in [36].

By contrast, we will discuss a case where the global return mechanism is relatively weak in
the sense that μ+φ is O(1). Note that this case differs from that of the so-called folded saddle-
node [31, 6] in that not only is μ assumed to be small, but φ is, too, and that the weakness of
the return mechanism introduces an additional, “superslow” time-scale into the problem. In
that sense, the folded saddle-node can be regarded as an intermediate case between the folded
node and the situation in (1.2). (Note, however, that (1.2) could alternatively be classified as
a “folded saddle-node of type II with weak global return” [35].)

The basic dynamics of (1.2) can be characterized as follows: given (v, z, w) small, the
system will pass through the small-amplitude phase, where the variable w can grow slightly
and become positive. Then, during the subsequent relaxation phase, w is reset to a small
(negative or positive) value, and the cycle can start anew. Hence, the fact that w is always
close to zero implies that there is no nonoscillatory contraction, contrary to the case of a folded
node. Moreover, due to the three time-scale structure of (1.2), no slow passage through a Hopf
bifurcation is observed, contrary to the case of a folded saddle-node. This distinction will be
made more precise in the following; see also the discussion in section 4 below.

As we will show in this article, it is the interplay between the two main ingredients of
the dynamics, the local flow close to the strong canard and the global return, that underlies
the basic canard mechanism for the emergence of MMOs in (1.2). This mechanism can be
generalized to other classes of systems; see, e.g., [17, 2] for details. In the following, we will
refer to a combination of local, dynamical passage through a canard point and a suitably
defined global return as the generalized canard mechanism. In other words, (1.2) represents
only one specific realization of that very general mechanism. Moreover, as will follow from
our analysis, (1.2) is a normal form for this class of three time-scale systems, in the sense
that the addition of higher-order terms in (1.2) will not fundamentally influence the resulting
dynamics.

Another aspect of the mixed-mode dynamics in (1.2), in addition to the return mechanism,
is the family of so-called secondary canards. In the context of (1.2), we define the kth secondary
canard Γk

ε as a trajectory that undergoes k small (nonrelaxation) rotations, or “loops,” during
its passage “near” the lower fold �− and that then remains O(ε)-close to the critical manifold

S0 until it reaches the O(ε
1
3 )-vicinity of the upper fold �+ [34]. Note that the strong canard Γ0

ε

passes through the vicinity of �− without undergoing any rotation at all, which corresponds
to k = 0. As we will show, the existence of secondary canards in (1.2) is guaranteed by the
fact that they can be defined as trajectories lying in the intersection of Sr

ε with subsequent
iterates of Sa−

ε under the return map Π induced by the flow of (1.2); cf. section 3 below.
This will allow us to give a precise asymptotic description of these canards; to the best of our
knowledge, comparable results have so far been obtained only in the folded-node case [36],
via a combination of asymptotics and numerics. For a qualitative illustration of the canard
trajectories Γ0

ε and Γ1
ε in (1.2), cf. again Figure 2.
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The notion of secondary canards leads to another important concept in this context,
namely, that of the corresponding sectors of rotation, which are defined as (two-dimensional)
portions of Sa−

ε in the fold region that are bounded by the secondary canards. These sectors,
which we denote by RSk, have the following property: trajectories starting in the kth sector
undergo k small rotations near �−. Given that all MMO trajectories pass exponentially close
to Sa−

ε in their relaxation phase, they must enter one of the sectors upon their return to the
fold region. This fact can be exploited to reduce the corresponding (two-dimensional) return
map Π for (1.2), which is a priori defined on an appropriate section for the corresponding flow,

to a one-dimensional map Φ. Moreover, as we will show, the width of RSk is O(ε
3
2

√
− ln ε),

independent of k to leading order; see section 3. Hence, the canard phenomenon occurs rather
“robustly” in the context of (1.2) in the sense that the relevant parameter intervals are not
exponentially small in ε, as in the classical two-dimensional case [20].

Finally, with each MMO trajectory one can associate a sequence Lk0
0 Lk1

1 . . . , called the
Farey sequence [4], which describes the succession of large relaxation excursions and small

(nonrelaxation) oscillations (loops): the segment L
kj
j corresponds to Lj relaxation oscillations

followed by kj small loops. (In the following, we will focus primarily on the case when
Lj = 1.) As we will show, the Farey sequence of each trajectory is completely determined
by the succession of the sectors of rotation visited by the trajectory. A natural question that
arises in this context is which Farey sequences are admissible in a system of the form (1.2)
and which μ-intervals they correspond to. This question is intimately related to the size of the
sectors RSk themselves, to the distance from the return point on Sa−

ε to the strong canard
Γ0
ε after relaxation, and to the contractive (or expansive) properties of the flow induced by Π.

These and similar issues will be discussed in detail in sections 3 and 4.
For the sake of definiteness, we will restrict ourselves to the more specific class of systems

of the form

v′ = −z + f2v
2 + f3v

3,(1.5a)

z′ = ε(v − w),(1.5b)

w′ = ε2(μ− g1z)(1.5c)

in the following, with g1 > 0 constant. Note that (1.5) can be understood as a special case of
(1.2), with μ rescaled by ε and φ(v, z, w) ≡ φ(z) = εg1z. (Other choices of φ can be treated in
a similar manner; see, e.g., [18].) This specific scaling of μ implies that the dynamics of (1.5)
evolves on three distinct time-scales, a fast scale, a slow scale, and a “superslow” scale. Given
that the flow of (1.5c) is governed by that slowest scale, w cannot vary too much, implying
that trajectories cannot be reset very far back (in w) during the global return. Consequently,
they will return close to the strong canard Γ0

ε of (1.5) after relaxation; equivalently, recalling
the analogy between w and the parameter λ in (1.1), one could say that the return is close to
the maximal canard of the (v, z)-subsystem in (1.5).

As we will show in section 3, it is the “lowest” sectors of rotation that will be immediately
adjacent to the strong canard. Hence, only a few successive small oscillations will be observed
in a typical time series of (1.5); moreover, these oscillations are relatively large in amplitude.
Since the relevant parameter intervals will turn out to be relatively small, the corresponding
dynamics is very sensitive to variations of μ. Also, since the stability intervals of “regular,”
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Lk-type orbits (i.e., of MMO trajectories with Farey sequence {Lk}) are smaller still, the
time series can be quite irregular; furthermore, there can be many relaxation cycles occurring
in succession before the system returns to the small-oscillation phase. (By contrast, in the
folded-node case, regular 1k-type orbits are predicted to be stable for most μ-values; cf. [36].)

Moreover, as μ is varied in (1.5), one observes a passage through neighboring sectors of
rotation: for increasing μ, the dynamics of (1.5) will be restricted to lower and lower sectors,
admitting fewer and fewer small-amplitude oscillations, until eventually only relaxation cycles
are seen. In other words, one observes the unfolding of a family of MMOs, including trajecto-
ries that pass through all sectors of rotation, on a fairly small parameter set. (In a folded-node
system, on the other hand, such an unfolding can be expected over a μ-interval whose length
is bounded below by a constant [36].) Also, numerical evidence suggests that only the Farey
sequences predicted in section 3 will “generically” occur in a three time-scale system of the
type of (1.5). Therefore, we conjecture that (1.5) can be interpreted as a “canonical form” for
this particular class of three-dimensional systems. However, a rigorous, analytical justification
of this claim is beyond the scope of this work.

In the remainder of this article, we analyze the “canonical” system (1.5) in detail, using a
wide range of techniques. One of our aims is to derive asymptotic formulae for the return map
induced by the flow of (1.5). To that end, we combine various methods from dynamical systems
theory and, in particular, from geometric singular perturbation theory. To approximate the
flow away from the fold lines �±, we employ standard results due to Fenichel [11]. Upon
entry into the neighborhood of �±, normal hyperbolicity breaks down, and Fenichel’s results
are no longer applicable, which necessitates a detailed analysis of the dynamics there. We
are especially interested in the lower fold �−, since it is there that the canard phenomenon
occurs. To describe the dynamics close to �−, we make use of the near-integrable structure of
the equations in (1.5). To access that structure, we introduce a rescaling that is akin to the
blow-up transformation customarily used in this context; see, e.g., [7, 19] for details. While
each of the parts of our analysis taken by itself is rather standard, the combination of the
different approaches in the present context is new. In particular, by combining the leading-
order global dynamics with detailed local asymptotics, we are able to obtain a closed-form
description of the return map Π for (1.5) and, hence, to describe the resulting mixed-mode
dynamics in detail.

This article is organized as follows. In section 2, we prove that the return map Π is well
defined under an appropriate choice of sections for the flow of (1.5), and we derive precise
asymptotic estimates for Π by desingularizing the dynamics of (1.5) in the fold region and
by making use of the near-integrability of the resulting equations. Section 3 contains the
centerpiece of our analysis in that we show how the “full,” two-dimensional map Π can be
reduced to a simpler, one-dimensional map Φ. This reduction is accurate with at most an
exponentially small error (in ε) and is carried out in two steps: in a first step, Π is restricted
from a two-dimensional section to the union of appropriately defined, one-dimensional curves,
which allows us to describe the family of secondary canards, as well as the corresponding
sectors of rotation, for (1.5). Then, in a second step, the map Π is further reduced and is
restricted to a map Φ that is defined on a single curve. The dynamics of this map is analyzed in
detail to make quantitative predictions on the relevant parameter regimes and the associated
bifurcation (Farey) sequences in (1.5). In section 4, we summarize our results, and we relate
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them to other mechanisms that have been proposed to explain MMOs. Moreover, we illustrate
various properties of the “reduced” flow under Φ, and we compare them numerically to the
“full” dynamics of (1.5). In sum, we thus obtain a fairly complete picture of the mixed-mode
dynamics of (1.5), both qualitatively and quantitatively. Moreover, in doing so, we provide
a framework for an even more detailed analysis of systems of the type of (1.5): once the
dynamics of such a system is accurately reduced to that of a one-dimensional map, the well-
developed theory of unimodal maps [25] can be applied. Our results on Φ are a first step in
this direction in that there is potential for a more rigorous investigation along the lines of
section 3.

Finally, we note that our analysis of (1.5) was inspired by a more specific problem, a model
for the dynamics of the dopaminergic neuron that was proposed by Wilson and Callaway [37].
This model, which consists of a system of N strongly electrically coupled oscillators, was
analyzed in [24] as well as in [23] (in a slightly different form) via a combination of asymptotic
analysis and numerical techniques. One salient feature of the Wilson–Callaway model is
precisely the unfolding of a family of MMO periodic orbits upon variation of one control
parameter. In an upcoming companion paper [18], we will show how the Wilson–Callaway
model can be fitted into the framework of (1.5) and how the results obtained here can be
applied to study its dynamics.

2. The canonical system (1.5). In this section, we discuss the system of equations (1.5)
or, equivalently, the system obtained by rewriting (1.5) in terms of the slow time τ = εt,

εv̇ = −z + f2v
2 + f3v

3,(2.1a)

ż = v − w,(2.1b)

ẇ = ε(μ− g1z).(2.1c)

Here, the overdot denotes differentiation with respect to τ , f2 > 0, f3 < 0, and g1 > 0 are
O(1) coefficients, 0 < ε � 1 is small, and μ is the “free” (bifurcation) parameter; note the
presence of three time-scales in (2.1).

Let S0 denote the critical manifold for (2.1), as before, and recall that S0 is given by
z = f(v) = f2v

2 + f3v
3; cf. section 1. Moreover, recall the definition of Sa±

0 and Sr
0 in

(1.3) and (1.4), respectively, and let Sa±
ε and Sr

ε denote the corresponding sheets of the slow
manifold for ε > 0 sufficiently small. Finally, the upper and lower fold lines in (2.1) are again
denoted by �±.

2.1. Sections for the flow of (1.5). To derive asymptotic formulae for the return of
trajectories under the flow of (1.5), we will define the corresponding return map on suitable
sections for the flow, which we introduce below. In the course of our analysis, we will show that
the small-amplitude oscillations observed in (1.5) are due to the fact that, in the parameter
regime under consideration, the system passes slowly through a canard explosion about the
origin in (v, z, w)-space. The large-amplitude components of the mixed-mode time series are
generated by the global return mechanism, which takes trajectories back to the fold line �−

after the passage past the origin has been completed. Combining these two aspects of the
dynamics will allow us to describe in detail how MMOs can arise in (1.5).

The dynamics of (1.5) can be broken down into the following four components:
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Σin

�−

Δ

Σout

z

v

w

Sr
0

Sa−
0

Figure 3. The sections Σin, Δ, and Σout for the flow of (1.5).

(i) the flow in a neighborhood of the fold line �− (section 2.2);
(ii) the entry into the fold region (section 2.3);
(iii) the exit from the fold region (section 2.4); and, finally,
(iv) the global return mechanism (section 2.5).

We will construct transition maps for each of the above components of the flow. The desired
global return map, which we denote by Π, will then be obtained via the composition of these
individual maps.

We begin by introducing sections for the flow of (1.5): we will require
(i) a section Σin across the attracting branch Sa−

0 of the critical manifold S0, which is
given by v = −ρ, with |z| and |w| bounded;

(ii) a section Δ, which is defined by v = 0, with |z| and |w| bounded, implying that Δ lies
in the (z, w)-plane and that it bisects the critical manifold S0 along �− (the w-axis);
and

(iii) a section Σout across the fast foliation of S0, with v = δ and |z| and |w| bounded.
Here, ρ, δ > 0 are small but fixed (ε-independent) constants; see Figure 3 for an illustration.
The section Δ will turn out to be especially important in the following, since the global
return map Π will be defined on Δ. (Note that this particular choice of Poincaré section has
previously been made by Dumortier and Roussarie in their analysis of canard cycles; see, e.g.,
[8].)

Next, we introduce two subsets of Δ that will play a crucial role in the description of Π.
We first define C−

ε as follows: a point P ∈ Δ is an element of C−
ε if P is the endpoint of a

segment of trajectory that originates in Sa−
ε . The set C+

ε is defined analogously, with Sa−
ε

replaced by Sr
ε and the time reversed; see Figure 4. The sets C−

ε and C+
ε have the following

properties:
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Sa−
ε

C−
ε

Sr
ε

Δ

P

C+
ε

(a) Trajectory of P ∈ Δ above C+
ε .

Sa−
ε

C−
ε

P

Sr
ε

C+
ε

Δ

(b) Trajectory of P ∈ Δ below C+
ε .

Figure 4. The sets C−
ε and C+

ε .
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(i) If P ∈ Δ is above C+
ε , the trajectory of P is blocked by Sr

ε from entering relaxation.
Depending on the position of P , the initial motion may be toward Sr

ε , but the trajec-
tory must eventually turn toward Sa−

ε (under the fast flow) and return to Δ, having
undergone a small-amplitude oscillation (or loop); see Figure 4(a).

(ii) If P ∈ Δ is below C+
ε , the trajectory of P must leave the vicinity of the fold in the

direction of the fast flow and may re-enter only through a global return mechanism,
since no trajectories can pass through Sr

ε ; see Figure 4(b).
(iii) Any trajectory that is attracted to Sa−

ε will be exponentially close to C−
ε when it

hits Δ.

Remark 1. Since Sa−
ε and Sr

ε are unique only up to exponentially small terms in ε, the
sets C±

ε are, strictly speaking, “strips” rather than curves. However, since our construction of
Π will rely on leading-order ε-asymptotics throughout, this nonuniqueness will not influence
our results.

A proof of these claims will be given in section 3 below. We now proceed with the
derivation of the four components of the return map, as outlined above. The description of
the dynamics in the fold region is the centerpiece of our analysis and will be discussed first.

2.2. Dynamics in the fold region. Our goal in this subsection is to analyze the flow in
the region of the phase space of (1.5) where small-amplitude oscillations (loops) can occur. To
describe these loops, we have to study the equations in (1.5) in an O(

√
ε)-vicinity of the fold

line �− and, specifically, of the origin in (u, v, w)-space. Recall that under our assumptions on
(1.5), �− is given by the w-axis.

To investigate the dynamics of (1.5) close to �−, we define the rescaling

(2.2) v =
√
εv̄, z = εz̄, w =

√
εw̄, and t =

t̄√
ε
.

In terms of the new “barred” variables in (2.2), (1.5) becomes

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3,(2.3a)

z̄′ = v̄ − w̄,(2.3b)

w̄′ = ε(μ− g1εz̄),(2.3c)

where the prime now denotes differentiation with regard to the new rescaled time t̄. Note
that (2.3) is a fast-slow system, with two fast variables v̄ and z̄ and one slow variable w̄. In
other words, the scale separation between v and z has vanished after the rescaling, whereas
w̄ is still slow and constant to leading order. Hence, we can interpret w̄ as a slowly varying
parameter.

For ε = 0, the equations in (2.3) reduce to

v̄′ = −z̄ + f2v̄
2,(2.4a)

z̄′ = v̄ − w̄,(2.4b)

w̄′ = 0.(2.4c)
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z̄

v̄

Δ+

Δ−

γ̄0
0

γ̄h−
0

γ̄h+

0

Figure 5. Typical integral curves of H, with h− < 0 < h+. (The region where h > 0 is shaded.)

Note that, up to various rescalings, (2.4) is of the form

x′ = −y + x2,

y′ = x− λ,

which is a prototypical system for the occurrence of a canard explosion (at λ = 0) [20]; see also
(1.1). In the following, we will describe how the equations in (2.3) fit into the framework of [20],
where the classical two-dimensional scenario is analyzed using geometric singular perturbation
theory. The role of the bifurcation parameter λ is taken by w̄ in our case. For w̄ = 0, (2.4) is
an integrable system, with constant of motion given by

(2.5) H(v̄, z̄) =
1

2
e−2f2z̄

(
−v̄2 +

z̄

f2
+

1

2f2
2

)
.

The equations in (2.4) have a continuous family of periodic orbits which are most conveniently
described via the level curves of H; these are defined by H(v̄, z̄) = h for h constant. The
corresponding (time-parametrized) solution curves will be denoted by γ̄h0 (t) = (v̄h0 , z̄

h
0 )(t) in

the following.
We first note that (v̄, z̄) = (0, 0) lies on the curve defined by H(v̄, z̄) = h0 := (4f2

2 )−1.
For h > h0, there exist no real solutions to H(v̄, z̄) = h. Hence, without loss of generality,
we consider h ≤ h0 now, and we note that h0 > 0. For h = 0 in (2.5), we obtain the special
solution γ̄0

0 of (2.4), with

(2.6) γ̄0
0(t) = (v̄0

0, z̄
0
0)(t) =

( 1

2f2
t,

1

4f2
t2 − 1

2f2

)
.

Note that (2.6) defines an invariant parabola that separates the closed level curves of H, which
are obtained for h > 0, from the open ones, with h < 0; see Figure 5 for an illustration. Since
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the two branches of this parabola correspond to Sa−
0 and Sr

0 for w̄ = 0, after the rescaling in
(2.2), γ̄0

0 is a “singular canard solution,” i.e., a solution of (2.3) that connects Sa−
ε and Sr

ε in
the singular limit as ε → 0. (In fact, as we will see in (2.16) below, the orbit determined by
γ̄0

0 is precisely the strong canard Γ0
ε in this singular limit.)

Let Δ denote the section that corresponds to Δ in the “barred” variables; i.e., let Δ =
{v̄ = 0}, with |z̄| and |w̄| bounded. For h fixed, let z̄h be the corresponding value of z̄ in Δ,
with H(0, z̄h) = h. (In particular, by (2.6), there holds z̄0 = −(2f2)

−1.) Our first result is a
direct consequence of the above discussion; see [20] for details.

Proposition 2.1. To any h ≤ h0, with h0 = (4f2
2 )−1 > 0, there corresponds precisely one

value z̄h ≤ 0 of z̄ in Δ. Moreover, z̄h is an increasing function of h.
Since the limiting equations obtained for w̄ = 0 = ε in (2.3) are integrable, we will refer

to the original, “perturbed” dynamics as “near-integrable.” (A related treatment of a more
general family of near-integrable systems can be found in [15].) The near-integrability of (2.3)
will allow us to analyze the dynamics of the equations using a perturbation analysis, and
to approximate the return map from Δ to itself, which we refer to as Π, to leading order.
Naturally, the closed level curves of H will turn out to be the singular “templates” for the
small-amplitude component of the mixed-mode dynamics observed in (2.1). Moreover, as we
will show, it is the bifurcation structure of Π that is responsible for the emergence of secondary
canards in (2.3); these canards, in turn, determine the qualitative structure of the resulting
MMO patterns. In that sense, the rescaling in (2.2) will enable us to access the near-integrable
structure of (1.5) close to �−.

We will define the return map Π on Δ− ⊂ Δ, which is the portion of Δ where z̄ < 0.
Although Π is a priori a function of (z̄, w̄), it is more convenient to parametrize z̄ by h and
to describe the asymptotics of Π in terms of h and w̄ in the following. For h ≤ h0, with h0

as above, let z̄h again denote the corresponding unique value of z̄ ∈ Δ−, and note that we
will sometimes identify z̄h with its associated h-value. Moreover, let γ̄hε (t) be the solution
to (2.3) emanating from (0, z̄h, w̄), where the time parametrization is chosen so that γ̄hε (0) is
contained in Δ+ := Δ\Δ−. Then, we define T h

−(w̄) < 0 and T h
+(w̄) > 0 by requiring that

γ̄hε (T h
±(w̄)) ∈ Δ−. Moreover, we assume that T h

±(w̄) are the times of the first such intersection.
Let T h : Δ− → Δ− denote the return time of solutions under the flow of (2.3), and note that,

by definition, T h(w̄) = T h
+(w̄) − T h

−(w̄). Let ĥ be defined by the requirement that z̄ĥ is the
z̄-coordinate of γ̄hε (T h(w̄)) ∈ Δ−; an illustration of these definitions is given in Figure 6.
Finally, for w̄ = 0, we write T h := T h

+(0), which, together with T h
−(0) = −T h

+(0), implies

(2.7) T h(0) = T h
+(0) − T h

−(0) = 2T h.

We now make the following assumption on w̄, which will be verified a posteriori for the
parameter regime we are interested in.

Assumption 1. For fixed, real f2 > 0, f3 < 0, μ > 0, and g1 > 0 and 0 < ε � 1 sufficiently
small in (2.3), w̄ = O(

√
ε) uniformly in t̄.

It will follow from our analysis that Assumption 1 defines an invariant region for the return
map Π which roughly corresponds to the regime where w̄ = O(

√
ε). More precisely, if an initial

condition for (2.3) satisfies the assumption, it will be satisfied along the entire corresponding
trajectory of (2.3). Finally, since w =

√
εw̄, Assumption 1 implies that w = O(ε) must hold

in (2.1), uniformly in τ .
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z̄

v̄

γ̄h
ε (T h

−(w̄)) = (0, z̄h, w̄)

γ̄h
ε (T h

+(w̄)) = (0, z̄ĥ, ŵ)

γ̄h
ε

Δ−

γ̄h
ε (0)

Figure 6. The geometry of system (2.3).

We state our next result in a slightly more general context than that of (2.3). The reason
for this generalization is that we will modify (2.3) later to simplify our estimates of the return
time T h(w̄). Thus, instead of (2.3), we now consider the following generalized system of
equations:

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (w̄,

√
ε) + w̄G(w̄,

√
ε),(2.8a)

z̄′ = v̄ − w̄ + O(ε),(2.8b)

w̄′ = ε
(
μ− g1εz̄ + O(ε)

)
,(2.8c)

where F and G are assumed to be Cn-smooth for n ≥ 1 sufficiently large in both w̄ and
√
ε.

Note that all the definitions and notation introduced in the context of (2.3) extend without
modification to (2.8).

Proposition 2.2. Let Π : Δ− → Δ− and γ̄hε be defined as above, and let (h, w̄) ∈ Δ−.
Suppose that h > 0, with h = O(εM ) for some M > 0 and ε > 0 sufficiently small, and that
the trajectory starting at (h, w̄) undergoes a small oscillation (“loop”) before returning to Δ−.
Then,

(2.9) (ĥ, ŵ) := Π(h, w̄) =
(
h +

√
εdh√ε + w̄dhw̄ + O

(
(
√
ε + w̄)2

)
, w̄ + εμT h(w̄) + O(ε2)

)
,

where the coefficients dh√
ε

and dhw̄ are defined as

(2.10) dh√ε =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3, 0

)T
dt

and

(2.11) dhw̄ =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt,
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respectively, and γ̄h0 (t) = (v̄h0 , z̄
h
0 )(t) denotes the solution to (2.4) with H(v̄h0 , z̄

h
0 ) = h.

Remark 2. Given Assumption 1, as well as the fact that T h(w̄) ∼
√
−2 lnh by Lemma A.2,

h = O(εM ) implies εT h(w̄) = O(ε
√
− ln ε) in (2.9) for any M > 0. Moreover, the expansion

for ĥ remains valid even if M > 1
2 , i.e., when the leading-order term in ε is given by

√
εdh√

ε
.

Hence, it follows that (2.9) describes the map Π up to an O(ε)-error.
Proof. We only sketch the proof here and refer the reader to [19] for details.
To derive the expression for ŵ, one makes use of the near-integrability of (2.8) as well as

of regular perturbation theory.
To prove the assertion for ĥ, we first note that

(2.12) ĥ− h := H(0, ẑĥ) −H(0, z̄h) =

∫ Th
+(w)

Th
−(w)

d

dt
H(γ̄hε (t)) dt.

Since, to lowest order,

d

dt
H(γ̄hε (t)) = ∇H(γ̄hε (t)) · (v̄′, z̄′)T

∣∣
γ̄h
ε

= ∇H(γ̄h0 (t)) · (v̄′, z̄′)T
∣∣
γ̄h
0
,

and since H is a constant of motion, it follows with (2.8a) and (2.8b) that

ĥ− h =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3 + F (0, 0), 0

)T
dt

√
ε(2.13)

+

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt w̄ + O(2);

see also [20]. (Here, O(2) denotes terms of at least second order in
√
ε and w̄.) Since,

however, (v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄

h
0 )(t) on γ̄h0 by symmetry, a change of variables via t �→ −t in

combination with (2.5) shows∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t)) dt = −

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t) dt = −
∫ −Th

Th

v̄h0 (−t)e−2f2z̄h0 (−t) d(−t)

= −
∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t)) dt.

Therefore, the latter integral must be zero, which implies∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t))F (0, 0) dt = 0 and

∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t))G(0, 0) dt = 0.

It follows that (2.13) reduces to

ĥ− h = dh√ε

√
ε + dhw̄w̄ + O(2),

with the coefficients dh√
ε
and dhw̄ as defined in (2.10) and (2.11). This completes the proof.

Remark 3. Note that the functions T h
±(w̄) and T h(w̄) depend very sensitively on h, w̄,

and
√
ε; in fact, since lim(h,w̄,ε)→(0,0,0) T

h(w̄) = ∞, T h(w̄) has a singularity at the origin. For
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this reason, it is not immediately obvious that T h
+(w̄) and T h

−(w̄) can be replaced by T h and
−T h, respectively, in (2.12). However, the arguments in [19] can easily be extended to justify
this point.

Given Proposition 2.2, we make the following observations:
(i) Observe that, for μ = 0, the equations in (2.3) have an equilibrium point at the

origin. The linearization of (2.3) about this equilibrium has a pair of purely imaginary
eigenvalues, as well as a simple eigenvalue 0. The corresponding steady-state Hopf-
type interactions mark the onset of small-amplitude oscillations in (2.3); see also [20,
Theorem 3.1]. (Note that the presence of the zero eigenvalue, which is due to the
absence of a linear w̄-term in (2.3c), introduces a degeneracy at the origin in (2.3).)

(ii) In order to obtain periodic orbits in (2.3), we have to require h = ĥ and w̄ = ŵ; see
the definition of Π in (2.9). Hence, to leading order, we must impose the condition

(2.14) dh√ε

√
ε + dhw̄w̄ = 0

on (h, w̄). To show that (2.14) can be solved for h and w̄, we have to find the next-order
correction to ŵ in (2.9): integrating (2.3c), we obtain

ŵ = w̄ + 2εμT h − g1ε
2

∫ Th

−Th

z̄(t) dt,

to leading order. Using (2.3a) to express z̄ in terms of v̄, we find

ŵ ∼ w̄ + ε

(
2μT h − g1ε

∫ Th

−Th

(
−v̄′(t) + f2v̄(t)

2
)
dt

)
.

(Here and in the following, the tilde indicates a leading-order asymptotic approxima-
tion.) Since, moreover, v̄(−T h) = 0 = v̄(T h) by definition, and since (2.3b) implies
dz̄
dt ∼ v̄ by Assumption 1, it follows that

ŵ ∼ w̄ + 2ε

(
μT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄

)
.

Here, ξh = z̄(−T h) and ζh = z̄(0) denote the z̄-values in Δ corresponding to γ̄hε (−T h)
and γ̄hε (0), respectively. In sum, the requirement that w̄ = ŵ gives

(2.15) μT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄ = 0

to lowest order. Since 1
Th

∫ ζh

ξh
v̄(z̄) dz̄ increases monotonically in h as h → 0 (see [19]),

it follows that, for ε and μ small and fixed, one can find h such that (2.15) holds.
Given that h-value, one can use (2.14) to determine the associated value of w̄.

(iii) For μ and ε sufficiently small in (2.1), there exists a canard trajectory lying in the
intersection of the manifolds Sa−

ε and Sr
ε ; this trajectory is the strong canard Γ0

ε.
Since Sa−

ε and Sr
ε intersect transversely, as we will show in section 2.3 below, Γ0

ε is
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well defined; moreover, it is unique once specific sheets of Sε have been chosen. The
associated canard critical value w̄c, i.e., the value of w̄ in the rescaled system (2.3)
that corresponds to Γ0

ε, is given by

(2.16) w̄c = −
d0√

ε

d0
w̄

√
ε + O(ε),

where d0√
ε

and d0
w̄ are obtained from (2.10) and (2.11) in the limit as h → 0 [19].

In particular, since w̄c → 0 for ε → 0, (2.16) yields precisely the singular canard
solution γ̄0

0 in this limit; cf. (2.6). Hence, as h → 0, (2.3) undergoes a classical (two-
dimensional) canard explosion at w̄ = 0 = ε [20].
To evaluate (2.16), note that (2.5) implies

(2.17)
∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄.

Using the parametrization of γ̄0
0 in (2.6) and taking into account that T 0 = ∞, one

finds as in [19] that

(2.18) d0√
ε = − 3f3

16f4
2

√
2πe and d0

w̄ = − 1

2f2

√
2πe;

see Appendix A for details. Therefore, for given μ, the corresponding value of w̄c can
be obtained from

(2.19) w̄c = − 3f3

8f3
2

√
ε + O(ε);

note that w̄c > 0 due to f2 > 0 and f3 < 0.

These observations combined suggest the following: for ε > 0 fixed, system (2.3) undergoes a
Hopf bifurcation at the origin for μ = 0 by (i); this bifurcation gives rise to small-amplitude
limit cycles in (2.3). These cycles will persist as long as both (2.14) and (2.15) can be satisfied,
as shown in (ii). In that case, μ = O(ε) must hold, since T h = O(

√
− ln ε), ζh = O(

√
− ln ε),

and ξh = O(1) by Appendix A, while v̄, f2, and g1 are O(1) by assumption. Hence, for μ
sufficiently small, the dynamics of (2.3) will be dominated by 0k-type orbits, i.e., by MMO
trajectories with Farey sequence {0k}. As μ is increased, the evolution of w̄ in (2.3c) is
governed by the positive, μ-dependent drift, with w̄′ ∼ εμ. Since z̄ decreases with increasing w̄
(see (2.3b)), it follows that h must also decrease by Proposition 2.1. In other words, h → 0 with
increasing μ, and the system moves closer and closer toward a canard explosion, as discussed
in (iii). Finally, for μ = μc large enough, the w̄-drift is sufficiently strong for the dynamics of
(2.3) to bypass the fold region and enter the relaxation regime. (The corresponding “critical”
μ-value μc will be discussed in detail in section 2.5 below.)

In our analysis, we will focus primarily on the regime where μ is sufficiently large for
0k-type orbits not to dominate the dynamics of (2.3) anymore. Since these orbits can occur
only when (2.3) is close to Hopf bifurcation (i.e., as long as μ = O(ε) and, hence, w̄′ ∼ 0), the
degeneracy of the equations at the Hopf point will not be of relevance to us. On the other
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hand, we will assume that μ < μc, i.e., that μ is not large enough for (2.3) to have entered the
relaxation regime, which is characterized by L0-type orbits (trajectories with Farey sequence
{L0}).

As we will show, this “intermediate” regime corresponds precisely to the nontrivial mixed-

mode dynamics of (1.5), with orbits of the type {Lkj
j } for Lj , kj ≥ 1. Correspondingly, h will

have to be small in the sense that |h| = O(εM ) for some M > 0 “large”; however, h cannot
be exponentially small in ε, since trajectories must stay away from the strong canard Γ0

ε. The
statement of Proposition 2.2 pertains exactly to that intermediate case.

Finally, we remark that we will restrict ourselves to a leading-order description of the
return map Π in the following, as we did in the proof of Proposition 2.2. The resulting
approximation will remain consistent as long as h = O(εM ) is not “too large,” i.e., if ε > 0
is sufficiently small or if M > 0 is large enough: due to T h(w̄) ∼

√
−2 lnh ∼

√
−2M ln ε,

the εT h(w̄)-term in (2.9) will dominate the neglected terms of order O(ε) in that case. These
considerations will be made more explicit in Proposition 3.4 below.

2.3. The transition from Σin to Δ−. Let Πin denote the transition map from Σin to
Δ−; see sections 2.1 and 2.2 for the definitions of Σin and Δ−. Moreover, let us introduce an

intermediate section Δ
in

for the rescaled equations in (2.3), with Δ
in

=
{
(v̄, z̄, w̄)

∣∣ v̄ = −α
}
,

and let Δin denote the corresponding section in (v, z, w)-space. (Here, 0 < α < ρ is some
arbitrary constant.) Then, we have the following result on the transition from Σin to Δ−.

Proposition 2.3. Let (zin, win) ∈ Σin. Then, for ε > 0 sufficiently small,

(h−, w̄−) := Πin(zin, win)(2.20)

=
(√

εd−√
ε
+

win

√
ε
d−w̄ + O

(
(
√
ε + win)2

)
,
win

√
ε

+ winf2μ
√
ε ln ε + O(

√
ε)
)
,

where d−√
ε

and d−w̄ are defined by

(2.21) d−√
ε

=

∫ 0

−∞
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)

3, 0
)T

dt

and

(2.22) d−w̄ =

∫ 0

−∞
∇H(γ̄0

0(t)) · (0,−1)T dt,

respectively (see (2.10) and (2.11)), and γ̄0
0(t) = (v̄0

0, z̄
0
0)(t), as in (2.6).

Remark 4. Since win = O(ε) by Assumption 1, it follows that win
√
ε

in (2.20) remains

bounded as ε → 0.
Proof. We first analyze the transition from Σin to Δin. To that end, we desingularize the

reduced problem associated with (1.5) following the ideas in [2]; see also the derivation of
(2.44) in section 2.4. First, we approximate z by f(v); i.e., we restrict ourselves to the critical
manifold Sa−

0 to leading order. The resulting “reduced” problem for (2.1) has the form

f ′(v)v̇ = v − w,(2.23a)

ẇ = ε
(
μ− g1f(v)

)
.(2.23b)
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(Note that this approximation is reasonable due to the form of (2.23b): since ε multiplies
the entire right-hand side in (2.23b), the O(ε)-correction to z = f(v) will be O(ε2) for the
dynamics.) The desingularized version of (2.23) is obtained by multiplying the right-hand
sides by −f ′(v) = −(2f2v + 3f3v

2):

v̇ = −(v − w),(2.24a)

ẇ = −ε
(
μ− g1f(v)

)
f ′(v).(2.24b)

We now introduce a new variable

W =
w

v

in (2.24). (The introduction of W corresponds to a projectivization of the vector field in
(2.24) that desingularizes the dynamics close to the origin.) After the transformation to the
variables (v,W ), system (2.24) becomes

v̇ = −v(1 −W ),(2.25a)

Ẇ = W (1 −W ) − ε
(
μ− g1(f2v

2 + f3v
3)
)
(2f2 + 3f3v).(2.25b)

Since we are not interested in the (time-parametrized) solutions of (2.25) but only in the
corresponding orbits, we can rescale time by dividing out a factor of 1 − W from both
right-hand sides in (2.25). Moreover, since we consider v ∈ [−ρ,−α

√
ε] (by the definition

of Σin and Δin) and w = O(ε) (see Assumption 1), W is small. Hence, we can expand
(1 − W )−1 = 1 + W + O(W 2) and neglect terms of second order and upward in (v,W ) in
(2.25b), approximating the resulting equations by

dv

dt̃
= −v,(2.26a)

dW

dt̃
= (1 − 2f2με)W − 2f2με− 3f3μεv.(2.26b)

(Here, t̃ denotes the new rescaled time.)

Let T̃ be the transition time from Σin to Δin under the flow of (2.26), and recall that
v = −ρ in Σin and v = −α

√
ε in Δin, respectively. Then, a simple computation using (2.26a)

shows that T̃ satisfies the identity

(2.27) eT̃ =
ρ

α

1√
ε
.

(In particular, (2.27) implies that T̃ depends only on α, ρ, and ε but not on the specific choice

of trajectory in (2.26).) By a direct integration of (2.26b), it follows with εv(T̃ ) = −ερe−T̃ =
O(ε

√
ε) that

(2.28) W (T̃ ) = (W in − 2f2με)e
(1−2f2με)T̃ + 2f2με + O(ε

√
ε),

where W in = −win

ρ is the value of W in Σin. The geometry of (2.26) is illustrated in Figure 7.
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v

W

0

Σin

Δin

(−α
√

ε, W ( eT ))

(−ρ, W in)

Figure 7. The geometry of system (2.26).

Now, note that w = −α
√
εW (T̃ ) holds in Δin for the w-value corresponding to W (T̃ ).

Hence, expanding the exponential in (2.28), we obtain

(2.29) w(T ) = win + winf2με ln ε + O(ε),

where T denotes the transition time from Σin to Δin in the original system (2.24).
To complete the proof, we have to describe the second part of the transition, from Δin to

Δ−. To that end, we slightly modify the ideas of section 2.2. Recall the rescaled equations in
(2.3), as well as the singular version obtained for ε = 0 (cf. (2.4)) and the parametrization of
the z̄-coordinate therein by h. (For z̄ fixed, the corresponding (unique) value of h is determined
from H(0, z̄) = h; cf. (2.5).) Also recall that, for h = 0, there exists a parabolic level curve
for H which corresponds to the special (singular canard) solution γ̄0

0 to (2.4) and which acts
as a separatrix between the closed level curves (where h > 0) and the open ones (with h < 0).

Let Π
in

denote the transition map from Δ
in

to Δ−, and let (z̄, w̄) ∈ Δ
in

. Since we are
interested in describing the dynamics close to Sa−

0 , we may assume that (−α, z̄, w̄) is the
endpoint of a trajectory originating in Sa−

ε . We claim that

(2.30) (h−, w̄−) = Π
in

(z̄, w̄) =
(√

εd−√
ε
+ w̄d−w̄ + O(2), w̄ + 2αf2με + O(ε2)

)
,

where d−√
ε

and d−w̄ are defined as in (2.21) and (2.22), respectively, and O(2) = O((
√
ε+ w̄)2),

as before.
To derive the expression for w̄− in (2.30), we simply integrate the w̄-equation in (2.3) to

obtain w̄− = w̄+εμT
in

+O(ε2), where T
in

denotes the transition time from Δ
in

to Δ in (2.4).

Then, by integrating (2.4) directly from v̄ = −α to v̄ = 0 along γ̄0
0 , we find T

in
= 2αf2.

The expression for h− is obtained from the near-integrability of (2.3) and from the analysis
in [20]; see also the proof of Proposition 2.2. More specifically, the condition for (v̄, z̄, w̄) to
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be on a trajectory originating in Sa−
ε is

(2.31) h− =
√
εd−√

ε
+ w̄d−w̄ + O(2),

which proves (2.30). (Here, the limits of integration in the definition of d−√
ε

and d−w̄ follow

from the fact that T h
+(0) → ∞ as h → 0.)

Finally, the assertion of the proposition follows by combining (2.29) and (2.30), taking
into account that w̄ = w√

ε
.

Remark 5. Note that to the order considered here, the definition of the intermediate sec-

tion Δ
in

does not influence the asymptotics of Π
in

, as expected.
Proposition 2.3 has the following important implication: recall the set C−

ε ⊂ Δ− consisting
of the endpoints of trajectories starting in Sa−

ε . Then, it follows from (2.31) that C−
ε can be

represented as the graph of a function h−(w̄,
√
ε) satisfying

(2.32) h−(w̄,
√
ε) =

√
εd−√

ε
+ w̄d−w̄ + O(2).

In analogy to (2.21) and (2.22), one can define the coefficients

(2.33) d+√
ε

= −
∫ ∞

0
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)

3, 0
)T

dt

and

(2.34) d+
w̄ = −

∫ ∞

0
∇H(γ̄0

0(t)) · (0,−1)T dt

to describe the leading-order dynamics on Sr
ε . Hence, it follows that the set C+

ε can also be
represented as the graph of a function h+(w̄,

√
ε) satisfying

(2.35) h+(w̄,
√
ε) =

√
εd+√

ε
+ w̄d+

w̄ + O(2).

Note that d±√
ε

= ∓1
2d

0√
ε

and, similarly, d±w̄ = ∓1
2d

0
w̄ by symmetry, where d0√

ε
and d0

w̄ are

defined in (2.18).
Given the above representation of C∓

ε , we make the following observations:
(i) Due to d−w̄ < 0 and d+

w̄ > 0, (2.32) and (2.35) imply that C−
ε and C+

ε intersect trans-
versely for w̄ = w̄c, with w̄c as in (2.19). Hence, the strong canard Γ0

ε is indeed well
defined; recall the discussion in section 1. In particular, the resulting geometry justifies
the heuristic picture sketched in Figure 4; cf. Figure 8.

(ii) Similarly, the representations in (2.32) and (2.35) will be used in the definition of
secondary canards Γj

ε for j ≥ 1 as the transverse intersection of subsequent iterates of
C−
ε under Π with C+

ε ; see section 3.3 for details.

2.4. The transition from Δ− to Σout. We now discuss the behavior of trajectories that
exit the fold region in the direction of positive v and that then undergo relaxation. We begin
by making a change of coordinates which transforms C+

ε to the plane z̄ = z̄0, where z̄0 denotes
the z̄-value corresponding to h = 0 in (2.3). To that end, we define

(2.36) Δz̄(w̄,
√
ε) = z̄0 − z̄h

+(w̄,
√
ε),
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w̄

0 w̄c

C+
ε

C−
ε

h(w̄)

Figure 8. The curves C−
ε and C+

ε .

where h+ is as in (2.35), and we let

(2.37) z̃ = z̄ + Δz̄(w̄,
√
ε).

The transformation in (2.37) is introduced to “flatten” the repelling sheet Sr
ε of Sε in Δ for

ε > 0 sufficiently small: by (2.36), the z̄-value corresponding to h+, z̄h
+
, is transformed into

z̄h
+

+ z̄0 − z̄h
+

= z̄0; hence, C+
ε is represented as the graph of the zero function after the

transformation:

(2.38) C+
ε =

{
(0, w̄)

∣∣ w̄ = O(
√
ε)
}
.

Recall that in the singular limit of ε = 0 = w̄, h = 0 separates the small-oscillation regime
in (2.3), where h > 0, from the relaxation regime (with h < 0); see Proposition 2.1. By
introducing z̃, as defined in (2.37), we extend this characterization to the case where ε (and,
hence, also w̄) is positive but small: given (2.38), trajectories with h < 0 will end up “below”
Sr
ε in Δ−, implying that they will leave the fold region and undergo relaxation; trajectories

with h > 0, on the other hand, will remain trapped “above” Sr
ε and will therefore stay in

the small-oscillation regime close to �−. (This fact will simplify the following analysis and, in
particular, the study of secondary canards in section 3.3, since it will facilitate the evaluation
of the conditions that define these canard trajectories.)

In analogy to h+, the function h− in (2.32) is mapped to

h0(w̄) ≡ h0(w̄,
√
ε) = h−(w̄,

√
ε) − h+(w̄,

√
ε)

=
√
ε
(
d−√

ε
− d+√

ε

)
+ w̄(d−w̄ − d+

w̄) + O(2)

=
√
εd0√

ε + w̄d0
w̄ + O(2)

(2.39)

by (2.37), where we suppress the
√
ε-dependence of h0 for brevity. Hence, after performing
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Sr
ε

Sa−
ε

C−
ε

C+
ε

z

v

w

ΔΓ0
ε

Figure 9. The curves C−
ε and C+

ε after the transformation in (2.35).

the coordinate transformation in (2.37), we find that C−
ε is given by

(2.40) C−
ε =

{
(h0(w̄), w̄)

∣∣ w̄ = O(
√
ε)
}
.

The situation is illustrated in Figure 9; note the change from Figure 4 in that C+
ε is now

parallel to the w-axis, with C−
ε “tilted” accordingly.

Next, we note that the higher-order terms that are introduced into (2.3) by the transfor-
mation in (2.37) are precisely of the form O(w̄,

√
ε). Hence, the resulting, transformed system

is of the form (2.8), and the results of Proposition 2.2 can be applied directly to it.

Finally, in analogy to the transition times T h(w̄) defined for h > 0 above, we now define

(2.41) T h,out(w̄) = −T−h
− (w̄)

for h < 0. We have the following result on the transition from Δ− to Σout.

Proposition 2.4. Let (h, w̄) ∈ Δ− with h < 0 and h = O(εM ) for some M > 0 and ε > 0
sufficiently small. Then,

(2.42) (zout, wout) := Πout(h, w̄) =
(
εz̃out + O(ε ln ε),

√
εw̄ + ε

√
εT h,out(w̄)μ + O(ε

√
ε)
)
,

where z̃out is the z̃-value corresponding to hout = h+
√
εdout√

ε
+w̄dout

w̄ , with dout√
ε

and dout
w̄ defined

by

dout√
ε = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3, 0

)T
dt
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v̄

z̄
γ̄−h

ε

γ̄0
ε

Δ
out

γ̄h
ε

γ̄−h
ε (T−h

− (w̄))

γ̄−h
ε (0)

γ̄h
ε (0)

γ̄h
ε (T h,out(w̄))

Δ−

Figure 10. The definition of Th,out(w̄) for h < 0.

and

dout
w̄ = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) · (0,−1)T dt,

respectively (see (2.10) and (2.11)).

Proof. For (h, w̄) ∈ Δ− with h < 0 and h = O(εM ), let Π
out

denote the time-T h,out(w̄)
transition map for (2.8), i.e., for the system obtained from (2.3) after the transformation to

z̃. Moreover, let Δ
out

:= Π
out

(Δ−), which implies that the definition of the intermediate

section Δ
out

is now “implicit” (w̄-dependent); cf. Figure 10. Then, it follows as in the proof
of Proposition 2.2 that

(2.43) (hout, w̄out) := Π
out

(h, w̄) =
(
h +

√
εdout√

ε + w̄dout
w̄ +O(2), w̄ + εT h,out(w̄)μ + O(ε

√
ε)
)
,

where again O(2) = O((
√
ε+ w̄)2), T h,out(w̄) is, by the definition of Δ

out
, the transition time

from Δ to Δ
out

in (2.8), and dout√
ε

and dout
w̄ are defined as above.

To study the second part of the transition, from Δ
out

to Σout, we introduce a new variable Z
in the original (unmodified) system (1.5), where Z is defined by z = v2Z. This transformation
serves to desingularize (1.5) close to the origin for v positive and small: in terms of (v, Z,w),
(1.5) becomes

v′ = v2(−Z + f2 + f3v),(2.44a)

Z ′ = −2Zv(−Z + f2 + f3v) +
ε

v

(
1 − w

v

)
,(2.44b)

w′ = ε2(μ− g1v
2Z).(2.44c)

Now, let Ψ(v, Z) = v2(−Z+f2+f3v); then, dividing the right-hand sides of (2.44) by Ψ(v, Z),
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v

Z

Δout

Σout

0

(vout , Zout)

(δ, Z( eT ))

Figure 11. The geometry of system (2.46).

we find

dv

dt̂
= 1,(2.45a)

dZ

dt̂
= −2

v
Z +

ε

vΨ(v, Z)

(
1 − w

v

)
,(2.45b)

dw

dt̂
=

ε2

Ψ(v, Z)
(μ− g1v

2Z);(2.45c)

here, t̂ denotes the new, rescaled time.
We first investigate the dynamics of Z in the transition. Let Δout denote the section in

(v, Z,w)-space corresponding to Δ
out

. Given an initial v-value vout for (1.5) in Δout, it then
follows that vout = O(

√
εT h,out(w̄)) = O(

√
−ε ln ε) must hold, which, together with (2.45a)

and w = O(ε) (see Assumption 1), implies that w
v is small throughout. Since, moreover,

dw
dt̂

= O(ε(ln ε)−1) by (2.45c), w remains almost constant, and we can neglect its evolution.
Hence, expanding Ψ in (2.45b) and truncating the resulting equation, we find that to

leading order,

dv

dt̂
= 1,

dZ

dt̂
= −2

v
Z +

ε

f2v3

(
1 + O(v, Z)

)
.

(2.46)

The transition from Δout to Σout under the flow of (2.46) is illustrated in Figure 11. Now, for
(vout, Zout) ∈ Δout, we can solve (2.46) explicitly to leading order by variation of constants,
which gives

(2.47) Z(v) =
(vout)2Zout

v2
+

ε

f2v2
ln

v

vout
+ O(ε).
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Here, we have neglected the effect of the inhomogeneous O(v, Z)-terms in (2.46), since it can
be shown that these contribute only terms of order O(ε) in (2.47). Now, the corresponding
expression in the original variable z is given by

z(v) = εz̃out +
ε

f2
ln

v

vout
+ O(ε)

for z̃out in Δ
out

, where we have used v2Z = z = εz̃. Recalling that vout = O(
√
−ε ln ε) as well

as that v = δ in Σout, we find

(2.48) z(T ) = εz̃out + O(ε ln ε);

here, T denotes the transition time from Δout to Σout.

We now use the estimate for z(T ) in (2.48) to derive an estimate for w(T ). Since dv =
Ψ(v, Z) dt (see (2.44a)) and since, moreover, Z = O(1), there certainly holds 1

2Ψ(v, 0) ≤
Ψ(v, Z). Hence, it follows that T satisfies the inequality

(2.49) T ≤ 2

∫ δ

vout

dv

Ψ(v, 0)
,

to leading order. The integral on the right-hand side of (2.49) can be evaluated explicitly,
giving

T ≤ 2

f2vout
− f3

f2
2

ln ε + O(1).

Integrating the w-equation (2.44c) directly and taking into account (2.43) as well as vout =
O(

√
−ε ln ε) and w =

√
εw̄, we obtain

w(T ) =
√
εw̄out + ε2

(
μT − g1

∫ δ

vout

z(v)

Ψ(v, 0)
dv

)
+ O(ε3)

=
√
εw̄ + ε

√
εT h,out(w̄)μ + O(ε

√
ε).

(2.50)

To complete the proof, it remains to collect the above estimates: with z̃out the z̃-value cor-
responding to hout (see (2.43)), we find the desired expression for zout in (2.42) from (2.48).
The estimate for the wout-component of Πout follows directly from (2.50).

2.5. The global return mechanism. In this subsection, we describe the global mechanism
that determines the return of trajectories of (1.5) from Σout back to Σin. The corresponding
return map will be denoted by Πret. Since the necessary analysis is largely based on standard
geometric singular perturbation (Fenichel) theory [11], we do not discuss it in full detail here;
moreover, for the sake of exposition, we will make a number of additional, simplifying assump-
tions throughout this subsection. As it turns out, the resulting leading-order asymptotics of
Πret will still give an approximation for the composite return map Π that is consistent to the
order considered here; cf. section 4 below.

In a first approximation, we may assume that z = f(v) is satisfied; i.e., for ε > 0 sufficiently
small, we may restrict ourselves to the singular dynamics of (1.5) on S0. We recall the
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v

z

vmax v0

Σin
Σout

S0 : {z = f(v)}

0v∗max

Figure 12. The geometry of the global return mechanism.

definition of the corresponding reduced system from (2.24):

v̇ = −(v − w),(2.51a)

ẇ = −ε
(
μ− g1f(v)

)
f ′(v).(2.51b)

Moreover, we can safely neglect the w-term on the right-hand side of (2.51a), since this term
is assumed to be small throughout; see Assumption 1. Then, we rewrite (2.51) with v as the
independent variable; i.e., we divide (2.51b) by (2.51a), which gives

(2.52)
dw

dv
= ε

(
μ− g1f(v)

)f ′(v)

v
.

Given an initial v-value v∗ on S0, (2.52) can be integrated explicitly as follows:

(2.53) w(v) − w(v∗) = εG(v∗, v, μ) := ε

∫ v

v∗

(
μ− g1f(σ)

)f ′(σ)

σ
dσ.

To describe the return of trajectories from Σout to Σin under the flow of (2.52) on S0, we
need to consider two separate parts of the transition, namely, the parts where v evolves along
Sa+

0 and Sa−
0 , respectively. (Note that by restricting ourselves to the slow flow on S0, we are

implicitly neglecting the transition from �− to Sa+
0 and from �+ to Sa−

0 , respectively, under
the fast flow of (1.5), since, by standard Fenichel theory [11], the corresponding contributions
to Πret are of higher order; cf. Figure 12.) The relevant integrals in (2.53) are given by

G(v0, vmax, μ) =

∫ vmax

v0

(
μ− g1f(σ)

)f ′(σ)

σ
dσ

and

G(v∗max,−ρ, μ) =

∫ −ρ

v∗max

(
μ− g1f(σ)

)f ′(σ)

σ
dσ,
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respectively. Here, vmax is the value of v for which f attains its local maximum, v∗max < 0
is defined by the requirement that f(v∗max) = f(vmax), and v0 > 0 is the second (nontrivial)
zero of f , with f(v0) = 0; see again Figure 12. To facilitate further the evaluation of these
integrals, we will approximate G(v∗max,−ρ, μ) by G(v∗max, 0, μ); i.e., we will evaluate the integral
over Sa−

0 down to and including �−. (In fact, a straightforward though lengthy computation
shows that this approximation will offset precisely the part of the O(

√
ε)-error term in Πin

that is independent of win; cf. Proposition 2.3.)
Hence, in sum, it follows that the w-component ŵ of Πret : Σout → Σin is given by

(2.54) ŵ = w + ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
,

to lowest order. In particular, note that (2.54) determines the global “amount of return” of
w after one relaxation cycle, expressed as a function of the parameter μ. (This fact will prove
especially useful in section 3 below.) Let

Dμ =
d

dμ

(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
,

and observe that the rate of change of the return point with respect to μ is given by Dμε.
From the above, it follows that Dμ can easily be approximated to lowest order in terms of the
function G: by the definition of G and making use of the fact that

vmax = −2f2

3f3
, v∗max =

f2

3f3
, and v0 = −f2

f3
,

we obtain

(2.55) G(v0, vmax, μ) + G(v∗max, 0, μ) =
g1

18

f5
2

f3
3

− μ
f2
2

f3
.

Differentiating (2.55) with respect to μ, we find Dμ = −f2
2
f3

.
Similarly, the critical value μc of μ for which MMOs cease to exist in (1.5) is to leading

order determined by requiring ŵ = w in (2.54) or, alternatively, by finding μ such that (2.55)
equals zero; again, a simple computation shows

(2.56) μc =
g1

18

f3
2

f2
3

.

For μ > μc, the dynamics of (1.5) is in the pure relaxation regime in the sense that the only
admissible periodic trajectories are those with Farey sequence {L0}.

Remark 6. Note that the fold line �+ will in general contribute logarithmic terms (in ε)
to (2.56); see, e.g., [34]. In our case, however, these terms can be shown to be of higher order
and are hence negligible.

2.6. Summary: The return map Π : Δ− → Δ−. Given the analysis of the previous
subsections, we can now define the composite return map Π : Δ− → Δ−. We note that the
definition of Π will depend on the sign of h: if h > 0, the corresponding trajectory of (1.5) will



MMOs IN THREE TIME-SCALE SYSTEMS 389

remain in the fold region, i.e., in the small-oscillation regime, and undergo another “loop.”
Hence, the return to Δ− is described by Π in that case; cf. Proposition 2.2. If, on the other
hand, h < 0, the trajectory will exit the fold region and undergo relaxation; i.e., it will leave
Δ− in the direction of the fast flow of (1.5), move “up” the slow manifold Sa+

ε under the slow
flow until it reaches �+, “jump” to Sa−

ε , and move “down” that manifold until it re-enters
a neighborhood of �−; cf., e.g., Figure 12. Therefore, the return to Δ− is described by the
composition of Πout, Πret, and Πin in that case; see Propositions 2.3 and 2.4 as well as the
discussion in section 2.5. Hence, in sum, the desired expression for Π is given as follows:

(2.57) Π(h, w̄) =

{
Π(h, w̄) if h > 0,

Πin ◦ Πret ◦ Πout(h, w̄) if h < 0.

3. Partial dimension reduction for the map Π. In this section, we show how the two-
dimensional return map Π formulated in section 2.6 can be accurately approximated by an
appropriately defined one-dimensional map, which we denote by Φ. More precisely, we will
prove that the resulting approximation error will be exponentially small in ε. The reduction
itself is carried out in two steps: first, the map Π is restricted from the two-dimensional section
Δ− to a union of one-dimensional curves ∪Cj

ε , to be specified in section 3.1. In the second step,
this restricted map is reduced further, in section 3.4, to a map Φ that is defined on the single
curve C−

ε . For a detailed study of the dynamics of Φ, we require some preparatory analysis:
in section 3.2, we approximate the derivative dΠ

dw̄ , which, in turn, allows us to derive estimates

for dΦ
dw̄ in section 3.5. The latter are needed for analyzing the contractive (or expansive)

properties of the reduced flow under Φ. In section 3.3, we characterize the secondary canards
introduced in section 1 above: we derive the defining conditions for these trajectories, and we
use those conditions to describe the family of the associated sectors of rotation. Finally, in
section 3.6, we study the dynamics of Φ on these sectors by combining the results of sections
3.3 and 3.5, and we derive precise asymptotic estimates for the bifurcation structure of the
resulting mixed-mode dynamics in (1.5).

3.1. The curves Cjε . In this subsection, we perform the first step in our exponentially
accurate reduction of Π to a one-dimensional map Φ. More precisely, we show how Π can be
restricted from Δ− to a union of one-dimensional curves ∪Cj

ε that will be defined below.
Recall the definition of the curves C−

ε and C+
ε from section 2.1, as well as the fact that C−

ε

can be represented as the graph of the function h0(w̄) defined in (2.39); see (2.40). For j ≥ 1,
we now make the inductive definition

Cj
ε = Π

({
(h, w̄) ∈ Cj−1

ε

∣∣ h > 0
})

,

where we define C0
ε ≡ C−

ε for the zeroth iterate of C−
ε under Π. Next, we show that for j ≥ 1,

each set Cj
ε can be written as the graph of a function hj(w̄), in analogy to the representation

of C−
ε given in (2.40). We first consider the case when j = 1. Note that by Proposition 2.2,

(h1, w̄1) = Π(h0(w̄), w̄) =
(
h0(w̄) +

√
εd

h0(w̄)√
ε

+ w̄d
h0(w̄)
w̄ + O(2), w̄ + εμT h0(w̄) + O(ε2)

)
,

where O(2) = O((
√
ε + w̄)2), as before. Since h0 =

√
εd0√

ε
+ w̄d0

w̄ + O(2) by (2.39) and since
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w̄

C−
ε

C+
ε

w̄c
0w̄c

1w̄c
j0

h(w̄)

Cj
ε

C1
ε

Figure 13. The curves Cj
ε for j ≥ 0, where C−

ε ≡ C0
ε .

dh
0√
ε
∼ d0√

ε
and dh

0

w̄ ∼ d0
w̄, respectively, it follows that

(3.1) h1(w̄) = 2
√
εd0√

ε + 2w̄d0
w̄ + O(2).

Similarly, for higher iterates of Π, there holds

(hj , w̄j) = Π
j
(h0(w̄), w̄)(3.2)

=

(
h0(w̄) +

√
ε

j∑
i=0

d
hi(w̄)√
ε

+ w̄

j∑
i=0

d
hi(w̄)
w̄ + O(ε), w̄ + 2εμ

j∑
i=0

T hi(w̄) + O(ε2)

)

and, therefore,

(3.3) hj(w̄) = (j + 1)
√
εd0√

ε + (j + 1)w̄d0
w̄ + O(2).

This gives the desired representation of Cj
ε as the graph of the function hj(w̄) in (3.3), with

(3.4) Cj
ε =

{
(hj(w̄), w̄)

∣∣ w̄ = O(
√
ε)
}

for j ≥ 1; cf. Figure 13.
Finally, we prove that the map Π can be restricted from Δ− to the union of the set of

curves Cj
ε with an only exponentially small error; here, Πj denotes the jth iterate of the map

Π defined in (2.57).
Proposition 3.1. Let (h, w̄) ∈ Δ−, and fix ε > 0 sufficiently small. Then, there exists k > 0

such that, for 1 ≤ j ≤ k, Πj(h, w̄) is exponentially close (in ε) to ∪k
j=1 C

j
ε .

Proof. First, observe that all trajectories must become exponentially close to Sa−
ε after

relaxation; consequently, they must return to Δ− exponentially close to C−
ε . This is equivalent

to saying that, for any (h, w̄) with h < 0, Π(h, w̄) is exponentially close to C−
ε .
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We now prove that Π2(h, w̄) must be exponentially close to C−
ε ∪C1

ε . Let (h1, w̄1) = Π(h, w̄),
and note that if h1 < 0, the forward trajectory of (h1, w̄1) must undergo relaxation. Hence,
by the above argument, Π(h1, w̄1) = Π2(h, w̄) is exponentially close to C−

ε in that case. Let
us suppose that h1 ≥ 0 now and consider h1 = O(ε) first, which is in the domain of Π. Since
the map Π is induced by the flow of (2.8) and since T h1

(w̄1) = O(
√
− ln ε) for the return

time to Δ (cf. Appendix A), the expansion that can be incurred during that return is of at
most algebraic order in ε. Consequently, Π(h1, w̄1) must be exponentially close to C1

ε . If, on
the other hand, h1 is exponentially small, i.e., if O(e−

κ
ε ) for some κ > 0, the argument from

the first part of the proof can be applied to show that Π(h1, w̄1) is again exponentially close
to C−

ε .

The transitional regime between h1 = O(ε) and exponentially small h1 is more difficult
to describe. This issue is addressed in detail in [20], where it is shown, roughly speaking,
that the contraction and expansion in the z-direction cancel each other out to leading order
near the fold. An analogous property can be proven to hold in our case, which allows us to
conclude that Π(h1, w̄1) is exponentially close to C1

ε even in that transitional regime. Finally,
by an iteration of the above argument, it follows that Π3(h, w̄) must be exponentially close to
C−
ε ∪ C1

ε ∪ C2
ε , and so on.

To conclude the proof, we note that there exists a finite number k such that for any point
(h, w̄) with h > 0, there is 1 ≤ j ≤ k such that the h-coordinate of Πj(h, w̄) is negative, so that
Πj+1(h, w̄) must again be close to C−

ε . (Note that k gives the maximum possible number of
small oscillations a trajectory can undergo.) It follows that for any (h, w̄) ∈ Δ−, the trajectory
of (h, w̄) under Π must be exponentially close to the union of the sets Cj

ε , j = 1, . . . , k.

In the following, we will assume that the points on a trajectory of Π are on C−
ε or on one

of the curves Cj
ε . By Proposition 3.1, this assumption incurs at most an exponentially small

error. To find the restriction of Π to Cj
ε , we recall that Cj

ε can be represented as the graph
of a function hj(w̄); see (3.4). In analogy to the definition of Π in (2.42), we again have to
distinguish between hj > 0 and hj < 0 here. In the former case, Π reduces to Π, whereas in
the latter case, we have to take the composition of Πout, Πret, and Πin to describe the return
to ∪Cj

ε ; see the discussion in section 2.6 for details. Moreover, since Cj
ε is parametrized by w̄

(cf. (3.4)), it is natural to consider Π as a function of w̄. Hence, combining the definition of Π
in (2.42) with (2.9) for hj > 0 and with the estimates in (2.20), (2.42), and (2.54) for hj < 0,
respectively, we finally obtain

Π(w̄) ≡ Π(hj(w̄), w̄) =

⎧⎪⎨
⎪⎩
w̄ + εμT hj(w̄)(w̄) + O(ε2) if hj(w̄) > 0,

w̄ + εμT hj(w̄),out(w̄) + w̄f2με ln ε

+
√
ε
(
G(0, vmax, μ) + G(v∗max, v0, μ)

)
+ O(ε) if hj(w̄) < 0.

(3.5)

3.2. The derivative of Π. To estimate the contractive (or expansive) properties of the
flow induced by Π on ∪Cj

ε , we need to estimate the derivative dΠ
dw̄ of Π. Given (3.5), it follows
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that the following approximation holds to leading order, i.e., up to an O(ε)-error:

(3.6)
dΠ

dw̄
∼

⎧⎪⎪⎨
⎪⎪⎩

1 + εμ
dT hj(w̄)(w̄)

dw̄
if hj(w̄) > 0,

1 + εμ
dT hj(w̄),out(w̄)

dw̄
+ f2με ln ε if hj(w̄) < 0.

(Here, we have used the fact that the function G is independent of w̄; see (2.53).) Now,
recall that T h(0) = 2T h by (2.7), and note that, for (h, w̄) small, T h(w̄) depends much more
sensitively on h than on w̄. Therefore, to evaluate (3.6), we can in a first approximation
neglect the w̄-dependence of T h(w̄) and write

dT hj(w̄)(w̄)

dw̄
∼ 2

dT hj(w̄)

dw̄
.

Due to T h ∼ (−2 lnh)
1
2 (see Appendix A), it follows that

(3.7)
dT hj(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄);

similarly, we can use the definition of T h,out(w̄) in (2.41) to conclude

(3.8)
dT hj(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄).

To complete the computation of the derivative of Π, we require approximate formulae for the
derivatives of hj with respect to w̄: by (3.3), it follows that

(3.9) (hj)′(w̄) = (j + 1)d0
w̄ + O(

√
ε, w̄).

Combining (3.7) and (3.9), we finally obtain

(3.10)
dT hj(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄

as well as

(3.11)
dT hj(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄,

which can be substituted into (3.6) to obtain a more explicit expression for dΠ
dw̄ .

3.3. Secondary canards and sectors of rotation. Recall the definition of the jth sec-
ondary canard Γj

ε as a trajectory of (1.2) that undergoes j small oscillations (loops) during its
passage through the fold region. In this subsection, we derive the conditions on the rescaled
equations (2.8) by which these trajectories are defined. The corresponding analysis will re-
quire us to refine the results of Proposition 2.2; see Proposition 3.2 below. Given the family
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of secondary canards {Γj
ε} for j = 0, . . . , k, we will define the corresponding family of sectors

of rotation, {RSj}. We will then analyze the geometry of these sectors; in particular, we will
estimate the sector width (Proposition 3.3), and we will show that it is independent of j to
lowest order. Here, we note that the family {RSj} will be crucial for the reduction of the
(two-dimensional) map Π to the (one-dimensional) map Φ in section 3.4 below. Finally, in
Proposition 3.4, we discuss the uniform validity of our asymptotic estimates.

Let (h0(w̄), w̄) ∈ C−
ε , as before, and recall the definition of the transition map Π for (2.8);

see Proposition 2.2. Moreover, let Ph and Pw̄ denote the projections onto the h-coordinate
and the w̄-coordinate, respectively. Then, the defining condition for the jth secondary canard
is given by

(3.12) PhΠ
j
(h0(w̄), w̄) = 0;

i.e., the h-coordinate of the jth iterate of (h0(w̄), w̄) under Π has to be zero. In other words,
we are interested in finding the points of intersection of subsequent iterates of C−

ε under Π
(i.e., of Cj

ε) with C+
ε . For j ≥ 1 fixed, let w̄c

j denote the corresponding solution of (3.12).

Then, w̄c
j fixes a point in C−

ε that will determine the location of the jth secondary canard Γj
ε;

see Figure 13 for an illustration. In particular, for the first secondary canard, we have the
requirement that

PhΠ(h0(w̄c
1), w̄

c
1) = 0.

Remark 7. Recall that C−
ε corresponds to the intersection of the locally invariant slow

manifold Sa−
ε in (1.5) with Δ, before the rescaling. Since the critical manifold S0 for (1.5)

is normally hyperbolic away from �±, it follows that the slow manifold Sε is unique up to
exponentially small terms [11, 14]. Once the corresponding sheets of Sa−

ε and Sr
ε are chosen,

the strong canard Γ0
ε is uniquely determined. Similarly, since the jth secondary canard Γj

ε,
with j ≥ 1, is defined as the trajectory lying in the intersection of the jth iterate of Sa−

ε

under Π with Sr
ε , all secondary canards will originate in the same sheet of Sa−

ε . Thus, we can
restrict ourselves to C−

ε when studying secondary canards.
Given the asymptotics of the return map Π : Δ− → Δ−, as derived in Proposition 2.2

(cf. (2.9)), we can write

(3.13) Π(h, w̄) = Π0(h, w̄) + O(ε),

where Π0(h, w̄) denotes the return map for the system

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),

z̄′ = v̄ − w̄,

w̄′ = 0.

(3.14)

We begin by showing that the leading-order approximation Π0, which is obtained by omitting
the O(ε)-terms in (3.13), is not sufficiently accurate to give nontrivial solutions of (3.12), i.e.,
solutions that are not exponentially close (in ε) to the canard critical value w̄c for (3.14).
(Recall that w̄c is the w̄-value corresponding to the strong canard Γ0

ε, after the rescaling in
(2.2), with

w̄c =
d0√

ε

d0
w̄

√
ε + O(ε)
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by (2.16).) Since Γ0
ε itself is only unique up to exponentially small terms, we conclude that

the map Π0 will admit no secondary canards.

The argument goes as follows: to determine the w̄-value corresponding to the first sec-
ondary canard Γ1

ε from Π0, one would have to solve PhΠ0(h
0(w̄), w̄) = 0. Solutions of this

equation are obtained by applying the implicit function theorem about (0, w̄c). (Here, we have
taken into account that h0(w̄c) = 0 by the definition of w̄c; cf. again (2.16).) However, since
w̄c corresponds precisely to the critical value of the canard parameter w̄ in the classical (two-
dimensional) scenario, it can be shown [20] that PhΠ0(0, w̄

c
0) is exponentially small. By the

implicit function theorem, it follows that any solution w̄∗ of the equation PhΠ0(h
0(w̄), w̄) = 0

close to w̄c must be such that |w̄∗ − w̄c| is exponentially small. (Note that this is exactly the
situation encountered in a two-dimensional canard explosion; see again [20].)

Hence, in order to find secondary canards, we must refine our analysis and include addi-
tional terms in the description of the “local” return map Π. In the following, we will use the
partially decoupled truncated system

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),(3.15a)

z̄′ = v̄ − w̄,(3.15b)

w̄′ = εμ(3.15c)

as the basis for our computation. As it turns out, this refinement will suffice to solve (3.12)
for w̄, in a nontrivial fashion, to leading order. Note that the only difference between (3.14)
and (3.15) lies in the w̄-equation: instead of keeping w̄ constant to lowest order, we let it
evolve in (3.15c), according to the leading-order approximation obtained for w̄′ from (2.8c),
w̄′ = ε(μ− g1εz̄ + O(ε)) ∼ εμ.

The relevant result on the refined asymptotics of Π is obtained as follows.

Proposition 3.2. Let Π : Δ
− → Δ− denote the return map for (3.15), and fix ε > 0

sufficiently small. Then,

(3.16) Π(h, w̄) =

(
PhΠ0(h, w̄) + εμK(h) + O(ε2)

w̄ + 2εμT h + O(ε2)

)
,

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t + T h) dt.

Proof. Let w̄c
0 denote the critical w̄-value for the “refined” system (3.15). We begin

by showing that, to leading order, w̄c
0 equals w̄c, which is again the corresponding w̄-value

determined from Π0; cf. (2.16). Suppose that w̄ is given and that we wish to find h− such
that (h−, w̄) ∈ C−

ε holds. Solving (3.15c), we obtain w̄(t) = w̄+ εμt, which we then substitute
into (3.15a) and (3.15b):

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + (w̄ + εμt)G(0, 0),

z̄′ = v̄ − w̄ − εμt.
(3.17)
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Fix w̄, and suppose that h−0 is the h-value obtained from (3.14) such that (h−0 , w̄) ∈ C−
ε ; see

the proof of Proposition 2.2. Then, it follows that

(3.18) h− = h−0 − εμ

∫ 0

−∞

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,

again by the proof of Proposition 2.2. A similar computation shows that

(3.19) h+ = h+
0 + εμ

∫ ∞

0

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,

where h+ and h+
0 are defined by the requirement that (h+, w̄) ∈ C+

ε and (h+
0 , w̄) ∈ C+

ε in
(3.15) and (3.14), respectively. By symmetry, we find that

(3.20)

∫ 0

−∞
−∂H

∂z
(γ̄0

0(t))t dt =

∫ ∞

0

∂H

∂z
(γ̄0

0(t))t dt.

It follows that the defining condition for the strong canard in (3.15), which, for (2.8), is given
by h− = h+, reduces to h−0 = h+

0 + O(ε2) and, hence, that the corresponding critical values
of w̄ are indeed the same to leading order.

Finally, the approximation for Π in (3.16) is derived as in the proof of Proposition 2.2,
where we note that the additional K-term is due to the fact that h �→ h+−h− = h0 +εμK(h),
by (3.18), (3.19), and (3.20).

Remark 8. It can be shown that the inclusion of additional (higher-order) terms in (3.15)
will not alter the result of Proposition 3.2, since these terms will either drop out by symmetry,
as in the proof of Proposition 2.2, or contribute only terms of higher order in (3.16).

The asymptotics of K are studied in Appendix A, where we show that K(h) = 2d0
w̄T

h +
O(1); see Lemma A.5. Therefore, the defining condition for the first secondary canard,
PhΠ(h0(w̄), w̄) = 0, can be written as

(3.21) PhΠ0(h
0(w̄), w̄) = −εμK(h0(w̄)) + O(ε2),

to leading order. Moreover, recalling that w̄c
1 denotes the value of w̄ that solves (3.21), we

write w̄c
1 = w̄c

0 + Δw̄. Then, we have the following estimate for the width Δw̄ of the first
sector of rotation.

Proposition 3.3. With Δw̄ defined as above, there holds

(3.22) Δw̄ = −2εμ
√
−2 ln ε + O(ε)

for ε > 0 sufficiently small.
Proof. Making use of the definition of Π0 (see Proposition 2.2), we first rewrite PhΠ0(h

0(w̄),
w̄) as

PhΠ0(h
0(w̄), w̄) = PhΠ0(0, w̄

c
0) + PhΠ0(h

0(w̄), w̄) − PhΠ0(0, w̄
c
0)

= PhΠ0(0, w̄
c
0) + d

h0(w̄)
w̄ w̄ − d0

w̄w̄
c
0 +

√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O(ε,

√
εΔw̄,Δw̄2)

= PhΠ0(0, w̄
c
0) +

(
d
h0(w̄)
w̄ − d0

w̄

)
w̄ + d0

w̄Δw̄ +
√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O(ε,

√
εΔw̄,Δw̄2);
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see the discussion in section 3.1 as well as (2.39). Now, recall that w̄ = O(
√
ε) by Assump-

tion 1, and note that one can estimate d
h0(w̄)
w̄ − d0

w̄ = O(h0(w̄) ln(−h0(w̄))
3
2 ); cf. (A.9). Also,

since h0(w̄c
0) = 0 by (2.16) and (2.39), a Taylor expansion shows

(3.23) h0(w̄) = d0
w̄Δw̄ + O(Δw̄),

which implies in sum

PhΠ0(h
0(w̄), w̄) = PhΠ0(0, w̄

c
0) + d0

w̄Δw̄ +
√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O

(
ε,
√
ε(− ln ε)

3
2 Δw̄,Δw̄2

)
.

Using the fact that PhΠ0(0, w̄
c
0) = O(e−

κ
ε ) for some κ > 0 as well as the estimates from (A.9)

and Lemma A.5, we conclude that the w̄-value corresponding to the first secondary canard,
w̄c

1, is determined from d0
w̄Δw̄ = −2εμd0

w̄T
h0(w̄) + O((

√
ε + Δw̄)2). Hence, we obtain

(3.24) w̄c
1 = w̄c

0 − 2εμT h0(w̄c
1) + O(ε),

which implies in particular |w̄c
1 − w̄c

0| � ε, i.e., |w̄c
1 − w̄c

0| > ε as well as |w̄c
1 − w̄c

0| ∼ ε. Due

to h0(w̄c
0) = 0 and dh0

dw̄ ∼ d0
w̄, it follows from the intermediate value theorem that h0(w̄c

1) � ε,
which, together with Lemma A.2, shows that the desired estimate for the size of the first
sector of rotation is given by

(3.25) w̄c
1 − w̄c

0 = Δw̄ = −2εμ
√
−2 ln ε + O(ε).

This completes the proof.
Let k > 1, and consider j = 0, . . . , k. We now set out to find an analogue of condition

(3.21) for the kth secondary canard Γk
ε . Let w̄c

k again denote the corresponding w̄-value,
consider an initial condition (h0(w̄), w̄) ∈ C−

ε , and let

w̄j = Pw̄Π
j
(h0(w̄), w̄),

as before. Note that w̄c
k must be a solution of the equation

PhΠ(hk−1(w̄k−1), w̄k−1) = 0

or, equivalently, of

(3.26) PhΠ0(h
k−1(w̄k−1), w̄k−1) = −εμK(hk−1(w̄k−1)) + O(ε2).

Observe that the condition in (3.26) is analogous to (3.21), with h0 replaced by hk−1; hence,
the structure of (3.21) is replicated at higher orders. Note also that it follows from (3.24) that
w̄c,1

1 = w̄c
0 +O(ε), where w̄c,1

1 is the first iterate of w̄c
1 under Π. This estimate, in turn, implies

that h1(w̄c
0) = O(ε); see (3.1). An argument analogous to the derivation of (3.24) now leads

to the estimate
w̄c,1

2 = w̄c
0 − 2εμT h(w̄c,1

2 ) + O(ε)

or, equivalently, to

(3.27) w̄c
2 = w̄c

0 − 2εμ
(
T h(w̄c

2) + T h(w̄c,1
2 )

)
+ O(ε).
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Figure 14. The sectors of rotation, RSj.

Proceeding inductively, we obtain hk−1(w̄c
0) = O(ε) and

(3.28) w̄c
k = w̄c

0 − 2εμ

(k−1∑
j=0

T h(w̄c,j
k )

)
+ O(ε),

where we define w̄c,0
k ≡ w̄c

k. Finally, using Lemma A.2 to again approximate T h(w̄c,j
k ) by√

−2 ln ε + O(1) (nonuniformly in k), we obtain in analogy to (3.25) that

(3.29) w̄c
k = w̄c

k−1 − 2εμ
√
−2 ln ε + O(ε),

which, in conjunction with (2.19), verifies Assumption 1 above.
One question that naturally arises in this context is whether k > 1 can be chosen arbitrarily

large. Here, we show that our analysis, and, in particular, the estimate in (3.28), does not
hold uniformly in k with respect to ε; rather, (3.28) is valid for k fixed and ε sufficiently small.

This is due to the fact that the contributions coming from T h(w̄c,j
k ) become increasingly smaller

with k: since w̄c
k decreases with k and since h(w̄) ∼

√
εd0√

ε
+ w̄d0

w̄ with d0
w̄ < 0 (see (2.18)),

it follows that h increases with k. Therefore, T h ∼
√
−2 lnh decreases, and the O(ε)-terms

can come to dominate the 2εμ(· · ·)-terms in (3.28) if k is sufficiently large. However, in our
analysis, we had to assume that these terms are uniformly of lower order than ε, starting with
the leading-order approximation for Π in Proposition 2.2. In summary, for k “large,” ε thus
has to be chosen small enough to ensure that the estimate in (3.28) remains consistent.

Proposition 3.4. Fix any integer K > 0. Then, there exists an ε > 0 sufficiently small such
that the estimate in (3.28) holds for k ≤ K.

For j = 1, . . . , k, we now define the jth sector of rotation RSj as follows:

RSj =
{
(h0(w̄), w̄) ∈ C−

ε

∣∣ w̄c
j ≤ w̄ < w̄c

j−1

}
.

This definition provides a connection between the family of secondary canards {Γj
ε} and the

corresponding sectors of rotation: the jth sector, RSj , is bounded by the secondary canards
Γj−1
ε and Γj

ε in that the corresponding points w̄c
j−1 and w̄c

j on C−
ε define the boundaries of

RSj .
For notational purposes, we also introduce the zeroth sector RS0 via

RS0 =
{
(h, w̄) ∈ C−

ε

∣∣ w̄c
0 ≤ w̄

}
,

and we note that this definition is equivalent to requiring that h < 0; see (2.37). An illustration
of these sectors of rotation is given in Figure 14. In particular, since w̄c

j < w̄c
j−1 for any j ≥ 1,

the sector RSj lies further “to the left” of RS0 with increasing j.
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It follows from the preceding analysis that all of the sectors RSj are of equal size to
leading order; cf. (3.29). (However, we conjecture that due to higher-order corrections, the
sector size actually decreases as j increases.) Moreover, for ε and μ fixed, the number of
sectors of rotation RSj , and, hence, also the number of corresponding secondary canards Γj

ε,
has to be finite: note that the frequency of the small-oscillation component in any mixed-mode
time series in (1.5) is globally bounded, with the bound given approximately by the frequency
determined by the Hopf bifurcation around the origin in (1.5). Additionally, the speed of
the drift in w̄ in (2.3c) is always positive for nonzero ε and μ, which implies that w̄ > w̄c

0 in
finite time. Hence, trajectories of (1.5) can undergo only a finite number of small-amplitude
oscillations before entering the relaxation regime, which implies that there can be only a finite
number of sectors of rotation lying in (0, w̄c

0); see again Figure 14.
Remark 9. It follows from Proposition 3.4 that both the number of secondary canards

and that of the corresponding sectors of rotation must go to infinity as ε → 0. However, it
is important to note that Proposition 3.4 gives no bound on the total number of secondary
canards for ε > 0. Rather, the integer K can be chosen arbitrarily large provided ε is small
enough, implying that our analysis is then valid for all k ≤ K.

Finally, we observe that the definition of RSj can be extended to a small neighborhood
of C−

ε by the flow of (2.8) and, hence, that the sectors of rotation can be interpreted as
two-dimensional subsets of Sa−

ε .

3.4. The return map Φ to C−
ε . To show how the “full” map Π (which a priori has to be

interpreted as a map that is defined on
⋃

Cj
ε) can be approximated accurately by a “simplified”

map, we introduce Φ : C−
ε → C−

ε as follows. Let k ≥ 0, and recall the definition of the kth
sector of rotation, RSk, from the previous subsection. Then, we define Φ via

(3.30) Φ(w̄) = Pw̄

(
Πin ◦ Πret ◦ Πout ◦ Π

k
(h0(w̄), w̄)

)
if (h0(w̄), w̄) ∈ RSk.

Note that Φ is a reinterpretation of Π in that it is a composition of the same components that
were used in the definition of Π in (3.5). However, it is defined on a different domain: the
definition in (3.30) reduces the analysis of the flow induced by (1.5) to that of a one-dimensional
map that is defined on the single curve C−

ε , which will allow us to study the recurrent dynamics
on RSk in considerable detail. Moreover, we note that Φ is still an exponentially accurate
approximation for the full, two-dimensional return map Π, which is again due to the fact that
all trajectories must return exponentially close to C−

ε after relaxation, i.e., after application
of Πret; cf. the proof of Proposition 3.1. One drawback of this simplification, however, lies in
the fact that the defining formula (3.30) for Φ is k-dependent; in other words, the definition
of Φ changes with the sector of rotation under consideration. This k-dependence will have to
be taken into account throughout the subsequent analysis.

Finally, we remark that the map Φ is smooth on each of the sectors RSk but that it has
discontinuities at the points w̄c

k and w̄c
k−1. We will not study the nature of these discontinuities

in detail, since we are not attempting to analyze the dynamics of Φ “very close” to the
secondary canards. Rather, we will restrict ourselves to describing Φ on the interior of the
individual sectors RSk.

3.5. The derivative of Φ. In this subsection, we derive estimates for the derivative
Φ′(w̄) := dΦ

dw̄ of Φ on the kth sector of rotation, RSk. We then investigate some of the
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properties of Φ′. The resulting estimates are needed for the analysis of the dynamics of Φ in
section 3.6 below and will allow us to characterize the admissible Farey sequences in (1.5) as
well as to describe the corresponding parameter intervals.

Let w̄ be such that (h0(w̄), w̄) ∈ RSk, and let w̄j = Pw̄Π
j
(h0(w̄0), w̄0), where we set

w̄0 ≡ w̄. Given the definition of Φ in (3.30), we have the following result.
Lemma 3.5. To leading order, there holds

dΦ(w̄)

dw̄
= 1 − εμd0

w̄

(k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)(3.31)

+ O(ε ln ε)

for the derivative of Φ on RSk.
Proof. By the chain rule and taking into account the definitions of Π, Πin, and Πout, as

well as of Πret in Propositions 2.2, 2.3, and 2.4 as well as in (2.54), respectively, we have

dΦ(w̄)

dw̄
=

k−1∏
j=0

(
1 + 2εμ

dT hj(w̄)

dw̄

)(
1 + εμ

dT hk(w̄),out

dw̄

)
+ O(ε ln ε)

= 1 + εμ

k−1∑
j=0

2
dT hj(w̄)

dw̄
+ εμ

dT hk(w̄),out

dw̄
+ O(ε ln ε)

= 1 − εμd0
w̄

(k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)
+ O(ε ln ε),

where the last step follows from (3.10) and (3.11).
Since we assume that hj(w̄j) = O(ε

√
− ln ε) (see the proof of Proposition 3.3 above), we

can write
1√

−2 lnhj(w̄j)
=

1√
−2 ln ε

(
1 + O(1)

)
.

This gives a somewhat less accurate but more concise estimate for the derivative of Φ:

(3.32)
dΦ(w̄)

dw̄
∼ 1 − εμd0

w̄

1√
−2 ln ε

(k−1∑
j=0

2(j + 1)

hj(w̄j)
+

k + 1

hk(w̄k)

)
.

(Note that again due to hj(w̄j) = O(ε
√
− ln ε), the O(ε)-correction in (3.32) will actually be

of the order (ln ε)−1 and that we can therefore neglect the O(ε ln ε)-terms in (3.31).)
To simplify this estimate further, we have to distinguish between different k-values in

(3.32). We first focus on the case where k > 0; the case when k = 0 will be discussed
separately.

Given k > 0, fix an initial condition w̄0 ∈ RSk, and let w̄1, w̄2, . . . , w̄k be defined as in
section 3.4 above; i.e., let w̄j be the jth iterate of w̄0 under Π. Then, it follows directly from
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(3.32) that Φ′ < 1 if w̄0 ≈ w̄c
k, respectively, that Φ′ > 1 if w̄0 ≈ w̄c

k−1. We are interested in
approximating more precisely the size of the w̄-intervals where Φ′ is less than 1 and greater
than 1, respectively.

To that end, let Δw̄j = w̄c
j−1 − w̄c

j be the width of the jth sector of rotation RSj , and
recall that we have the estimate

Δw̄j ∼ 2εμ
√
−2 ln ε,

independent of j to leading order. Given any w̄0 ∈ RSk, we can write w̄0 = w̄c
k + νΔw̄k for

some ν ∈ [0, 1]; i.e., the sector RSk will be parametrized by the variable ν in the following.
Moreover, for any j ≥ 0, we have the following estimates:

w̄c
j ∼ w̄c

0 − 2jεμ
√
−2 ln ε,

w̄j ∼ w̄c
0 − 2

(
(k − j) − ν

)
εμ

√
−2 ln ε,

hj(w̄j) ∼ −2d0
w̄(j + 1)

(
(k − j) − ν

)
εμ

√
−2 ln ε,

where the last expression is a consequence of (3.3). Using (3.32), we obtain

(3.33)
dΦ(w̄)

dw̄
∼ 1 − ωk(ν)

4 ln ε
,

where the function ωk is defined via

(3.34) ωk(ν) =

k−1∑
j=0

1

(k − j) − ν
− 1

2ν
.

Finally, we consider the case where k = 0. For any initial condition w̄0 ∈ RS0, we can
write w̄0 = w̄0

c + 2νεμ
√
−2 ln ε, where ν is now some positive number. Then,

(3.35)
dΦ(w̄)

dw̄
∼ 1 − ω0(ν)

4 ln ε
,

with ω0(ν) = − 1
2ν . Observe that, clearly, Φ′(w̄) < 1 for any w̄ ∈ RS0.

Remark 10. Note that for k ≥ 0, the function ωk(ν) defined in (3.34) is increasing on [0, 1]
and that ωk changes sign exactly once if k > 0; see Figure 15.

The zeros of ωk(ν), k > 0, give the approximate sizes of the subintervals of RSk where Φ′

is greater than 1 and less than 1, respectively. More precisely, we have proven the following
result.

Proposition 3.6. For k > 0 and ε > 0 sufficiently small, the subinterval of RSk on which
Φ′(w̄) < 1 is approximately given by (w̄c

k, w̄
c
k + 2νk0με

√
−2 ln ε), where νk0 denotes the unique

zero of ωk on RSk.

3.6. The dynamics of Φ. In this subsection, we analyze the dynamics of the reduced
map Φ in more detail, combining the results obtained so far in section 3. The aim of our
analysis is to relate the properties of Φ to the resulting mixed-mode dynamics in (1.5) and
to estimate the relevant parameter (μ-)range corresponding to this dynamics. Our first result
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Figure 15. The function ωk on [0, 1] for k = 0, . . . , 3.

(Theorem 3.7) concerns the existence and stability of 1k-type orbits, i.e., of periodic orbits
with symbolic (Farey) sequence {1k}; these orbits correspond to the recurrent dynamics of
(1.5) on the kth sector of rotation, RSk. Then, in Theorem 3.9, we derive conditions for when
a given orbit will pass through RSk. In Theorem 3.10, Proposition 3.11, and Corollary 3.12,

we apply these conditions to classify the periodic orbits of the more general type {Lkj
j }, with

Lj , kj ≥ 1, that can “typically” occur in (1.5).
We start by summarizing some of the features of Φ which follow directly from the results

of sections 3.3 and 3.5; see Figure 16 for a qualitative illustration.
(i) Φ must be decreasing close to the left boundary of RSk and increasing on most of RSk,

with w̄c
k + νk0Δw̄k giving an estimate of the point where Φ′ becomes greater than 1;

cf. Proposition 3.6.
(ii) The derivative Φ′ must change sign near w̄k

min := w̄c
k + νkminΔw̄k, with νkmin de-

termined by the condition that ωk(ν
k
min) = 4 ln ε. This implies in particular that

νkmin = O((ln ε)−1) and, hence, that w̄k
min ≈ w̄c

k. (Note that our analysis does not
prove the uniqueness of this minimum, though.)

(iii) A simple computation along the lines of section 3.5 shows that Φ(w̄k
min) = Φmin +O(ε)

is independent of k to lowest order, where

(3.36) Φmin := w̄c
0 +

√
ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
+ εμ

√
−2 ln ε;

cf. (2.54). Indeed, given the formula for Π in (3.5), as well as Pw̄Πk(w̄k
min) ∼ w̄0

min, it
follows with (3.30) that

Φ(w̄k
min) ∼ Φ ◦ Pw̄Πk(w̄k

min)

∼ w̄0
min + εμT h(w̄0

min),out + w̄0
minf2με ln ε +

√
ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
.

Since ν0
min � (ln ε)−1 implies w̄k

min ∼ w̄c
0 and since T h(w̄0

min),out ∼
√
−2 ln ε, one obtains

(3.36).
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0w̄c

k−2 w̄c
1

Figure 16. A qualitative illustration of the map Φ.

By definition, fixed points of Φ on RSk correspond to periodic 1k-type orbits in (2.1). We
are interested in estimating the parameter range (i.e., the μ-interval) in which such orbits can
be observed.

Theorem 3.7. For ε > 0 sufficiently small, the periodic orbit of type 1k, k ≥ 1, exists and
is stable on a μ-interval of the form (μk, μk), with

(3.37) Δμk := μk − μk = −
μk

√
2Dμ

√
ε√

− ln ε

∫ νk0

νk−2

ωk(ν) dν + O
(√

ε(− ln ε)−1
)
;

here, νk−2 denotes the ν-value that solves ωk(ν) = 8 ln ε.
Proof. Note that MMO orbits with Farey sequence {1k} correspond to solutions of the

equation

(3.38) Φ(w̄, μ̄) = w̄

with w̄ ∈ RSk, where we have now included explicitly the μ-dependence of Φ. We are
interested in determining μ in (3.38) so that the corresponding fixed point of Φ will be stable.
To that end, let νk−2 be defined as in the statement of the theorem, and note that for w̄ ∈ RSk,
the leading term of Φ′(w̄, μ) satisfies |Φ′(w̄, μ)| < 1 if and only if w̄ = w̄c

k + νΔw̄k with
ν ∈ (νk−2, ν

k
0 ); cf. (3.33).

Now, if (3.38) is interpreted as defining implicitly a function μ = μ(w̄), we can set μk =

μ(w̄c
k + νk−2Δw̄k) and μk = μ(w̄c

k + νk0Δw̄k). We will use the fundamental theorem of calculus
to estimate Δμk = μk − μk. Applying implicit differentiation to (3.38), we obtain

dμ

dw̄
= −

∂
∂w̄Φ(w̄, μ) − 1

∂
∂μΦ(w̄, μ)

.
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Since
∂

∂μ
Φ(w̄, μ) ∼ Dμ

√
ε

(recall the discussion in section 2.5), it follows that

dμ

dw̄
∼ 1

4Dμ
√
ε ln ε

ωk(ν)

for w̄ = w̄c
k + νΔw̄k with ν ∈ (νk−2, ν

k
0 ); see (3.33). Therefore, using dw̄

dν ∼ Δw̄k, we find

(3.39) Δμk = μk − μk =

∫ w̄(μk)

w̄(μk)

dμ

dw̄
dw̄ ∼ 1

4Dμ
√
ε ln ε

Δw̄k

∫ νk0

νk−2

ωk(ν) dν.

Given that Δw̄k = 2εμ
√
−2 ln ε + O(ε), the result follows.

Observe that by the definition of νk0 , μk marks the value of μ for which the orbit of
type 1k disappears in a saddle-node bifurcation of Φ, since Φ′ = 1 there. In the following, we
summarize a few additional observations which follow from Theorem 3.7:

(i) Note that∫
ωk(ν) dν = ln |Γ(−k + ν)| − ln |Γ(1 + ν)| − 1

2
ln ν = −1

2
ln ν + O(1),

where Γ denotes the standard Gamma function. Since the leading-order contribution
to the corresponding definite integral in (3.39) comes from νk−2 = O((ln ε)−1), one can
show that, for ε sufficiently small,

Δμk =
μk

√
2Dμ

√
ε ln(

√
− ln ε)√

− ln ε
+ O

(√
ε(− ln ε)−

1
2
)
.

Given that the double logarithmic term is “almost constant” (at least if ε does not
vary over too many orders of magnitude), it follows that Δμk is roughly of the order√
ε(− ln ε)−

1
2 as ε → 0.

(ii) The estimate in (3.37) implies that, for ε fixed, the ratio of the widths of the stability
intervals of “adjacent” periodic orbits (i.e., of orbits of the types 1k+1 and 1k) is
approximately given by the ratio of the corresponding integrals of ωk+1 and ωk. Since

{νk0} decays faster with k than {νk−2} (see Figure 15), it follows that
∫ νk0
νk−2

ωk(ν) dν

decreases. Hence, the sequence {Δμk} is decreasing with k.
(iii) The well-developed theory of unimodal maps [25] implies that the μ-interval for which

there is an attractor for Φ in RSk is also of size (μk, μk), to lowest order. Hence, for

μ in any interval given approximately by (μk, μk+1), the dynamics of Φ must involve
at least two different sectors.

Next, we derive a set of conditions under which a given periodic orbit will have to pass
through the kth sector of rotation RSk. For the remainder of this subsection, we will consider
only points w̄ ∈ RSk, k ≥ 1, for which w̄ = w̄c

k + νΔw̄k, with

(3.40) ν ∈
(

1

(− ln ε)p
, 1 − 1

(− ln ε)p

)
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for some fixed integer p > 1. Note that the condition in (3.40) is “generic” in that it covers
“most of” RSk; to put it differently, only w̄-values that are “very close” to the boundary
points w̄c

k and w̄c
k−1 are excluded by (3.40).

We begin by proving a simple preparatory result.

Lemma 3.8. Consider w̄ = w̄c
j + νΔw̄j ∈ RSj for some j ≥ 1, and assume that (3.40)

holds. Then, if w̄ ≤ w̄j
min,

(3.41) |Φ(w̄) − Φmin| = O
( ln(− ln ε)

− ln ε

)
Δw̄j ,

whereas if w̄ > w̄j
min,

(3.42) |Φ(w̄) − Φmin| �
(

1 + O
( ln(− ln ε)

− ln ε

))
Δw̄j .

Proof. Let νjmin be the ν-value corresponding to w̄j
min. By the fundamental theorem of

calculus, we have

Φ(w̄) − Φmin = Δw̄j

∫ ν

νjmin

(
1 − ωj(η)

4 ln ε

)
dη = Δw̄j

(
ν − νjmin − 1

4 ln ε

∫ ν

νjmin

ωj(η) dη

)
.

Since ν is constrained by condition (3.40), we find∫ ν

νjmin

ωk(η) dη = O(ln ν) + O(ln νjmin) = O
(
ln(− ln ε)

)
;

see also the proof of Theorem 3.7. Now, if ν ≤ νjmin, then νjmin − ν = O((− ln ε)−1), and the

estimate in (3.41) follows. If, on the other hand, ν > νjmin, then ν − νjmin < 1, which implies
(3.42).

Next, we show that orbits satisfying the generic condition in (3.40) will typically pass
through the kth sector of rotation if, additionally, Φmin ∈ RSk holds.

Theorem 3.9. Assume that Φmin ∈ RSk and that, for some q satisfying 0 < q < 1
2 ,

(3.43) w̄c
k−1 − Φmin � 1

(− ln ε)q
Δw̄k and Φmin − w̄c

k � 1

(− ln ε)q
Δw̄k.

Consider a periodic orbit {w̄0, . . . , w̄j}, with Φ(w̄
) = w̄
+1 for � = 0, . . . , j − 1, and let
{ν0, . . . , νj} be the corresponding values of ν. Assume that (3.40) holds. Then, the orbit in
question must pass through RSk provided ε > 0 is sufficiently small.

Proof. We will assume that k ≥ 2 in the following and will omit the remaining cases for
the sake of brevity.

First, note that Lemma 3.8 and the assumption in (3.43) imply that, for any w̄ ∈ C−
ε ,

Φ(w̄) ∈ RSk ∪ RSk−1 ∪ RSk−2. This follows from the estimates below, which are a straight-
forward consequence of (3.41), (3.42), and (3.43): we begin by assuming that w̄ ∈ RSk;
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then,

Φ(w̄) − w̄c
k−1 = Φ(w̄) − Φmin + Φmin − w̄c

k−1

� Φmin − w̄c
k−1 + Δw̄k

(
1 + O

( ln(− ln ε)

− ln ε

))
� Δw̄k

(
1 + O

(
(− ln ε)−q

))
,

which implies that Φ(w̄) can be no higher than RSk−2 in that case.
Similarly, for w̄ ∈ RSk−1 ∪RSk−2, we have the estimate

Φ(w̄) − w̄c
k−2 = Φ(w̄) − Φmin + Φmin − w̄c

k−2

� Φmin − w̄c
k−2 + Δw̄k−1

(
1 + O

( ln(− ln ε)

− ln ε

))
� O

(
(− ln ε)−q

)
Δw̄k−1;

see (3.41) as well as (3.43). It follows that for w̄ ∈ RSk−1 ∪ RSk−2, Φ(w̄) can be no higher
than RSk−2.

Finally, for any point w̄ ∈ RSk−2 which is contained in the image of Φ, there holds

w̄ − w̄c
k−2 � O

(
(− ln ε)−q

)
Δw̄k−1

and, consequently,

(3.44) Φ(w̄) � w̄c
k−1 + O

(
(− ln ε)−q

)
Δw̄k−2

by (3.41). It follows that any recurrent set, including the periodic orbit {w̄0, . . . , w̄j}, is
contained in RSk ∪RSk−1 ∪RSk−2.

Now, suppose that such a periodic orbit is given, and note that there is an unstable fixed
point w̄∗ of Φ in RSk−1 close to w̄c

k−2. Assume that w̄0 > w̄∗. Then, the trajectory of w̄0

under Φ must eventually enter RSk−2; moreover, by (3.44), it must terminate at a point w̄j

with w̄j < w̄∗.
Looking at the forward trajectory of w̄j , we see that it is decreasing until it falls below

w̄k−1
min . In other words, there exists � ≥ 0 such that w̄j , w̄j+1, . . . , w̄j+
−1 are greater than

or equal to w̄k−1
min and w̄j+
 is less than or equal to w̄k−1

min . Hence, we conclude that either
w̄j+
 ∈ RSk or, by combining (3.41) and (3.43), w̄j+
+1 ∈ RSk.

It remains to comment briefly on the assumption put forward in (3.43): given that
Φ(w̄k

min) ∼ Φmin (cf. (3.36)) as well as that necessarily w̄c
k � Φmin � w̄c

k−1 by (3.43), one
can show that, to lowest order,

(2k − 1)
μc

Dμ

√
ε
√
−2 ln ε ≤ μc − μ ≤ (2k + 1)

μc

Dμ

√
ε
√
−2 ln ε

must hold for (3.43) to be true, with μc defined as in (2.56). This condition is consistent with
the estimate for Δμk, e.g., given after the proof of Theorem 3.7, and will typically be satisfied
if q is not “too large.”
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Remark 11. The restriction to q < 1
2 in (3.43) is made to ensure that Φmin ∈ RSk will

imply Φ(w̄j
min) ∈ RSk for 0 ≤ j ≤ k−1, since we can a priori conclude only Φmin−Φ(w̄j

min) =
O(ε) from (3.36).

One important consequence of Theorem 3.9 is that it allows us to give a precise qualitative
description of the segments that the symbolic sequence of a given periodic orbit can contain.
For any such orbit, let k ≥ 1 be the largest integer such that the segment 1k is contained in
the corresponding Farey sequence. With this convention, k = 1 implies that the sequence can
contain only the segments 11 and 10; restrictions on the sequences that can occur when k ≥ 2
are given in the following theorem.

Theorem 3.10. Assume that k ≥ 2. Then, a periodic orbit can occur if its sequence consists
of segments of the form 1k (some number of times in succession), 1k−1 (some number of times
in succession), and 1k−2 (preceded by 1k and followed by 1k−1 or 1k).

Proof. First, let us assume that (3.43) is satisfied. Then, the result already follows from
the proof of Theorem 3.9.

Now, suppose that (3.43) does not hold as well as that Φmin ∼ w̄c
k−1. Then, the steps

given in the proof of Theorem 3.9 can be retraced until almost the very end, namely, up
to the statement that w̄j+
 will be less than or equal to w̄k−1

min for some � ≥ 0. Instead, if
w̄j+
 ∈ RSk−1, we can now conclude only that w̄j+
+1 ∈ RSk ∪ RSk−1. The orbit can then
either remain in RSk−1 or enter RSk and subsequently jump back to either RSk−1 or RSk−2.
If, on the other hand, Φmin ∼ w̄c

k, the same kind of sequences can occur, with k shifted upward
by 1. This completes the proof.

Given the result of Theorem 3.10, a natural question that arises is how many times in
succession a given segment can occur.

Proposition 3.11. Let k ≥ 2. If a periodic orbit involves all of the segments 1k−2, 1k−1,
and 1k, then both 1k−2 and 1k can occur at most once in succession.

Proof. First, note that an orbit can contain all of the segments 1k−2, 1k−1, and 1k only if
Φmin ∼ w̄c

k−1; see the proofs of Theorems 3.9 and 3.10. It follows that any point on the orbit

that lies in RSk−2 must lie close to w̄k−1
min and, hence, that it must be mapped to RSk−1∪RSk

under Φ. Similarly, any point on the orbit in RSk must be close to w̄c
k−1 and therefore must

be mapped to RSk−2 ∪RSk−1.

Finally, Theorem 3.10 allows us to make a precise statement on the periodic orbits of the

type {Lkj
j } that can be observed for Lj ≥ 2.

Corollary 3.12. For k ≥ 2, L ≥ 2, and L+k ≥ 5, there are no periodic orbits which contain
the segment Lk and which pass through the part of RSk defined by (3.40).

Proof. Since the segment Lk corresponds to k small loops followed by L large relaxation
excursions, this segment can also be written in the form 1k(10)L−1. If k = 0 or k = 1, Theo-
rem 3.10 places no restrictions on the existence of such segments. Furthermore, Theorem 3.10
implies that the only remaining admissible k-value is 2 and that L− 1 = 1 must hold in that
case, implying L = 2.

To put it differently, one will not “generically” observe Farey sequences of the form {Lkj
j }

if Lj ≥ 3; if Lj = 2, only segments of the form 21 or 22 will occur. The segment L1
j , however,

is admissible for any Lj ≥ 1; this is due to “leakage” from RS0 in the sense that Φ(w̄) � w̄
for w̄ ≈ w̄c

0, implying that trajectories can “drift” back into RS1.
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Finally, we note that we make no assumptions about the stability of the periodic orbits
under consideration, neither in Theorem 3.10 nor in Corollary 3.12; indeed, our results apply
to any orbit for which the condition in (3.40) is satisfied.

4. Conclusions and discussion. In the present article, we have studied mixed-mode oscil-
lations (MMOs) in a three-dimensional model system of ordinary differential equations with
three distinct time-scales; see (1.5). Here, the “superslow” variable w has been playing the role
of a “dynamical parameter” which makes the (v, z)-subsystem of (1.5) move slowly through a
canard explosion. One major advantage of our modeling ansatz is the fact that the resulting
system dynamics is “almost” two-dimensional in the sense that the integrable structure close
to a canard explosion can be exploited to derive the return map Π for the induced flow.

We are aware of two specific examples of three time-scale systems which exhibit mixed-
mode dynamics akin to that studied here. One is a compartmental model for the dopaminergic
neuron, first derived by Wilson and Callaway [37] and subsequently analyzed in [23] and [24],
which in fact served as our motivation for formulating the simplified model system consid-
ered in this article. The other example is a model for a chemical reaction, discussed by
Moehlis [28]. Although these two systems are not exactly analogous to the one studied here,
they do share many of the underlying features and can be analyzed in a similar manner; see
also the upcoming article [18].

The three time-scale model studied in this article is one realization of a more general canard
mechanism that has been put forward to explain the mixed-mode dynamics often observed
in multiscale dynamical systems [36, 2]. This generalized canard mechanism is defined as a
combination of dynamical (local) passage through a canard point and a (global) return that
resets the system dynamics after the passage has been completed; cf. also section 1. Other
mechanisms that do not explicitly involve canards have been proposed to explain MMOs;
examples include break-up of an invariant torus [21], loss of stability of a Shilnikov orbit [16],
slow passage through Hopf bifurcation [22], and subcritical Hopf-homoclinic bifurcation [12,
13]. While these other mechanisms are consistent with some of the characteristic features of
MMOs, they cannot typically explain all of them; see [2]. On the other hand, the generalized
canard mechanism is consistent with most examples known to us of systems exhibiting mixed-
mode-type behavior [2, 17]. In particular, we note that both the Shilnikov and the delayed
Hopf mechanisms can be realized as an aspect of it. These and similar questions are the topic
of ongoing research; see, e.g., the forthcoming article [3].

An explanation of mixed-mode dynamics based on the Shilnikov mechanism has been
suggested by a number of authors (cf. [16] and the references therein) and is based on the
similarities between the respective bifurcation sequences as well as on the presence of Shilnikov-
type equilibria in systems that exhibit mixed-mode-type behavior. Roughly speaking, the
Shilnikov phenomenon is the unfolding of a homoclinic orbit to an equilibrium of saddle type
with a one-dimensional stable manifold and a two-dimensional unstable manifold of spiral
focus type. Since Shilnikov-type equilibria are present in canard-based systems that involve
a so-called folded saddle-node (of type II), we propose that the latter systems do realize a
“suitably modified” Shilnikov mechanism; cf. [3]. Similarly, a case of slow passage through
Hopf bifurcation is seen in the dynamics near a folded saddle-node (of type II) and plays
an important role there. This observation was made already in [26] and will also be fully
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elucidated in [3].

Finally, it is important to note that the equations in (1.2) are neither of Shilnikov type
nor of slow-passage-through-Hopf-bifurcation type, though they clearly realize the generalized
canard mechanism. Moreover, due to our assumption that μ + φ = O(1) in (1.2), the mixed-
mode dynamics analyzed in this article is neither of folded-node type nor of folded saddle-node
type; cf. section 1. More precisely, in a folded-node system, i.e., for μ+φ = O(1) and negative
in (1.2), the dynamics in the fold region would be strongly contractive and not oscillatory.
Furthermore, this dynamics would be transient, since μ would cause w to increase until the
relaxation regime in (1.1) is reached. The MMO patterns observed in this case would be regular
and robust; irregular time series with two or more successive relaxation cycles would rarely
occur upon variation of μ only. In a folded saddle-node system with μ small but φ large, on the
other hand, one would typically observe slow passage through a Hopf bifurcation; moreover,
the resulting mixed-mode dynamics would again be fairly regular in the sense that trajectories
would generically consist of one relaxation excursion followed by a large number of “loops”;
the amplitudes of these loops would be relatively small. This distinction is clearly reflected in
the dynamics of (1.5), as predicted analytically in section 3 and verified numerically below.

Some of our findings on the mixed-mode dynamics of (1.5) are summarized and discussed
in detail in the subsequent paragraphs.

A principal result of our analysis is the accurate reduction of the global return map Π
(which is defined as a two-dimensional map on the Poincaré section Δ−) to a one-dimensional
map Φ which can be studied in a standard, straightforward way.

The first step of this reduction entails the restriction of Π from Δ− to the union of a set
of (one-dimensional) intersecting curves. (These curves, which we have denoted by Cj

ε , are
defined recursively, with C0

ε ≡ C−
ε the flow image of the attracting slow manifold Sa−

ε in Δ and
Cj
ε = Π(Cj−1

ε ), j ≥ 1.) Most importantly, by Proposition 3.1, this reduction incurs an only
exponentially small error; i.e., the sequence {Cj

ε} very accurately approximates the attractor
of Π.

Then, in a second step, another reduction is performed, which yields a one-dimensional
map Φ that is defined on the curve C−

ε . This map again gives an exponentially accurate
approximation, this time for the (k + 1)th iterate of Π on the kth sector of rotation, RSk.
(In other words, Φ restricted to RSk describes the recurrent dynamics on RSk with an expo-
nentially small error.) Even though the map Φ is multimodal and possibly discontinuous at
the boundaries of RSk, it is one-dimensional and thus can be analyzed using techniques from
one-dimensional discrete dynamics. It is interesting to note that, conceptually, the reduction
to Φ is valid for any finite k, since the return of trajectories under Π will always eventually
be to C−

ε . However, given the nonuniformity of our results in k (Proposition 3.4), one might
have to consider higher-order terms (in ε) or, alternatively, take ε “very small” to describe
the asymptotics accurately for “very large” k.

Some authors [23, 27] postulate a reduction to the dynamics of an interval map that
would capture the properties of MMOs in systems of the type of (1.2). The fact that all MMO
trajectories must pass extremely close to Sa−

ε is a strong indication that the system dynamics of
(1.2) is almost two-dimensional in nature. Similarly, one might expect that the corresponding
return map Π is almost one-dimensional. However, our results imply that a straightforward
reduction of Π to a one-dimensional map defined on a single interval is not possible, whereas
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the one-dimensional map Φ, which is defined on a set of intervals corresponding to the sectors
of rotation, approximates Π with an only exponentially small error. By contrast, in [23], the
return is approximated by a piecewise linear map, with a jump discontinuity corresponding
to the strong canard, that admits a large variety of potential Farey sequences. Our analysis,
on the other hand, resolves precisely the rich bifurcation structure of Φ close to the strong
canard of (1.2), allowing us to characterize exactly which Farey sequences will actually be
observed in (1.2), as well as to give accurate estimates of the relevant parameter intervals. (It
is important to note, though, that the analysis in [23] does not focus primarily on resolving
the canard structure in detail; rather, it is concerned with the system dynamics close to Hopf
bifurcation which we do not analyze in detail here.)

The properties of Φ on RSk directly determine those of the corresponding MMO trajecto-
ries of type 1k, i.e., of periodic orbits for (1.5) which pass through the kth sector of rotation.
Hence, a large part of our analysis is devoted to establishing the qualitative and quantitative
asymptotics of the reduced return map Φ. More specifically, our results on the bifurcation
structure of Φ as well as on the Farey sequences Lk0

0 Lk1
1 . . . of the corresponding MMO trajec-

tories include a proof of the existence and stability of 1k-type orbits (Theorem 3.7), a precise
description of the ordering of the Farey sequences that will “generically” occur for Lj ≡ 1
(Theorem 3.10 and Proposition 3.11), as well as a statement on the “improbability” of ob-

serving orbits with symbolic sequence {Lkj
j } when Lj ≥ 3 (Corollary 3.12). It is important to

note that these restrictions on the dynamics of Φ are by no means exhaustive; rather, they
provide a sample of the types of results that can be proved using the techniques of section 3.
A more comprehensive analysis, however, is beyond the scope of this work.

Another important aspect of the generalized canard mechanism is the asymptotic structure
of secondary canards, as well as of the corresponding sectors of rotation. To date, rigorous
results in this direction have only been obtained by Wechselberger [36] for systems of general
folded-node type, via a bifurcation analysis of resonances. To the best of our knowledge, no
comparable analysis has been available so far for other realizations of the generalized canard
mechanism. The three time-scale structure of our problem in combination with the resulting
near-integrability, however, allows us to obtain rather specific results; in particular, it enables
us to derive a more or less explicit asymptotic estimate for the sector size: given the definition
of the critical canard value w̄c

0, as well as of the w̄-value w̄c
k corresponding to the kth secondary

canard Γk
ε , it follows with w =

√
εw̄ that wc = O(ε) after “blow-down,” as well as that

Δwk :=
√
εΔw̄k ∼ 2με

3
2

√
−2 ln ε

is the width of RSk ⊂ C−
ε , independent of k to leading order. This estimate confirms the

well-known fact [33, 36] that the canard phenomenon is fairly “robust” in three dimensions in
the sense that the relevant parameter intervals are relatively large, whereas in two dimensions,
they are only exponentially small [20]: in our case, the width of the relevant w-interval will
roughly be O(ε).

Finally, given the above discussion, our partly rigorous and partly heuristic conclusions on
the bifurcation (Farey) structure of the mixed-mode dynamics which will typically be observed
in (1.5) can be summed up as follows:

(i) Symbolic sequences of the form {1k} and {1k1k−1} dominate the stable dynamics; such
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(b) μ = 0.04.
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(c) μ = 0.045.
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(d) μ = 0.05.

Figure 17. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As μ
increases from (a) 0.035 via (b) 0.04 and (c) 0.045 to (d) 0.05, one observes a transition from 1716 via 1615

and 1514 to 1413 in the resulting Farey sequences.

sequences correspond to MMO trajectories that visit only one sector of rotation and
two adjacent sectors, respectively; see Figure 17.

(ii) Stable 1k-type orbits are observed in a relatively small parameter range. Consequently,
non-1k orbits (i.e., orbits that are not periodic with Farey sequence {1k}) dominate a
significant portion of the parameter space. Moreover, they occur more frequently with
increasing k, since the 1k-stability intervals decrease in size as k increases; cf. Figures
17 and 18.

(iii) For Lj ≥ 2, segments of the form L
kj
j are not generically observed when kj ≥ 2, except

for the segment 22. The segment L1
j , on the other hand, is possible for any Lj ≥ 1;

see Figure 19.
(iv) As μ increases, the Farey sequences observed in the transition are roughly of the

form . . . → 1k → 1k1k−1 → 1k−1 → . . . ; in particular, all sectors of rotation are
“swept through” until μ > μc, when the dynamics finally enters the relaxation regime
(cf. Figures 18 and 20).

(v) The local dynamics depends quite sensitively on the curvature of f(v), i.e., on the
coefficient f2; in particular, 1k-type orbits become increasingly harder to observe with
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(a) μ = 0.065.
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(b) μ = 0.0675.
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(c) μ = 0.07.
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(d) μ = 0.0725.
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(e) μ = 0.075.
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(f) μ = 0.0725.

Figure 18. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As μ
increases from (a) 0.065 via (b) 0.0675, (c) 0.07, and (d) 0.0725 to (e) 0.075, one observes a transition from
12 to 11 in the resulting Farey sequences, with transitory sequences which contain mixed segments of the form
1211 as well as 221211. Panel (f) shows a zoom on the time series of w for μ = 0.0725; clearly, w = O(ε), in
accordance with Assumption 1 (cf. also section 3.3).

growing f2; see Figure 21(a).
(vi) The number of sectors visited is also influenced by the strength of the global dynamics,

i.e., by how far “back” w is reset after relaxation: the smaller the parameter g1 is, the
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(a) μ = 0.0775.
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(b) μ = 0.08.
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(c) μ = 0.0825.
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(d) μ = 0.085.
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(e) μ = 0.0875.
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(f) μ = 0.09.

Figure 19. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As
μ increases from (a) 0.0775 via (b) 0.08 to (c) 0.0825, one observes a variety of complex Farey sequences,
with segments containing 11, 22, and 21 as well as repetitions thereof. As μ is increased further to 0.09, one
observes a transition from (c) 1121 via (d) 21 and (e) 2131 to (f) 3141, as predicted analytically in section 3.5.

closer to the strong canard trajectories will return after relaxation, and the smaller
the relevant μ-interval will be; cf. Figure 21(b).

(vii) Since w = O(ε) throughout (see Figure 18(f)), the global return point will be O(ε)-
close (in w) to the strong canard. This implies that only the “lower” sectors will
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(a) μ = 0.095.
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(b) μ = 0.0925.

Figure 20. The time series of v, z, and w for μ = 0.095 and μ = 0.0925. Clearly, the system is in the
pure relaxation regime in (a), whereas in (b), one observes already mixed-mode dynamics, in agreement with
the theoretical prediction that the critical μ-value should be μc ≈ 0.0938, up to an O(ε)-error.
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(a) μ = 0.019, f2 = 2, g1 = 0.5.
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(b) μ = 0.045, f2 = 1.5, g1 = 0.25.

Figure 21. The effects of a change of (a) f2 and (b) g1 on the dynamics of (1.5). As f2 is increased from
1.5 to 2, the stability interval of 11-type orbits decreases, since Dμ = 2.25 is replaced by Dμ = 4 and since
Δμ1 ∝ D−1

μ ; see Theorem 3.7. As g1 is decreased from 0.5 to 0.25, the dynamics recurs to lower sectors of
rotation; cf. Figure 17(c).

typically be involved in the dynamics, resulting in MMO trajectories with a submax-
imum number of small oscillations.

(viii) As k increases or, alternatively, as μ decreases, the sectors of rotation decrease in size.
Overall, however, the dynamics seems to become less expanding with higher k, making
it less likely for sequences containing segments of the form 1k1k−
, � > 1, to occur.

With the exception of the conjecture in (viii), these observations are reflected by our numerical
findings; see Figures 17 to 21 as referred to in the individual items. Figure 17 shows a sample
of regular 1k1k−1-type orbits for k = 4, . . . , 7, while Figure 18 illustrates the transition from
12 to 11 via mixed transitory segments of the form 221211; Figure 19 indicates how Farey
sequences with mixed segments containing 11, 22, and 21, as well as L1

j -type sequences with
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Lj ≥ 1, can arise; Figure 20 illustrates the transition from mixed-mode dynamics to the
pure relaxation regime at μ = μc in (1.5); finally, in Figure 21, (a) and (b) exemplify the
effects of a change in f2 and g1, respectively, on the dynamics of (1.5). In each case, the
relevant parameter regimes are specified in detail in the corresponding captions. All numerical
simulations were performed in MATLAB using the predefined routine ode23tb with absolute
and relative accuracies 10−10 and 10−8, respectively. For clarity, the results are illustrated
starting at t = 6000, after initial transients have subsided.

Appendix A. Some asymptotic results. In this appendix, we summarize a few results on
the asymptotics of the rescaled system (2.3), as well as of its generalization in (2.8). Recall
that the equations in (2.3) are given by

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3,(A.1a)

z̄′ = v̄ − w̄,(A.1b)

w̄′ = ε(μ− g1εz̄)(A.1c)

as well as that they reduce, for ε = 0, to

v̄′ = −z̄ + f2v̄
2,(A.2a)

z̄′ = v̄ − w̄,(A.2b)

w̄′ = 0;(A.2c)

cf. (2.4). For w̄ = 0, the system in (A.2) is integrable. Moreover, given the constant of motion

(A.3) H(v̄, z̄) =
1

2
e−2f2z̄

(
−v̄2 +

z̄

f2
+

1

2f2
2

)
as defined in (2.5), the orbits of (A.2) correspond in a unique fashion to the level curves
of H with H = h constant; cf. section 2. More precisely, to any h < h0 = (4f2

2 )−1, we
can assign a unique z̄-value z̄h in Δ−. For any such point (0, z̄h, w̄) ∈ Δ−, we denote the
corresponding solution to (A.1) by γ̄hε . Here, we assume the parametrization to be such that
γ̄hε (−T h(w̄)) = (0, z̄h, w̄) holds and that γ̄hε (T h(w̄)) is the point of first return to Δ−; recall
Figure 6.

In the particular case when w̄ = 0, we write T h = T h(0). Let h > 0 be fixed, and let
γ̄h0 denote the corresponding (periodic) solution of (A.2). For convenience, we denote the
z̄-coordinates of the two points of intersection of γ̄h0 with Δ by ξh and ζh, respectively; see
Figure 22.

Lemma A.1. There holds ζh = 1
2f2

(− lnh) + O(1) and ξh = − 1
2f2

+ O(h).

Proof. The assertion follows from (A.3): note that v̄ = 0 in Δ−, and expand z̄
f2

+ 1
2f2

2
=

h1
2e2f2z̄ for z̄ large, respectively, for z̄ (asymptotically) constant, to obtain the expansions for

ζh and ξh, respectively.
Given Lemma A.1, we have the following result on the asymptotics of T h.
Lemma A.2. There holds T h =

√
2(− lnh)

1
2 + O(1).

Proof. Given (A.3), we first express v̄ via

(A.4) v̄ =

√
z̄

f2
+

1

2f2
2

− 2he2f2z̄ =

√
z̄

f2

√
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄



MMOs IN THREE TIME-SCALE SYSTEMS 415

z̄

v̄

γ̄h
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0 (T h)
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0

γ̄h
0

Figure 22. A typical solution of (A.2).

and then make use of v̄ = z̄′ = dz̄
dt for w̄ = 0 (see (A.4)) to obtain∫ ζh

ξh

dz̄√
z̄
f2

√
1 + 1

2f2z̄
− 2f2h

e2f2z̄

z̄

=

∫ 0

−Th

dt.

Integrating the left-hand side by parts, we find that

T h = 2
√
f2z̄

(
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 1
2

∣∣∣∣ζ
h

ξh
(A.5)

+

∫ ζh

ξh

√
f2z̄

(
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 3
2
(
− 1

2f2z̄2
− 2f2h

e2f2z̄

z̄2
(2f2z̄ − 1)

)
dz̄.

From Lemma A.1, it follows that the leading-order contribution in the first term on the
right-hand side of (A.5) comes from the evaluation at the upper limit ζh. Moreover, by
expanding the integrand in the second term, one can check that the corresponding integral
will contribute only terms of O(1). Hence, again by Lemma A.1, T h ∼ 2

√
f2ζh ∼

√
2(− lnh)

1
2 .

This concludes the proof.
Recall the definitions of dh√

ε
and dhw̄ in (2.10) and (2.11), respectively:

dh√ε =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3, 0

)T
dt,(A.6a)

dhw̄ =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt.(A.6b)

For a numerical evaluation of the transition map Π : Δ− → Δ− (as defined in section 2.2),
it is convenient to express dh√

ε
and dhw̄ as follows.
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Lemma A.3. Let the integrals I1 and I2 be defined by

I1(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄) dz̄ and I2(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

respectively, with ξh and ζh as above. Then, there holds

(A.7) dhw̄ = −2f2I1(h) and dh√ε = −f3I2(h).

Proof. We will verify the assertion for dh√
ε

first: since

∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄,

it follows that ∇H · (f3v̄
3, 0)T = −f3v̄

4e−2f2z̄. To replace the t-integration in (A.6a) by an
integration with respect to z̄, we make use of the fact that dz̄

dt = z̄′ = v̄ for w̄ = 0. Then,

dh√ε = −2f3

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

since (v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄

h
0 )(t) on γ̄h0 . To evaluate dhw̄, note that the corresponding integrand

in (A.6b) is given by −f2v̄
2 + z̄. Also, it follows from (A.4) that v̄ and z̄ are related via

z̄ = −v̄′+f2v̄
2. The result then follows from an integration by parts, since v̄h0 (ξh) = 0 = v̄h0 (ζh)

by definition.

In general, for h �= 0, the integrals I1 and I2 cannot be computed analytically but have
to be approximated numerically. However, for h = 0, one can evaluate I1 and I2 exactly by
integrating by parts repeatedly. Recalling the definition of γ̄0

0 in (2.6), one finds, for instance,

I1(0) =
e

4f2
2

∫ ∞

−∞
t2e−

t2

2 dt =
e

4f2
2

(
−te−

t2

2

∣∣∣∞
−∞

+

∫ ∞

−∞
t2e−

t2

2 dt

)
=

e
√

2π

4f2
2

.

Similarly, one can show I2(0) = 3e
√

2π
16f4

2
; see also [19, 20]. In particular, this implies

d0
w̄ = − 1

2f2

√
2πe < 0 and d0√

ε = − 3f3

16f4
2

√
2πe > 0.

We require the following result on the asymptotics of I2(h) for h small.

Lemma A.4. There holds I2(h) = I2(0) −
√

2
f2
2
h(− lnh)

3
2 + O(h(− lnh)

1
2 ).

Proof. We will prove the assertion by first determining the leading-order behavior of dI2
dh :

given v̄2 = z̄
f2

+ 1
2f2

2
− he2f2z̄, we obtain by implicit differentiation that ∂v̄

∂h = −v̄−1e2f2z̄ and,

hence, that

dI2(h)

dh
∼ −6

∫ ζh

ξh
v̄h0 (z̄) dz̄.
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As in the proof of Lemma A.1, we now make use of (A.4) and then perform an integration by
parts to find

(A.8)
dI2(h)

dh
= − 4√

f2
(ζh)

3
2 + O

(
(ζh)

1
2
)

= −
√

2

f2
2

(− lnh)
3
2 + O

(
(− lnh)

1
2
)
.

The assertion follows by integrating (A.8) with respect to h, to leading order.
Given Lemma A.4, one can write

(A.9) dh√ε = d0√
ε + R(h) = d0√

ε + hR̃(h),

where R(h) denotes the corresponding remainder term and R̃(h) = −f3
dI2
dh is the first-order

coefficient in the Taylor expansion of dh√
ε
about h = 0. Note that the leading-order asymptotics

of dhw̄ can be obtained in a similar manner.
Finally, recall the generalized system of equations from (2.8), as well as the definition of

the corresponding return map in (3.16),

Π(h, w̄) =

(
PhΠ0(h, w̄) + εμK(h) + O(ε2)

w̄ + 2εμT h + O(ε2)

)
,

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t + T h) dt.

An estimate for K is derived as follows.
Lemma A.5. There holds

(A.10) K(h) = 2d0
w̄T

h + O(1).

Proof. Recall that, by definition, we have∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt = dhw̄;

see (A.6b) and the proof of Proposition 2.2. It follows that

K(h) = dhw̄T
h +

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T t dt.

To estimate the above integral, note that∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T t dt = −G(0, 0)

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt(A.11)

−
∫ Th

−Th

(
f2v̄

h
0 (t)2 − z̄h0 (t)

)
e−2f2z̄h0 (t)t dt.
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Since the integrand in the second integral on the right-hand side of (A.11) is odd in t, that
integral vanishes. Hence, it remains to estimate the first integral: using integration by parts,
we obtain

(A.12)

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt = T h

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t) dt−
∫ Th

−Th

∫ t

−Th

v̄h0 (s)e−2f2z̄h0 (s) ds dt.

The first integral on the right-hand side of (A.12) is again zero, since the corresponding
integrand is odd in t. Next, we recall that (v̄h0 , z̄

h
0 )(t) is a solution of (A.2) for w̄ = 0 and,

hence, that

v̄h0 (s)e−2f2z̄h0 (s) = − 1

2f2

d

ds

(
e−2f2z̄h0 (s)

)
.

Consequently, ∫ t

−Th

v̄h0 (s)e−2f2z̄h0 (s) ds = − 1

2f2

(
e−2f2z̄h0 (t) − e−2f2ξh

)
,

where ξh = z̄h0 (±T h), as before. Now, since∫ Th

−Th

e−2f2z̄h0 (t) dt

is bounded, i.e., O(1), we conclude that∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt ∼ 1

f2
T he−2f2ξh ,

and it remains only to estimate G(0, 0): indeed, by (2.36) and (2.37), there holds

G(0, 0) = −dz̄h
+(w̄,ε)

dw̄
(0, 0).

Recalling that the relationship between z̄h and h is given implicitly by

1

2f2
e−2f2z̄h

(
z̄h +

1

2

)
= h

(cf. (A.3)), we find from an implicit differentiation that

dz̄h

dh
= 2f2e

2f2z̄h + O(h).

Since ξh = z̄h, (2.35) shows that

dh+(w̄,
√
ε)

dw̄
(0, 0) = d+

w̄ = −1

2
d0
w̄

and, hence, that G(0, 0) = d0
w̄f2e

2f2ξh . The result follows.
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Abstract. We propose a new method to handle the n-dimensional billiard problem in the exterior of a finite
mutually disjoint union of convex (but not necessarily strictly convex) smooth obstacles without
eclipse in the Euclidean or hyperbolic n-space, and we prove that there exist trajectories visiting the
obstacles in any given doubly infinite prescribed order (with the obvious restriction of no consecutive
repetition). As an interesting variant of planar billiards, we consider spinning obstacles and particles
and prove that any forward sequence of obstacles has a trajectory that follows it.
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1. Introduction. The billiard problems of various types have not only physical significance
but also mathematical beauty. The long history of billiards is full of mathematical gems [10].
A less investigated class of dispersing billiards is the so-called open-billiards problem, where
the reflections on the boundaries of some sorts of obstacles in an infinite affine space are
producing the billiard map. An interesting theorem was proven by Morita [8] in the following
set-up.

Let O1, O2, . . . OK (K ≥ 3) be a finite number of mutually disjoint, closed, bounded,
convex subsets of R

2 (the so-called obstacles) with boundaries ∂Oj , which are simple smooth

closed curves. Consider a particle in R
2 outside

⋃K
j=1 Oj which moves along a straight line

with unit speed and reflects at the boundary
⋃K

j=1 ∂Oj obeying the law of reflection; i.e., the
angle of reflection coincides with the angle of incidence. Assume additionally the following
two conditions.

Condition 1 (strict convexity). The boundary curves all have nonvanishing curvature.
Condition 2 (no eclipse). For any triple (j1, j2, j3) of distinct indices,

conv[Oj1 ∪Oj2 ] ∩Oj3 = ∅,
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where conv[A] denotes the convex hull of the set A.
Then the following theorem holds (in R

2).
Theorem 1 (Morita [8]). Given an itinerary (On)n∈Z of obstacles without consecutive rep-

etition, there exists a unique trajectory following this itinerary.
The setting and two assumptions of Morita go back to Ikawa [6], who proved the exis-

tence and uniqueness of arbitrary periodic trajectories in the 3-dimensional case with strictly
convex obstacles without eclipse. The n-dimensional version of this problem is considered in
Stoyanov [9], where important and intricate estimates for the separation of nearby trajectories
are given, and very recently the problem was solved by Blokh, Misiurewicz, and Simanyi for
strictly convex obstacles without eclipse in R

n (Theorem 2.2 in [1]), the trajectories being
unique by Chernov [2].

We propose another method to solve the problem, which can be applied to other similar
billiard problems, and we exemplify this for the hyperbolic case. At the same time we weaken
the strict convexity assumption for obstacles and allow their boundaries to have flat parts, as
suggested by one of the referees. Throughout the literature it is assumed that the obstacles
are strictly convex, so we hope this generalization will be of some value. Polyhedral obstacles
smoothed along a narrow region of the edges might give interesting examples. This gener-
alization works, however, at the price of uniqueness of trajectories with a fixed itinerary. It
remains to be understood to what extent uniqueness is lost.

After proving the theorem for R
n (see Theorem 2), we replace R

n by H
n (the n-dimensional

hyperbolic space) using the conformal unit disk model B
n ⊂ R

n for H
n. The rays along

which the particle moves are no longer straight lines but the geodesics of H
n, i.e., circle arcs

orthogonal to the unit sphere Sn−1 or Euclidean straight lines going through the origin of B
n.

Theorem 3 shows that the basic result (Theorem 2) also holds in this case, taking as obstacles
hyperbolically convex smooth subsets which are diffeomorphic with balls inside B

n.
Finally, we consider another generalization of Theorem 1 on the plane, where we assume

the obstacles to be (geometric) disks but allow them to spin around their fixed centers. We
also allow the moving particles to spin and collide with the spinning obstacles according to
the laws of physics. Under some plausible assumptions, we show that there exists a trajectory
following any given (forward) sequence of obstacles.

2. n-dimensional (Euclidean) open-billiards. We define an obstacle in R
n to be a convex

(not necessarily strictly convex) subset O (with boundary ∂O), which is diffeomorphic to
the standard disk D

n. Now, let us consider a finite number of mutually disjoint obstacles
O1, O2, . . . OK (K ≥ 3) for which Condition 2 holds.

Condition 2 (no eclipse). For any triple (j1, j2, j3) of distinct indices,

conv[Oj1 ∪Oj2 ] ∩Oj3 = ∅.

To define the billiard map, we consider the space L of oriented lines in R
n (which can be

identified with the total space of the tangent bundle of the unit sphere Sn−1 ⊂ R
n; see [10]).

We denote the unit orientation vector of L ∈ L by v(L) and the line going through a point p
and having orientation vector v by Lpv. We denote the ray {x ∈ Lpv | x = p+ tv with t ≥ 0}
by L+

p v.
The subspace Q ⊂ L of the oriented lines intersecting at least one obstacle is compact.



BILLIARDS 423

We define for i = 1, 2, . . . ,K the set Si ⊂ Q as the set of all oriented lines, which, in the
direction of orientation, first hit the obstacle Oi and then, for some j �= i, hit another obstacle
Oj . (Thus by Condition 2, a line in Si hits only these two obstacles Oi and Oj .) Note that
the sets Si are mutually disjoint.

Let Q0 =
⋃K

i=1 Si ⊂ Q.

An oriented line L intersecting an obstacle Oi “enters” the obstacle at a point p′ ∈ ∂Oi

with 〈np′ , v(L)〉 ≤ 0 (np′ being the outward unit normal vector at p′) and “leaves” the obstacle
at a point p ∈ ∂Oi with 〈np, v(L)〉 ≥ 0. Generically L∩ ∂Oi consists of two points, but it can
also be a singleton or the interval [p′, p].

Now we define the billiard map f : Q0 → Q.

w = v(L′)

qp v = v(L)

Oi Oj

nq

v
L = Lpv

L′ = Lqw

r u
Lru

p′

Figure 1. The billiard map sends Lpv to Lqw with w = v − 2〈nq, v〉nq. As a special case, Lru is sent to
itself.

Let L ∈ Si, L∩Oj �= ∅, with j �= i and q the first-hit point of L on ∂Oj . We set f(L) = L′,
where L′ is the oriented line through q with the orientation vector v(L′) = v(L)−2〈nq, v(L)〉nq

(see Figure 1).

We will prove the following.

Theorem 2. Given an itinerary (Sin)n∈Z with in ∈ {1, 2, . . . ,K} and in �= in+1, there exists
a trajectory (Ln)n∈Z following this itinerary; i.e., f(Ln) = Ln+1 and Ln ∈ Sin.

This means obviously that given any sequence of obstacles in R
n, there is a billiard tra-

jectory in the usual sense hitting every obstacle in the given order.

To prove this theorem, we will use the following special case of the result in [7].

Theorem (the chaos lemma). Let Q be a compact metric space, Q0 ⊂ Q a compact subset,
f : Q0 → Q a continuous map, and Si ⊂ Q0 (i = 1, 2, . . . ,K) pairwise disjoint compact
subsets of Q0 with

⋃K
i=1 Si = Q0. Assume there exists a collection {Ei}Ki=1, where each Ei is a

nonempty family of nonempty compact subsets of Q, with the following property.

Property 1. If E ∈ Ei and j �= i, there exists a set Ej ⊂ E ∩ Si such that f(Ej) ∈ Ej.
Then, given any bi-infinite sequence (Sin)n∈Z of the sets {S1, S2, . . . , SK} with in ∈

{1, 2, . . . ,K} and in �= in+1, there exists a sequence (xn)n∈Z such that xn ∈ Sin and f(xn) =
xn+1.

The sets Si are called symbol sets, the sets E ∈ Ei are called expanders, and the sets
Ej ⊂ E ∩ Si with f(Ej) ∈ Ej are called pre-expanders.
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3. Proof of Theorem 2. We shall apply the chaos lemma to the billiards setting with the
notation fixed above. To make the chaos lemma work, we have to define the expander sets
Ei. For this purpose we define the notion of a dispersive vector field on a nonempty, compact
subset D ⊂ ∂Oi.

Let σ : D → Sn−1 be a continuous outward unit vector field; i.e., 〈σ(p), np〉 ≥ 0 for all
p ∈ D. We call σ dispersive if the condition

〈σ(p1) − σ(p2), p1 − p2〉 ≥ 0 for all p1, p2 ∈ D

is satisfied. See Figure 4.
Lemma 1. For a dispersive vector field σ, either the rays L+

p1
σ(p1) and L+

p2
σ(p2) are disjoint

or one is contained in the other.
We omit the proof.
We call a dispersive vector field σ : D → Sn−1 exhaustive (or call σ an exhaustively

dispersive vector field) if there exists a continuous extension σ∗ : ∂Oi → Sn−1 of σ such that

〈np, σ
∗(p)〉 ≥ 0 for all p ∈ ∂Oi, and

L+
p σ

∗(p) ∩ ∂Oj = ∅ for all p ∈ ∂Oi\D, j �= i.

(That is, σ can be extended to an outward unit vector field on ∂Oi in such a way that the
rays along the new vectors outside D do not hit any of the obstacles.)

We can associate to every vector field σ : Dσ ⊂ ∂Oi → Sn−1 the set E(σ) of oriented lines
defined as E(σ) = {Lpσ(p) | p ∈ Dσ} ⊂ Q.

Now we define our expanders (recall that expanders are sets of sets):

Ei = {E ⊂ Q | there exists an exhaustively dispersive vector field

σ : Dσ ⊂ ∂Oi → Sn−1 such that E = E(σ)}.

Ei is nonempty because the outward unit normal vector field N is exhaustively dispersive, and
thus E(N ) ∈ Ei.

To obtain Theorem 2 from the chaos lemma, we have to verify Property 1: For any E ∈ Ei
(E = E(σ) for some σ : Dσ → Sn−1) and for all j �= i, there exists a subset Ej ⊂ E ∩ Si such
that f(Ej) ∈ Ej .

We define as a pre-expander

Ej = {Lpσ(p) | p ∈ Dσ and L+
p σ(p) ∩ ∂Oj �= ∅}

and are going to show that f(Ej) ∈ Ej . To this end we first note some well-known facts.
σ∗ : ∂Oi → Sn−1 has degree 1 (because it is homotopic to the normal vector field) and

thus it is onto. In other words, given any unit vector in R
n, there is a point in ∂Oi at which

this vector is attached. Moreover, we can state the following lemma.
Lemma 2. Given any point q ∈ R

n\Oi, there exists a point p ∈ ∂Oi such that q ∈ L+
p σ

∗(p).
Proof. Let q ∈ R

n\Oi. Define the map

ωq : ∂Oi → Sn−1,

ωq(p) =
q − p

‖q − p‖ ,
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which assigns a unit vector in direction q for each p ∈ ∂Oi. ωq has degree 0 because it is not
onto.

Now, suppose that σ∗(p) �= ωq(p) for all p ∈ ∂Oi. Then the map

H : ∂Oi × [0, 1] → Sn−1,

H(p, t) =
tσ∗(p) − (1 − t)ωq(p)

‖tσ∗(p) − (1 − t)ωq(p)‖

is a homotopy between −ωq(p) = H(p, 0) and σ∗(p) = H(p, 1). To see this, it is enough to show
that ‖tσ∗(p)−(1−t)ωq(p)‖ �= 0 for all p ∈ ∂Oi and t ∈ [0, 1]. If we had ‖tσ∗(p)−(1−t)ωq(p)‖ =
0 for some t, this would give tσ∗(p) = (1− t)ωq(p) and thus t = 1

2 (by ‖σ∗(p)‖ = ‖ωq(p)‖ = 1),
contradicting σ∗(p) �= ωq(p).

This homotopy implies that degree(σ∗(p)) = degree(−ωq(p)), which is impossible, because
degree(−ωq(p)) = 0 but degree(σ∗(p)) = 1.

As a consequence, we have ∂Oj ⊂
⋃

L∈Ej
L+
p σ(p) for any j �= i.

Let ϕ : ∂Oj → Sn−1 be defined as follows: Given q ∈ ∂Oj there exists p ∈ Dσ with
q ∈ L+

p σ(p). A point with this property might not be uniquely defined, but σ(p) is well
defined by dispersivity. So we set ϕ(q) = σ(p). ϕ can be seen to be continuous.

We can now express f(Ej) as E(τ) for the function

τ : Dτ → Sn−1,

τ(q) = ϕ(q) − 2〈nq, ϕ(q)〉nq,

where Dτ = {q ∈ ∂Oj | 〈nq, ϕ(q)〉 ≤ 0} ⊂ ∂Oj (see Figure 2).
Lemma 3. τ , as defined above, is exhaustively dispersive.
Proof (τ is dispersive). We must show 〈τ(q1) − τ(q2), q1 − q2〉 ≥ 0 for all q1, q2 ∈ Dτ .

Let q1 = p1 + t1σ(p1), q2 = p2 + t2σ(p2) and assume t1 ≥ t2 > 0. We thus have, inserting
τ(qα) = σ(pα) − 2〈σ(pα), nqα〉nqα for α = 1, 2,

〈τ(q1) − τ(q2), q1 − q2〉 = 〈σ(p1) − σ(p2), q1 − q2〉
+ 2〈[〈σ(p2), nq2〉nq2 − 〈σ(p1), nq1〉nq1 ], q1 − q2〉.(1)

We will show that both terms on the right-hand side of (1) are nonnegative. The first
term satisfies

〈σ(p1) − σ(p2), q1 − q2〉 = 〈σ(p1) − σ(p2), p1 − p2〉 + t2‖σ(p1) − σ(p2)‖2

+ (t1 − t2)〈σ(p1) − σ(p2), σ(p1)〉.(2)

The first term on the right-hand side of (2) is nonnegative, because σ is dispersive. The other
two terms are nonnegative for obvious reasons.

The second term of the right-hand side of (1),

〈σ(p2), nq2〉〈nq2 , q1 − q2〉 − 〈σ(p1), nq1〉〈nq1 , q1 − q2〉,

is also nonnegative because

〈nq2 , q1 − q2〉 ≤ 0 and 〈nq1 , q1 − q2〉 ≥ 0
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by convexity of Oj . (The other two factors are ≤ 0 by construction.)
Proof (τ is exhaustive). To define the extension

τ∗ : ∂Oj → Sn−1,

we first note that Dτ = {q ∈ ∂Oj | 〈nq, ϕ(q)〉 ≤ 0} and D′
τ = {q ∈ ∂Oj | 〈nq, ϕ(q)〉 ≥ 0} are

both closed.
Let

τ∗(q) =

{
ϕ(q) − 2〈ϕ(q), nq〉nq for q ∈ Dτ

ϕ(q) for q ∈ D′
τ

(see Figure 2).

τ = τ ∗

τ = τ∗

τ

Oi

Oj
Dτ

D′
τ

τ∗

τ(q)
q

p

nq

σ(p)

Figure 2. The extension of τ .

τ∗ is well defined on Dτ ∪D′
τ = ∂Oj since 〈ϕ(q), nq〉 = 0 for q ∈ Dτ ∩D′

τ , and consequently
τ∗ is continuous. τ∗ is outward on D′

τ (〈nq, τ
∗(q)〉 ≥ 0 for q ∈ D′

τ ), and L+
q τ

∗(q) ∩ ∂Ok = ∅
for k �= j by Condition 2. Thus τ is exhaustive.

The chaos lemma now verifies Theorem 2.

4. Open billiards in hyperbolic n-space. We consider the open-billiards problem in the
n-dimensional hyperbolic space H

n using the conformal unit-disk model B
n = {x ∈ R

n |
‖x‖E < 1} with the Riemannian metric

gp(up, vp) = 〈up, vp〉H =
4

(1 − ‖p‖2)2
〈up, vp〉E,

where up, vp are vectors at the point p ∈ B
n and the subscripts E and H denote the Euclidean

and hyperbolic metrics, respectively. In this section we will assume the hyperbolic metric
applies when the subscript is dropped. The angles between (hyperbolic) vectors are the same
as in the Euclidean case; only the lengths are affected.

Given any point p ∈ B
n and any unit vector vp at p, the geodesic going through p in

the direction of vp is a Euclidean circle-arc perpendicular to the unit sphere Sn−1 ⊂ R
n. (In

the case when it goes through the origin of R
n, it is a straight line segment.) We denote

the oriented geodesic through p in the direction of vp by Lpvp, and we call the geodesic part
starting at p in the direction of vp a hyperbolic ray and denote it by L+

p vp. As obstacles we
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consider hyperbolically convex (the geodesic segment connecting any two points is contained
in the obstacle) smooth subsets of B

n which are diffeomorphic to the standard closed disk
D
n = {x ∈ R

n | ‖x‖E ≤ 1}.
Let L denote the space of oriented geodesics, and let Q ⊂ L be the compact subspace of

oriented geodesics intersecting at least one obstacle. As before, let Si be the set of all oriented
geodesics which in the direction of orientation first hit the obstacle Oi and then, for some
j �= i, another obstacle Oj . We set Q0 =

⋃K
i=1 Si ⊂ Q.

For an oriented geodesic L intersecting an obstacle Oi, there is a first-hit point p′ ∈ ∂Oi

with 〈np′ , vp′〉 ≤ 0 (note that the hyperbolic normal vector is in the direction of the Euclidean
normal vector, but possibly of different length) and a last-hit point p ∈ ∂Oi with 〈np, vp〉 ≥ 0.

The billiard map f : Q0 → Q can be defined as before: For L ∈ Si, L∩Oj �= ∅ with j �= i,
p the last-hit point of L on ∂Oi, q the first-hit point of L on ∂Oj , we set f(L) = L′, where
L′ is the oriented geodesic through q with the vector wq = P q

p vp − 2〈nq, P
q
p vp〉nq, P

q
p denoting

the parallel transportation of a vector at p, along the geodesic, to a vector at q (see Figure 3).

vp Lpvp

Oi

Oj

nq vq

wq

O

Lqwq

Figure 3. The billiard map sends Lpvp to the geodesic Lqwq with wq = vq − 2〈nq, vq〉nq, where vq = P q
p vp.

Now let us consider a finite number of mutually disjoint obstacles O1, O2, . . . , OK (K ≥ 3).
We again assume Condition 2.

Condition 2 (no eclipse). For any triple (j1, j2, j3) of distinct indices,

conv[Oj1 ∪Oj2 ] ∩Oj3 = ∅.

Theorem 3. Given an itinerary (Sin)n∈Z with in ∈ {1, 2, . . . ,K} and in �= in+1, there exists
a trajectory (Ln)n∈Z following this itinerary; i.e., f(Ln) = Ln+1 and Ln ∈ Sin.

For proof, we again apply the chaos lemma. We will outline those points where there are
slight modifications in comparison to the Euclidean case.

We denote the restriction of the hyperbolic unit tangent bundle T1(B
n) to ∂Oi by Σi. Let

D ⊂ ∂Oi be a nonempty, compact subset of ∂Oi and σ : D → Σi a continuous outward vector
field, i.e., σ(p) = (p, σ2(p)) with 〈np, σ2(p)〉 ≥ 0 for p ∈ D. Let p1, p2 ∈ D and αi denote the
angle between σ2(pi) and the hyperbolic segment [p1p2] for i = 1, 2. We call σ a dispersive
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vector field if α1 + α2 ≥ π for all p1, p2 ∈ D. (This condition is equivalent to the one we
used in the Euclidean case, but this formulation is more convenient for the hyperbolic setting,
especially for checking the dispersiveness of reflected rays.)

Lemma 4. For a dispersive vector field σ, either the hyperbolic rays L+
p1
σ2(p1) and L+

p2
σ2(p2)

are disjoint or one is contained in the other.
We omit the proof.
The definition of exhaustiveness remains the same. As for expanders, we take again sets

of oriented geodesics determined by exhaustively dispersive vector fields. If σ : Dσ → Σi,
Dσ ⊂ ∂Oi, we set E(σ) = {Lpσ2(p) | p ∈ Dσ} ⊂ Q and define

Ei = {E(σ) | σ is an exhaustively dispersive vector field on Dσ ⊂ ∂Oi}.
Ei is nonempty because by hyperbolic convexity the segment [p1p2] lies inside Oi for p1, p2 ∈
∂Oi, making the angle with the normals np1 and np2 greater than (or equal to) π

2 . This shows
that the normal outward vector field on ∂Oi is exhaustively dispersive.

We define the pre-expanders as before: given E ∈ Ei, we set

Ej = {Lpσ2(p) | p ∈ Dσ and L+
p σ2(p) ∩ ∂Oj �= ∅}.

We have to show that f(Ej) ∈ Ej . In the Euclidean case, we used degree theory to see this.
In the hyperbolic setting, degree theory can still be used with suitable modifications.

Given any section σ : ∂Oi → Σi, for any p ∈ ∂Oi we can parallel-transport the vector
σ2(p) to the origin along the geodesic between p and the origin (which is a Euclidean straight
line segment). We thus obtain a map σ̃ : ∂Oi → Sn−1

H
(the hyperbolic unit sphere is also a

Euclidean sphere) and define degree(σ) to be degree(σ̃).
If σ : Dσ → Σi is any exhaustively dispersive vector field, then we get as before degree(σ∗) =

1. As a consequence, given any point q ∈ B
n\Oi, there exists a point p ∈ ∂Oi with q ∈ L+

p σ
∗
2(p).

Then we get ∂Oj ⊂
⋃

L∈Ej
L+
p σ2(p). We define as before ϕ : ∂Oj → Σj ϕ(q) = P q

pσ2(p) for

q ∈ L+
p σ2(p) and τ : Dτ → Σj with Dτ = {q ∈ ∂Oj | 〈nq, ϕ(q)〉 ≤ 0} ⊂ ∂Oj and

τ(q) = (q, ϕ(q) − 2〈nq, ϕ(q)〉nq).

With this τ it holds that f(Ej) = E(τ), and to show f(Ej) ∈ Ej we must prove that τ is
continuous, dispersive, and exhaustive. Continuity and exhaustiveness go almost verbatim as
in the Euclidean case, but dispersiveness requires a separate argument. We have to show that
for q1, q2 ∈ Dτ , the angle β1 between τ2(q1) and the hyperbolic segment [q1q2] and the angle
β2 between τ2(q2) and [q1q2] satisfy the inequality β1 + β2 ≥ π.

We first show that the angles θ1, θ2 between P q1
p1 σ2(p1), P

q2
p2 σ2(p2) and the hyperbolic

segment [q1q2] satisfy θ1 + θ2 ≥ π. Then we will show β1 ≥ θ1 and β2 ≥ θ2. Now let
�p1p2q1 = α′

2, �q1p2q2 = α′′
2, �q2q1p2 = γ′, and γ be the angle between P q1

p1 σ2(p1) and [p2q1].
By the triangle inequality for angles, we have

α2 ≤ α′
2 + α′′

2 and γ ≤ γ′ + θ1.

On the other hand, for the hyperbolic triangle p1p2q1, γ > α1 + α′
2 (because the sum of the

inner angles of a hyperbolic triangle is less than π). We thus get

γ + α′
2 + α′′

2 ≥ α1 + α′
2 + α2,

γ + α′′
2 ≥ α1 + α2 ≥ π.
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Figure 4. τ is a dispersive vector field.

From the hyperbolic triangle p2q1q2 we have θ2 > γ′ + α′′
2. Hence, θ1 + θ2 ≥ θ1 + γ′ + α′′

2 ≥
γ + α′′

2 ≥ α1 + α2 ≥ π.
We now show β1 ≥ θ1:

τ2(q1) = P q1
p1
σ2(p1) − 2〈nq1 , P

q1
p1
σ2(p1)〉nq1 by definition of τ.

As the scalar product on the right-hand side is negative, we have

τ2(q1) = P q1
p1
σ2(p1) + λnq1 with λ ≥ 0.

Denote the unit vector at q1 in the direction of q1q2 by u, and multiply the above equation
by u:

〈τ2(q1), u〉 = 〈P q1
p1
σ2(p1), u〉 + λ〈nq1 , u〉,

cosβ1 = cos θ1 + λ〈nq1 , u〉.

As 〈nq1 , u〉 ≤ 0 we get cosβ1 ≤ cos θ1, and thus β1 ≥ θ1. Similarly, β2 ≥ θ2, giving the
dispersiveness and completing the proof.

5. Spinning planar billiards.

5.1. Introduction. Billiard dynamics has been a standard dynamics model for many years,
but the model is far from a complete description of reality. Real billiard balls have spin, which
is utilized by billiards players. Here we extend the model to permit the billiard to spin. See
[3, 4, 5] for a discussion of the physics. We call the particle a “puck”; it is analogous to a
hockey puck that can spin on the plane. In contrast, a billiard ball on a table spins in three
dimensions, a case we do not consider here.

We find the new mathematics that result intriguing. The state space describing a puck
is larger since it must include speed and spin rate as well as position and direction—we can
no longer assume the puck’s speed is constant. Our puck is assumed to have no friction
between collisions, but there is friction in the collision. Friction in the collision introduces an
interaction among the spin of the obstacle, the spin of the puck, and the incoming velocity of
the puck. Most people have observed that a thrown rubber ball has a bounce that is affected
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by the spin of the ball. A rapidly spinning ball can gain speed in the collision, translating spin
energy into velocity. So-called super balls are resilient (i.e., they retain most of their energy
in a bounce) and have a high friction coefficient. Their bounces are especially influenced by
spin.

In the appendix, we discuss the equations for a collision between the puck and an obstacle,
using the most commonly used rules of friction, namely, stick-slip friction. A block sliding
on a surface slows down, and its deceleration is independent of its velocity, provided that the
velocity is positive. The block therefore reaches 0 speed in finite time. We must compress this
phenomenon into an instantaneous bounce. A key factor is the relative speeds of the points
on the puck and obstacle that are in contact during the collision. For the incoming trajectory,
they are unlikely to be equal, but for the outgoing trajectory, equality is quite likely if the
incoming difference is small.

The stick-slip dynamics of a collision with a fixed obstacle (described in the appendix) have
some easily derived properties that can be useful in modeling, though they are not necessary
for the results in this section. Let Δs denote the absolute value of the difference between the
incoming spin rate of a puck (just before a collision) and its spin immediately after. Similarly,
let Δv denote the norm of the difference in the incoming and outgoing velocities. Let w be
the norm of the normal component of the incoming velocity. Then there are constants C1 > 0
and C2 > 0 (that depend only on the coefficient of friction and moment of inertia of the puck)
such that

Δs ≤ C1w and C2w ≤ Δv ≤ C1w.

In particular, in a tangential collision, w = 0, so the change in velocity and spin are 0.

We also note that the outgoing velocity and spin are continuous functions of initial position,
velocity, and spin. Additionally, the change in the normal component of velocity depends only
on w, and the outgoing velocity must be nonzero.

5.2. Spinning billiards. In our result we assume the following properties, which are much
less specific than would be required by the stick-slip friction model.

Condition 2 (no eclipse). For any triple (j1, j2, j3) of distinct indices,

conv[Oj1 ∪Oj2 ] ∩Oj3 = ∅.

Condition 3 (physical properties). The obstacles are fixed disks with fixed spin rates, all hav-
ing the same fixed coefficients of friction. The puck is a disk and has a fixed coefficient of
restitution e > 0, so its outgoing speed is always positive (the puck cannot stop at a collision).
The velocity and spin rate of the puck are constant between collisions.

Condition 4 (continutity). For each obstacle, following a collision, the puck’s outward ve-
locity and rate of spin are continuous functions of the inward velocity, rate of spin, direction
of motion, and point of contact with the obstacle. Furthermore, if the puck hits an obstacle
tangentially, then its velocity and rate of spin do not change.

The ambient phase space of the dynamics (at instants of collisions) will be

Q =
K⋃
i=1

(S1
i × S1 × (0,∞) × R),
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where the first factor S1
i is the boundary of the disk Oi, the second factor S1 codes the

direction of the puck, the third factor (0,∞) codes its linear speed, and the last factor R

codes its angular velocity at the moment of leaving Oi.
The symbol sets will be

Si = {(p, v, s, r) | p ∈ S1
i , 〈np, v〉 ≥ 0, and ∃j such that L+

p v ∩ S1
j �= ∅} ⊂ Q,

where np and L+
p v denote as usual the outward unit normal at p and the (Euclidean) ray

starting at p in direction v. Let

Q0 =

K⋃
i=1

Si.

The billiard map f : Q0 → Q is continuous by Condition 4. See Figure 5.
Theorem 4. Assume Conditions 2, 3, and 4. Given a forward itinerary (Sin)n∈N with

in ∈ {1, 2, . . . ,K} and in �= in+1, there exists a trajectory (Ln)n∈N following this itinerary;
i.e., f(Ln) = Ln+1 and Ln ∈ Sin.

Since this theorem discusses only forward itineraries, the corresponding trajectories are
not unique. Even if the forward and backward trajectories were specified, there is no guarantee
that they would correspond to a unique trajectory. The approach we use is general enough
that it can be applied to situations where uniqueness of trajectories does not hold.

To define the expanders in the present case, we first consider continuous maps

g : J → S1
i × S1 × (0,∞) × R,

t �→ (p(t), v(t), s(t), r(t)),

where J is a compact interval in R or J ⊂ S1
i for some i and the second coordinate v(t) is an

outward direction at the point p(t). We call such a map g exhaustive if it can be extended to
a map g∗ on a circle such that, on the complementary closed arc J ′, the following conditions
hold:

1. For t ∈ J ′, v(t) is an outward direction at p(t), and the ray L+
p(t)v(t) does not hit any

disk Oj for j �= i.
2. The degree of the map given by the first coordinate of g∗ is ±1. (That is, p(t) winds

around S1
i once.)

The expanders are

Ei = {Image(g) | g : J → S1
i × S1 × (0,∞) × R is an exhaustive map}.

Each E ∈ Ei is a subset of S1
i × S1 × (0,∞) × R ⊂ Q.

We must prove the existence of pre-expanders: Given E = Image(g) ∈ Ei and j �= i, there
must exist some Ej ⊂ E ∩ Si such that f(Ej) ∈ Ej .

As t traverses the interval J = [a, b] from a to b, we start with the ray L+
p(a)v(a) which

does not hit Oj . There will be t with L+
p(t)v(t) hitting Oj by the degree condition, and so

there will be tangencies. Finally, the last ray L+
p(b)v(b) does not hit Oj again. This implies the

existence of a subinterval [aj , bj ] ⊂ [a, b] sweeping Oj : L+
p(aj)

v(aj) and L+
p(bj)

v(bj) are tangent

to Oj , L
+
p(t)v(t) hits Oj for t ∈ [aj , bj ], and Oj ⊂

⋃
t∈[aj ,bj ]

L+
p(t)v(t).
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Figure 5. Spinning billiards. Three obstacles are shown, with trajectories leaving obstacle Oi. If Oj has
a strong clockwise spin, the puck’s outward trajectories might be as shown. Independent of the spin of the
obstacles, trajectories like p(aj) and p(bj) hit Oj tangentially and continue without deviating.

If we set Ej = Image
(
g|[aj ,bj ]

)
, then Ej ⊂ E ∩Si. It can be seen by the same reasoning as

at the end of the proof of Theorem 2 that f(Ej) is an expander again, completing the proof
that in spinning billiards in the Euclidean plane, any nonrepeating but otherwise arbitrary
infinite sequence of obstacles has a trajectory that follows it.

Appendix. In this section, we develop a model for the scattering of a circular puck from an
immovable circular obstacle, where the interaction between the two bodies involves friction.
The obstacles’ centers do not move, and each spins at a constant rate unaffected by collision
with the puck.

Consider the situation shown in Figure 6. At time t = 0, a puck starts out at initial
position xi and with initial velocity v directed toward an obstacle situated at xo. The initial
angular velocity of the puck is ωp, and the obstacle is given to be always rotating with an
angular velocity of ωo. The goal is to find the final state given by v′ and ω′

p immediately
after the collision at xc, the point of impact. With the exception of the angular velocities ωp
and ωo which are strictly in the z direction, all vectorial quantities in this discussion are (and
hence all motion is) confined to the x− y plane. The dynamics are independent of the puck’s
mass m, which we can set to 1.

The first step is to determine if and when a collision occurs. For times t before the collision,
the position vector of the puck is given by x = xi +v t. The collision takes place at some time
tc, when the puck is at xc:

(3) xc = xi + v tc.

We assume that the collision deforms neither the puck nor the obstacle. This means that at
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Figure 6. A puck (smaller disk) starts at xi and travels to xc, where it collides with an obstacle situated
at xo.

impact time,

(4) |xc − xo| = Rp + Ro

will hold, where Rp and Ro are the radii of the puck and obstacle, respectively. Substituting
(3) into (4) and defining z = xi − xo leads to

|z + v tc| = Rp + Ro.

After squaring both sides, we get a quadratic equation for the collision time tc of the form
a t2c + b tc + c tc = 0, where a = v2, b = 2 z · v, and c = z2 − (Rp + Ro)

2.
The discriminant Δ = b2 − 4ac leads to several regimes of qualitatively different physical

behavior: Δ < 0 implies that the puck will miss the obstacle entirely, whereas Δ = 0 means
that the puck will pass tangentially to the obstacle. No interaction is assumed between the
two bodies in either case. A value of Δ > 0, on the other hand, means that there will be
two values of t, t+ and t−, for which (4) is satisfied (one for each side of the obstacle). If
these are positive, we pick the smaller of the two values. Of course t+, t− < 0 correspond to
meaningless collisions for negative times. In short,

(5) tc = min{t+, t−} (t± > 0),
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and substituting this back into (3) yields the collision coordinate xc. For the remainder of
this discussion assume that a given set of initial conditions will lead to a collision satisfying
(5) above.

The second and final step is to determine what happens in a collision. Define unit vectors
in the normal and tangential directions at the point of contact as

n = (xc − xo)/|xc − xo|,
t = n × k,

where k is the unit vector in the z direction (we assume a right-handed coordinate system)
and where a “×” denotes the usual vector cross product. We have defined n to be pointing
away from the obstacle. Position vectors from the centers of the puck and obstacle that extend
to the point of contact are then given by ρp = −Rp n and ρo = Ro n. These in turn allow us
to write the tangential velocities of the rims of the puck and obstacle at the point of contact:

Vp = (v · t) t + ωp×ρp,(6)

Vo = ωo×ρo.(7)

We now turn our attention from kinematics to dynamics. The collision is instantaneous
but can be considered as the limit of a more physically realistic, very brief collision. All these
approximations have the same impulse J . Throughout the collision, the obstacle will exert
a normal force N(t), where t lies in the small interval during which the collision takes place.
The time integral of this over that small interval is the impulse J ≡

∫
N(t)dt, which acts

in the direction n. We do not calculate N(t) itself; instead, we work with J not only for
motion in the normal direction but also for the tangential and rotational degrees of freedom.
To begin, recall from mechanics that if p = v is the initial momentum of the puck having
mass m = 1 and pn = (p · n)n is the component of this momentum in the normal direction,
then the new value of pn is given by p′

n = pn + J n. On the other hand, the coefficient of
restitution [3, 4, 5], e ∈ (0, 1], satisfies p′

n = −epn. Therefore,

(8) J = −(1 + e)v · n,

which is always positive since v · n is negative.

The impulse imparted to the puck in the tangential direction involves the force of friction,
F (t). If the puck and obstacle are sliding with respect to each other during the entire duration
of the impact (the “sliding” regime), this force will be assumed to have the form F (t) = μsN(t),
where μs is the coefficient of sliding friction. The impulse generated by F (t) will then be μsJ .
If, on the other hand, at some point during the collision the tangential velocities Vp and Vo

are equalized due to friction, F (t) has to be set to zero for the remainder of the impact (we
neglect rolling friction here), and the impulse in this direction will then be correspondingly
less than μsJ . Physically, this corresponds to the puck and obstacle rolling about each other
(the “rolling” regime, even though the puck may have been initially sliding).

Before we discuss the details of the two regimes, we note that (6) and (7) allow us to
define a unit vector in the direction of friction as f = −(Vp − Vo)/|Vp − Vo|. This simply
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states that friction acts to oppose the motion of the puck relative to the obstacle at the point
of contact. The force of friction is then written as F(t) = F (t)f . Since f and t have the same
sense, f · t = ±1.

The sliding regime. The velocity of the puck’s center of mass after the collision is

(9) v′ = v + J n + μsJ f .

In addition to this, the presence of friction will create a torque ρp × F(t) on the puck, which
will cause a change in its angular momentum L = Iωp, where I is the moment of inertia of
the puck. The final angular velocity ω′

p is then found to be

(10) ω′
p = ωp + (1/I)(ρp × f)μsJ.

Together with (8), equations (9) and (10) express the final state of the puck in the sliding
regime.

The rolling regime. This case differs from the sliding friction case in that the changes in the
angular and tangent velocities are smaller than those predicted by (9) and (10). As mentioned
above, if rolling takes hold during a collision, the force due to friction will drop discontinuously
to zero. As a result, the values of J for the puck in the tangential and rotational directions
in (9) and (10) will take a new value JL, where the superscript denotes the “locking” of the
bodies. To calculate JL we recall that the onset of rolling happens when V′

p = Vo. More
explicitly, using (6) and (7),

(v′ · t) t + ω′
p×ρp = ωo×ρo.

Substituting the previous solutions (9) and (10) into this and using the identity

a × (b × c) = b (a · c) − c (a · b),

we can solve for JL,

JL =
m

μs

α

1 + α
|Vp − Vo|,

which is also positive and where α = I/(mR2
p) (α = 1

2 for a solid disk). The final state for the
case of rolling is then

v′ = v + (1/m)J n + (1/m)μsJ
L f ,(11)

ω′
p = ωp + (1/I)(ρp × f)μsJ

L,(12)

where J is still given by (8).
Deciding between the regimes. The question of whether a set of initial conditions leads to

sliding or rolling is easily addressed by considering the relative velocities Vp−Vo (at collision)
and V′

p − Vo (after the collision, assuming the sliding case). If the relative motion of the
puck at the rim has changed direction, i.e., if (Vp − Vo) · (V′

p − Vo) < 0, then rolling must
take place, and we use (11) and (12) instead of (9) and (10) for the final state of the puck.
It is also possible that Vp − Vo = 0; in this case, the bodies start rolling immediately after
impact, and we take the rolling case equations and set JL = 0.
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Asymptotics of Null Lie Quadratics in E3∗
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Abstract. Lie quadratics are curves in Lie algebras, arising from studies in the mid-1980s of motion planning for
rigid bodies. Attention has focused on Lie quadratics in Euclidean 3-space E3 (with cross-product
as Lie bracket), especially the codimension-3 subclass of null Lie quadratics in E3. The present
paper substantially improves known asymptotic results for this subclass, to an extent that the new
results apply to asymptotic dynamics of spherically symmetric rigid balls in classical mechanics.
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1. Introduction. Let so(3) be the real Lie algebra of skew-symmetric 3 × 3 real matrices
with respect to the Lie bracket [A,B] := AB − BA. For nonzero B0, B1 ∈ so(3), the linear
differential equation

(1) ż(t) = (B0 + tB1)z(t)

for z : R → E3 is significant for the mechanics of spherically symmetric rigid bodies.
Example 1. Relative to some reference frame fixed at some point in a moving rigid body,

let (z1(t), z2(t), z3(t)) be the representation at time t of a fixed positively oriented orthonormal
inertial frame in E3. Let z(t) ∈ SO(3) be the matrix whose columns are z1(t), z2(t), z3(t),
and set B(t) := −ż(t)z(t)T, where T means transpose. It is easily verified that B(t) ∈ so(3).
Define a linear isomorphism ˆ : E3 → so(3) by

(2) v̂(w) := v × w,

where v, w ∈ E3 and × is the cross-product. Then B(t) = Ω̂(t), where Ω : R → E3 is the
angular velocity in body coordinates of the rigid body. Alternatively,

ż(t) = −Ω̂(t)z(t) ⇐⇒ żi(t) = −Ω(t) × zi(t) ⇐⇒ żi(t) = −Ω̂(t)zi(t).

When Ω is an affine function of t the vectors zi satisfy a form of (1). More detail is given in
section 7 (especially section 7.1). In section 7.2 the differential equation (1) arises in another
situation in mechanics.

Now E3 is also a Lie algebra, with respect to ×, and ˆ is a Lie isomorphism onto so(3).
An inner product 〈 , 〉 on so(3) is defined by requiring ˆ to be an isometry.
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Since B1 �= 0 in (1) we can set

t0 := −〈B0, B1〉
〈B1, B1〉

.

Then (1) is equivalent to ż(t) = ((B0 + tB1)+ (t− t0)B1)z(t). So after translation of t by −t0
we can take 〈B0, B1〉 = 0 in (1). Similarly, after dilation of t by ‖B1‖ we can suppose that B1

has unit length. Then, applying an orthogonal change of coordinates to z(t), we can suppose
without loss of generality that

B0 =

⎡
⎣ 0 0 0

0 0 −
√
c

0
√
c 0

⎤
⎦ and B1 =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ ,

where c > 0. In other words, it suffices to study the canonical form of (1):

(3) ż(t) = BS(t)z(t), where BS(t) :=

⎡
⎣ 0 0 t

0 0 −
√
c

−t
√
c 0

⎤
⎦ .

From skew-symmetry of BS(t) we see that 〈zi(t), zj(t)〉 is conserved, for solutions zi, zj
of (3). Let z1, z2, z3 : R → E3 be the solutions of (3) satisfying z1(0) = (1, 0, 0), z2(0) =
(0, 1, 0), z3(0) = (0, 0, 1). Then the zi’s map into the unit 2-sphere S2 ⊂ E3 and are pairwise
orthogonal.

Example 2. For c = 3, solutions zi : [−10, 10] → E3 are plotted in Figures 1–3, respectively.
The zi(t) appear to be asymptotic to circles in S2 as t → ±∞. This turns out to be true, but
the asymptotic circles are not those that are apparent in Figures 1–3. In section 6 these
illustrations are shown to be misleading: much longer simulations are needed to display the
correct asymptotics.

Proposition 1. The general solution of (3) is

z(t) =
1√
c

[
y(t) − tẏ(t)

√
cẏ(t) −ÿ(t)

]T
,

where y : R → R is the general solution of

(4) y(3)(t) = ty(t) − (t2 + c)ẏ(t).

Proof. Differentiate z as given, and verify (3).

Although we have superposition of solutions of linear ODEs (and not for nonlinear), a
very interesting feature of (1) and (4) is that these linear ODEs can be effectively studied
(and asymptotic solutions found) using quadratic ODEs (5) and (6). This is done as follows.

• In section 2, elements yi of a basis of solutions of (4) are shown to satisfy a second
order quadratic ODE (5). This nonlinear ODE is then used to prove local properties
of the yi, such as ẏi(t) �= 0 for |yi(t)| large (Lemma 2).
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Figure 1. z1 : [−10, 10] → E3 with z1(0) = (1, 0, 0) in Example 2.

• In section 3 background is given for the theory of Lie quadratics. Lemma 6 shows
that the yi are components of a solution (a canonical null Lie quadratic in E3) of
the quadratic ODE (6). All other solutions of (6) can be found from the canonical
null Lie quadratic. Section 4 reviews and sharpens results of [12] on asymptotics of
null Lie quadratics V in E3. In particular, V (t), V̇ (t), V̈ (t) are estimated with errors
O(t−2), O(t−1), O(1) for |t| large, corresponding (by Proposition 2) to O(1) errors in
estimates of solutions zi of (3).

• We seek improved estimates of the zi(t), with only O(t−1) errors. The improvements
are significant because (3) describes dynamics of homogeneous rigid balls in simple
situations (sections 7.1, 7.2), and a matrix with columns zi is a canonical null Rie-
mannian cubic in SO(3) (section 7.3). Riemannian cubics are examples of higher order
geodesics, used for interpolation in Riemannian manifolds. To improve the estimates
of the zi, we first find O(t−3), O(t−2), O(t−1)-accurate asymptotics for V (t), V̇ (t), V̈ (t)
(Theorems 3, 2, 1, respectively, of section 5). New asymptotic axes β± appear in The-
orem 1, after manipulations of inequalities and identities from section 4. Theorem 1
is then used to prove Theorems 2 and 3, using similar methods. This substantially
improves our understanding of V, V̇ , V̈ for moderate values of t, as illustrated in Ex-
ample 5.

• In section 6, the improved estimates for canonical null Lie quadratics are reexamined
and applied to give O(t−1)-accurate asymptotic estimates (Theorem 4) for solutions z
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Figure 2. z2 : [−10, 10] → E3 with z2(0) = (0, 1, 0) in Example 2.

of (3) (canonical null Riemannian cubics).
• The zi are shown to be asymptotic to parallel pairs of circles for i = 1, 3, and to a single

circle for i = 2 (Corollary 8), contradicting the apparent appearance of asymptotes in
Figures 1–3 of Example 2. Simulations of zi(t) for much larger values of t confirm that
the medium-term behavior is characterized by gradual shifting of apparent circular
asymptotes into configurations conforming to Corollary 8.

• Section 7 discusses applications to path-planning for spherically symmetric balls.

2. The ODE (4). For i = 1, 2, 3 let yi : R → R be the solutions of (4) corresponding by
Proposition 1 to the zi. Then

y1(0) =
√
c, ẏ1(0) = 0, ÿ1(0) = 0,

y2(0) = 0, ẏ2(0) = 1, ÿ2(0) = 0,

y3(0) = 0, ẏ3(0) = 0, ÿ3(0) = −
√
c.

From (4), y1 and y3 are even functions, and y2 is odd.
Example 3. For c = 3, we plot y1, y2, y3 in Figures 4, 5, 6, respectively. Figure 4 resembles

a parabola with a flattened base, but y1 is not so bland as might be thought: Figure 7 shows
that ẏ1 is very convoluted. In Figure 5, y2 also appears oscillatory with dampening as |t|
increases (owing to numerical error, y2 is shown not (quite) odd). Except that it is an even
function, y3 in Figure 6 has something of the appearance of y2.
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Figure 3. z3 : [−10, 10] → E3 with z3(0) = (0, 0, 1) in Example 2.

Because 〈zi(t), zj(t)〉 is conserved, Proposition 1 gives the following result.
Lemma 1. For i, j = 1, 2, 3,

ÿiÿj + cẏiẏj + (yi − tẏi)(yj − tẏj) = cδij ,

where δij is Kronecker’s delta.
In particular, any yi satisfies

(5) ÿ2 + cẏ2 + (y − tẏ)2 = c.

For any solution y of (5) and all t ∈ R

(t2 + c)ẏ2 − 2tẏy + y2 ≤ c,

cẏ2 + ÿ2 ≤ c,

cy2 + (t2 + c)ÿ2 ≤ c(t2 + c),

where the last inequality says that the discriminant of (5) as a quadratic in ẏ is nonnegative.
Also from (5), we have the following result.

Lemma 2. For any solution y of (5) and any t ∈ R, if ẏ(t) = 0, then y(t)2 + ÿ(t)2 = c.
Notice that y(t) =

√
c satisfies (5), with y(0) =

√
c, ẏ(0) = 0. Also y(t) = t satisfies (5),

with y(0) = 0, ẏ(0) = 1. However, (5) has other solutions satisfying these initial conditions.
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Figure 4. y1(0) =
√

3, ẏ1(0) = 0, ÿ1(0) = 0 in Example 3.

Lemma 3. ẏ1(t) > 0 for t > 0.

Proof. We have y
(3)
1 (0) = 0 and y

(4)
1 (0) =

√
c > 0. So by Taylor’s theorem, ẏ1(t) > 0 for

small t > 0. If the lemma does not hold, let t0 be the supremum of the nonempty bounded

T := {t1 ∈ R : ẏ1(t) > 0 for all t ∈ (0, t1)}.

Then ẏ1(t0) = 0 by continuity of ẏ1. By Lemma 2, ÿ1(t0)
2 + y1(t0)

2 = c. Now t0 > 0 and
therefore y1(t0) >

√
c, since y1 is strictly increasing on (0, t0). So

c < y1(t0)
2 ≤ ÿ1(t0)

2 + y1(t0)
2 = c,

and the contradiction completes the proof.
From Lemma 3 the following result follows.
Proposition 2. y1 is an even function, strictly decreasing on (−∞, 0), strictly increasing

on (0,∞), with a single point of global minimum at t = 0 and no other critical points.
Lemma 4. Any solution y of (4) satisfies

d

dt

(
ÿy − 1

2
ẏ2 +

1

2
(t2 + c)y2

)
= 2ty2.

Proof. The left-hand side expands as

y(3)y + ty2 + (t2 + c)ẏy = y(y(3) − ty + (t2 + c)ẏ) + 2ty2 = 2ty2 by (4).
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Figure 5. y2(0) = 0, ẏ2(0) = 1, ÿ2(0) = 0 in Example 3.

Proposition 3. y3 is an even function, strictly increasing on (−δ, 0) for some δ > 0 and
strictly decreasing on (0, δ). Also y3(0) = ẏ3(0) = 0, and y3(t) < 0 for all t �= 0.

Proof. Because c > 0 and by Taylor’s theorem, ẏ3(t) < 0 for small t > 0. Assuming
y3(t) ≥ 0 for some t > 0, let t0 be the supremum of the nonempty bounded set

T := {t1 ∈ R : y3(t) < 0 for all t ∈ (0, t1)}.

By continuity, y3(t0) = 0. By Lemma 4,

f(t) := ÿ3y3 −
1

2
ẏ2
3 +

1

2
(t2 + c)y2

3

is strictly increasing on (0, t0), since y3 is nowhere-zero on (0, t0). So

0 = f(0) < f(t0) = −1

2
ẏ3(t0)

2 ≤ 0,

and the contradiction proves y3(t) < 0 for t > 0. Because y3 is even, this holds for all
t �= 0.

Proposition 4. Solutions of (4), (5) satisfy d
dt(ÿẏ −

3t
2 y

2 − ct) = −2(t2 + c)ẏ2 − 5
2y

2.

Proof. Expanding the left-hand side gives y(3)ẏ + ÿ2 − 3tẏy− 3
2y

2 − c. Substituting for ÿ2

using (5), then for y(3) using (4), we obtain

ẏ(y(3) − ty + (t2 + c)ẏ) − 2(t2 + c)ẏ2 − 5

2
y2 = −2(t2 + c)ẏ2 − 5

2
y2.
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Figure 6. y3(0) = 0, ẏ1(0) = 0, ÿ1(0) = −
√

3 in Example 3.

3. Null Lie quadratics. The matrix valued function

x(t) :=
[
z1(t) z2(t) z3(t)

]
∈ SO(3)

also satisfies (3), and x(0) is the identity matrix 1. Building on Definition 2, define V : R → E3

by

V̂ (t) := x(t)−1ẋ(t).

Lemma 5.

(6) V̈ (t) = V̇ (t) × V (t).

Proof. By direct calculation,
¨̂
V = [

˙̂
V, V̂ ]. Also ˆ is a Lie isomorphism.

Curves V satisfying equations like (6) in other Lie algebras, and related curves x in Lie
groups other than SO(3), have been studied elsewhere.

Definition 1.

• A smooth curve V : R → G in a real Lie algebra G is a Lie quadratic when

V̈ (t) = [V̇ (t), V (t)] + C

for some C ∈ G. When C = 0 the Lie quadratic V is said to be null.
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Figure 7. ẏ1 in Example 3.

• A Riemannian cubic1 in a Lie group G is a smooth curve x : R → G satisfying

(7) ẋ(t) = dL(x(t))eV (t),

where L(x(t)) is left-multiplication by x(t), e ∈ G is the identity, and V is a Lie
quadratic in the Lie algebra G of G. The Riemannian cubic x is said to be null when
V is a null Lie quadratic.

By Lemma 5, our V is a null Lie quadratic in Euclidean 3-space E3. Then, since ˆ is a
Lie isomorphism, and from the definition of V : R → E3, our x is a null Riemannian cubic
in SO(3). In [12] the study of null Lie quadratics is reduced to null Lie quadratics that are
canonical in the following2 sense.

Definition 2. A null Lie quadratic V is said to be canonical when, for some c ≥ 0, V (0) =
(
√
c, 0, 0)T and V̇ (0) = (0, 1, 0)T.
Thus our V is also canonical. The formula for x in terms of V , given by Proposition 1, can

also be obtained from [14, Theorem 5] or [15, Corollary 3.2]. An introduction to Riemannian
cubics and Lie quadratics can be found in [12], where Proposition 3 says that any nonconstant

1In section 7.3, Riemannian cubics are defined differently, as curves in Riemannian (or even semi-
Riemannian) manifolds M . The definitions are equivalent when M is a Lie group with bi-invariant Riemannian
metric.

2Definition 2 is more restrictive than Definition 1 in [12], where it is required only that ‖V (0)‖ =
√
c and

‖V̇ (0)‖ = 1.
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Figure 8. The canonical null Lie quadratic V in E3 with c = 3.

null Lie quadratic can be written in terms of a canonical null Lie quadratic in the sense
of [12]. The same symmetry argument proves the stronger statement where “canonical” has the
meaning of Definition 2. Also in [12], canonical null Lie quadratics V in E3 are shown to have

• constant curvature κ(t) =
√
c, and

• linear torsion τ(t) = −t.
Example 4. Figure 8 shows the canonical null Lie quadratic V with c = 3. The illustration

certainly does not suggest constant curvature, and the illusion is accounted for by linearly
varying torsion. Non-null Lie quadratics, mentioned briefly in section 7.3 (but nowhere else
in the present paper), have much richer geometry [13].

In [12] a canonical null Lie quadratic V is shown to satisfy

〈V (t), V (t)〉 = f(t)2,(8)

〈V̇ (t), V̇ (t)〉 = 1,(9)

〈V̈ (t), V̈ (t)〉 = c,(10)

where f(t) :=
√
t2 + c.

Lemma 6. V (t) =
[
y1(t) y2(t) y3(t)

]T
.

Proof. Differentiating the ODE in Lemma 5,

V (3) = V̈ × V = (V̇ × V ) × V = 〈V̇ , V 〉V − 〈V, V 〉V̇ ,
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where we use the identity

(11) (u× v) × w = 〈u,w〉v − 〈v, w〉u for u, v, w ∈ E3.

Differentiating (8), we find 〈V̇ (t), V (t)〉 = t. Then from (8), the components of V satisfy (4),
as do the yi. Because V (0) = (

√
c, 0, 0)T, V̇ (0) = (0, 1, 0)T, we have V̈ (0) = (0, 0,−

√
c)T. So

the components of V also satisfy the initial conditions for the yi.
From (8), (9), Lemma 6, and Proposition 2 we obtain the following results.
Corollary 1. For all t �= 0, y2(t)

2 + y3(t)
2 < t2 and ẏ2(t)

2 + ẏ3(t)
2 < 1.

Corollary 2.3 Let I ⊆ R be a nonempty open interval. Any V : I → E3 satisfying V̈ = V̇×V
extends to a unique null Lie quadratic in E3 defined over the whole of R.

Proof. As in the proof of Lemma 6, the components yi of V are solutions of the linear
ODE (4) and therefore uniquely extendible.

The next section reviews and sharpens some results of [12] on asymptotic properties of
canonical null Lie quadratics in E3.

4. Primary asymptotics of canonical null Lie quadratics in E3. Notice fḟ = t and
ḟ2 + ff̈ = 1. Thus f̈ = c/f3. Define U(t) := V (t)/f(t) ∈ S2. First we have the existence of
asymptotes, as follows.

Proposition 5 (see [12]). Let V be a canonical null Lie quadratic in E3 with c > 0. There
exist limits

α+ := lim
t→∞

U(t) and α− := lim
t→−∞

U(t).

Unfortunately no simple formula is known giving α± ∈ S2 in terms of c. However, a
number of inequalities for asymptotes can be proved. Let ρ : E3 → E3 be reflection in
the hyperplane orthogonal to the second coordinate axis. Then it is known from [12] that
α− = ρ(α+). From Lemma 6 and Proposition 2 we find the following.

Corollary 3. 〈α±, V (0)〉 ≥ 0.
From Lemma 6 and Proposition 3 we have the next three corollaries.
Corollary 4. 〈α±, V̈ (0)〉 ≥ 0.
Corollary 5. For all t �= 0, y1(t)

2 + y2(t)
2 < t2 + c.

Corollary 6. For all t �= 0, −|t| < y3(t) < 0. If ẏ3(t) = 0, then y3(t) ≥ −
√
c.

Proof of Corollary 6. Suppose t �= 0. By Corollary 1, y3(t)
2 < t2. By Proposition 3,

y3(t) < 0. Lemma 2 completes the proof.

Set Ṽ (t) := V (t) + 1
f(t)2

V̈ (t) and Ũ(t) := f(t)2√
f(t)6+c

Ṽ (t) ∈ S2. In [12] the identity

(12)
d

dt

(
U(t) +

V̈ (t)

f(t)3

)
= −3tV̈ (t)

f(t)5

is used to prove the next proposition.
Proposition 6 (see [12]). For t ≥ 0 and t ≤ 0, respectively,

‖Ṽ (t) − f(t)α±‖ ≤
√
c

f(t)2
.

3Similar results are proved in [13] for non-null Lie quadratics.
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In particular, by (10), ‖V (t) − f(t)α±‖ ≤ 2
√
c

f(t)2
.

Corollary 7.

‖α± − Ũ(0)‖ ≤
√

2√√
c2 + 1(

√
c2 + 1 + c)

<
1

c
.

Proof. Squaring both sides of ‖V (0) + 1
c V̈ (0) −

√
cα±‖ ≤ 1√

c
and expanding the left,

c +
1

c
+ c− 2

√
c〈α±, V (0)〉 − 2√

c
〈α±, V̈ (0)〉 ≤ 1

c
,

namely, 〈α±, Ṽ (0)〉 ≥
√
c. Since ‖Ṽ (0)‖ =

√
c2+1√
c

, 〈α±, Ũ(0)〉 ≥ c√
c2+1

. So

‖α± − Ũ(0)‖2 = 2 − 2〈α±, Ũ(0)〉 ≤ 2

√
c2 + 1 − c√
c2 + 1

=
2√

c2 + 1(
√
c2 + 1 + c)

.

In effect, Proposition 6 calculates V (t) as f(t)α± +O( 1
f(t)2

) as t → ±∞. This asymptotic

estimate is significantly improved in section 5 below. In section 6, the improved accuracy
translates into useful asymptotics for solutions z of (3).

5. Secondary asymptotics. Before estimating V, V̇ , V̈ we try to relate these as closely as
possible to the asymptotes α±.

Lemma 7. For t ≥ 0 and t ≤ 0, respectively, |〈α±, V̈ (t)〉| ≤ 2c
f(t)3

.

Proof. By Proposition 6, ‖ Ṽ (t)
f(t) − α±‖ ≤

√
c

f(t)3
. So by the Cauchy–Schwarz inequality

and (10), ∣∣∣∣∣〈V̈ , α±〉 −
〈V̈ , Ṽ 〉

f

∣∣∣∣∣ ≤ c

f3
.

But by (10) and Lemma 5, 〈V̈ , Ṽ 〉 = c
f2 .

Lemma 8. For t ≥ 0 and t ≤ 0, respectively,

− 3c

f(t)5
≤ 〈α±, V (t)〉 − f(t) ≤ 0.

Proof. Taking inner products of (12) with α+ and integrating both sides from s > 0 to ∞,

1 − 〈U(s), α+〉 −
〈V̈ (s), α+〉

f(s)3
= −

∫ ∞

s

3t〈V̈ (t), α+〉
(t2 + c)5/2

dt.

So by Lemma 7, 1−〈U(s), α+〉 ≤ 2c
f(s)6

+
∫∞
s

6ct
(t2+c)4

dt = 3c
f(s)6

. Replacing s by t and multiplying

through by f(t), the left-hand inequality holds for t ≥ 0 and α+. The other inequality follows
from the Cauchy–Schwarz inequality. The proof for t ≤ 0 and α− is similar.

Lemma 9. For t ≥ 0 and t ≤ 0, respectively, |〈α±, V̈ (t) × V (t)〉| ≤ 2c
f(t)2

.

Proof. 〈α±, V̈ (t)×V (t)〉 = −〈α± ×V (t), V̈ (t)〉. So the lemma follows from Proposition 6,
the Cauchy–Schwarz inequality, and (10).
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The restrictions α̂′
± of α̂± to

H± := α⊥
± := {v ∈ E3 : 〈v, α±〉 = 0}

are orthogonal endomorphisms. By (11), α̂′
± is skew-adjoint, and (α̂′

±)2 is multiplication
by −1. Thus α̂′

± defines a complex structure on H±. As before, let ρ : E3 → E3 be reflection

in the hyperplane orthogonal to V̇ (0) = (0, 1, 0)T.

Lemma 10. ρ(H+) = H− and ρ ◦ α̂′
+ = −α̂′

− ◦ ρ.
Proof. Because ρ is orthogonal and ρ(α+) = α−, we have for v ∈ H+

0 = 〈v, α+〉 = 〈ρ(v), ρ(α+)〉 = 〈ρ(v), α−〉,

namely ρ(v) ∈ H−. Because ρ is a reflection,

ρ ◦ α̂′
+(v) = ρ(α+ × v) = −(ρ(α+) × ρ(v)) = −α− × ρ(v).

The following function is needed to describe the asymptotics of V, V̇ , V̈ .

Definition 3. g(t) := 1
2(|t|f(t) + c ln(|t| + f(t)) − (c/2) ln c).

Now Lemmas 7–9 are used to give an asymptotic estimate for V̈ .

Theorem 1. For t ≥ 0 and t ≤ 0, respectively, and some unit vector β± ∈ H±,

V̈ (t) =
√
c exp(∓g(t)α̂′

±)β± + O

(
1

f(t)

)
,

where β− = ρ(β+).

Proof. By Lemma 7, Z±(t) := V̈ (t) − 〈V̈ (t), α±〉α± = V̈ (t) + O( 1
f(t)3

)α± and

(13) 〈Z±(t), Z±(t)〉 = c− 〈V̈ , α±〉2 = c + O

(
1

f(t)6

)
.

Differentiating the equation in Lemma 5, V (3) = V̈ × V , and so

Ż±(t) = V̈ × V − 〈V̈ × V, α±〉α±.

So by Lemmas 5 and 9,

〈Ż±(t), Ż±(t)〉 = ‖V̈ × V ‖2 − 〈V̈ × V, α±〉2 = cf(t)2 − 〈V̈ , α± × V 〉2

= cf(t)2 + O

(
1

f(t)4

)
.(14)

Notice that Z±(t) ∈ H±. By Lemmas 5 and 8,

〈Ż±(t), α̂′
± ◦ Z±(t)〉 = 〈V̈ × V, α± × V̈ 〉 = −〈V, α±〉〈V̈ , V̈ 〉

= −cf(t) + O

(
1

f(t)5

)
.(15)
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Setting W±(t) := Ż±(t) + f(t)α̂′
± ◦ Z±(t),

〈W±,W±〉 = 〈Ż±, Ż±〉 + f2〈Z±, Z±〉 + 2f〈Ż±, α̂
′
± ◦ Z±〉 = O

(
1

f4

)

by (13), (14), (15). So Ż±(t)+f(t)α̂′
± ◦Z±(t) = W±(t) = O( 1

f(t)2
). Since ġ(t) = f(t) for t > 0

we have, for 0 < r < s,

(16) exp(g(s)α̂′
+)Z+(s)−exp(g(r)α̂′

+)Z+(r) =

∫ s

r
exp(g(t)α̂′

+)W+(t)dt = O

(
1

f(r)
− 1

f(s)

)
.

Let β+ ∈ H+ be the limit of a convergent subsequence {βij : j ≥ 1} of the bounded

{
exp(g(i)α̂′

+)Z+(i)√
c

: i ≥ 1

}
.

By (16), exp(g(r)α̂′
+)Z+(r) =

√
cβij + O( 1

f(r)). Taking limits as j → ∞,

V̈ (r) = Z+(r) + O

(
1

f(r)3

)
α+ =

√
c exp(−g(r)α̂′

+)β+ + O

(
1

f(r)

)
,

proving the result for t ≥ 0 and β+. A symmetry argument completes the proof.

Now, using the asymptotic estimate for V̈ , we are able to estimate V̇ and V .

Theorem 2. For t ≥ 0 and t ≤ 0, respectively, we have

V̇ (t) =
t

f
α± +

√
c

f
α̂′
± exp(∓g(t)α̂′

±)β± + O

(
1

f2

)
.

Proof. By symmetry it suffices to consider t ≥ 0 and β+. By Lemma 5 and (11),

V̈ × V = (V̇ × V ) × V = 〈V̇ , V 〉V − 〈V, V 〉V̇ = tV − f2V̇ ,

namely V̇ (t) = tV (t)−V̈ (t)×V (t)
f(t)2

. So by Proposition 6, for t ≥ 0,

V̇ (t) =
tf(t)α+ − fV̈ (t) × α+

f2
+ O

(
1

f3

)

=
t

f
α+ +

1

f
α̂′

+(V̈ (t)) + O

(
1

f3

)
=

t

f
α+ +

√
c

f
α̂′

+ exp(−g(t)α̂′
+)β+ + O

(
1

f2

)

by Theorem 1.

Theorem 3. For t ≥ 0 and t ≤ 0, respectively,

V (t) = f(t)α± −
√
c

f(t)2
exp(∓g(t)α̂′

±)β± + O

(
1

f(t)3

)
.
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Proof. By (12) and Theorem 1, for 0 < r < s,

U(s) +
V̈ (s)

f(s)3
− U(r) − V̈ (r)

f(r)3
= −

∫ s

r

3
√
ct exp(−g(t)α̂′

+)β+

f(t)5
dt + O

(
1

f(r)4

)

= 3
√
cα̂′

+

∫ s

r
f(t)α̂′

+ exp(−g(t)α̂′
+)β+

(
t

f(t)6

)
dt + O

(
1

f(r)4

)

= 3
√
cα̂′

+

(
− exp(−g(s)α̂′

+)β+

(
s

f(s)6

)
+ exp(−g(r)α̂′

+)β+

(
r

f(r)6

))

+ 3
√
cα̂′

+

∫ s

r
exp(−g(t)α̂′

+)β+

(
c− 5t2

f(t)8

)
dt + O

(
1

f(r)4

)
after integration by parts using ġ = f . Since all except the last term on the right-hand side
are O( 1

f(r)5
),

U(s) +
V̈ (s)

f(s)3
= U(r) +

V̈ (r)

f(r)3
+ O

(
1

f(r)4

)
,

and, as s → ∞, this gives

U(r) = α+ − V̈ (r)

f(r)3
+ O

(
1

f(r)4

)
= α+ −

√
c

f(r)3
exp(−g(r)α̂′

+)β+ + O

(
1

f(r)4

)
,

by Theorem 1. This proves Theorem 3 for t ≥ 0. The result follows by symmetry for
t ≤ 0.

The asymptotic estimates of Theorems 1–3 can be surprisingly sharp, even for moderate
values of t.

Example 5. Figures 9 and 10 show y1(t), ẏ1(t), and their asymptotic estimates for 0 <
t < 3. Figure 11 does the same for ÿ1(t) for 0 < t < 10. For |t| > 4 the estimates are more
or less indistinguishable from y1(t), ẏ1(t), ÿ1(t) obtained by numerically solving (4). Taylor
approximation about t = 0 suffices for |t| ≤ 4.

By comparison,
• the previous best asymptotic estimates for y1(t) are linear in |t| as t → ±∞;
• the previous best estimate of ẏ1(t) is that limt→±∞ ẏ1(t) exist, saying nothing about

the finer structure observed in Figure 10;
• the only asymptotic statement previously available for ÿ1(t) was that it is bounded,

saying nothing about the behavior (oscillations with constant amplitude and linearly
increasing frequency) observed in Figure 11.

Similar comments can be made for y2, y3.

6. Back to the ODE (3). For the canonical null Lie quadratic V in E3 given by c > 0
Theorems 3, 2, 1 say that there are orthogonal unit vectors α, β ∈ S2 such that, for t > 0,

V = fα−
√
c

f2
exp(−gJ)β + O

(
1

f3

)
,(17)

V̇ =
t

f
α +

√
c

f
J exp(−gJ)β + O

(
1

f2

)
,(18)

V̈ =
√
c exp(−gJ)β + O

(
1

f

)
,(19)
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Figure 9. y1(t) and its estimate (higher near t = 0) for 0 < t < 3, with c = 3.

with α = α+, β = β±, and J the restriction α̂′ of α̂ to α⊥. Defining

a := 〈V, α〉, b := 〈V, exp(−gJ)β〉, d := 〈V, J exp(−gJ)β〉,

we have⎡
⎣ V

V̇

V̈

⎤
⎦ =

⎡
⎣ a b d

ȧ ḃ + df ḋ− bf

ä b̈ + 2ḋf + dḟ − bf2 d̈− 2ḃf − bḟ − df2

⎤
⎦
⎡
⎣ α

exp(−gJ)β
J exp(−gJ)β

⎤
⎦ ,

and consequently, by (17), (18), (19),⎡
⎣ a

b
d

⎤
⎦ =

⎡
⎣ f

−
√
cf−2

0

⎤
⎦ + O

(
1

f3

)
,

⎡
⎣ ȧ

ḃ

ḋ

⎤
⎦ =

⎡
⎣ ḟ

0
0

⎤
⎦ + O

(
1

f2

)
,

⎡
⎣ ä

b̈

d̈

⎤
⎦ = O

(
1

f

)
.

By Lemmas 7, 8, 9, and then (24) below for ȧ,

a = f + O

(
1

f5

)
, ȧ = ḟ + O

(
1

f4

)
, ä = O

(
1

f3

)
, a(3) = O

(
1

f2

)
.

These lemmas also give more detailed estimates which can be useful for moderate values of t.
Example 6. By Lemma 8, a(t) =

√
t2 + c− δ(t), where

0 ≤ δ(t) ≤ 3c

f(t)5
.
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Figure 10. ẏ1(t) and its estimate (lower near t = 0) for 0 < t < 3, with c = 3.

With c = 3 and t > 2, the bound on the right-hand side is smaller than 9/75/2 ≈ 0.069. For
t > 4 we obtain instead 9/195/2 ≈ 0.0057.

Substituting for V, V̇ , V̈ in Lemma 5,

V̈ = äα + (b̈ + 2ḋf + dḟ − bf2) exp(−gJ)β + (d̈− 2ḃf − bḟ − df2)J exp(−gJ)β

= (ȧα + (ḃ + df) exp(−gJ)β + (ḋ− bf)J exp(−gJ)β) × (aα + b exp(−gJ)β + dJ exp(−gJ)β)

= (−bḋ + dḃ + b2f + d2f)α + (aḋ− ȧd− abf) exp(−gJ)β + (ȧb− aḃ− adf)J exp(−gJ)β,

and then

ä = −bḋ + dḃ + b2f + d2f,(20)

b̈ = −2ḋf − dḟ + bf2 + aḋ− ȧd− abf,(21)

d̈ = 2ḃf + bḟ + df2 + ȧb− aḃ− adf.(22)

Notice also

a2 + b2 + d2 − f2 = 0,(23)

a(3) − ta + f2ȧ = 0.(24)

Similar statements hold for t < 0 but with different α, β, and J .
Substituting from (17), (18), (19) into Proposition 1, we obtain the following theorem.
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Figure 11. ÿ1(t) and its estimate (lower near t = 0) for 0 < t < 10, with c = 3.

Theorem 4. As t → ±∞, z1(t), z2(t), z3(t) ∈ E3 are the rows of the 3 × 3 matrix[ √
c

f α± − t
f α̂

′
± exp(∓gα̂′

±)β±
t
fα± − exp(∓gα̂′

±)β±
]

+ O

(
1

f

)
.

Corollary 8. Write α+ = α = (α1, α2, α3). Then for i = 1, 3, the zi are asymptotic to the
limiting circles

{w ∈ E3 : ‖w‖ = 1 and w2 = ±αi}
according as t → ±∞, and z2 is asymptotic to the single circle

{w ∈ E3 : ‖w‖ = 1 and w2 = α2}

whether t → ±∞.
In Example 2 the circles apparent in Figures 2 and 3 (especially) are not orthogonal

to (0, 1, 0), nor even parallel to each other, and the circles in Figure 2 appear distinct. So
these cannot be the limiting circles of Corollary 8. Indeed the numerically generated zi :
[−10, 10] → E3 do not reveal the long-term asymptotics, and plots of zi : [−100, 100] → E3

confirm Corollary 8.
As we see next, the ODE (1) is fundamental for studying
• motion of a ball under torque that is constant in body coordinates,
• rolling of a ball on an inclined plane,
• variational motion planning for a ball,

where (z1(t), z2(t), z3(t)) is a positively oriented orthonormal frame in E3, fixed relative to the
moving ball (the configuration of the ball relative to the center of mass c(t) ∈ E3 at time t).
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7. Applications to spherically symmetric rigid bodies. Consider a rigid body B of mass
μ > 0 subject to external forces totalling f(t) with total moment n(t) measured in an absolute
(inertial) frame. A point Q ∈ B in body coordinates with origin at the center of mass q̄(t)
has absolute position

q(t) = q̄(t) + x(t)Q, where x(t) ∈ SO(3).

Define the absolute angular velocity ω(t) ∈ E3 by ω̂(t) := ẋ(t)x(t)−1. The body angular velocity
is Ω(t) := x(t)−1ω(t), namely Ω̂(t) = x(t)−1ẋ(t). The body angular momentum is M(t) :=
KΩ(t), where K is the inertia matrix. The absolute angular momentum is m(t) := x(t)M(t).
From Newton’s second law,

μ¨̄q(t) = f(t),(25)

ṁ(t) = n(t).(26)

Substituting for m(t) in (26), ẋ(t)M(t)+x(t)KΩ̇(t) = n(t), namely x(t)−1ẋ(t)M(t)+KΩ̇(t) =
N(t), where x(t)N(t) = n(t). Equivalently,

μ¨̄q(t) = x(t)−1F (t),(27)

KΩ̇(t) = (KΩ(t)) × Ω(t) + N(t),(28)

where x(t)F (t) = f(t).
Suppose that the mass distribution of B is spherically symmetric. Then (28) reads

(29) νΩ̇(t) = N(t),

where ν > 0. For a homogeneous ball B of radius b > 0 and density ρ,

μ =
4πρ

3
b3 and ν =

8πρ

15
b5.

We review some special cases.

7.1. Turning a ball in space. Let B be a homogeneous ball subject only to a constant
torque N (turning) in body coordinates. (A ball in space might be controlled by momentum
wheels with linearly increasing angular momenta.) By (29) for any given t0 ∈ R,

Ω(t) = Ω(t0) +
N

ν
(t− t0)

so that Ω : R → E3 is affine, x : R → SO(3) is given by

(30) ẋ(t) = x(t)Ω̂(t),

and q̄ : R → E3 is found from (27). Since x(t)x(t)T is 3× 3 the identity matrix, we obtain on
differentiation

ẋ(t)x(t)T + x(t)ẋ(t)T = 0 ⇐⇒ x(t)−1ẋ(t) = −ż(t)z(t)−1,
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where z(t) := x(t)T = x(t)−1. Thus (30) is equivalent to (1) with

B0 = −Ω̂(0) = −Ω̂(t0) +
N̂

ν
t0 and B1 = − ˙̂

Ω(0) = −N̂

ν
.

Suppose N �= 0. As in section 1, translate and rescale t, and choose a reference frame for
body coordinates, so that z satisfies the canonical form (3) of (1). Then

Ω(t) = −
[ √

c t 0
]T

,

where c ≥ 0 depends on i. Choose the inertial reference frame so that z(0) is the identity
matrix 1. Then zi(t) is the ith vector of the inertial frame measured in body coordinates
at time t. Replacing x(t) in section 3 by the present x(t)−1, V (t) becomes the negative of
the absolute angular momentum ω(t) of B. By Lemma 5, x−1 is a null Riemannian cubic in
SO(3) with associated (canonical) null Lie quadratic −ω in E3 ∼= so(3). By Lemma 6, the
components ωi of ω satisfy the ODE (4) with

ω(0) = −

⎡
⎣

√
c

0
0

⎤
⎦ , ω̇(0) = −

⎡
⎣ 0

1
0

⎤
⎦ , ω̈(0) =

⎡
⎣ 0

0√
c

⎤
⎦ .

Remark 1. These conclusions hold even when c = 0, although previously c > 0 throughout.
For c = 0,

z(t) =

⎡
⎢⎣ cos( t

2

2 ) 0 sin( t
2

2 )
0 1 0

− sin( t
2

2 ) 0 cos( t
2

2 )

⎤
⎥⎦ .

Thus ω(t) =
[

0 −t 0
]T

and, as viewed from B, the inertial frame rotates with linearly
increasing angular velocity in the plane orthogonal to the second axis. So, in body coordinates,
the vectors zi of the inertial frame move on great circles.

From now on suppose c > 0. Then we have the following:

• There are unit vectors α±, β± ∈ S2 with 〈α±, β±〉 = 0 such that (Theorem 4)

x(t) =
[ √

c
f α± − t

f α̂
′
± exp(∓gα̂′

±)β±
t
fα± − exp(∓gα̂′

±)β±
]

+ O(t−1)

as t → ±∞. Here f(t) :=
√
t2 + c and g(t) is given in Definition 3 of section 5.

• The vectors zi(t) of the inertial frame viewed from B are asymptotic to (usually not
great) circles as t → ±∞ (Corollary 8).

• Because ω(t) = −V (t), the components ωi of absolute angular momentum satisfy
– if any |ωi(t)| >

√
c, then ω̇i(t) �= 0 (Lemma 2);

– we have ω1(t) an even function of t, with ω̇1(t) < 0 for t > 0 (Lemma 3);
– we have ω2(t) an odd function of t;
– we have ω3(t) an even function of t, with 0 < ω3(t) < |t| for t �= 0 (Corollary 6).
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• Formulae (17), (18), (19) give

ω(t) = −fα± +

√
c

f2
exp(−gα̂′

±)β± + O(t−3),

ω̇(t) = − t

f
α± −

√
c

f
α̂′
± exp(−gα̂′

±)β± + O(t−2),

ω̈(t) = −
√
c exp(−gα̂′

±)β± + O(t−1)

as t → ±∞.

7.2. Ball rolling on a tilted plane. Consider next a nonholonomic circumstance in clas-
sical mechanics [2]: a ball B of radius b > 0 is subject to a constant force μγ ∈ E3 and rolls
without slipping on a fixed plane parallel to

w⊥ := {v ∈ E3 : 〈v, w〉 = 0},

where w ∈ S2 ⊂ E3 (measuring tilting). Rolling means ˙̄q(t)− bω(t)×w = 0. Taking moments
about q̄(t),

νω̇(t) = −bw × φ(t),

where the frictional force φ(t) at p(t) := q̄(t) − bw is

μ¨̄q(t) − μγ + μ〈γ,w〉w = μbω̇(t) × w − μγ + μ〈γ,w〉w.

Substituting for φ(t) and expanding cross-products,

(ν + μb2)ω̇ = μb2〈ω̇, w〉w + μbw × γ.

Taking inner products with w, 〈ω̇, w〉 = 0 since ν > 0. Then

ω̇ =
μb

ν + μb2
w × γ = − μb

ν + μb2
γ̂(w).

Given t0 ∈ R, we have

ω(t) = ω(t0) −
μb

ν + μb2
γ̂(w)(t− t0)

so that ω : R → E3 is affine, x : R → SO(3) is given by

(31) ẋ(t) = ω̂(t)x(t),

and q̄ : R → E3 is found from the rolling condition. Then (31) is equivalent to (1) with
z(t) := x(t),

B0 := ω̂(t0) +
μb

ν + μb2
t0 ̂(γ × w) and B1 := − μb

ν + μb2
̂(γ × w).

Suppose B1 �= 0. As in section 1, translate and rescale t, and choose a reference frame for
inertial coordinates so that z(t) satisfies the canonical form (3) of (1). Choose a reference
frame for body coordinates so that z(0) = 1, and exclude the easy case where B0 = 0.

Then V (t) := Ω(t) is a canonical null Lie quadratic in E3 ∼= so(3), associated with the
null Riemannian cubic z = x in SO(3). Thus the following hold:
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• There are unit vectors α±, β± ∈ S2 with 〈α±, β±〉 = 0 such that (Theorem 4)

x(t) =
[ √

c
f α± − t

f α̂
′
± exp(∓gα̂′

±)β±
t
fα± − exp(∓gα̂′

±)β±
]T

+ O(t−1)

as t → ±∞.
• The vectors xi(t) of the body reference frame are asymptotic to circles, as in Corol-

lary 8.
• The components Ωi(t) of body angular acceleration satisfy the results found in section 2

for the yi(t).
• Equations (17), (18), (19) give

Ω(t) = fα± −
√
c

f2
exp(−gα̂′

±)β± + O(t−3),

Ω̇(t) =
t

f
α± +

√
c

f
α̂′
± exp(−gα̂′

±)β± + O(t−2),

Ω̈(t) =
√
c exp(−gα̂′

±)β± + O(t−1)

as t → ±∞.

7.3. Variational motion planning. For a Riemannian manifold M , given t0 < t1 ∈ R and
x0, x1 ∈ M with v0 ∈ TMx0 and v1 ∈ TMx1 , let X = X(t0, t1, x0, x1, v0, v1) be the space of
C1 curves x : [t0, t1] → M satisfying

(32) x(t0) = x0, ẋ(t0) = v0, x(t1) = x1, ẋ(t1) = v1.

For x ∈ X set

J2(x) :=

∫ t1

t0

‖∇d/dtẋ(t)‖2dt,

where ‖ ‖ denotes the Riemannian norm and ∇ is the Levi–Civita covariant derivative defined
by the Riemannian metric. Then (see [8], [11]) a critical point x of J2 is a Riemannian cubic
in the sense that

(33) ∇3
d/dtẋ + R(∇d/dtẋ, ẋ)ẋ = 0,

where R denotes Riemannian curvature. The derivation of (33) can be described much more
simply than (say) in [11], as follows.

Consider smooth variations x(h) ∈ X of x with h ∈ R and x(0) = x. Regarding J2(x(h)) as
a function of h, the derivative at h = 0 is

2

∫ t1

t0

〈∇d/dh∇d/tẋ(h),∇d/dtẋ(h)〉dt,

where, using the definition of Riemannian curvature, the integrand may be written as

〈∇d/dt∇d/dhẋ(h),∇d/dtẋ(h)〉 + 〈R(W, ẋ)ẋ,∇d/dtẋ〉

with W := W (x(t)) the partial derivative with respect to h of x(h) evaluated at h = 0. Because
∇ is torsion-free we can write instead
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〈∇2
d/dtW,∇d/dtẋ〉 + 〈R(W, ẋ)ẋ,∇d/dtẋ〉 = 〈∇2

d/dtW,∇d/dtẋ〉 + 〈R(∇d/dtẋ, ẋ)ẋ,W 〉

using standard symmetries of R [10, Lemma 9.3] for the Levi–Civita covariant derivative.
Integrating twice by parts and taking account of boundary conditions,∫ t1

t0

〈∇3
d/dtẋ + R(∇d/dtẋ, ẋ)ẋ,W 〉dt = 0

for all W arising from variations x(h), and (33) follows.
In the special case where M is a Lie group G with bi-invariant Riemannian metric, it was

first shown in [11] that the present definitions of Riemannian cubic and Lie quadratic agree
with those of section 3. A more readable account is given in section 2 of [12].

Taking G = SO(3), with x describing the trajectory of a spherically symmetric rigid body
B, the integrand in J2 is proportional to the squared norm of the applied torque N in body
coordinates. With few exceptions, non-null Lie quadratics in so(3) ∼= E3 and Riemannian
cubics in SO(3) are more complicated than the null objects [13], but there are significant
remaining questions for the null case.

The present paper provides new asymptotic formulae (17), (18), (19) for canonical null Lie
quadratics V in E3. Moreover, for canonical null Riemannian cubics x in SO(3), Theorem 4
gives

x(t) =
[ √

c
f α± − t

f α̂
′
± exp(∓gα̂′

±)β±
t
fα± − exp(∓gα̂′

±)β±
]T

+ O(t−1)

as t → ±∞, improving on previous results by an order of magnitude.
More background on dynamics of Riemannian cubics and integrability can be found in

[12], [13], [14], [15]. For related research (including alternative methods for motion planning)
see [3], [4], [5], [6], [7], [9], [16], [17], [18], [19]. Current work with Marin Kobilarov and Jerrold
Marsden, building on the approach in [1], includes a practical implementation of Riemannian
cubics for engineering.

8. Conclusion. The present paper builds on the theory of a class of curves t �→ V (t)
(canonical null Lie quadratics) in Euclidean 3-space E3, to study a class of first order linear
ODEs (1) in E3 with coefficients affine in t. As shown in section 7, solutions of (1) have
a simple interpretation in elementary problems in classical mechanics, and connections with
approximation theory in Riemannian geometry (null Riemannian cubics). Known geometric
properties of nonlinear ODEs are strengthened and used to prove asymptotic results for the
linear system (1), as follows:

• We focus on a canonical form of (1), where the right-hand side depends on a single
scalar parameter c > 0. (The case where c = 0 is standard.)

• (1) is shown to be solvable in terms of the general solution of a third order linear
ODE (4) with quadratic coefficients. Local properties of solutions of (4) are found
from a second order quadratic ODE (5).

• The strategy is to find global properties via a relationship (Lemma 6) between solutions
of (4) and a particular solution V (a canonical null Lie quadratic) of a second order
quadratic ODE (6) in E3. All solutions of (6) can be given in terms of the canonical
null Lie quadratic.
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• Quite a lot is already known about canonical null Lie quadratics in E3. They have
constant curvature, linear torsion, and asymptotes. The present paper strengthens
these results, giving asymptotic formulae for V and the derivatives V̇ , V̈ .

• These formulae lead in turn to asymptotic expressions for null Riemannian cubics (a
class of curves in SO(3) satisfying a second order variational principle, of interest for
interpolation problems in engineering).
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Abstract. Information on steady-state bifurcations, most notably stability boundaries, is frequently used for
the analysis and design of nonlinear systems. The bifurcation points separate regions with differ-
ent dynamic behavior and thus give valuable information about nonlinear systems. They cannot,
however, reflect the impact of fast disturbances on the transient behavior of nonlinear systems. The
influence of fast disturbances can be addressed by bifurcation points that are defined as critical points
during the transient behavior of a dynamic system in the presence of fast disturbances. Specifically,
we consider two types of points—grazing points and end-points. At a grazing point the trajectory of
a nonlinear system tangentially touches a hypersurface spanned by a state or output constraint. At
an end-point the trajectory crosses the hypersurface at a specified final time. These critical points
unfold to manifolds in the parameter space of the nonlinear system separating parts of the parameter
space that admit trajectories that do not violate the constraint from those where the constraint is
violated. The parametric distance between a candidate design of a nonlinear system and the critical
manifold is used as a robustness measure. As the closest connection between the design and the
critical manifold is along the normal direction of the critical manifold, normal vectors are used to
formulate minimal-distance constraints for a nonlinear program. Thus it is possible to robustly take
into account state and output constraints in the presence of fast disturbances for the design of a
nonlinear system. Application of the approach to closed-loop systems allows for an integration of
operating point and control design. Several case studies from chemical engineering are presented to
illustrate the proposed method.
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1. Introduction. We consider systems of nonlinear differential algebraic equations (DAEs)
of the form

xt = f(x(t), y(t), p, d(α, t), t), x(t0) = x0,

0 = g(x(t), y(t), p, d(α, t), t),
(1.1)

with dynamic state variables x ∈ R
nx , corresponding time derivatives xt, initial conditions x0,

algebraic variables y ∈ R
ny , system parameters p ∈ R

np , disturbances d ∈ R
nd parameterized

by a set of parameters α ∈ R
nα , and time t ∈ R. The functions f and g are assumed to be
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Figure 1. Trajectories of state x1 for different values of a step disturbance triggered at t = 0 and param-
eterized by α1. A parabola-like curve connects the points where the trajectories cross the hypersurface spanned
by constraint h := x1max − x1 = 0. The grazing trajectory touches the hypersurface tangentially at t = tg for
α = αg

1.

sufficiently smooth with respect to x, y, p, α, and t for t > t0. f and g map from some open
subset U ⊂ R

nx×R
ny×R

np×R
nα×R into R

nx and R
ny , respectively. We assume the Jacobian

gy of g with respect to y to have full rank ny; i.e., the DAE system (1.1) has a differential index
of at most one [50]. This implies that consistent initial conditions of the algebraic states y0

can be computed with the algebraic equations and specified initial conditions of the dynamic
states x0. Note that (1.1) can represent both open-loop and closed-loop systems including a
controller with fixed structure. For closed-loop systems, the parameter vector p refers to both
system design parameters and control parameters.

In what follows we assume that there is a set of inequality constraints,

(1.2) 0 ≤ h(x(t), y(t), p, d(α, t), t),

with h sufficiently smooth mapping from U ⊂ R
nx×R

ny×R
np×R

nα×R into R
nh . Constraints

(1.2) may represent safety constraints for a physical system, such as an upper temperature
limit in a chemical reactor, or constraints that are established due to economic reasons, such
as a quality constraint on a product. For safe and economical operation of system (1.1) it is
therefore important to ensure that bounds (1.2) hold despite disturbances d(α, t). Figure 1
displays an illustrative example of the transient behavior of state x1 of a dynamic system after
a step disturbance triggered at t = 0. The magnitude of the disturbance is parameterized
by the parameter α1. A simple upper bound for x1, h := x1max − x1 defines a plane in the
space (α1, x1) which must not be crossed from below by the trajectories after the disturbance.
As shown in Figure 1, the trajectories always violate the bound for some time for α1 > αg

1,
whereas the trajectories do not cross the bounding plane for α1 < αg

1. Obviously, there is a
critical value of α1 = αg

1 for which the trajectory only touches the bounding plane tangentially
but does not cross it.

The point where the transient touches the bounding plane tangentially is a so-called
grazing point [42]. The grazing point is of special interest as it separates those trajectories
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Figure 2. End-point constraint: Trajectories of state x1 for different values of a step disturbance triggered
at t = 0 and parameterized by α1. Curve on the plane 0 = h connects points of trajectories at which the
hypersurface of the end-point constraint h := x1max − x1 = 0 is crossed. The end-point constraint trajectory
crosses the bound at the specified final time t = te for α = αe

1.

where the disturbance does not cause a violation of the bound from those trajectories that
cross the bounding plane at some point. Note that the term grazing bifurcation usually refers
to nonsmooth dynamic systems where a bounding surface triggers a discrete event, such as
a periodically forced oscillator hitting a wall [42]. Grazing bifurcations have been actively
investigated in recent years for nonsmooth mechanical systems such as impact oscillators
[8, 11, 42], stick slip oscillations in systems with friction [10], and rub-impact rotor systems [9],
but also for switching power systems [12, 15, 16]. In this paper, we will focus on smooth
systems with constraints (1.2) that must not be crossed, such as safety boundaries or product
quality constraints.

Besides the grazing point we will also consider end-point constraints, referring to the
trajectory which crosses a bound (1.2) at a specified final time t = te as shown in Figure 2.
This point separates those trajectories which do not cross the bound before the specified
final time from those which violate the bound before the final time is reached. End-point
constraints are useful, for example, to bound monotonously increasing states or outputs until
a specified final time is reached. An example of a monotonously increasing output is the
integrated squared error in closed-loop systems.

In this work the grazing point and the end-point constraint will be used for the robust
design and optimization of dynamic systems (1.1) in the presence of parametric uncertainty
according to the optimization-based approach recently presented by Mönnigmann and Mar-
quardt [36, 37, 38, 39]. This approach uses the parametric distance between the nearest
critical point and the border of a compact region of parametric uncertainty as a measure of
robustness for a candidate operating point. The nearest critical point, here a grazing point
or an end-point, occurs in the direction normal to the manifold of critical points, which we
will refer to as a critical manifold. In general, the concept of critical manifolds applies to
all boundaries in the parameter space at which the system behavior changes qualitatively.
A parametric distance greater than zero ensures that all values the parameters may attain
within the region of uncertainty are located on the side of the manifold where the system
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exhibits the desired properties.

A drawback of the approach so far was the restriction to steady states and critical points of
steady states. Steady states allow neither considering bounds that must hold during transient
behavior of the dynamic system (1.1) nor including disturbances with dynamics that are
as fast or faster than the system dynamics [37]. To overcome these limitations, we extend
the existing approach to consider bounds on trajectories of nonlinear dynamic systems and
the corresponding critical points. This involves the calculation of the normal direction for
manifolds of grazing points and end-point constraints. The normal direction is used for the
formulation of additional constraints in a nonlinear program to ensure that, at the optimal
solution, no points within the region of uncertainty violate the constraints (1.2).

Independently from the work presented in this paper, the normal direction on the manifold
of grazing bifurcations has also been used in a recent publication [16] to find the closest grazing
bifurcation from an operating point for nonsmooth systems, specifically for switching power
systems. The most important conceptual difference is that in [16] normal vectors are used for
the analysis of a fixed operating point while the scope of this work is to use normal vectors
for the robust design of an operating point. The point of operation is not fixed but is allowed
to vary in the space of the design parameters p to minimize an objective function within an
optimization problem. The normal vector direction is therefore used not only to locate the
closest critical point to a fixed operating point but also to track the closest point, which will
change its location with the operating point being modified by the optimizer to obtain the
economically optimal point. Technical differences between the calculations presented in this
paper and the derivations in [16] are briefly discussed in section 3 and in Appendix B.

As (1.1) may represent both open- and closed-loop dynamic systems, the sketched ap-
proach can be used for the simultaneous operating point and control system design of non-
linear systems to guarantee that constraints (1.2) hold despite fast disturbances. Integrated
design and control is attractive as it allows incorporating operability issues directly in the sys-
tem design instead of the usual consecutive approach of separated system and control design.
A family of approaches addressing simultaneous design and control with output constraints is
based on the robust design framework of Halemane and Grossmann [24] for steady-state design.
An extension to dynamic systems to consider robustness of constraints despite disturbances
was formulated by Mohideen, Perkins, and Pistikopoulos [34] using mixed-integer dynamic
optimization (MIDO) programs. In this approach, first a weighted multiperiod MIDO design
problem is solved for a set of fixed uncertainty realizations. A feasibility test checks for further
worst-case points which are added to the design problem. Several solution strategies for the
involved MIDO problems have been derived in a series of follow-up papers summarized in [46].
A similar approach is used in [2] to solve the integrated control and design problem. In all
these approaches the dynamic optimization problem is solved either by complete discretiza-
tion of the dynamic system by collocation, leading to a large NLP, or by bounds (1.2) being
transformed to end-point constraints [46], which may cause numerical difficulties [19]. In our
approach we consider special points of critical trajectories. A discretization or conversion into
end-point constraints is therefore not required. Another advantage is the seamless integration
of rigorous stability constraints by using the results for steady-state design with guaranteed
stability derived in our previous work [36, 37]. Our approach does not rely on matrix measures
[27, 35] to guarantee stability, which are known to be conservative.
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Input and output constraints can also be handled by model predictive control (MPC) [33],
where at each point in time a constrained optimal control problem on a finite time horizon is
solved. Uncertainties and disturbances are addressed by min-max robust MPC approaches [6],
where the performance is optimized for the worst possible case. To reduce the conservatism of
min-max MPC approaches a family of control sequences instead of a single control input profile
can be considered both for linear systems [29, 48, 53] as well as for nonlinear systems [32].
Evaluation of the control policies, though, is computationally very demanding apart from
very simple problems. Linear or higher approximations of the worst-case performance can
help to reduce the computational burden of nonlinear min-max robust MPC [13, 41]. The
introduced approximation error might, however, lead to poor results for strongly nonlinear
models and larger uncertainties [14]. Alternatively to min-max approaches robustness in
MPC is addressed by methods that adapt online a nominal optimal profile in the presence of
uncertainties. Examples are the use of neighboring extremals [22] or tracking of the necessary
conditions of optimality [26]. There are, however, only a few approaches that use MPC or
even robust MPC approaches for simultaneous system and control design. One of the early
works using MPC for the integration of design and control is [5]. The complexity of the design
task to find an optimal operating point is greatly increased since MPC requires the solution of
an additional and computationally intensive online dynamic optimization problem. MPC for
simple linear models is an exception. In this special case, the resulting optimal control laws
can be written in an explicit form. In [45] control laws are evaluated offline via parametric
programming. This approach, however, is not suitable for problems with many states and
constraints as the number of linear control laws grows exponentially with the number of
constraints. Unconstrained MPC for linear models is used in [7, 31]. This does not, however,
make use of the ability of MPC to consider constraints explicitly. Additional conditions have
to be introduced in [7, 31] to ensure that specified constraints hold.

Input and output constraints under uncertainty are also addressed by Lyapunov-based
control design methods using invariant sets [4]. In [17, 18] an explicit Lyapunov-based control
law is derived that guarantees stability and performance in the presence of input constraints
and disturbances within a stability region around the operating point. A lower bound of the
stability region can be estimated by computing an invariant subset of the stability region.
There are, however, some drawbacks for Lyapunov-based approaches. Typically, certain as-
sumptions, so-called matching conditions, have to hold for the uncertainties and disturbances.
For the approach presented in this paper no matching conditions have to be introduced. Fur-
thermore, we do not have to restrict nonlinear system (1.1) to be affine with respect to distur-
bances or control inputs. The estimation of the stability region around a nominal operating
point is beyond the scope of this paper and will not be investigated.

The paper is organized as follows. In section 2 the defining equations for the grazing
and end-points are presented including a short discussion on the types of disturbances which
can be considered. In section 3 the corresponding normal directions of the critical manifolds
are derived. In section 4 the optimization approach including the normal vector constraints
is presented. Finally, illustrative case studies are shown in section 5. The notation used is
summarized in Appendix A.
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2. Critical manifolds due to bounds on trajectories. No matter how accurately the
governing physical laws are taken into account in the mathematical modeling of a real physical
system, there will always exist a mismatch between the behavior of a nominal model and the
real system. Using only a nominal model for the design of an operating point will generally
lead to a too optimistic design for which robustness of the design specifications cannot be
guaranteed. We identify two sources for the prediction error of a nominal model:

(i) uncertainties in the model parameters that can only be determined up to a certain
accuracy, and

(ii) input disturbances with dynamics that are at least as fast as the system dynamics or
faster.

Uncertainty in the model parameters has been considered in previous work [36, 37, 38, 39]
using critical points of steady states such as Hopf or saddle-node bifurcations. It has been
shown in [37] that uncertain model parameters can also be used to model disturbances if
the dynamics of the disturbances are much slower than the dynamics of the system. A slow
disturbance occurs if its dominant time scale is much larger than that related to the slowest
eigenvalue of the dynamic system.

Here, however, we consider fast disturbances leading to potentially hazardous transient
behavior. In this case, transient behavior of the nonlinear systems cannot be neglected. In
the framework of the robust design approach we are following in this work, the disturbances
d have to be explicitly parameterized by parameters α. Variation of α in a compact set is
introduced to bound disturbances d and to represent a rich family of disturbances. These
uncertain parameters should not be confused with uncertain model parameters. In this work,
parametric uncertainty always refers to the parameterization of the fast disturbances. More
precisely, we assume that the parameters α are restricted to a smooth compact subset A ⊂ R

nα

and ∀α ∈ A, ∀t > t0 : d(α, t) ∈ D, with compact subset D ⊂ R
nd . Throughout the paper, A

has the form

(2.1) A =
{

(x̃, p, α) ∈ Ũ : 0 = ĝ(x̃, p, α), 0 ≤ g̃(x̃, p, α)
}
,

with auxiliary variables x̃ and expressions ĝ and g̃ mapping from some open subset Ũ ⊂
R
nx̃×R

np×R
nα into R

nx̃ , R, respectively. This definition includes, for example, the confidence
ellipsoid for Gaussian random variables with expectation value α, covariance matrix Σ, and
the desired confidence level γ > 0,

(2.2) A =
{
α ∈ Ũ : 0 ≤ γ − (α− α)TΣ−1(α− α)

}
.

Frequently, parametric uncertainty is described by upper and lower bounds

(2.3) α ∈ [α− Δα, α + Δα] ,

where Δα ∈ R
nα . In our robust design approach the rectangular uncertainty region has to be

approximated by a smooth hull, e.g., by an ellipse (2.2) with Σ = diag(Δα2) and γ = nα.
A simple example of a parameterized disturbance d(α, t) is a step disturbance triggered

at t0,

(2.4) d(α, t) =

{
0, t ≤ t0,
α, t > t0,



NORMAL VECTORS ON MANIFOLDS OF TRANSIENT PROCESSES 467

Figure 3. (a) Trajectories of x1 after step disturbance parameterized by α1; a parabola-like curve connects
those points where trajectories cross the constraint h = 0. The grazing point is located at the extremum of the
curve. (b) The parabola unfolds into a surface of points in case of two parameters α1 and α2. (c) Projection of
the manifold of grazing points separates the parameter plane (α1, α2). Trajectory sketches show on which side
the bound h is not violated.

with α parameterizing the magnitude of the disturbance. More general types of disturbances
can be defined by a parameterized time-dependent function or by an additional set of param-
eterized differential equations. In the following we will replace disturbances d(α, t) by their
parameterization α.

The flow of the nonlinear system (1.1) [44], including the dynamic and algebraic states, is
denoted by Φ, i.e.,

[x(x0, t0, p, α, t)
T , y(x0, t0, p, α, t)

T ]T = Φ(x0, t0, p, α, t),

[xT0 , y
T
0 ]T = Φ(x0, t0, p, α, t0).

(2.5)

For nonlinear systems, the flow Φ is generally not available in an analytical form but has
to be evaluated by numerical integration. In the following sections, we abbreviate the list
of arguments of x(x0, t0, p, α, t) and y(x0, t0, p, α, t) for ease of notation and write x(t), y(t).
Likewise, we assume for simplicity that there is only a single constraint (1.2), i.e., nh = 1.
This assumption will be dropped in section 4.

2.1. Critical manifold of grazing points. A manifold of grazing points is characterized by
the set of trajectories that tangentially touch the hypersurface spanned by an active constraint
h = 0. Before introducing the mathematical definitions for a grazing point, we want to show
qualitatively the relevance of a grazing point for the transient behavior of a dynamic system
(1.1) with constraints (1.2). Figure 3a shows several trajectories of the state x1 after a step
disturbance with its magnitude parameterized by α1. The plane denoted by h := x1max−x1 =
0 in Figure 3a is an upper bound on x1 that must not be violated despite disturbances. The
grazing trajectory for α1 = αg

1 touches the bound tangentially at the grazing time t = tg. For
values of α1 > αg

1 the trajectories cross the bounding plane and violate the upper bound for
some time. The set of points where the trajectories cross the bound form a parabola-like curve
with its extremum located at the grazing bifurcation tg, αg

1. For values of α1 < αg
1 trajectories

of x1 never cross the upper bound x1max. In the presence of a second disturbance parameter
α2 the parabola-like curve of the crossing points unfolds into a surface and the grazing point
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into a curve in the (α1, α2, t)-space as depicted in Figure 3b. The projection of this curve onto
the parameter plane (α1, α2) shown in Figure 3c separates the region where the constraint
is not violated from the region where disturbances lead to trajectories that cross the bound.
Figure 3c stresses the importance of the grazing bifurcation for the design of a dynamic system
that has to be restricted to the region, where the constraint is not violated.

In what follows, we derive necessary conditions for a grazing bifurcation that can be used
to describe boundaries of the type shown in Figure 3c. The necessary conditions for a grazing
point can be derived by taking into account that the grazing trajectory

(i) must fulfill the constraint (1.2) at the grazing point

[x(tg)T , y(tg)T ]T = Φ(x0, t0, p, α
g, tg),

h(x(tg), y(tg), p, αg, tg) = 0,
(2.6)

(ii) and must have a common tangent space with the hypersurface spanned by constraint
(1.2) at the grazing point in the space (x(t), y(t), t).

Let the tangent space of the hypersurface defined by the constraint (1.2) in the space (x(t),
y(t), t) be spanned by vectors [vTd , v

T
a , ṽ]

T with vd ∈ R
nx , va ∈ R

ny , and ṽ ∈ R. The tangent
space must be orthogonal to the normal space of the hypersurface. The normal space is
spanned by the gradient of the constraint h with respect to the dynamic and algebraic state
variables and time [hx, hy, ht]

T [20]. We can therefore write

[hx, hy, ht]

⎡
⎣ vd

va
ṽ

⎤
⎦ = 0,

vTd vd + vTa va + ṽ2 �= 0.

(2.7)

A tangential vector of a trajectory is spanned by the derivative of the flow (2.5) with respect
to time, [Φt(x0, t0, p, α

g, tg)T , 1]T with Φt = [xTt , y
T
t ]T ∈ R

nx+ny . The time derivative xt is the
right-hand side of (1.1) for the dynamic variables xt = f . The time derivative yt is implicitly
defined by the time derivative of the algebraic equations:

(2.8) 0 = gyyt + gxf + gt.

Since gy has full rank, by assumption the time derivative yt can be calculated by solving
the linear system (2.8) for yt. Note, however, that yt is usually provided by the numerical
integrator solving the nonlinear dynamic system (1.1). At the grazing point (x(tg), y(tg), tg)
the tangential vector of the corresponding trajectory must belong to the tangent space of the
hypersurface defined by the active constraint (1.2); hence the vector [fT , yTt , 1]T is a valid
choice for [vTd , v

T
a , ṽ]

T such that (2.7) is satisfied. The augmented system M (g) for a grazing
point can then be written as

(2.9) M (g) =

(
h(x(t), y(t), p, α, t)

hxf(x(t), y(t), p, α, t) + hyyt + ht

)
= 0,

with the flow Φ = [x(t)T , y(t)T ]T as defined in (2.5). These two equations determine the time
tg and one parameter αg

1 at which the grazing point occurs. Note that the defining equations
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Figure 4. (a) Trajectories for different values of disturbance parameter α1 and curve connecting points
where trajectories cross the boundary h = 0 with critical point at te, αe

1. (b) Critical point unfolds to a curve
of points which fulfill constraint h = 0 at te in a two-dimensional parameter space spanned by α1 and α2.
(c) Projection of the curve splits the parameter plane (α1, α2) into a region where constraint h is violated by
corresponding trajectories before te is reached and a region where the constraint is not crossed for t < te.

(2.9) are also valid for those trajectories that have an inflection point at the hypersurface
spanned by the active constraint (1.2). These trajectories cross the constraint directly after
touching it tangentially. Such inflection points can be excluded by requiring the second order
derivative of h with respect to time to be strictly positive,

∂(hxf + hyyt + ht)

∂t
> 0,

as the grazing bifurcation always corresponds to a minimum of h.

In general, more than one critical manifold may exist for a constraint (1.2) if the trajectory
touches or crosses the boundary several times.

2.2. Critical manifold for end-point constraints. A second type of critical manifold can
be defined for a constraint (1.2), by specifying a final time te at which the constraint must
be fulfilled exactly. The critical manifold for end-point constraints is defined by the set of
parameter values for which the corresponding trajectories reach the constraint h = 0 at a
specified final time te. Before stating the augmented system for the critical manifold we
want to discuss the relevance of end-point constraints with the sketches in Figure 4. Several
trajectories of a state x1 after step disturbances triggered at t = 0 and parameterized by α1

are shown in Figure 4a. All the trajectories are monotonically increasing and cross the upper
bound h := x1max−x1 = 0 at some point. For the critical parameter value αe the upper bound
is crossed exactly at the specified final time te. For parameter values α > αe the constraint is
crossed for times t > te whereas for α < αe the constraint is violated before te is reached. By
taking into account a second disturbance parameter α2, the critical point αe, te unfolds into
a curve in the space (t, α1, α2) as shown in Figure 4b. The projection of this curve on the
parameter plane (α1, α2), as shown in Figure 4c, separates a region where the corresponding
trajectories do not touch or cross the boundary until the specified time te is reached from a
region where the constraint is always violated by the trajectories for t < te.
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This type of critical manifold is particularly useful for bounds on monotonically increas-
ing states or outputs for which grazing points cannot occur. End-point constraints can be
formulated, e.g., to define an upper bound on the integrated squared error of an output with
respect to its specified set-point for a closed-loop control system, as demonstrated in the case
study in section 5.2.

The augmented system defining the manifold of end-point constraints is determined by the
trajectory that crosses the bound (1.2) at the specified final time te. The augmented system
is therefore given by

(2.10) M (e) =

(
h(x(t), y(t), p, α, t)

t− te

)
= 0.

These two equations determine the time te and one parameter αe
1.

3. Derivation of the normal vector direction. The normal vector of critical manifolds can
be calculated from the defining augmented systems (2.9) and (2.10) following the scheme of
derivation developed by Mönnigmann and Marquardt [36]. We assume that initial conditions
x0 and design parameters p are fixed and known. Uncertain initial conditions for state xi,
i ∈ {1, . . . , nx}, can easily be included by introducing a new state variable x̃i with initial
conditions x̃i0 = 0 and time derivative given by x̃it = fi(x, y, p, α). Then xi = x̃i + xi0,
where xi0 can be treated as a parameter α. The normal space of the hypersurface defined
by an augmented system M (c), c ∈ {g, e}, in the (t, α)-space is spanned by the columns of
the Jacobian matrix of the partial derivatives ∇M (c) [20]. In order to simplify the following
derivations we collect the variables x(t) and y(t) in the state variable vector

z(t) = [x(t)T , y(t)T ]T , z ∈ R
nz , nz = nx + ny,

and the functions f and g of (1.1) in

F = [fT , gT ]T .

Furthermore, we introduce the matrix A ∈ R
nz × R

nz ,

A =

[
I 0
0 0

]
,

with identity matrix I ∈ R
nx × R

nx . The dynamic system (1.1) can then be rewritten as

(3.1) Azt = F (z, p, α, t).

The normal space of the augmented systems (2.9) and (2.10) is an (nα + 1)× (nα + 1) matrix

(3.2) B =

[
∇tM

(c)
1 ∇tM

(c)
2

∇αM
(c)
1 ∇αM

(c)
2

]
, c ∈ {g, e}.

For the augmented system of the grazing point (2.9), the entries of B result in

∇tM
(g)
1 = hzzt + ht,

∇tM
(g)
2 = hzzztzt + hzztt + 2hztzt + htt,

∇αM
(g)
1 = (hzΦα + hα)T ,

∇αM
(g)
2 = (hzzztΦα + hzαzt + hzΦtα + htzΦα + htα)T .

(3.3)
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The entries of B for the end-point system (2.10) are

∇tM
(e)
1 = hzzt + ht,

∇tM
(e)
2 = 1,

∇αM
(e)
1 = (hzΦα + hα)T ,

∇αM
(e)
2 = 0.

(3.4)

The gradients include sensitivities Φα of the flow with respect to the uncertain parameters
α. The differential and algebraic equations that define the dynamics of the sensitivities are
obtained by differentiating the DAE system (1.1) with respect to the parameters α:

(3.5) AΦαt = FzΦα + Fα.

The sensitivity system (3.5) consists of one DAE system for each parameter αi, i = 1, . . . , nα.
These systems are independent of each other but all depend on the solution z(t) of the state
system. The sensitivities can be calculated by integrating the sensitivity equations (3.5)
together with the state system (3.1). A number of numerical integrators supports efficient
evaluation of the sensitivity equations by exploiting their special properties (e.g., [47]).

The parametrically closest point of a critical manifold to a given point is in the direction
of the particular vector in the normal space (3.2) that has no contribution along the variable
t. According to [36] this vector r ∈ R

nα is obtained by choosing κ ∈ R
2 such that

(3.6) Bκ =

[
0
r

]
∈ R

nα+1,

where 0 ∈ R. Together with the regularization condition κT ζ − 1 = 0 with ζ ∈ R
2 not

orthogonal to κ [36], the two entries of κ are defined by the equations[
∇tM

(c)
1 ∇tM

(c)
2

]
κ = 0, c ∈ {g, e},

κT ζ − 1 = 0.
(3.7)

For the grazing point c = g, this system of equations can be solved by choosing κ = [1, 0]T and
ζ = κ. The trailing nα elements of (3.6) then give the nα equations defining the normal vector
r. Substituting this choice of κ into (3.7) and using (3.2) and (3.3), the following system of
equations results for the normal vector on grazing point manifolds:

(3.8) G(g) :=

⎛
⎜⎜⎝

z(t) − Φ(z0, t0, p, α, t)
h(z(t), p, α, t)
hzzt + ht

(hzΦα + hα)T − r

⎞
⎟⎟⎠ = 0.

For the end-point constraint, the system of equations (3.7) is solved by choosing κ = [1,
−(hzzt + ht)] and ζ = [1, 0]. The augmented system defining the normal direction for the
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end-point constraint (2.10) then reads as

(3.9) G(e) :=

⎛
⎜⎜⎝

z(t) − Φ(z0, t0, p, α, t)
h(z(t), p, α, t)

t− te

(hzΦα + hα)T − r

⎞
⎟⎟⎠ = 0.

Note that the required time derivatives zt = [xTt , y
T
t ] as well as the sensitivities Φα can

be provided by numerical simulators that allow for an efficient integration of the sensitivity
equations (3.5), such as DDASPK [30], an extended version of LIMEX [47], or DAEPACK [49].
For large nonlinear systems with a Jacobian that has a sparse unordered structure the latter
two should be preferred as they use sparse linear algebra packages.

The normal direction of a grazing point manifold is also calculated in a recent work of
Donde and Hiskens [16]. The derivation in [16] differs from the calculations presented in
this section in that Donde and Hiskens do not make use of the values calculated by the
numerical integration for the algebraic states y(t) and their derivatives with respect to time
and parameters yt, yα. Instead they use the algebraic equations 0 = g for the calculation of y
and (2.8) for the calculation of yt. This leads to a more complex normal vector system that
includes second order derivatives of the algebraic equations and 2nx + 4ny +nα + 4 equations
instead of nx + ny + nα + 2 equations in (3.8). For further illustration the B-matrix and the
normal vector system according to [16] are given in Appendix B.

4. Optimization with normal vector constraints. In this section we adopt the approach
for the robust design of nonlinear systems first presented by Mönnigmann and Marquardt [36]
that utilizes the normal vector direction of critical manifolds for the robust design of nonlinear
systems. In this approach, the normal vector direction r is used to formulate constraints for
a nonlinear program (NLP) to ensure that constraints (1.2) hold for the optimal design of
nonlinear system (1.1) despite disturbances parameterized by uncertain parameters α. Note
that in the following sections we consider again the general case of nh ≥ 1 constraints (1.2).

4.1. Normal vector constraints. The approach enforces a lower bound on the parametric
distance between the critical manifold and the boundary of the uncertainty region A (2.1).
We denote the boundary as robustness manifold M (rob) defined by

(4.1) M (rob) =

(
ĝ(x̃(rob), p, α(rob))

g̃(x̃(rob), p, α(rob))

)
= 0.

The normal vector constraint defining the lower bound then reads

α(rob) = α(c) + lr,

l ≥ 0,
(4.2)

with l as the measure for parametric distance and r representing the common normal direction
of the critical manifold and the robustness manifold. As shown by Mönnigmann and Mar-
quardt [37] the system of equations defining the normal direction of the robustness manifold
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Figure 5. Normal vector constraint: Uncertainty region is bounded by the robustness manifold M (rob).
Distance is measured along common normal direction r of critical and robustness manifold.

r(rob) can be derived following the scheme described in section 3, resulting in another normal
vector system of the form

(4.3) G(rob)
(
x̃(rob), p, α(rob), r(rob)

)
= 0.

The lower bound on the parametric distance ensures that the complete range of uncertain
parameters is at a safe distance from the critical boundary. This is further illustrated with
Figure 5.

We are interested in finding a system design that minimizes an objective φ for a nominal
operating point and, at the same time, satisfies the constraints (1.2). In the presence of fast
disturbances parameterized by α bounded within the robustness manifold (4.1) the design
problem is addressed by solving the following constrained NLP:1

minφ(z(0), p, t(0))(4.4a)

s. t. z(0) = Φ(z
(0)
0 , t

(0)
0 , p, t(0)),

0 ≤ hi(z
(0), p, t(0)) ∀i ∈ I,

(4.4b)

0 = G(c,i,j)
(
z(c,i,j), p, α(c,i,j), t(c,i,j), r(i,j)

)
∀i ∈ I, ∀j ∈ Ji,(4.4c)

0 = G(rob,i,j)
(
x̃(rob,i,j), p, α(rob,i,j), ν(i,j) · r(i,j)

)
∀i ∈ I, ∀j ∈ Ji,(4.4d)

0 = α(c,i,j) − α(rob,i,j) + lr(i,j) ∀i ∈ I, ∀j ∈ Ji,

0 ≤ l(i,j) ∀i ∈ I, ∀j ∈ Ji,
(4.4e)

0 ≤ h̃(z(0), p, t(0), x̃1),

0 = ĥ(z(0), p, t(0), x̃2).
(4.4f)

Equations (4.4b) define the states z(0) of the nominal system without disturbances. The set
I = {1, . . . , nh} enumerates the constraints. Equation (4.4c) constitutes the normal vector

1For ease of notation, the time argument (t) for states z is omitted in the following sections.
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system of the critical points. For each constraint i ∈ I several critical points j ∈ Ji may
exist in general. More than one closest point may exist due to nonconvexity of the critical
manifolds [37] or in the case that there are several critical manifolds of grazing points for a
single constraint. The superscript c ∈ {g, e} denotes the type of critical manifold (grazing
point or end-point).

The normal vector of the robustness manifold is defined by (4.4d). The scalar multiplier
ν(i,j) is introduced as the normal vectors of the critical manifold and the robustness manifold
are not normalized in their defining equations (3.8), (3.9), and (4.3) and might furthermore
point in opposite directions. Equations (4.4e) enforce the minimal distance between a point
located on the robustness manifold α(rob,i,j) and the nearest critical point α(c,i,j).

Additional equality and inequality constraints (4.4f) with auxiliary variables x̃1 ∈ R
nx̃1

and x̃2 ∈ R
nx̃2 map into R

nh̃ or R
nĥ , respectively. These constraints are included in the

formulation to allow for further specifications of the nominal solution that do not have to be
robustly enforced. Typically, these are constraints which are not affected by the disturbances,
e.g., simple box constraints on the parameters p. The degrees of freedom of the NLP (4.4)

are p, z
(0)
0 , t(0), x̃1, x̃2, t

(c,i,j), α(c,i,j), α(rob,i,j), x̃(rob,i,j), r(i,j), ν(i,j), and l(i,j).

4.2. Solution strategy. A number of difficulties has to be tackled to solve the NLP (4.4).
Generally, the location of the critical manifolds is not known beforehand. Therefore, an
algorithmic solution strategy for critical manifolds of steady states [38] has to be adapted to
the new types of critical manifolds.

The algorithm builds up the sets of critical points and corresponding normal vector con-
straints Ji as the optimization proceeds. Newly detected critical points that violate bounds
hi will in general not satisfy the normal vector constraints (4.2). Therefore, an additional set
of points J is introduced that comprises the newly detected critical points. An initialization
step is necessary to move points from J to the sets of points Ji used for the normal vector
constraints. The algorithm also allows for removal of normal vector constraints (i, j) if the
parametric distance l(i,j) is larger than a specified threshold lmax. The algorithm involves the
following four steps, of which the last three may have to be carried out repeatedly:

(i) Initialization: Choose an initial nominal operating point for which all constraints hi
are satisfied. If points that violate hi are known beforehand, put them into the set J .

(ii) Update of Ji: Find the points on the critical manifolds α ∈ M (c,i) that satisfy the
normal vector constraints using the points in set J as initialization. The obtained
critical points are moved from set J to the sets Ji. The last step in the update of Ji
is the removal of those critical points (i, j) from the set Ji for which l(i,j) > lmax.

(iii) Optimization: Solve NLP (4.4) with normal vector constraints to the critical points
contained in Ji.

(iv) Search within the robustness region for constraint violations: Check if the constraints
hold within the region of parametric uncertainty. If critical points are found, update
index J and return to step (ii).

If the test in step (iv) reveals no further critical points, an optimal operating point has been
found that is robust with respect to the constraints in the presence of parametric uncertainty.
The algorithm is therefore terminated.

In contrast to critical points of steady states, there are no adequate test functions to detect
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Figure 6. (a) Initialization steps for points in J located outside the robustness region. (b) Initialization
fails if critical manifold crosses the robustness manifold.

points that directly satisfy all conditions that must hold for a point located on the critical
manifold. In the following we therefore elaborate further on the detection of critical points in
step (iv) and initialization of normal vector constraints in step (ii), which have to be modified
in comparison to [38].

4.2.1. Detection of critical points. Detection of unknown critical points in step (iv) is
realized by numerical integration of system (1.1). Since the numerical integration can only
be carried out for a finite span of time, the detection is limited to a finite time horizon. The
horizon length must be a compromise between computational costs on the one hand and the
risk of missing constraint violations on the other hand. The check for constraint violations
can be stopped at a finite time if a steady state or a stable limit cycle is reached. The search
within the robustness region is carried out in this work on a grid of points of the robustness
region, e.g., on the corner or center points of the faces of the hypercube (2.3).

4.2.2. Initialization of normal vector constraints. In general, critical points detected in
step (iv) do not satisfy the augmented system (2.9) or (2.10). They will also not be the nearest
critical point to the robustness manifold. The solver used to solve NLP (4.4), however, requires
a feasible point as initialization. In step (ii), therefore, a strategy has to be employed to obtain
a critical point satisfying the normal vector constraints (4.4e). For points in J located outside
the uncertainty region, i.e., 0 ≥ g̃(z, x̃, p, α, t), the two step strategy illustrated by Figure 6a
is used:

(i) Find a point located on the critical manifold : Here we assume that the second condition
holds for the points in J , i.e., the tangential condition for a grazing bifurcation 0 =
hzzt + ht or the time condition 0 = t − te for an end-point constraint. Bound (1.2),
however, is assumed to be violated, 0 > h. To obtain a point on the critical manifold
the following optimization problem is solved:

max
α,t

h(z, p, α, t)

s. t. z = Φ(z
(0)
0 , t

(0)
0 , p, α, t),

0 ≥ h(z, p, α, t),

0 =

{
hzzt + ht if c = g,

t− te if c = e.

(4.5)
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Figure 7. Two iterations of the initialization steps for points in J located within the robustness region.
Minimization (4.7) ( (0) → (1, 1) and (1, 2) → (2, 1)) and maximization (4.8) ( (1, 1) → (1, 2)). The dashed
curve is the level set h = const < 0, which touches the robustness region tangentially.

This gives a point on the critical manifold if h = 0 at the optimum. Note that an
equivalent formulation can be used in case that the first condition h = 0 of the aug-
mented systems holds at the detected point by using the second condition as objective
in (4.5). In Figure 6a transition of point (0) to point (1) illustrates this step.

(ii) Find the closest critical point : Points satisfying normal vector constraint (4.4e) are
found by minimizing the parametric distance between the critical manifold and the
robustness manifold over all α ∈ M (c,i) and α(rob) ∈ M (rob) for a fixed nominal point

min
α,t,α(rob),x̃(rob)

1

2
(α− α(rob))T (α− α(rob))

s. t. z = Φ(z
(0)
0 , t

(0)
0 , p, α, t),

0 = M (c,i)(z, p, α, t), i ∈ I,
0 = M (rob)(x̃(rob), p, α(rob)).

(4.6)

As pointed out in [37] the Lagrange multipliers required for the definition of the Karush–Kuhn–
Tucker conditions of optimality can be used to initialize the normal vector r, the distance
variable l, and ν. In Figure 6a solving (4.6) corresponds to the transition from point (1)
to point (2). In case α = α(rob) it has to be checked if the critical manifold intersects the
robustness region (cf. Figure 6b). In this case the initialization routine fails and the strategy
for critical points located within the robustness region has to be pursued.

If a point in J is located within the uncertainty region, then the critical manifold intersects
the robustness region and has to be pushed outside before NLP (4.4) can be solved. This is
achieved by the following two iterative steps illustrated by Figure 7:

(i) Find a worst-case point on the robustness manifold : The worst-case point with respect
to the constraint h on the robustness manifold is found by solving

min
α,t

h(z, p, α, t)

s. t. z = Φ(z
(0)
0 , t

(0)
0 , p, α, t),

0 =

{
hzzt + ht if c = g,

t− te if c = e,

0 = M (rob)(x̃, p, α).

(4.7)
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In Figure 7 this is the transition from point (0) to (1, 1) and from point (1, 2) to (2, 1).
(ii) Push the critical manifold to the robustness manifold : By maximizing the constraint

for fixed uncertain parameters,

max
p,t

h(z, p, α, t)

s. t. z = Φ(z
(0)
0 , t

(0)
0 , p, α, t),

0 ≥ h(z, p, α, t),

0 =

{
hzzt + ht if c = g,

t− te if c = e,

z = Φ(z
(0)
0 , t

(0)
0 , p, t),

0 ≤ hi(z
(0), p, t(0)) ∀i ∈ I,

0 ≤ h̃(z(0), p, t(0), x̃1),

0 = ĥ(z(0), p, t(0), x̃2),

(4.8)

the critical manifold crosses the robustness manifold at the former worst-case point
((1, 2) in Figure 7) if h = 0 (and if the equations defining the critical manifold do not
depend on p) at the solution of (4.8).

The two steps have to be repeated iteratively until the constraint violation after step (i)
is smaller than a specified threshold. Again, the Lagrangian multipliers of the optimality
conditions for (4.7) can be used to initialize the normal vector r and ν of NLP (4.4).

The described initialization steps may fail due to an unsuitable control structure or too
tight restrictions (1.2) for the modeled disturbances. In this case the control structure needs
to be modified or the requirements have to be relaxed.

4.3. Implementational details. For the solution of the NLP the SQP-solver NPSOL [21]
is used. This gradient-based solver requires the derivatives of the constraints of NLP (4.4) with
respect to the degrees of freedom of the optimization problem. As the system of equations
defining the normal vectors for the critical manifold of grazing points (3.8) and end-point
constraints (3.9) involve sensitivities Φα of the state variables, the corresponding derivatives
of the normal vector equations contain second order sensitivities Φαα (and Φαp,Φαz0). The
dynamics of the second order sensitivities are defined by the DAE system that is obtained by
differentiating the DAE system for the first order sensitivities (3.5) with respect to α, p, and
initial conditions z0. The DAE system for the second order sensitivities with respect to the
uncertain parameters α can be written as

(4.9) MΦααt = FzzΦαΦα + 2FzαΦα + FzΦαα + Fαα.

The DAE systems for the mixed second order sensitivities are defined accordingly. Numerical
integration of the nonlinear system (1.1) and sensitivity equations (3.5), (4.9) is carried out
either by DDASPK [30] or by an extended version of LIMEX [47]. As pointed out in [52] the
structure of the equations of the second order sensitivities (4.9) is similar to the structure of the
first order sensitivities. They can therefore be integrated in the same efficient fashion as the
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first order sensitivities. Furthermore, the symmetry of the second order sensitivities Φαiαj =
Φαjαi can be easily exploited. For a larger number of parameters a promising alternative
based on adjoints has been suggested recently [25] to further reduce the computational effort.

Finally, second order derivatives of the state variables with respect to time ztt = [xTtt, y
T
tt]

T

are required to state the derivatives of the grazing bifurcation augmented system (2.9). These
derivatives are usually not provided by the numerical integrator and have to be calculated by
evaluating the time derivatives of the differential equations defining xt (1.1) and the equations
for yt (2.8), respectively. xtt is easily calculated by the following expression:

xtt = fxf + fyyt + ft.

For ytt the following system of linear equations has to be solved:

gyytt = −(gxxtt + gxxff + 2gxyfyt + gyyytyt + gtxf + gtyyt + gtt).

The partial derivatives of the functions f , g, and h that are needed for the constraints
and gradients of the NLP (4.4) are evaluated with symbolic differentiation with Maple [40]
and automatic differentiation with ADIFOR [3].

5. Illustrative case studies. In section 5.1 we present two applications of the normal
vector constraints to ensure a minimal distance to a manifold of grazing points. In section 5.2
we show an application of the approach to guarantee robustness with respect to a critical
manifold for end-point constraints.

5.1. Robustness with respect to grazing points. We investigate a bioreactor model
which has already been robustly optimized with respect to steady-state stability boundaries
by Mönnigmann and Marquardt [36]. Here we consider an upper bound on the substrate
concentration, which should robustly hold despite fast disturbances. The second case study
involves a closed-loop chemical reactor with state feedback control to illustrate the possibility
of simultaneous operating point and control design with the presented approach.

5.1.1. Bioreactor. Consider the continuous bioreactor model with two nonlinear ordinary
differential equations [1]:

x1τ = −x1 + Λ(x2)Dax1 := f1,

x2τ = −x2 + Σ(x2)Dax1 := f2.
(5.1)

Here x1 denotes the dimensionless biomass concentration, x2 the dimensionless substrate
concentration, and τ is the dimensionless time. The uncertain parameters are the Damköhler
number Da and the feed substrate concentration Sq in kmol m−3. Λ and Σ are known state
functions describing the bioreaction [1, 36]. The bioreactor is optimized with respect to the
economic profit function [36]

(5.2) φ = −cφμ(Sq)V

Da
(c1(a + bSq)Sqx1 − c2(Sq)),

with reactor volume V , cost coefficients c1, c2(Sq), and kinetic parameters a and b. The
substrate feed concentration is limited to values between

Sd ≤ Sq ≤ Sc, Sd = 0.3 kmol m−3, Sc = 1.0 kmol m−3.
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Parameter values are taken from [5] and [36].
The optimal operating point is unstable [5] if no additional constraints ensure the stability

of the optimal solution. As shown in Figure 8, the bioreactor model exhibits two stability
boundaries in the parameter plane (Da, Sq): a manifold of Hopf bifurcations and a manifold
of saddle-node bifurcations. These manifolds separate the region with stable stationary points
from the region with unstable steady states. In [36] the bioreactor model has been optimized
with respect to the profit function (5.2) guaranteeing robust stability by normal vector con-
straints to the two stability boundaries. In this work we look for an optimal steady-state
operating point (x(0), p) for which we can guarantee that a maximal substrate concentration

(5.3) 0 < Smax − S := h, Smax = 0.07 kmol m−3,

is not violated at the outflow of the reactor after step disturbances of both the Damköhler
number Da and the feed substrate concentration Sq. The disturbances are parameterized by
the parameters dDa and dSq,

Da =

{
Da, t ≤ t0,

Da + dDa, t > t0,
(5.4a)

Sq =

{
Sq, t ≤ t0,

Sq + dSq, t > t0,
(5.4b)

which are bounded by

dDa ∈ [−ΔDa,ΔDa], ΔDa = 0.05,

dSq ∈ [−ΔSq,ΔSq], ΔSq = 0.03 kmol m−3.

Hence, we are looking for a steady state, defined by 0 = f(x
(0)
1 , x

(0)
2 , Da, Sq), such that the

upper bound on the substrate concentration in the reactor (5.3) is not violated by any of

the trajectories Φ(x10, x20, t0, Da, Sq, t) with initial conditions x10 = x
(0)
1 , x20 = x

(0)
2 and

uncertain disturbances defined by (5.4). With regard to the NLP (4.4) we have I = {1},
c = g, z = {x1, x2}, p = {Da, Sq}, and α = {dDa, dSq}. We consider the approximation of
the uncertainty box by an ellipse

∑
i (αi/Δαi)

2 = nα.
Optimization starts without robustness constraints. Unknown critical manifolds are de-

tected by numerical integration and repeated optimization steps. Each detected critical

point adds normal vector constraints with new variables t(i,j), l(i,j), ν(i,j), dDa(i,j), dS
(i,j)
q ,

dDa(rob,i,j), dS
(rob,i,j)
q to the NLP. In this example there is only one constraint I = {1} and

one critical point J1 = {1}. NLP (4.4) was solved in less than 0.1 seconds on a PC with 2 GHz
and 1 GB RAM. The result of the optimization is shown in Figure 8 in the (Da, Sq)-plane.
Figure 8 illustrates that the normal vector constraint ensuring the minimal distance between
the nominal operating point and the manifold of grazing points S(g) = Smax is active at the

optimum. The profit function has a value of φ = 0.17 at Da(0) = 0.99, S
(0)
q = 0.3 kmol m−3

compared to φ = 1 at the unstable optimal operating point. The nearest point on the manifold
of steady states satisfying the bound (5.3), denoted as S(st) = Smax, is located at a greater
distance from the nominal point than the manifold of grazing points S(g). This shows that it
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Figure 8. Optimization of the bioreactor model (5.1). (a) The optimal solution without normal vector
constraints (+) is unstable. At the optimal solution obtained with normal vector constraints (×) the constraint
robustly holds despite disturbances in Da and Sq. (b) Grazing trajectory of critical point nearest to the robust
optimum.

Table 1
Optimal operating point of the fermenter obtained with optimization without normal vector constraints

(unstable) (a), and with an ellipsoidal robustness region (b).

(a) (b)

Da 0.56 0.99
Sq (kmol m−3) 0.3 0.3

x
(0)
1 0.275 0.169

x
(0)
2 0.566 0.891
φ 1.0 0.17

is not sufficient to consider robustness with respect to steady-state constraints in the presence
of fast disturbances. In this case study the stability boundaries are also located at a greater
distance from the nominal point than the manifold of grazing points and do not have to be
considered by additional normal vector constraints. In other cases, however, it might be nec-
essary to take into account simultaneously normal vector constraints with respect to critical
manifolds of grazing points and end-points, and normal vector constraints with respect to
steady-state stability boundaries.

The result of the robust optimization is summarized in Table 1 together with the (unstable)
optimal operating point obtained by the optimization of the objective (5.2) without normal
vector constraints.

5.1.2. Continuous stirred tank reactor with state feedback control. As a second ex-
ample for the robust optimization with respect to grazing points we consider a continuous
stirred tank reactor (CSTR) with the exothermic consecutive reactions A → B → C with B
being the desired product. The CSTR model consists of nonlinear state equations for material
balances of species A and B and energy balances for the reactor and cooling jacket assuming
perfect level control [43]

cAt =
q

V
(cAq − cA) − r1,(5.5)
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cBt =
q

V
− cB + r1 − r2,

Tt =
q

V
(Tq − T ) − ΔH1

ρCp
r1 −

ΔH2

ρCp
r2 +

UA

V ρCp
(Tc − T ),

Tct =
qc
Vc

(Tqc − Tc) −
UA

VcρcCpc
(Tc − T ),

with reaction rates r1 and r2 defined by

r1 = k10 exp

(
− E1

RT

)
c2A, r2 = k20 exp

(
− E2

RT

)
cB.

The feed rates of the reactant q and coolant qc are the manipulated variables; all parameter
values are taken from [43]. A PI controller is considered,

u(t) = u0 + K(x(t) − xsp) + Ki

∫ t

0
(x(τ) − xsp)dτ,

with u = [q, qc]
T , x = [cA, cB, T, Tc]

T , and u0, xsp, K, and Ki as tunable control parameters.
Integral action is used for concentration control of the desired product B and for the reactor
temperature T only, i.e.,

Ki =

(
0 Ki12 0 0
0 0 Ki23 0

)
.

In total there are 10 control parameters K11,K12,K13,K14,K21,K22,K23,K24,Ki12,Ki23.
For simplicity, we assume that measurements for all states are available, such that a state
estimator is not required. Disturbances are modeled by sinusoidal variations of the feed
concentration cAq and feed temperature Tq:

Tq(t) =

{
Tq, t ≤ t0,

Tq + dTq sinωTq(t− t0), t > t0,
(5.6a)

cAq =

{
cAq, t ≤ t0,
cAq + dcAq sinωcAq(t− t0), t > t0.

(5.6b)

Disturbances and uncertainties in the feed stream can arise, e.g., if the reactor is part of
a larger process plant and the reactant stream is the product of a pretreatment step. If
this pretreatment process is not operated at steady state, the resulting feed temperature and
concentration may also vary. The disturbance of the feed temperature is parameterized by
the amplitude dTq and frequency ωTq that are bounded by

dTq ∈ [−ΔdTq,ΔdTq],

ωTq ∈ [ωTq − ΔωTq , ωTq + ΔωTq ],
(5.7)

with

ΔdTq = 10 K, ΔωTq = 2 rad h−1, ωTq = 3 rad h−1.



482 J. GERHARD, W. MARQUARDT, AND M. MÖNNIGMANN

Likewise, the disturbance of the feed concentration is parameterized by the amplitude dCAq

and frequency ωcAq bounded by

dcAq ∈ [−ΔdcAq,ΔdcAq],

ωcAq ∈ [ωcAq − ΔωcAq , ωcAq + ΔωcAq ],
(5.8)

with
ΔdcAq = 0.1 kmol m−3, ΔωcAq = 5 rad h−1, ωcAq = 8 rad h−1.

Here, we have a four-dimensional uncertainty box with α = [dTq, ωTq , dcAq, ωcAq ]. A tight ap-
proximation of the uncertainty box is important as any overestimation will generally lead to
more conservative results or even prevent finding a feasible solution of (4.4). For an increasing
number of uncertain parameters nα the overestimation of the box by the ellipsoidal approxi-
mation used in the first example grows exponentially. For nα = 2 the volume ratio between
a hypersphere with radius

√
nα and a hypercube with side length 2 is approximately 1.6,

whereas for nα = 10 the ratio is almost 250. Tighter approximations of the uncertainty box
can be realized, e.g., by using higher norms for the approximation

(5.9) g̃ :=

nα∑
i=1

(αi − αi)
2j − nα

with j ∈ Z
+. Alternatively, one can use the approximation introduced by Kreisselmeier and

Steinhauser [28]

g̃ :=
1

ρ
ln

(
1

2nα

nα∑
i=1

exp(ρ(αi − αi − 1)) + exp(ρ(−(αi − αi) − 1))

)
.

The approximation of the uncertainty box gets closer for larger values of the parameter ρ.
Here we use the less complicated formulation (5.9) with j = 4.

We now want to find a controller tuning and process design that guarantee that the outlet

concentration of product B stays within specified bounds around the nominal value c
(0)
B despite

the presence of disturbances, i.e.,

0 ≤ −cB + c
(0)
B + 0.15 kmol m−1 := h1,(5.10a)

0 ≤ cB − c
(0)
B + 0.15 kmol m−1 := h2.(5.10b)

For the nominal operating point (0) steady-state constraints 0 = f (0) are employed. Addi-
tional constraints 0 = xsp − x(0) ensure that the controller is not active at the nominal point.
The initial values for the critical points (i, j) with I = {1, 2}, c = g are set to the steady-state

values of the nominal system x
(i,j)
0 = x(0). Normal-vector constraints on critical manifolds of

grazing points defined by the upper (5.10a) and lower concentration limit (5.10b) are used
to guarantee that the outlet concentration of the product cB stays within the bounds despite
disturbances (5.6). We solve NLP (4.4) with respect to the objective function

φ = q0(κAcA − κBc
(0)
B ) + qcκc
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Figure 9. (a) Robustness manifold and critical manifold for upper bound (5.10a) in the plane of the feed
concentration disturbance parameters (dcAq, ωcAq ). The normal vector constraint for the closest point ( ◦) on
the manifold of grazing points is active. (b) Robustness manifold and critical manifold in the plane of the feed
temperature disturbance parameters (dTq, ωTq ). (c) Trajectory of the reactor temperature at the critical point.

Table 2
Results for the optimization of the CSTR (5.5) with normal vector constraints to manifolds of grazing

points. Units of the control parameters: Kij, i = 1, 2, j = 1, 2: m6 kmol−1 h−1; Kij, i = 1, 2, j = 3, 4:
m3 K−1 h−1; Ki12: m6 kmol−1 h−2; Ki23: m3 K−1 h−2.

K11 = −210.71 K12 = −80.06 K13 = −17.97 K14 = −10.54
K21 = −114.16 K22 = −59.05 K23 = −10.31 K24 = −3.97
Ki12 = 21.38 Ki23 = −1.15 q0 = 100 qc0 = 60
cAq = 12 φ = −419.8κA

dc
(1,1)
Aq = 0.12 ω

(1,1)
cAq = 3.8 dT

(1,1)
q = 11.58 ω

(1,1)
Tq

= 9.58

with κA, κB, and κc as cost coefficients of reactant A, product B, and coolant c, respectively,
where κc = 0.05κA, κB = 2κA are chosen for this case study. Degrees of freedom for the
NLP (4.4) are the 10 control parameters K and Ki, the nominal feed rates q0, qc0, limited
to values between 60 and 100 m3 h−1, the nominal feed concentration cAq bounded within

2 and 12 kmol m−3, the nominal steady state c
(0)
A , c

(0)
B , T (0), T

(0)
c , and corresponding set points

of the controller. Each normal vector constraint involves a set of disturbance parameters on
the critical manifold and on the robustness manifold as well as the critical time at which the
grazing point occurs.

At the optimal solution there is one active normal vector constraint corresponding to
the critical manifold of the upper concentration bound (5.10a). Figures 9a and 9b show
the critical manifold corresponding to h1 = 0 and the robustness manifold. The shape of the
critical manifold shows that all disturbance parameters have a strong influence on system (5.5).
The approach is able to automatically identify the worst-case combination of the disturbances
and find an economical optimal design ensuring that the concentration bound holds. The
trajectory of the reactor concentration corresponding to the nearest grazing point of the
upper bound (5.10a) is shown in Figure 9c. The concentration trajectory touches the upper
bound at t(1) = 1.16 h. The aggregated computational time for the solution of NLP (4.4) and
the optimization problems of the initialization routine described in section 4.2 is 18 seconds on
a PC with 2 GHz and 1 GB of RAM. The values of parameters p and disturbance parameters
α at the optimal operating point are summarized in Table 2.
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5.2. Robustness with respect to end-point constraints. Finally we show an application
of the normal vector constraints for manifolds of end-point constraints.2 We consider a cooled
continuous stirred tank reactor (CSTR) with an exothermic first order reaction A → B with
temperature control assuming perfect level control [23]. The CSTR model consists of non-
linear state equations for material and energy balances including reaction kinetics and heat
transfer [51]:

cAt =
q

V
(cAq − cA) − k0 exp

(
− E

RT

)
cA,

Tt =
q

V
(Tq − T ) − ΔHk0

ρCp
exp

(
− E

RT

)
cA +

UA

V ρCp
(Tc − T ).

(5.11)

The temperature of the cooling fluid Tc is the manipulated variable, the reactor temperature
T is the measured and controlled variable, and cA is the concentration of species A in the
reactor. The values of the process parameters are taken from [23]. Control is realized by
means of a linearizing feedback including integral action. The control law reads as [23]

Tc =
− q

V (Tq − T ) + ΔH
ρCp

k0 exp(− E
RT )c̃A + UA

V ρCp
T

UA
V ρCp

+
2
ε (Tsp − T ) + 1

ε2

∫ t
0 (Tsp − T )dτ

UA
V ρCp

.

(5.12)

The control law comprises one tuning parameter ε, which corresponds to the time constant
of the closed-loop dynamics; i.e., the smaller ε is, the faster the dynamics of the closed-loop
system are. If the model used for the controller design and the real plant exactly match,
the controller stabilizes the process for all possible set-point temperatures Tsp. In such a
case, ε can be tuned to arbitrary small values resulting in very fast system dynamics. In
real applications, however, there will always exist a mismatch between the plant and the
model because of disturbances and uncertain parameters. In this case study the measured
concentration c̃A used in the control law may differ from the true concentration cA. We
investigate a set-point change in the reactor temperature from Tsp0 = 370 K to Tsp = 400 K
at t0 = 0. The initial conditions of the nominal case correspond to the steady state at
Tsp0 = 370 K, T0 = 370 K, and cA0 = 0.206 mol l−1. We assume a step disturbance of the feed
temperature

(5.13) Tq(t) =

{
Tq, t ≤ t0,

Tq + dTq, t > t0,

with dTq (K) ∈ [−15, 15]. Further, the initial conditions of the reactor temperature and reactor
concentration are not known exactly and may vary around the nominal values:

T0 ∈ [T0 − ΔT0, T0 + ΔT0], ΔT0 = 10 K,

cA0 ∈ [cA0 − ΔcA0, cA0 + ΔcA0], ΔcA0 = 0.1 mol l−1.

2In [14] an alternative robust optimization method based on a bilevel formulation is applied to a dynamic
optimization problem with an end-point constraint. The close relationship between the bilevel formulation and
the normal vector approach is discussed in this paper, too.
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Figure 10. (a) Robustness and critical manifold for end-point constraint (5.14) in the plane of the uncertain
initial condition T0 and disturbance parameter dTq. The normal vector constraint for the closest point ( ◦) on
the manifold for end-point constraint (5.14) is active. (b) Trajectory of the value of h1 at the critical point
reaches 0 after approximately 2.5 min. (c) Temperature trajectory of the critical point with initial condition

T
(e)
0 = 357.2 K and set-point temperature Tsp = 400 K.

Finally, the measured concentration c̃A used for the control law (5.12) is assumed to be biased
from the true concentration c̃A = cA + dCA with

dCA ∈ [−ΔCA,ΔCA], ΔdCA = 0.005 mol l−1.

We consider again the tighter approximation (5.9) with j = 4. One end-point constraint
is imposed that must hold at final time te despite the disturbance in Tq, the uncertain initial
conditions, and the uncertain measurement:

(5.14) 0 < ISEmax −

√∫ te
0 (T − Tsp)2dt

te(Tsp − Tsp0)2
:= h1.

Constraint (5.14) sets an upper bound ISEmax = 0.2 for the integrated square error (ISE)
between the set-point temperature Tsp and the reactor temperature T . This constraint can
be interpreted as a specification for a desired performance of the closed-loop system that
must be achieved despite disturbances and uncertain initial conditions. The final time is set
to te = 4 min for the end-point constraint. The objective is to minimize the control effort
required to drive the system to the desired temperature Tsp = 400K, here represented by the
integral

φ =
V

q(Tsp − Tsp0)2

∫ te

0
(Tc(t) − Tc(Tsp))

2dt.

The cooling water temperature corresponding to the steady state at the new set-point tem-
perature is Tc(Tsp) = 328.1K.

The results of the optimization are displayed in Figure 10. The projection of the critical
manifold on the (dTq, T0)-plane in Figure 10a shows that the normal-vector constraint to the
end-point constraint h1 is active. The uncertainty of the initial concentration has no influence
on the integral (5.14) as the temperature dependence on the concentration is eliminated by
the linearizing feedback control (5.12). The uncertainty of the concentration measurement
has a large influence as it directly enters the control law (5.12). The transient behavior of
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the value of h1 at the critical point in Figure 10b shows that h1 = 0 is attained before te is
reached. The value stays at h1 = 0 for t > 2.5 min, as the reactor temperature has reached the
new set-point temperature Tsp = 400 K, (cf. Figure 10c). The value of the control parameter
at the optimal solution is ε = 0.262 min and the value of the objective function is φ = 0.332.
The computational time was less than 0.1 seconds for this case study.

6. Conclusions. In the presence of fast disturbances critical points of trajectories of non-
linear systems can be defined. Specifically, we have investigated critical manifolds in the space
of disturbance parameters α corresponding to trajectories with grazing points or trajectories
which exactly fulfill an end-point constraint. These critical manifolds separate the parameter
space into regions with qualitatively different transient system behavior. A manifold of graz-
ing bifurcations separates those trajectories which do not violate an inequality constraint from
those which violate the constraint for some time. A manifold defined for trajectories satisfying
end-point constraints separates those trajectories which do not violate the constraint until a
specified final time is reached from those that cross the constraint before the final time is
reached.

These critical manifolds are used in a constructive manner for the robust design of nonlin-
ear systems by extending a recently presented method for robust optimization. The method
is based on the parametric distance between the uncertainty region of the disturbance param-
eters and the nearest point on the critical manifold. Normal-vector constraints guarantee that
specifications for nonlinear systems are not violated in the presence of disturbances. Previous
work considered critical points of steady states, e.g., Hopf and saddle-node bifurcations. We
have extended this approach from steady-state specifications to state and output constraints
on trajectories of nonlinear systems. Application of the approach to closed-loop systems al-
lows for the integrated treatment of system and control design. The methodology has been
successfully applied to several illustrative case studies from the area of chemical engineering.

Appendix A. Notation. The subscript μ enumerates the first dimension (rows of matri-
ces), ν enumerates the second dimension (columns of matrices), and ρ enumerates the third
dimension of three-dimensional arrays. When an index appears twice in a term it indicates
summation over the index. In particular, we use

(fx)μν =
∂fμ
∂xν

∈ R
nx×nx , (fy)μν =

∂fμ
∂yν

∈ R
nx×ny ,

(fxf)μ =
∂fμ
∂xν

fν ∈ R
nx , (fyyt)μ =

∂fμ
∂yν

∂yν
∂t

∈ R
ny ,

(gx)μν =
∂gμ
∂xν

∈ R
ny×nx , (gy)μν =

∂gμ
∂yν

∈ R
ny×ny ,

(gxxtt)μ =
∂gμ
∂xν

∂2xν
∂t2

∈ R
ny , (gxxff)μ =

∂2gμ
∂xν∂xρ

fνfρ ∈ R
ny ,

(gxyfyt)μ =
∂2gμ

∂xν∂yρ
fν

∂yρ
∂t

∈ R
ny , (gyyytyt)μ =

∂2gμ
∂yν∂yρ

∂yν
∂t

∂yρ
∂t

∈ R
ny ,

(hx)μ =
∂h

∂xμ
∈ R

nx , (hy)μ =
∂h

∂yμ
∈ R

ny ,
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(hzzt) =
∂h

∂zμ

∂zμ
∂t

∈ R, (hzzztzt) =
∂2h

∂zμ∂zν

∂zμ
∂t

∂zν
∂t

∈ R,

(hzztt) =
∂h

∂zμ

∂2zμ
∂t2

∈ R, (hzzztzt) =
∂2h

∂zμ∂zν

∂zμ
∂t

∂zν
∂t

∈ R,

(hzΦα)μ =
∂h

∂zν

∂Φν

∂αμ
∈ R

nα , (hzzztΦα)μ =
∂2h

∂zν∂zρ

∂zν
∂t

∂Φρ

∂αμ
∈ R

nα ,

(FzΦα)μν =
∂Fμ

∂zρ

∂Φρ

∂αν
∈ R

nz×nα , (FzzΦαΦα)μνρ =
∂2Fμ

∂zσ∂zτ

∂Φσ

∂αν

∂Φτ

∂αρ
∈ R

nz×nα×nα ,

(FzαΦα)μνρ =
∂2Fμ

∂zσ∂αρ

∂Φσ

∂αν
∈ R

nz×nα×nα , (FzΦαα)μνρ =
∂Fμ

∂zσ

∂2Φσ

∂αν∂αρ
∈ R

nz×nα×nα .

Appendix B. Augmented and normal vector system with state variables as independent
variables. In this section we present the augmented and normal vector system of the grazing
bifurcation if dynamic and algebraic state variables x and y are considered as independent
variables as described in [16]. In comparison to (2.9) the flow equation 0 = x − Φ(x0, t, p, α)
is included in the augmented system to define the dynamic variables x, and the algebraic
equations 0 = g are included to define the algebraic states y. The complete augmented
system is then given by

(B.1) M (g) =

⎛
⎜⎜⎜⎜⎝

x− Φ(x0, t, p, α)
g(x, y, p, α, t)
h(x, y, p, α, t)
gxf + gyv + gt
hxf + hyv + ht

⎞
⎟⎟⎟⎟⎠ = 0,

with the time derivative of the algebraic equations denoted by v. The nx + 2ny + 2 equations
define the nx+2ny+2 variables x, y, v, t, α1. The gradient matrix B of the augemented system
with respect to the variables x, y, v, t, α is

B =

⎡
⎢⎢⎢⎢⎣

I gTx hTx [gxxf + gxfx + gyxv + gtx]
T [hxxf + hxfx + hyxv + htx]

T

0 gTy hTy [gxyf + gxfy + gyyv + gty]
T [hxyf + hxfy + hyyv + hty]

T

0 0 0 gTy hTy
−fT gTt hTt [gxtf + gxft + gytv + gtt]

T [hxtf + hxft + hytv + htt]
T

−ΦT
α gTα hTα [gxαf + gxfα + gyαv + gtα]T [hxαf + hxfα + hyαv + htα]T

⎤
⎥⎥⎥⎥⎦ .

According to the scheme presented in section 3 for the derivation of the normal vector system,
we are looking for a vector κ ∈ R

nx+2ny+2 which spans the kernel of the first nx + 2ny + 1
rows of the matrix B

Bκ =

[
0
r

]
∈ R

nx+2ny+1+nα ,

with 0 ∈ R
nx+2ny+1 and κT z − 1 = 0 for some z ∈ R

nx+2ny+2 not orthogonal to κ. For the
matrix B in (3.3) in section 3 the choice κ = [1, 0]T was obvious and resulted in a drastic
simplification of the normal vector system. Here, however, there is no κ such that the second
order derivatives disappear in the normal vector system. Instead all entries of κ are also
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unknown variables and have to be included in the normal vector system. The normal vector
system for augmented system (B.1) with z = κ is

G(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x− Φ(x0, t, p, α)
g(x, y, p, α, t)
h(x, y, p, α, t)
gxf + gyv + gt
hxf + hyv + ht

B∗κ
κTκ− 1[

−ΦT
α gTα hTα [gxαf + gxfα + gyαv + gtα]T

[hxαf + hxfα + hyαv + htα]T
]
κ− r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

where B∗ ∈ R
nx+2ny+1×R

nx+2ny+2 is the submatrix of B with the first nx+2ny+1 rows of B.
The 2nx + 4ny +nα + 4 equations define the 2nx + 4ny +nα + 4 variables x, y, v, t, κ, α1, r. In
comparison, the normal vector system (3.8) has only nx+ny+nα+2 equations without second
order derivatives of g. As we use normal vector systems for the formulation of constraints
within a nonlinear program, gradient-based solvers would require third order derivatives of
the algebraic equations if formulation (B.1) were used as the augmented system for a grazing
point.
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Coupling in Arrays of Neural Oscillators∗
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Abstract. We study a system of coupled oscillators with global inhibition and local gap junction coupling.
The coupling functions are derived from a biological system in the limit of weak coupling. With
global inhibition, the system evolves to a clustered state, while with local gap junctions, waves and
synchrony are the only attractors. Increasing gap junction strength from zero destroys the clustered
state leaving a complex pattern. Decreasing gap junction strength from a high value results in the
loss of stability of waves to a Hopf bifurcation and results in periodically modulated waves. We
present analytical results along with numerical simulations.
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1. Introduction. Globally coupled oscillators have been studied extensively [1, 3, 13, 14,
15]. Such systems arise in natural and physical environments such as groups of flashing
fireflies, chirping crickets, coupled multimode lasers, and networks of oscillatory neurons.
The behavior of generally coupled limit cycles is a daunting task; thus, simplifications are
usually necessary. Reducing each oscillator to a single variable, the phase, is the simplest way
to produce an analytically tractable model for systems of coupled oscillators. Through the
method of averaging, when the oscillators are nearly identical and the coupling between them
is sufficiently small, we can reduce a general system to an equation of the form

(1.1) θ′j = ωj + Hj(θ1 − θj , . . . , θN − θj), j = 1, . . . , N.

This is the most common form for the study of patterns of coupled oscillators. Among
the commonly studied classes of patterns are synchrony, in which θj = θk for all k, j, and
clustering, in which the oscillators are divided into m groups; within each group, all oscillators
are synchronous, but there is no synchrony between groups. In structured networks, waves
and many other patterns are possible.

While the analysis for globally coupled identical systems is simpler than that of more
structured networks, there are still many complex behaviors which arise. For example, as
the parameters characterizing the oscillators change, it is possible to go from synchrony to
clustered states and to asynchrony [2, 7, 8, 12].
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In a recent paper, we studied a spatially structured network of coupled neural oscillators in
which there was local synchronizing coupling (mediated by electrical or gap junction coupling)
and long range “desynchronizing” coupling mediated by synaptic inhibition [9]. The motive for
this work is the appearance of traveling waves and synchronous oscillations in the olfactory
lobe of the garden slug [6]. The neurons which generate these patterns are coupled with
both gap junctions and synaptic inhibition. Starting with a synchronous locally coupled
network, we showed that the addition of global inhibitory coupling leads to a symmetry-
breaking bifurcation and ultimately to traveling waves.

In this paper, we consider the same system (local synchronization and long-range de-
synchronization) from a different perspective. Starting with a globally coupled network of
oscillators, we introduce local synchronizing coupling and ask what kinds of behaviors arise.
Our work for the inhibition only case is motivated by Hansel, Mato, and Meunier [8]. In
their paper, they show a heteroclinic connection between unstable two-cluster states. The
coupling functions they consider are different from the ones we used in our model. We derive
the coupling functions via an approximation using the biophysical model. We alter the long
range coupling function by changing the sign of one of the Fourier coefficients. This allows
the globally coupled network to have stable clustered states. We then add nearest neighbor
synchronizing coupling and study the resulting dynamics. Since our main interest lies in pat-
tern formation, we thought it would be a good idea to investigate these stable patterns for
the full model. Local coupling (as opposed to all-to-all) requires that we specify a geometry
of the network; here we consider the simplest case, a one-dimensional ring of oscillators.

In section 2, we describe the model with only all-to-all coupling and provide a stability
analysis for the two-cluster state for our choice of coupling function. In section 3, we add local
gap junctions and arrange the oscillators on a ring. We show that for sufficiently strong gap
junctions, there are stable traveling waves and that as the gap junction coupling decreases,
there is a loss of stability of the traveling waves. In section 4, we start with the clustered
states and numerically analyze the bifurcations of the clustered states. In particular, for a
structured network, the ordering of the oscillators matters and there are many arrangements
for a clustered state. We show that these have different stability behavior when local syn-
chronizing coupling is added and that many new patterns bifurcate. There is a great deal of
multistability in such networks.

2. Model and theory of clustering. Our goal in this paper is to study the behavior of a
network of neural oscillators which are coupled with long-range inhibition (desynchronizing)
and short-range gap junctions (synchronizing). The motive for our work comes from a detailed
biophysical model for wave generation in the olfactory lobe of the garden slug [6]. In [9] we
used the theory of averaging to reduce the biophysical model to a phase model of the form
(1.1). As there are two different types of coupling, it is convenient to write (1.1) as

(2.1)
dθj
dt

= ω + gsyn

N∑
k=1

cjkHsyn(θk − θj) + ggap

N∑
k=1

djkHgap(θk − θj),

where gsyn, ggap are the overall coupling strengths of synaptic inhibition and the gap junction
coupling, cjk, djk are the connectivity matrices, and Hsyn(θ), Hgap(θ) are the coupling func-
tions obtained by averaging the dynamics of the biophysical model. As these are computed
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numerically, we approximate them by the first few terms of their Fourier series:

Hsyn(x) = 35 + 200 cos(x) + 32 cos(2x) − 95 sin(x) + 5 sin(2x),

Hgap(x) = 87 − 50 cos(x) − 37 cos(2x) + 295 sin(x) − 65 sin(2x).

In [9] the actual coefficient of sin 2x in Hsyn(x) is −5. The theory in the next subsection
requires that at least one sine coefficient of Hsyn be positive. The small change in sin 2x results
in a new Hsyn which is nearly indistinguishable from the original but which has a much richer
repertoire in its dynamics. As we will need them in subsequent sections, we observe that
H ′

syn(0) = −85, H ′
syn(π) = 105, H ′

gap(0) = 165, and H ′
gap(π) = −425.

Before continuing, it is useful to clarify what we mean by synchronizing and desynchro-
nizing coupling by considering a pair of identical mutually coupled oscillators:

dθ1

dt
= ω + H(θ2 − θ1),

dθ2

dt
= ω + H(θ1 − θ2).

Letting φ = θ2 − θ1, we see that

dφ

dt
= H(−φ) −H(φ)

so that φ = 0, π are always solutions. The synchronous solution is stable if and only if
H ′(0) > 0, while the antiphase solution, π, is stable if H ′(π) > 0. For our choice of models,
synchrony is stable and antiphase is unstable for gap junctions, while the opposite is true for
the synaptic coupling case. Thus, we say that gap junctions are synchronizing and synaptic
inhibition is desynchronizing.

Clustered solutions are generally found with all-to-all coupling so that in this paper we
assume that cjk = 1/N and thus synaptic inhibition is global. This is the same assumption
made in the previous paper. For gap junction coupling, there are many possible topologies
that we could use. However, our motivation comes from a one-dimensional phenomenon, so
we will arrange the oscillators in a line. To avoid boundary effects, most of the work is done
in a one-dimensional ring of oscillators with nearest neighbor gap junction coupling. Thus,
djk = 1 if k = j ± 1 or j = 1, k = N or j = N , k = 1 and djk = 0 otherwise. In the last
section, we show that our results do not depend crucially on the periodicity of the boundary
condition. However, the analysis in section 2.1 is much easier in this case.

To begin with, we need to study the all-to-all synaptically coupled clustered state. Thus,
we now consider the case when ggap = 0.

2.1. General theory. We start our analysis by revisiting the work in [8]. Consider a
globally coupled network of identical phase oscillators given by the equation

(2.2)
dθj
dt

= ω +
gsyn
N

N∑
k=1

Hsyn(θk − θj) for j = 1, . . . , N.
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Here, as in the rest of the paper, the frequency of individual oscillators is identical. The case
where the oscillators have different intrinsic frequencies has also been studied, but we will not
consider it now.

We are interested in clustered solutions to (2.2). We look at the case where m of the
oscillators have phase θA = Ωt and the remaining N − m have phase θB = Ωt + φ with
φ ∈ [0, 2π]. By letting p = m

N , we can rewrite (2.2) as

θ
′
A = ω + gsyn(pHsyn(0) + (1 − p)Hsyn(θB − θA)),

θ
′
B = ω + gsyn(pHsyn(θA − θB) + (1 − p)Hsyn(0)),

which then becomes

Ω = ω + gsyn(pHsyn(0) + (1 − p)Hsyn(φ)),

Ω = ω + gsyn((1 − p)Hsyn(0) + pHsyn(−φ)).

Subtracting the first equation from the second, we get

(2.3) 0 = gsyn((1 − p)Hsyn(0) + pHsyn(−φ) − pHsyn(0) − (1 − p)Hsyn(φ)).

Now, we can solve for p:

(2.4) p =
Hsyn(0) −Hsyn(φ)

2Hsyn(0) −Hsyn(−φ) −Hsyn(φ)
≡ F (φ).

Note that F (π) = 1/2. Given Hsyn and φ, we can determine the size of the clusters according
to (2.4).

So far, we have established the existence of two-cluster states. One could also look at other
n-cluster states. Thus, we remark that stable clustered states with more than two clusters
will not arise with our particular choice of Hsyn due to the lack of higher order Fourier terms.
We limit the present analysis to two-cluster states and study their stability. To do this, we
look at the linearized system for the two-cluster solution. Letting θj = Ωt+ yj , where the yj ’s
are small perturbations, we get

(2.5)
dyj
dt

=
gsyn
N

N∑
k=1

H
′
syn(θk − θj)(yk − yj) for j = 1, . . . , N,

which can be written as two separate equations:

y
′
j =

gsyn
N

m∑
k=1

H
′
syn(0)(yk − yj) +

gsyn
N

N∑
k=m+1

H
′
(φ)(yk − yj) for j = 1, . . . ,m,

y
′
j =

gsyn
N

m∑
k=1

H
′
(−φ)(yk − yj) +

1

N

N∑
k=m+1

H
′
(0)(yk − yj) for j = m + 1, . . . , N.
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Letting α = H ′
syn(0), β = H ′

syn(φ), γ = H ′
syn(−φ), ξ = −(m − 1)α − (N − m)β, and

ν = −mγ − (N −m− 1)α, we write

A =

⎡
⎢⎢⎢⎣

ξ α · · · α
α ξ · · · α
...

...
. . .

...
α · · · α ξ

⎤
⎥⎥⎥⎦ ,

B = β1m×(N−m),

C = γ1(N−m)×m, and

D =

⎡
⎢⎢⎢⎣

η α · · · α
α η · · · α
...

...
. . .

...
α · · · α η

⎤
⎥⎥⎥⎦ .

We can write (2.5) as

(2.6) y′ = gsynMy,

where y =
[
y1 y2 · · · yN

]T
and M = 1

N

[
A B
C D

]
.

In order to determine the stability of the two-cluster state, we need to find the eigenvalues
of the matrix M . A similar analysis was done in [8]. We state the following theorem.

Theorem 2.1. Let α = H ′
syn(0), β = H ′

syn(φ), and γ = H ′
syn(−φ). The eigenvalues of the

matrix M in (2.6) are

λ1 = −pα− (1 − p)β,

λ2 = −pγ − (1 − p)α,

λ3 = −pγ − (1 − p)β,

λ4 = 0,

where p = m
N . The algebraic multiplicities of λ1, λ2, λ3, and λ4 are m − 1, N − m − 1, 1,

and 1, respectively.

Proof. The zero eigenvalue, λ4, is the eigenvalue corresponding to translation invariance
along the limit cycle. The corresponding eigenvector is found as

v4 =
[

1 1 · · · 1
]T

.

λ1, λ2 correspond to fluctuations within a cluster, whereas λ3 corresponds to fluctuations
between two clusters. The associated eigenvector for λ3 has the form

v3 =
[

1 · · · 1 x · · · x
]T

,
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where x �= 1. We need to satisfy Mv3 = λ3v3,

Mv3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x− 1)(1 − p)βx
...

(x− 1)(1 − p)βx
−(x− 1)pγ

...
−(x− 1)pγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
x
...
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which implies (x− 1)(1− p)βx = λ3 and −(x− 1)pγ = λ3x. We solve for x to get x = −pγ
(1−p)β

and λ3 = −pγ − (1 − p)β.
We next claim that the eigenvector v1 associated with λ1 has the form [ν1,0]T , where ν1

is in the null-space of C and Aν1 = λ1ν1. We write A as

A =

⎡
⎢⎢⎢⎣

ξ α · · · α
α ξ · · · α
...

...
. . .

...
α · · · α ξ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ξ − α 0 · · · 0
0 ξ − α · · · 0
...

...
. . .

...
0 · · · 0 ξ − α

⎤
⎥⎥⎥⎦ +

⎡
⎢⎣ α · · · α

...
. . .

...
α · · · α

⎤
⎥⎦

︸ ︷︷ ︸
Â

.

If λ̂ ∈ σ(Â), then λ̂ + ξ − α ∈ σ(A). 0 is an m − 1-fold eigenvalue for the matrix Â, which
implies that the eigenvalues of A are ξ − α with corresponding eigenvector ν1. Substituting ξ
we get λ1 = −pα− (1 − p)β. λ2 can be found similarly.

An immediate corollary of Theorem 2.1 implies that the eigenvalues for the system given
in (2.6) are 0, gsynλ1, gsynλ2, gsynλ3. For stability of the two-cluster solution, the real parts of
the eigenvalues have to be negative. This translates into the following conditions for stability:

• pα + (1 − p)β > 0,
• pγ + (1 − p)α > 0,
• pγ + (1 − p)β > 0.

2.2. Application. We apply the general results of the previous section to our particular
choice of Hsyn. Figure 1 shows the dependence of p on the phase difference for Hsyn. Since
this is a monotonic function, this implies that for each choice of p ∈ [0, 1] there is a unique
phase, φ.

Next we examine the stability of clusters of different sizes by computing the eigenvalues
using Theorem 2.1. Figure 2 shows the nontrivial eigenvalues as a function of φ, the phase
difference between the two clusters. From the monotonic relationship in Figure 1, we get
a unique value of p for each φ so that this figure translates into the amount of asymmetry
tolerated in the cluster sizes. There is a very narrow window of stable phases centered around
π, which means that the cluster size is very close to 1/2; that is, there are equal numbers
of oscillators in each cluster. From now on, we restrict our attention to equal size clusters,
so p = 1/2. For cluster sizes which deviate slightly from equality, we expect the remaining
results to be similar.

Using Theorem 2.1, we can simplify the conditions for the stability of the two-cluster state
when the clusters are equal since φ = π, and so β = γ and p = 1/2. The stability conditions
we need to satisfy are
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Figure 1. Possible values for p are graphed as the phase difference, φ, varies from 0 to 2π.
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Figure 2. Eigenvalues for the system in (2.6) are computed for all possible values of (p, φ).

1. H ′
syn(0) + H ′

syn(π) > 0,
2. H ′

syn(π) > 0, and
3. H ′

syn(0) < 0.

Note that if the first and third conditions hold, then the second follows automatically. Recall
that Hsyn is supposed to be desynchronizing, which means that H ′

syn(0) < 0 and H ′
syn(π) > 0.

Thus, desynchronizing long-range coupling is necessary for the formation of stable clusters.
Before turning to our specific function Hsyn, we interpret the stability conditions in terms
of the Fourier coefficients of the function Hsyn. Since the conditions are evaluated at the
derivatives of the function at 0, π, only the odd Fourier components come into play. Suppose
that the odd components are an, n = 1, 2, . . . . Then stability requires∑

n>0

nan < 0,

∑
n>0

2na2n > 0.
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In particular, there must be at least one positive even Fourier sine coefficient. For our choice
of Hsyn(θ), H ′

syn(0) = −85 and H ′
syn(π) = 105, so that the three conditions hold and the

two-cluster state is stable. We remark that the small change in the Fourier coefficient from
the one derived from the biophysical model is thus absolutely necessary for the existence of
clustered states.

3. Traveling waves in the presence of gap junctions. We now introduce local gap junc-
tion coupling and put our oscillators in a one-dimensional ring:

(3.1)
dθj
dt

= ω +
gsyn
N

N∑
k=1

Hsyn(θk − θj) + ggap[Hgap(θj+1 − θj) + Hgap(θj−1 − θj)],

where Hgap is the coupling function for the gap junction coupling between nearest neighbors
with coupling strength ggap.

In [9], we looked at a network of coupled oscillators with global inhibitory coupling and
local (not necessarily nearest neighbor) gap junction coupling. We showed that a traveling
wave was a stable solution for all the values of the parameters. In this section, we look at a
similar network where the scope of the gap junction coupling extends only to nearest neighbors
and the inhibitory coupling function is modified as noted in section 2. The coupling function
Hsyn is approximated from its original form by using the most dominant Fourier components.
In order to get stable two-cluster solutions for the all-to-all network, we adjusted one of
the coefficients in Hsyn. Thus, in this section, we examine whether the small change in the
coupling function affects the stability of waves and, if so, what kinds of bifurcations occur. A
single traveling wave solution, θj = Ωt + 2πj

N , satisfies (3.1) when

Ω = ω +
gsyn
N

N∑
l=1

Hsyn(δl) + ggap(Hgap(δ) + Hgap(−δ)),

where δ = 2π
N . Given N , Hsyn, Hgap, gsyn, and ggap, we can determine Ω uniquely. If there

are no cosine components in Hsyn or Hgap, then Ω = ω. To determine stability, we linearize
around the traveling wave. The linearized system is

(3.2)
dyj
dt

=
gsyn
N

N∑
l=1

H ′
syn(δl)(yj+l − yj) + ggap[H

′
gap(δ)(yj+1 − yj) + H ′

gap(−δ)(yj−1 − yj)].

The solutions for (3.2) are of the form yj = eλmteiδmj , where j = 1, . . . , N , m = 0, . . . , N − 1.
Solving for λm gives us

(3.3) λm =
gsyn
N

N∑
l=1

H ′
syn(δl)(eiδml − 1) + ggap[H

′
gap(δ)(e

iδm − 1) + H ′
gap(−δ)(e−iδm − 1)].

To determine the stability, we look at the real parts of λm. For m = 0, we have λ0 = 0, which
corresponds to translation invariance. For m �= 0, we need to use the Fourier series expansions
of H ′

syn and H ′
gap. For δ small, we can get a reasonably good estimate for λm when m is small

as well. The local coupling contributes a term which is approximately
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−ggapH
′
gap(0)δ2m2,

which is negative since H ′
gap(0) > 0 by assumption. Writing

H ′
syn(x) =

∑
n

nan cosnx− bnn sinnx

for fixed m, we have to evaluate

Sm =
1

N

N∑
l=1

∑
n

[nan cos(nδl) − nbn sin(nδl)][(cos δml − 1) + i sin δml].

The outer sum vanishes except when n = m so that

Sm =
1

2
m(am − ibm).

Thus we obtain an approximation for λm:

(3.4) λm ≈ gsyn
2

n(am − ibm) − ggapH
′
gap(0)

4π2m2

N2
.

Once again, the crucial players in the stability of waves are the sine coefficients, am. Recalling
that stable clusters require that a2n > 0 for some n, we see that it is always possible to
destabilize traveling waves. We remark that traveling waves with higher wave numbers, k > 1,
are the same as traveling waves with a wave number k = 1 for a ring of size N/k. For our
choice of Hsyn, a2 > 0 so that the mode m = 2 destroys stability when either gsyn is large
enough or ggap is sufficiently small. The critical gap junction strength below which the wave
is unstable is approximately

(3.5) gTW
gap ≈ am

8π2mH ′
gap(0)

N2gsyn.

Since bm is generally nonzero, the loss of stability generically occurs at a pair of imaginary
eigenvalues implying a Hopf bifurcation should occur as the gap junction coupling decreases
below the critical value. For our model m = 2, a2 = 5, H ′

gap(0) = 165, so for N = 20,

gTW
gap ≈ 0.0768gsyn, which compares well with the exact value 0.0746gsyn obtained from (3.3).

Large networks are less able to support traveling waves when there are clustering instabilities.
Figure 3 shows the critical strength of ggap above which the traveling wave is stable as a
function of the length of the ring of oscillators. For this graph, gsyn = 0.1, so that our
approximation is gTW

gap ≈ 1.91 × 10−5N2.
In addition to traveling waves, an obvious solution is perfect synchrony, in which θj = Ωt

with
Ω = ω + gsynHsyn(0).

(Note that for gap junction coupling, Hgap(0) = 0.) Stability is determined by linearizing
about the synchronous solution; the methods used for traveling waves lead to the following
expression for the eigenvalues:

νm =
gsynH

′
syn(0)

N

N∑
l=1

(eiδml − 1) + 2ggapH
′
gap(0)[cos(mδ) − 1],
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Figure 3. Relation between ggap and N is shown by the blue dots. The red line is the curve that fits the
data with y = cN2 and c = 1.91 × 10−5. gsyn is fixed at 0.1 throughout the computation. A Hopf bifurcation
is observed at the marked ggap values as N = “number of oscillators” changes. The emerging traveling wave is
stable in the region above the curve and unstable below it.

which leads to ν0 = 0 and

νm = −gsynH
′
syn(0) + 2ggapH

′
gap(0)[cos(2πm/N) − 1].

Recall that H ′
syn(0) < 0 and H ′

gap(0) > 0. Thus, the first term is always positive. The second
term is always negative and is least negative when m = 1, so this determines the minimal
value of ggap for stable synchrony:

gSgap =
−H ′

syn(0)

H ′
gap(0)

gsyn
2[1 − cos(2π/N)]

.

For N large, we can rewrite this expression as

(3.6) gSgap ≈
−H ′

syn(0)

H ′
gap(0)

gsyn
4π2

N2

so that, like the traveling wave, the critical coupling strength grows as N2. Unlike the trav-
eling wave, however, instability of synchrony does not depend on the details of the Fourier
coefficients of Hsyn(x); in particular, the ability to form clusters is irrelevant. For our model,
with gsyn = 0.1, we find gSgap ≈ 1.31 × 10−3N2. Note that the eigenvalues are real so that
as ggap falls below the critical value a zero eigenvalue is crossed. By symmetry, a pitchfork
bifurcation will occur. In [9], we computed this branch of solutions by calculating the normal
form. We remark that the traveling wave is “more stable” than synchrony in the sense that
it is able to tolerate smaller gap junction coupling than synchrony is.

4. Numerical results. In section 2, we showed that there were stable two-cluster solutions
for ggap = 0. Since they are asymptotically stable, we expect the two-cluster states to stably
persist for sufficiently small values of ggap by the implicit function theorem. In section 3, we
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Table 1
Table of all possible two-cluster configurations for a network of 10 oscillators in a ring. The values gCgap

indicate the numerical value of the bifurcation parameter ggap. Two-cluster solution becomes unstable for
ggap > gCgap.

Case number Configuration gCgap × 103

Case 1 0000011111 2.759

Case 2 0000101111 1.172

Case 3 0000110111 1.099

Case 4 0000111011 1.099

Case 5 0001011101 0.7612

Case 6 0001011011 0.6654

Case 7 0001101101 0.6656

Case 8 0001101011 0.6300

Case 9 0001110101 0.7551

Case 10 0001110011 1.358

Case 11 0011001011 0.7279

Case 12 0011001101 0.7266

Case 13 0011011001 0.7729

Case 14 0011010101 0.4997

Case 15 0010101101 0.5197

Case 16 0101010101 0.6535

demonstrated that there were stable traveling waves for sufficiently large values of ggap and
that synchrony was also stable with strong enough gap junction coupling. Thus, our goal here
is to use numerical methods to fill in the details as to how the clustered state changes as ggap
increases and how traveling waves and synchrony evolve as ggap decreases.

4.1. Bifurcations from clustered states. Traveling waves and synchrony in a one-di-
mensional ring are unambiguously defined. That is, we can assign phases to each of the
N -oscillators in only one way, up to translation around the ring. However, the arrangement
of a clustered solution on a ring is much more complicated. Suppose that there are 2m
oscillators with m at phase 0 and m at phase π. Then, we can ask how many different
(up to rotations, reflections, and translations) configurations there are. This question is
equivalent to asking how many 2m black and white bead necklaces with m black beads there
are, the answer to which can be found in The Online Encyclopedia of Integer Sequences
(http://www.research.att.com/∼njas/sequences/A005648). For m = 1, . . . , 10, the number of
such sequences is 1, 2, 3, 8, 16, 50, 133, 440, 1387, and 4752, respectively. Thus, for a twenty
oscillator ring, there are 4752 ways to have a two-clustered solution with equal numbers in
each cluster. For ten oscillators, it is a more reasonable number of 16. Thus, to analyze the
evolution of clustered states as ggap increases, it is necessary to compute the bifurcation for
every possible configuration. Table 1 shows the critical values of the gap junction coupling
for each of the 16 configurations in a ring of 10 oscillators when gsyn = 0.1. We use AUTO to
compute the bifurcation diagram starting at a given configuration [4]. For example, starting
with the configuration 0000011111 (Case 1) corresponding to the first 5 oscillators at zero phase
and the next at π, we find that the pattern stably exists for ggap < 2.759 × 10−3. Similarly,
the pattern 0000110111 (Case 3) exists up to ggap = 1.099 × 10−3. Figure 4 shows the two

http://www.research.att.com/~njas/sequences/A005648
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Figure 4. Bifurcation diagram of two different clustered states as ggap increases with gsyn = 0.1. Cluster
0000011111 loses stability at a subcritical pitchfork (red circle on left) while cluster 0000110111 loses stability
at a saddle node (red circle on right). Stable clustered states are in blue.

bifurcation diagrams as ggap increases (stable clustered states are shown in blue). These
patterns have quite different local bifurcation diagrams. The pattern in Case 1 undergoes a
subcritical pitchfork bifurcation which spawns additional unstable branches. The pattern in
Case 3 undergoes a saddle-node bifurcation. Thus, while the local bifurcations are different
and while they happen at different values of ggap, in all cases the clusters are disrupted by
a small (but not infinitesimally small) amount of gap junction coupling. As can be seen in
these two examples, the new branches that arise at the bifurcations do not result in any new
stable solutions, so we have to look elsewhere to find out the behavior beyond the critical
gap junction strength. One trend that we note is that there is a rough correlation between
the minimal strength for disrupting clusters and the number of switches between the 0 and π
phases. This is not a strict rule, as, for example, Case 16, which has the maximal number of
10 switches, is more resistant to disruption than is Case 14, which has 8 switches.

In the analysis of waves and synchrony, the critical coupling strength for stability depended
strongly on N (cf. Figure 3). We can ask the same question for clustered states. The number
of possible cases for clusters is of course rather large, and the possible clustered patterns
vary tremendously. However, one pattern which appears for all even N is the pattern of m
oscillators at 0 followed by m oscillators at π. For this pattern, we have computed the critical
gap junction coupling for N = 10, 20, 40 to be, respectively, 0.002759, 0.003490, 0.003771.
While there are slight differences, there are not the order of magnitude differences that are
observed in the traveling wave case. Another simple pattern common to all networks with
size 2m is the alternating one, where every other oscillator has phase 0 and the remainder
have phase π. For this case, we find that the critical gap junction coupling for N = 10, 20,
40 is, respectively, 6.535, 6.064, 5.975× 10−4. Thus, there is virtually no difference. Using an
eigenvalue perturbation argument, it may be possible to estimate the strength of gap junctions
needed to destabilize the clustered state, but due to the multiplicity of the eigenvalues (see
section 2), we could at best hope to reduce the stability issue to an (N/2 − 1)-dimensional
system. However, we can determine the stability of the clustered state in the presence of gap
junctions when both gap and synaptic coupling are all-to-all:

θ′j = ω +
1

N

N∑
k=1

(gsynHsyn(θk − θj) + ggapHgap(θk − θj)) .
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We can replace Hsyn in Theorem 2.1 with the combined H:

H(x) = gsynHsyn(x) + ggapHgap(x).

This leads to

(4.1) gCgap = −gsyn min

{
H ′

syn(0)

H ′
gap(0)

,
H ′

syn(π)

H ′
gap(π)

,
H ′

syn(0) + H ′
syn(π)

H ′
gap(0) + H ′

gap(π)

}
.

For our model, gCgap = 0.07692 gsyn. This overestimates the values in the table, but it is at
least in the right ballpark and does not depend on N as do waves and synchrony.

4.2. Bifurcations from traveling wave states. As we showed in section 3, as ggap de-
creases, the traveling wave solution loses stability at a Hopf bifurcation, so that we expect to
see oscillations below a critical gap junction strength. Our estimates in this and the previous
sections show that the critical gap junction strength for the break-up of clusters is largely
independent of N but that the loss of stability of the wave depends strongly on N . Thus,
we expect to see qualitative changes in the nature of the bifurcations as N changes. We
start with our smallest example, N = 10. In this and subsequent figures, we plot the so-
lutions relative to oscillator 1. Thus, clusters, synchrony, and traveling waves are all fixed
points; any periodic solutions to the relative phases represent quasi-periodic solutions to the
full equations. Figure 5A superimposes the bifurcation diagram for cluster #1 in Table 1
along with the diagram for the traveling wave. As predicted by the analysis in the previous
section, the traveling wave (green) loses stability at a Hopf bifurcation (red dot). For this
particular model, the bifurcation is supercritical and leads to a branch of periodic solutions
(red). Figure 5B shows that along these branches (labeled B) the waves are periodically mod-
ulated. As ggap decreases, the modulation becomes deeper and the period longer. At a critical
value of ggap, the primary branch of periodic solutions undergoes a pitchfork and two new
periodic solutions arise (magenta). Time series from oscillators 5, 10 (Figure 5C) show that
there are slight differences in the two periodic orbits. As ggap → 0+, these solutions appear
to terminate on an unstable fixed point. Starting with initial data very close to this fixed
point, solutions evolve to cluster #1 in our table. The final state is shown in panel E. The
cluster state (shown in blue in Figure 5A) is bistable with the pure traveling wave as well as
the periodically modulated traveling wave.

Figure 6 shows the bifurcation diagram for N = 20. Like the N = 10 case, the clustered
state (blue) loses stability at roughly the same value of ggap, while the wave (green) loses
stability for a much larger value of ggap as predicted by the theory. Thus, bistability is
restricted to the cluster and the modulated waves (red), in contrast to N = 10, where there is
bistability with respect to the traveling wave as well as to the modulated wave. For N = 20
and, likewise, for N = 40, the branch of modulated waves appears to terminate at a finite value
of ggap on a homoclinic. Initial conditions, near the modulated wave below the critical gap
junction strength seem to be attracted to the cluster solution corresponding to the analogue
of case #1 for N = 10, the “simplest” arrangement of clusters.

We close this section by remarking that, in addition to a single traveling wave, there are
waves which go through multiple cycles. For example, when N = 20, there is a stable double
wave, θj = Ωt + 4πj/20, and these waves go through similar sequences of bifurcations as the
single wave with N = 10.
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Figure 5. (A) Bifurcation diagram for N = 10 oscillators as ggap decreases. Line starting at E (in blue) is
the curve of solutions starting at cluster #1. The green curve through A is the branch of traveling wave solutions.
This loses stability at a Hopf bifurcation leading to a branch of periodic solutions (red). This undergoes a
pitchfork bifurcation spawning a pair of limit cycles (magenta) which extend to ggap close to 0. (B) Sample
solutions along the diagram. Oscillators are arranged across and time increases downward. (C) Trajectories of
θ5,10(t) on the two different branches of periodic solutions. Green and orange represent one solution and red
and blue the other.

4.3. Bifurcations from synchrony. In our previous paper [9] we showed that as the ratio
between the synaptic and gap junction coupling increased, the synchronous state underwent a
bifurcation to a patterned state which with further increases disappeared resulting in traveling
waves. Here, because of a small change in the synaptic coupling function (needed to stabilize
the clustered state), the bifurcations are more complicated. As we showed above, synchrony
is stable for ggap sufficiently large. Due to the symmetry of the ring, it is difficult to use
numerical continuation to follow bifurcations from the synchronous state. However, we can
pick one of the patterned states as a starting point and follow this. Figure 7 shows the
result of such a calculation. Rather than draw the full bifurcation diagram as determined via
numerical continuation, we divide the behavior into two parts. Figure 7A shows our starting
point, a patterned state with ggap = 0.001. Figure 7C shows the behavior of this state as
ggap is decreased. The patterned state (in blue) loses stability at a Hopf bifurcation (HB) and
results in a supercritical branch of periodic solutions (red). These lose stability at a pitchfork
bifurcation. Unlike Figure 5, the pitchfork is subcritical and the new solutions are unstable.
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Figure 6. Bifurcation diagram as ggap varies for a system with 20 oscillators. The two-cluster state (solid
blue curve) becomes unstable at gCgap = 0.003491 at a subcritical pitchfork (thin black lines). Traveling waves
(solid green curve) become unstable through a Hopf bifurcation at gTW

gap = 0.007463. The periodic orbits (solid
red curves) are stable and do not appear to persist to ggap = 0. There is a region where both the two-cluster
state and periodic orbits are stable.

Thus, we start near this bifurcating branch and decrease ggap below the point of instability.
The new solutions settle on a different branch of periodic solutions (magenta), one of which
is shown in Figure 7B. The magenta branch terminates at an infinite period bifurcation (IP)
as ggap decreases and at a torus bifurcation (TR) as ggap increases. There is a small region
between TR and HB where there is bistability between periodic modulated solutions and the
steady patterned solution. That is, patterns like those in Figure 7A, B can stably coexist.
An attempt to track the branch of solutions starting at Figure 7A for increasing ggap led to
extremely complex branching diagrams that were difficult to understand. Thus, for increasing
ggap we took a different tack. We fix ggap and integrate the equations until a steady state is
reached, then we increment ggap again, and so on. The result of this is plotted in Figure 7D;
the phase of each oscillator is shown as ggap ranges from 0.001 to 0.201 in two hundred steps.
The phases all merge to the synchronous solution at ggap ≈ 0.14. Every solution on this
branch looks qualitatively like Figure 7A. A similar picture is obtained with N = 20.

4.4. Pattern selection. Suppose that the gap junctions are sufficiently strong to support
traveling waves and synchrony. A natural question is which of these patterns are selected.
Given that synchrony requires stronger gap junction coupling than traveling waves, we expect
traveling waves are more likely. There are many types of traveling waves: waves can travel in
both the positive and negative directions or there can be higher wave number traveling waves,
e.g., two cycles per ring. In order to get some idea of the basin of attraction, we have set
gsyn = 0.1 and ggap = 0.6 for a ring of 20 oscillators. (Note that synchrony is stable for ggap
larger than about 0.54.) For these values, synchrony and several types of traveling waves are
all stable. We repeated 300 simulations with random initial data and found that 109 of the
simulations or roughly one third of these initial conditions led to synchrony. The remainder
of steady solutions were traveling waves of one type or another. Thus, it appears that waves
are favored over the synchronous solutions but that synchrony still has a reasonably robust
basin of attraction.
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Figure 7. Behavior of the patterned states as ggap varies. (A) Patterned state with ggap = 0.001. (B) Os-
cillatory state with ggap = 0.0005. (C) Starting with the patterned state (blue) shown in (A), ggap is decreased
leading to a Hopf bifurcation (HB) and a branch of periodic solutions (red) which loses stability at a pitchfork
(BP). In addition, there is another branch of periodic solutions (upper and lower magenta curves) that dis-
appears for low values of ggap at an infinite period bifurcation (IP) and at a torus bifurcation (TR) as ggap
increases. Points labeled a, b correspond to solutions in panes A, B, respectively. (D) Increasing ggap beyond
0.001 leads to a cascade of steady states (all oscillator phases are plotted), terminating with the synchronous
solution at gSgap ≈ 0.14.

4.5. Nonperiodic domains. The reader might rightfully ask how much of the behavior
shown in this section is a consequence of the ring structure. To answer this, we can numerically
analyze the bifurcations in a line of cells without periodic boundary conditions. That is, we
replace the condition θ0 = θN with the condition θ0 = θ2 and the condition θN+1 = θ1 with
θN+1 = θN−1. Biologically, the array configuration is more realistic than the periodic domain
considered earlier. Also, in this geometry, the dynamics is remarkably simple; cf. Figure 8.
The synchronous solution is lost when ggap ≈ 1.89 (larger than the value on a periodic domain)
via a pitchfork bifurcation. Two stable branches emerge leading to patterned states. Both of
the states emerging result in monotonic (as a function of oscillator) relative phases—partial
traveling waves. Examples are shown in Figure 8B. As ggap decreases, these come to resemble
traveling waves on the ring and nearly cover the entire range between 0 and 2π. Note that the
two branches correspond to rightward and leftward waves. At roughly the same value of ggap,
the two branches lose stability via a Hopf bifurcation resulting in patterns similar to those in
Figure 5, shown here in Figure 8C. These periodic patterns persist down to ggap ≈ 0.0009,
beyond which we could no longer follow them. The period gets quite large and much time is
spent near clustered solutions. For smaller ggap, only clustered solutions remain.
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Figure 8. (A) Bifurcation for 20 oscillators arranged in a line as ggap decreases. A pair of solutions
bifurcates from synchrony (green arrow) at ggap ≈ 1.89, persists until ggap ≈ 0.008, where it loses stability to a
Hopf bifurcation. The periodic orbits disappear at ggap ≈ 0.0009 leaving clustered states. (B) Relative phases
when ggap = 0.5 (blue arrow). (C) Periodic solution ggap = 0.006 (red arrow).

If one returns to the diagram in Figure 7, we can see that the patterned states bifurcating
from the ring resemble a pair of leftward and rightward moving waves glued together in the
middle. Furthermore, the triangle-like periodic patterns are analogous to patterns formed by
“gluing” together the pair of periodic patterns shown in Figure 8C.

5. Discussion. This paper continues the analysis of networks of oscillators coupled via a
combination of gap junctions and synaptic inhibition. Here, our choice of coupling functions
was motivated by a reduction using averaging of a biophysically based model for oscillations in
the slug brain. We altered one parameter in the synaptic coupling such that a purely synap-
tically coupled network was able to produce clustered (rather than asynchronous) solutions.
Thus, the present work addresses an interesting mathematical as well as biologically relevant
problem: how do clustered states interact with local synchronizing coupling? Surprisingly,
the behavior is considerably more complex than if the long-range synaptic coupling is only
desynchronizing (as shown in [9]). Lewis and Rinzel have studied the interactions between
gap junctions and synaptic inhibition in the case where both types of coupling encourage
synchrony [11]. Similarly, Kopell and Ermentrout showed that gap junctions could prevent
the suppression of oscillators which were coupled by inhibition which also synchronized [10].
Since synchronizing inhibition precludes the existence of clusters (Theorem 2.1 requires that
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H ′
syn(0) < 0, which implies synchrony is unstable), the results of these earlier studies cannot

be applied to our model. Inhibition can be synchronizing or desynchronizing depending on
the details of the model and the time course of the synapses; thus, this work could apply to
systems more general than the slug brain. For example, we have computed the interaction
functions for a recent biophysical model of cortical inhibitory neurons when the synaptic time
course is short (2.5 msec) and the neuron is firing at 40 Hz [5]. Under reasonable physiological
conditions, we compute synaptic interaction functions such that the symmetric two-cluster
state is stable.

Interactions between local synchrony and clustered states are complex. We attempt to
summarize our findings. For large enough gap junctions, synchrony and traveling waves are
always stable, while for sufficiently small gap junctions, clustered states are stable. As gap
junctions decrease, the synchronous solution bifurcates to a stationary patterned state, which
then bifurcates to a modulated state. This quasiperiodic behavior disappears at sufficiently
low gap junction coupling leaving only the clustered state. Conversely, starting with a pat-
terned state, as the gap junctions increase, different patterned states emerge which are neither
waves nor synchrony and result ultimately in synchrony. Traveling waves lose stability as gap
junction coupling decreases, proceeding first to modulated waves and then to clusters. Thus,
there are many regimes of multistability, and the waves and synchronous branches are largely
independent.

We have restricted our attention to two-cluster states which have equal numbers of os-
cillators in each cluster and to networks on a line. It would be interesting to study other
topologies with less symmetric arrays of clustering. Bifurcations starting from ggap large (e.g.,
from synchrony or waves) are independent of the size of clusters and from our observations
tend to terminate on simple symmetric clusters in which the oscillators are mainly segregated
into a small number of groups. Thus, asymmetry would be expected only for very small gap
junctions. Other networks, such as two-dimensional arrays, remain to be studied; these would
be more relevant in cortical networks as opposed to the slug brain, which is effectively a one-
dimensional network. One other possible extension of our work is to consider more complex
coupling functions. This will introduce n-cluster solutions with n ≥ 2. This study might
be motivated by experimental and theoretical explanations of clustered solutions and their
possible function.
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Abstract. In this paper we introduce a computation algorithm to trace car paths on road networks, whose load
evolution is modeled by conservation laws. This algorithm is composed of two parts: computation
of solutions to conservation equations on each road and localization of car position resulting by
interactions with waves produced on roads. Some applications and examples to describe the behavior
of a driver traveling in a road network are shown. Moreover, a convergence result for wave front
tracking approximate solutions, with BV initial data on a single road, is established.
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1. Introduction. Consider the Lighthill–Whitham and Richards traffic flow model [18, 19]:

(1.1)

{
∂tρ + ∂xf(ρ) = 0,
ρ(0, x) = ρ̄(x),

where ρ = ρ(t, x) is the car density, with ρ ∈ [0, ρmax], (t, x) ∈ R
+ ×R, and ρ̄ a suitable initial

datum. The flux f(ρ), assumed to be strictly concave, can be written as f(ρ) = ρv, where
the average velocity of cars v is assumed to be a smooth strictly decreasing function of the
density ρ.

Suppose that a driver travels along a road, whose load is modeled by (1.1), being influenced
by traffic along the road but without influencing it significantly. Then, the driver’s position
x = x(t) can be obtained by solving the following Cauchy problem:

(1.2)

{
ẋ = v(ρ(t, x)),
x(t̄) = x̄,

with x̄ the position at initial time t̄ > 0. Notice that ρ is, in general, a discontinuous function.
We look for numerical methods to find solutions to the problem (1.1)–(1.2), which was recently
studied from a theoretical point of view by Colombo and Marson in [6, 7]. Note that the speed
of the driver v in (1.2) need not be identical to the overall mean traffic speed in the flow in
(1.1). Therefore, the assumptions could be significantly relaxed and generalized as in [6].

Fluid-dynamic models can describe macroscopic phenomena as shock formation and prop-
agation. Since they can develop discontinuities in finite time even starting from smooth
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initial data, the study of the analytical and numerical aspects is fundamental. In the papers
[4, 5, 8, 13, 14], some models for flows on networks based on the conservation law formulation
(1.1) were proposed, and existence of solutions to Cauchy problems was proved. In partic-
ular, in [5] some rules to uniquely solve Riemann problems at junctions, where interactions
between roads in the network occur, were introduced. In [3] some numerical approxima-
tions of the traffic models described in [4, 5] were provided. Moreover, a simulation algo-
rithm using the Godunov scheme with boundary conditions at junctions was implemented
and tested.

Here we present a simulation algorithm to trace the trajectory of a car traveling in a road
network. The approximation procedure is composed of the following two parts:

• the solutions to (1.1) on each road of the network are computed by Wave Front Track-
ing (WFT) [1, 15] or by the Godunov scheme [10, 17];

• the problem (1.2) is solved by tracing car position through a procedure which takes into
consideration interactions between the car trajectory and the (shock or rarefaction)
waves on each road.

Focusing on bounded variation data, we establish a convergence result for the approximate
solution on a single road, obtained by WFT technique, toward the solution of (1.1)–(1.2).
While theoretical approaches do not provide a convergence rate (see, for instance, [6]), we are
able to give an explicit linear convergence rate expressed in terms of total variation of initial
datum of density, namely, TV (ρ̄); see Theorem 4.4, formula (4.15).

Then we apply the algorithm to measure the efficiency of a traffic circle. Simulations are
run to test how the total travel time of a driver is influenced by the right of way parameters.
It is shown, as intuition may suggest, that the best choice corresponds to traffic inside the
circle having priority with respect to incoming traffic. In the opposite situation, the circle
may even come to a complete stop.

The case of car accidents on highways is also considered. We can give accurate estimates
of the traveling times, assuming that we know the accident removal time. Such information
is particularly interesting since static estimates are of low quality.

The paper is organized as follows. Section 2 is devoted to the description of the problem.
The approximation algorithm is described in section 3, and in section 4 theoretical results of
convergence for WFT are presented. In section 5 we propose an application of the approxi-
mation algorithm to determine the trajectory of a car moving into a portion of urban network
represented by a traffic circle and into a single road when a car accident occurs. Related
animations are reported on the web page [2].

2. Background. To construct solutions to Cauchy problems like (1.1) it is important to
solve Riemann problems, which are Cauchy problems with initial data of Heaviside type. If f
is convex or concave, then there exist centered solutions (i.e., constant along rays x

t ) consisting
of a single wave, either a shock or a rarefaction. For instance, if f is concave and the initial
datum is

(2.1) ρ̄(x) =

{
ρl, x < 0,
ρr, x > 0,

with ρl and ρr fixed constants, then the solution is a shock (if ρl ≤ ρr),
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(2.2) ρ(t, x) =

{
ρl if x ≤ f(ρr)−f(ρl)

ρr−ρl
t,

ρr if x > f(ρr)−f(ρl)
ρr−ρl

t,

or a rarefaction (if ρl > ρr),

(2.3) ρ(t, x) =

⎧⎨
⎩

ρl if x ≤ f ′(ρl)t,
(f ′)−1

(
x
t

)
, f ′(ρl)t ≤ x ≤ f ′(ρr)t,

ρr if x > f ′(ρr)t.

For (1.1), the velocity and the flux function are required to satisfy the following assumptions:
(H) v′(ρ) < 0 and f is smooth and strictly concave.

A road network is given by a finite number of roads modeled by intervals [ai, bi], i = 1, . . . , N ,
that meet at some junctions. We call the Riemann problem for a road network a Cauchy
problem with constant initial datum on each road. For road endpoints not linked to any
junction, boundary data are required and the corresponding boundary problem is solved.

In treating networks, the main difficulty is the fact that the system at a junction is
underdetermined, even imposing the conservation of cars. The latter can be expressed by the
Rankine–Hugoniot condition at the junction

n∑
i=1

f(ρi(t, bi)) =

n+m∑
j=n+1

f(ρj(t, aj)),

where ρi, i = 1, . . . , n, and ρj , j = n + 1, . . . , n + m, are the car densities, respectively, on
incoming and outgoing roads. To uniquely solve Riemann problems at junctions, as in [5], we
make the following assumptions:

(A) there are some fixed coefficients, which depend on drivers preferences, expressing the
distribution of traffic from incoming to outgoing roads;

(B) respecting (A), drivers behave in order to maximize the flow through junctions.
To deal with rule (A) we fix a matrix, called the traffic distribution matrix,

A = {αji}j=n+1,...,n+m, i=1,...,n ∈ Rm×n , with 0 < αji < 1,

n+m∑
j=n+1

αji = 1,

for i = 1, . . . , n and j = n + 1, . . . , n + m, where αji represents the percentage of drivers
arriving from the ith incoming road who take the jth outgoing road. In [14] an approach
based only on the maximization of a function, e.g., flux, was proposed.

In [5] the existence of solutions to Cauchy problems respecting rules (A) and (B) was
proved. In the case m < n it is necessary to introduce a further rule; see [4]. If, for example,
m = 1, n = 2, we fix a right of way parameter q ∈ ]0, 1[ and assume the following rule:

(C) Assume that not all cars can enter the outgoing road and C is the quantity that can
do so. Then qC cars come from first incoming road and (1−q)C cars from the second.

The rule (C) allows us to uniquely solve Riemann problems.
Let us now briefly describe how solutions to Riemann problems are computed; for the

details the reader is referred to [5]. We look for solutions to problem (1.1) with a single
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wave on each road. Rules (A)–(B) give rise to a linear programming problem. In particular,
rule (B) consists in the maximization of a linear functional on a convex region determined by
rule (A). More precisely, initial data of roads linked on the right (incoming roads) or on the
left (outgoing roads) and constraints on the sign of wave speed determine the region where
incoming fluxes are maximized.

Fix constant initial data ρi,0 on each incoming road and ρj,0 on each outgoing road. The
densities of cars on the incoming roads are indicated by ρi(t, x) : R

+×Ii → [0, 1], i ∈ {1, . . . , n},
and on the outgoing roads by ρj(t, x) : R

+ × Ij → [0, 1], j ∈ {1, . . . ,m}. Let τ : [0, 1] �→ [0, 1]
be the continuous map such that

f(τ(ρ)) = f(ρ),

and τ(ρ) �= ρ for each ρ �= σ. We define the densities ρ̂i, ρ̂j (and the corresponding fluxes
f(ρ̂i) = γ̂i, f(ρ̂j) = γ̂j) as the new states at the junction. The unique admissible weak solution
at a junction is given by the solution to the Riemann problem with data (ρi,0, ρ̂i) for incoming
roads and (ρ̂j , ρj,0) for outgoing roads. For instance, for incoming roads with ρi,0 ≤ ρ̂i, the
solution (centered in bi) is a shock, and, for a sufficiently small time, can be expressed as

(2.4) ρi(t, x) =

{
ρi,0 if x ≤ bi +

f(ρ̂i)−f(ρi,0)
ρ̂i−ρi,0

t,

ρ̂i otherwise,

and the velocity is given by λ =
f(ρ̂i)−f(ρi,0)

ρ̂i−ρi,0
(namely, the Rankine–Hugoniot relation), or, if

ρi,0 > ρ̂i, a rarefaction that, for a sufficiently small time, reads as

(2.5) ρi(t, x) =

⎧⎨
⎩

ρi,0 if x ≤ bi + f ′(ρi,0)t,
(f ′)−1

(
x
t

)
, bi + f ′(ρi,0)t < x < bi + f ′(ρ̂i)t,

ρ̂i if x ≥ bi + f ′(ρ̂i)t.

Analogously, the waves produced by the solutions to Riemann problems for the outgoing roads
are centered in the left endpoint ai.

Since we look for waves emerging out of junctions, admissible solutions are obtained by
solving Riemann problems by waves of negative speed on incoming roads and by waves of
positive speed on outgoing roads, as indicated by conditions (2.6)–(2.7):

(2.6) ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1,

and

(2.7) ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1.

The new states at junctions, namely, ρ̂i on incoming roads and ρ̂j on outgoing roads, are
uniquely obtained by inverting the relations

(2.8) f(ρ̂i) = γ̂i, f(ρ̂j) = γ̂j

on the sets given by (2.6) and (2.7).
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Due to the rule (A),

γ̂j
.
=

n∑
i=1

αjiγ̂i, j = n + 1, . . . , n + m,

it suffices to determine the incoming fluxes γ̂i, which solve the following LP problem: Define

Ωi : = [0, γmax
i (ρi,0)] , i = 1, . . . , n,

Ωj : =
[
0, γmax

j (ρj,0)
]
, j = n + 1, . . . , n + m,(2.9)

Ω : =
{
(γ1, . . . , γn) ∈ Ω1 × · · · × Ωn | A · (γ1, . . . , γn)T ∈ Ωn+1 × · · · × Ωn+m

}
.

The set Ω is compact, convex, and not empty. Then, γ̂ ∈ Ω is the solution to

(2.10) max
γ∈Ω

γ · 1,

where 1 = (1, . . . , 1) ∈ R
n.

For definiteness, the flux function is chosen to be the Greenshields one (see [12]):

(2.11) f(ρ) = vmax ρ

(
1 − ρ

ρmax

)
.

We set for simplicity ρmax = 1 = vmax, so that the velocity is v = 1 − ρ and the flux
f = ρ(1 − ρ). In particular, f(0) = 0 = f(1) and f has a unique maximum in σ = 1/2.

3. Approximation schemes. In this section we describe the simulation algorithm, which
is composed of the following two steps:
Step 1: The density values satisfying (1.1) are computed on each road solving Riemann prob-

lems. The numerical scheme can be indifferently WFT or Godunov scheme endowed
with boundary conditions at junctions.

Step 2: The driver’s position is determined solving problem (1.2) by means of an algorithm
which, given the densities obtained at the previous step by WFT or the Godunov
scheme, determine the car position on the network.

The choice of WFT is due to the possibility of obtaining theoretical results. On the other
side, the Godunov scheme is easy to implement and gives good insight into vehicular traffic
problems; see [9, 16]. Also, both schemes are based on the solution to Riemann problems,
thus permitting a convenient treatment of the car trajectory approximation.

3.1. The Wave Front Tracking algorithm (WFT). Here we recall briefly the technique
of Wave Front Tracking; for a detailed description see [1, 9].

The WFT is a semidiscrete scheme which can be summarized by the following steps:
• approximate initial datum ρ̄ = (ρ̄1, . . . , ρ̄N ) by piecewise constant functions ρ̄ν ;
• construct solutions to Riemann problems of ρ̄ν and approximate rarefactions by a set

of small shocks;
• piece approximate solutions to Riemann problems together to get a solution for t small;
• prolong waves up to first interaction time. Then one gets a new Riemann problem,

solves it approximately, and goes on up to the next interaction time.
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Next we detail the construction of WFT approximate solutions. Given a general initial datum
ρ̄, we approximate it by a sequence of piecewise constant functions ρ̄ν and we construct the
corresponding approximate solutions. If they converge in L1

loc, then the limit is a weak entropy
solution on each road; see [1] for the proof.

3.1.1. Step 1: Numerical algorithm for (1.1). Let ρ̄ = (ρ̄1, . . . , ρ̄N ) be a map defined on
the road network, ρ̄i : Ii → R, i = 1, . . . , N . It is possible to choose a sequence of piecewise
constant functions ρ̄ν such that

Tot.Var.{ρ̄ν} ≤ Tot.Var.{ρ̄},(3.1)

|ρ̄ν |L∞ ≤ |ρ̄|L∞ ,(3.2)

|ρ̄ν − ρ̄|L1 <
1

ν
.(3.3)

By (3.1), ρ̄ν has a finite number of discontinuities, say, yν1 < · · · < yνK . We approximately
solve the Riemann problem generated by the jump (ρ̄ν(y

ν
k−), ρ̄ν(y

ν
k+)) for each k = 1, . . . ,K

using piecewise constant functions of the type ϕ
(x−yνk

t

)
, where ϕ : R → R. In particular, if the

solution to the Riemann problem generated by (ρ̄ν(y
ν
k−), ρ̄ν(y

ν
k+)) is a shock, then ϕ

(x−yνk
t

)
is the exact solution. On the contrary, if a rarefaction wave appears, then we split it into a
centered rarefaction fan formed by a sequence of jumps of size at most 1/ν, traveling with the
characteristic speed of the left state.

Proceeding in this way, we are able to construct an approximate solution ρν(t, x) until a
time t1, where either two wave fronts interact together or a wave interacts with a junction.
When a wave interacts with another one, we simply solve the new Riemann problem; instead,
when a wave reaches a junction, we solve the corresponding Riemann problem at the junction.

We always split rarefaction waves, inserting the value σ (if it is in the range of the rarefac-
tion). Moreover, we let any rarefaction shock with endpoint σ have velocity zero. In order
to prove existence of a wave front tracking approximate solution for every t ∈ [0, T ], where T
may be also +∞, we need to estimate

1. the number of waves; and
2. the number of interactions between waves.

We call the obtained function a wave front tracking approximate solution.

Fix ν ∈ N and t > 0. We let K(ν, t) be the time dependent set of discontinuities and for

every k ∈ K(ν, t) we let ρν,k− (t), ρν,k+ (t) be, respectively, the left and the right states of the
discontinuity. In other words,

ρν,k− (t) = ρν(t, y
ν
k−),

ρν,k+ (t) = ρν(t, y
ν
k+),

where yνk is the position of the kth discontinuity at time t in ρν . We also indicate by λk the
velocity of the kth discontinuity. For simplicity from now on we may eventually drop the
index ν.

If we get BV estimates on the WFT approximate solutions, we can pass to the limit,
obtaining a weak entropy solution.



516 GABRIELLA BRETTI AND BENEDETTO PICCOLI

For a single conservation law on R, the number of waves decreases; thus the number of
interactions is bounded by the number of waves, and the total variation diminishes. For
networks the situation is more complex. In particular, the number of waves may increase for
interactions of waves at junctions. Still the necessary estimates can be carried out as described
in [9].

3.1.2. Step 2: Car path. For every ν ∈ N, we call xν(t) the position of the car at time t
if the load is given by the approximate solution ρν . Then

(3.4) ẋν(t) = v(ρν(t, xν(t))).

In the following lemma we show that at interaction times with waves, the velocity of the car
is greater than that of the wave in front of it.

Lemma 3.1. If xν(t) ∈ (yνk , y
ν
k+1), then

(3.5) ẋν(t) = v(ρν,k+ (t)) > λk+1(t) =
f(ρν,k+1

+ (t)) − f(ρν,k+1
− (t))

ρν,k+1
+ (t) − ρν,k+1

− (t)
.

Proof. Using the Rankine–Hugoniot relation we want to prove that

f(ρν,k+1
+ (t)) − f(ρν,k+1

− (t))

ρν,k+1
+ (t) − ρν,k+1

− (t)
=

v(ρν,k+1
+ (t))ρν,k+1

+ (t) − v(ρν,k+1
− (t))ρν,k+1

− (t)

ρν,k+1
+ (t) − ρν,k+1

− (t)

< v(ρν,k+1
− (t)).

If ρν,k+1
+ (t) > ρν,k+1

− (t), then (3.5) is equivalent to

v(ρν,k+1
+ (t))ρν,k+1

+ (t) − v(ρν,k+1
− (t))ρν,k+1

− (t) < v(ρν,k+1
− (t))ρν,k+1

+ (t) − v(ρν,k+1
− (t))ρν,k+1

− (t),

i.e., to

v(ρν,k+1
+ (t)) < v(ρν,k+1

− (t)).

By the hypothesis (H), v is a strictly decreasing function; hence the last inequality is verified.

On the other hand, if ρν,k+1
+ (t) < ρν,k+1

− (t), then we obtain the inequality v(ρν,k+1
+ (t)) >

v(ρν,k+1
− (t)), which is again verified due to the decreasing behavior of v.

Therefore, xν(t) interacts with the waves located at yνk in increasing order.

A numerical algorithm is readily obtained by setting the following:

• If xν(t) ∈ (yνk , y
ν
k+1), then ẋν(t) = v(ρν,k+ (t)). In other words, the velocity is constant

as long as no interaction with waves occurs.
• If xν(t) interacts with the kth wave of ρν , then the velocity changes from v(ρν,k−1

+ (t)) =

v(ρν,k− (t)) to v(ρν,k+ (t)).

3.2. Godunov scheme on a road network. Now, in order to describe the Godunov scheme
we need to introduce a numerical grid with the following notation:
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• Δx is the space grid size on each road Ii;
• Δt is the time grid size on the time interval [0, T ];
• (tl, xm) = (lΔt,mΔx), for l = 0, 1, . . . , L and m = 0, 1, . . . ,M , are the grid points,

with L and M , respectively, the number of time and space nodes of the grid.

For a function v defined on the grid we write vlm = v(tl, xm). Notice that for our simulations
we assume to have a constant space increment since all intervals Ii are equal, but, in general,
Δx may vary depending on the length of each road.

3.2.1. Step 1: Numerical algorithm for (1.1). The Godunov scheme is based on the local
resolution to Riemann problems and it proceeds as follows; for further details see [11, 10].

Piecewise constant approximations of the initial data are used as the initial data of Rie-
mann problems. Waves in two neighbor cells do not interact before time Δt under the
CFL condition Δt ≤ 1

2vmax
Δx, which, setting vmax = 1, reads as Δt ≤ 1

2Δx. It is then
possible to define a unique solution in the strip (tl, tl+1) × R by piecing the solutions ob-
tained in each cell together. The exact solution is projected on a piecewise constant function
vl+1
m = 1

Δx

∫ xm+1

xm
vΔ(x, tl+1)dx; then the mean is obtained by the Gauss–Green formula, and

this procedure is repeated recursively. The Godunov scheme can be expressed in the conser-
vative form as

(3.6) vl+1
m = vlm− Δt

Δx

(
gG(vlm, vlm+1)−gG(vlm−1, v

l
m)

)
, l = 0, 1, . . . , L−1, m = 0, 1, . . . ,M,

with gG(u, v) numerical flux. Boundary conditions of the scheme are imposed for any incoming
road not linked on the left and for any outgoing road not linked on the right.

Conditions at a junction. For roads connected at the right endpoint, the interaction at a
junction is taken into account as follows:

vl+1
M = vlM − Δt

Δx

(
γ̂i − gG(vlM−1, v

l
M )

)
,

while for roads connected at the left endpoint we have

vl+1
0 = vl0 −

Δt

Δx

(
gG(vl0, v

l
1) − γ̂j

)
,

where γ̂i, γ̂j are the maximized fluxes, respectively, on incoming and outgoing roads, computed
solving the linear programming problem (2.10).

3.2.2. Step 2: Car path. Let us consider now a single driver moving on a road network.
We develop a numerical scheme to describe car trajectory on each road composing the network.
A road is parametrized as an interval and, according to the discretization previously defined,
is divided into subintervals or cells of length Δx.

At each time tl, we determine the position xl of the driver by studying interactions between
the car trajectory and the density waves within a fixed cell of the numerical grid Cml

=
[(ml − 1)Δx,mj Δx[ . We distinguish the following two cases:

Case 1. xl ∈ [(ml − 1)Δx, (ml − 1
2)Δx[ .

Case 2. xl ∈ [(ml − 1
2)Δx,ml Δx[ .
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Figure 1. Interaction with shock.

In order to describe the car trajectory, we compute the new position xl+1 and possibly
update the cell index ml+1. The approximate value of the density on the numerical grid is
denoted by ρlm = ρ(tl, xm).

Let us now detail the algorithm: for notational convenience we drop the index l from m.

3.2.3. Case 1. Two cases are distinguished:

(a) the wave starting from the space node (m− 1
2)Δx is a shock;

(b) the wave starting from the space node (m− 1
2)Δx is a rarefaction.

Let us first study case (a). The velocity of the wave, starting from the point (m− 1
2)Δx

at time tl, is given by

λm =
f(ρlm) − f(ρlm−1)

ρlm − ρlm−1

.

Then the car and the wave interact at the point (t̄, x̄) given by

t̄ =

(
m− 1

2

)
Δx− xl

v(ρlm−1) − λm
,

x̄ = xl + v(ρlm−1)t̄.

(3.7)

We have to further consider the following cases:

(i) t̄ ≥ Δt, which means no interaction on the time interval [tl, tl+1]. Then we have

xl+1 = xl + v(ρlm−1)Δt.

(ii) t̄ < Δt. Then, after the interaction (see Figure 1), the new position of the car is

xl+1 = x̄ + (Δt− t̄)v(ρlm).

Let us now turn to case (b). Recalling that for the flux function considered we have
v(ρ(t, x)) = 1−ρ, the driver’s position is obtained by solving the ordinary differential equation
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Figure 2. Interaction with rarefaction.

(3.8) ẋ =

⎧⎪⎪⎨
⎪⎪⎩

1 − ρlm if x ≤ (m− 1
2)Δx + f ′(ρlm)t,

1 −
(

1
2 − x−(m− 1

2
)Δx

2 (t−tl)

)
if f ′(ρlm)t ≤ x− (m− 1

2)Δx ≤ f ′(ρlm+1)t,

1 − ρlm+1 if x > (m− 1
2)Δx + f ′(ρlm+1)t.

The velocity of the wave, starting from the point (m− 1
2)Δx at time tl, is given by

λm = f ′(ρlm).

The first interaction point with the rarefaction wave is again expressed as in (3.7).
Then, the solution to (3.8) is

(3.9) x(t) =

(
m− 1

2

)
Δx + (t− tl) −

√
t− tl

(
t̄− tl + (m− 1

2)Δx− x̄√
t̄− tl

)
.

Now, let ¯̄t be the time coordinate of the final intersection point between the rarefaction wave
and the car trajectory; see Figure 2. Then

x(¯̄t) −
(
m− 1

2

)
Δx

¯̄t
= f ′(ρlm),

with x(t) given by (3.9).
Again we distinguish two possible cases:
Case (a) t̄ ≥ Δt, i.e., no interaction between the car and the rarefaction wave occur. Since

the car travels at constant speed, the new position is obtained by

xl+1 = xl + v(ρlm−1)Δt.

Case (b) t̄ < Δt. For case (b), we need to further distinguish the following:
Case (b1) ¯̄t ≥ Δt. Then the new position is

xl+1 = x(Δt),
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with x(t) given by (3.9).
Case (b2) ¯̄t < Δt. Then

xl+1 = x(¯̄t) + (Δt− ¯̄t)v(ρlm),

with x(t) given by (3.9).
Since the trajectory remains inside the cell Cml

even after interactions, in all subcases of
case 1 the updated cell index is

ml+1 = ml.

3.2.4. Case 2. Two cases are distinguished:
(a) The wave starting from the space node (m + 1

2)Δx is a shock.

(b) The wave starting from the space node (m + 1
2)Δx is a rarefaction.

We first consider case (a). The velocity of the wave, starting from the point (m + 1
2)Δx

at time tl, is given by

λm =
f(ρlm+1) − f(ρlm)

ρlm+1 − ρlm
.

The interaction point (t̄, x̄) of the wave with the car is given by

t̄ =

(
m + 1

2

)
Δx− xl

v(ρlm+1) − λm
,

x̄ = xl + v(ρlm)t̄.

(3.10)

As before, we have two different cases:
(i) t̄ ≥ Δt, which means no interaction on the time interval [tl, tl+1]. Then we have

xl+1 = xl + v(ρlm)Δt.

(ii) t̄ < Δt. Then, after the interaction, the new position of the car is

xl+1 = x̄ + (Δt− t̄)v(ρlm+1).

Let us now turn to case (b). We have the same equation as in (3.8) with (m − 1
2)Δx

replaced by (m + 1
2)Δx and f ′(ρlm) by f ′(ρlm+1). The velocity of the wave, starting from the

point (m + 1
2)Δx at time tl, is given by

λm = f ′(ρlm+1).

The first interaction point with the rarefaction wave is again expressed as in (3.10).
Then, the car position after t̄ and before exiting the rarefaction is given by

(3.11) x(t) =

(
m +

1

2

)
Δx + (t− tl) −

√
t− tl

(
t̄− tl + (m + 1

2)Δx− x̄√
t̄− tl

)
.

Now, the final interaction time ¯̄t of the car with the rarefaction solves

x(¯̄t) −
(
m + 1

2

)
Δx

¯̄t
= f ′(ρlm+1),
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with x(t) given by (3.11).

The distinction in subcases is as before:

Case (a) t̄ ≥ Δt, i.e., no interaction between the car and the rarefaction wave occurs.
Since the car travels at constant speed, the new position is obtained by

xl+1 = xl + v(ρlm)Δt.

Case (b) t̄ < Δt.

Case (b1) ¯̄t ≥ Δt. Then the new position is

xl+1 = x(Δt),

with x(t) given by (3.11).

Case (b2) ¯̄t < Δt. Then

xl+1 = x(¯̄t) + (Δt− ¯̄t)v(ρlm+1),

with x(t) given by (3.11).

Finally, the new cell index is determined as follows. If xl+1 < mΔx, then ml+1 = ml;
otherwise ml+1 = ml + 1.

4. Convergence of car trajectory. This section is devoted to the analysis of the conver-
gence of the car trajectory xν in case of the WFT algorithm. We consider the case of a single
road [a, b].

Our point of view to estimate the car position as a function of ν is the following. We think
of ρν+1 as ρν with shifts applied to the initial position of waves. This can be done by fixing an
approximation procedure, which is simply based on sampling at points of a grid with mesh size
2−ν . Then the position of xν+1 is also thought of as the position of xν plus a shift. The latter
changes only at interactions with waves of ρν and ρν+1. Thus finally the problem reduces to
estimate the increase of the shifts (both of waves and car position) at every interaction.

4.1. Wave and car shifts. Assume we have a BV initial datum ρ̄(x). Then we define ρ̄ν
to be the sequence approximating ρ̄ given by

(4.1) ρ̄ν(x) = ρ̄
(
2ν

[ x

2ν

])
, ν ∈ N.

Then it is easy to notice that every wave of ρν+1 corresponds to a wave of ρν with a shift
ξ of at most 2−(ν+1); see Figure 3.

Call ρν(t, x) the WFT solution for initial datum ρ̄ν . Then it is possible to determine the
evolution of shifts of waves ξνk (t), k ∈ K(ν, t), using the following lemma, proved in [9].

Lemma 4.1. Consider two waves with speeds λ1 and λ2, respectively, that interact together
producing a wave with speed λ3. If the first wave is shifted by ξ1 and the second wave by ξ2,
then the shift of the resulting wave is given by

(4.2) ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2.
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j2−ν 2−(ν+1) (j + 1)2−ν

Δρ

ρ̄

ρ̄νρ̄ν+1

Figure 3. Shift of discontinuities at time 0.

Moreover, we have

(4.3) Δρ3ξ3 = Δρ1ξ1 + Δρ2ξ2,

where Δρi are the signed strengths of the corresponding waves.
Lemma 4.1 permits us to determine the evolution of shifts of waves. Moreover, even if the

shift sizes are not conserved, this happens for the quantity ξ · Δρ, which represents the L1

shift of the approximate solution. Recalling that (ρν,k− (t), ρν,k+ (t)) is the value to the left and,

respectively, to the right of the kth jump of ρν(t), we define Δρνk(t) = ρν,k+ (t) − ρν,k− (t).
To study the convergence of car trajectories, we need to estimate the quantity

(4.4) ‖xν(t) − xν+1(t)‖.

As for the waves of ρν , we define the shift of the car position as

ην(t) = xν+1(t) − xν(t).

Since the initial car position does not depend on the approximate solution, we have ην(0) = 0.
Notice that our problem reduces to estimate |η(t)|. Such a quantity varies only at interaction
times with waves of ρν and ρν+1. Since the latter are obtained by shifting the formers, we
can consider generic interactions of a car with waves, both presenting shifts. Thus we let ηνk
be the value of ην after the interaction with the kth wave of ρν and the kth wave of ρν+1. In
the case of Neumann boundary conditions, and thus no wave from boundaries, the number of
waves is decreasing. Hence the number of interactions is bounded by the number of waves in
the initial datum, which in turn is at most (b− a)/2−(ν+1). In the case of Dirichlet boundary
conditions, then we approximate also the boundary data with piecewise constant functions,
thus getting again a finite number of possible waves and thus of interactions.

4.2. Shifts evolution. Here we consider a generic interaction between a wave front and
a car trajectory. In particular, we assume that both have an initial shift and we want to
estimate the value of the car position shift after the interaction, since the wave shift does not
change. Say x0 is the initial position of the car and s0 is the initial position of the wave front
with speed λ = Δf

Δρ ; then the interaction point is

(4.5) (x̄, t̄) =

(
x0 + t̄v(ρ−),

s0 − x0

v(ρ−) − λ

)
,



CONSERVATION LAWS–ODE TRAFFIC PROBLEM 523

(x̃, t̃)

λ

v(ρ+)

η− x̄

v(ρ−)

t0

ξ

η+ x̃fxf

x

t

t̄

x0 s0

Figure 4. The shift for the wave front, ξ, and the shifts for the car trajectory, η−, η+.

and, after interaction, the (final) position xf at time T is given by

(4.6) xf = x̄ + (T − t̄)v(ρ+).

See Figure 4. Call ξ ∈ R the wave shift and η−, η+ ∈ R the shifts of the car trajectory,
respectively, before and after interacting with the wave. The point of interaction for the
shifted wave and car position is

(4.7) (x̃, t̃) =

(
x0 + η− + t̃v(ρ−),

(s0 + ξ) − (x0 + η−)

v(ρ−) − λ

)
and the final position of the car x̃f is given by

(4.8) x̃f = xf + η+,

where η+ is given by

(4.9) η+ = x̃ + v(ρ+)(t̄− t̃) − x̄.

Now, using (4.5)–(4.7), we can express η+ in terms of η−:

η+ = η− + v(ρ−)
(s0 + ξ) − (x0 + η−)

v(ρ−) − λ
+ v(ρ+)

η− − ξ

v(ρ−) − λ
− v(ρ−)

s0 − x0

v(ρ−) − λ

= η−
v(ρ+) − λ

v(ρ−) − λ
+ ξ

v(ρ−) − v(ρ+)

v(ρ−) − λ
.(4.10)

Let us set β = v(ρ+)−λ
v(ρ−)−λ and γ = v(ρ−)−v(ρ+)

v(ρ−)−λ . Then, recalling that λ = Δf/Δρ, it follows that

β =
v(ρ+)(ρ+ − ρ−) − ρ+v(ρ+) + ρ−v(ρ−)

v(ρ−)(ρ+ − ρ−) − ρ+v(ρ+) + ρ−v(ρ−)

=
ρ−
ρ+

,(4.11)
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and, similarly,

γ =
(v(ρ+) − v(ρ−))(ρ+ − ρ−)

v(ρ−)(ρ+ − ρ−) − ρ+v(ρ+) + ρ−v(ρ−)

=
ρ+ − ρ−

ρ+
.(4.12)

Therefore, (4.10) becomes

(4.13) η+ = η−
ρ−
ρ+

+ ξ
ρ+ − ρ−

ρ+
.

4.3. Estimates for car trajectory. The sequence of interactions between waves and with
the car may happen with different orders. However, we know that the car is faster than waves
(Lemma 3.1); thus the car always interacts with waves in increasing order. Moreover, the next
lemma shows that the worst case, for the car shift increase, happens when the car interacts
with waves before wave interactions occur.

Lemma 4.2. Assume that ρν(0) is strictly positive and presents only two waves (ρ1
−, ρ

1
+)

and (ρ2
−, ρ

2
+). Let ξ1 and ξ2 be the shifts of the waves in ρν , to get the position of the waves

in ρν+1(0). We define η to be the shift generated if xν interacts separately with the two waves
and η̃ to be the shift if the two waves meet before interacting with xν . Then

|η̃| ≤ |η|.

Proof. Using (4.13) and η0 = 0, we get

η1 =
ρ1
−

ρ1
+

η0 +
|Δρ1ξ1|

ρ1
+

=
|Δρ1ξ1|

ρ1
+

, η2 =
ρ2
−

ρ2
+

η1 +
|Δρ2ξ2|

ρ2
+

;

then, since ρ1
+ = ρ2

−, one gets

η =
1

ρ2
+

(|Δρ1ξ1| + |Δρ2ξ2|),

while

η̃ =
ρ1
−

ρ1
+

η0 +
Δ̃ρξ̃

ρ2
+

=
Δ̃ρξ̃

ρ2
+

,

where Δ̃ρ and ξ̃ are, respectively, the jump and the shift coming from the interaction of the
two waves. The conclusion follows by Lemma 4.1.

Now we can state our first estimate for the car shift.
Lemma 4.3. For every N ∈ N, provided that ρν(0) > 0, the following recurrence relation

holds:

(4.14) |ηνN | ≤ 1

ρν,N−1
+

N−1∑
k=1

|Δρνk(0)ξνk (0)|.



CONSERVATION LAWS–ODE TRAFFIC PROBLEM 525

Proof. By Lemmas 3.1 and 4.2 we can assume that xν interacts with the waves of ρν(0)
in increasing order before wave interactions occur. In fact, this represents the worst case for
the car shift increase.

We proceed by induction. Recall that ην0 = ην(0) = 0. Supposing that (4.14) is true for
N , we prove the relation for N + 1 using (4.13):

|ηνN+1| ≤
ρν,N−

ρν,N+

|ηN | +
|ΔρνNξνN |
ρν,N+

≤
ρν,N−

ρν,N+

1

ρν,N−1
+

N−1∑
k=1

|Δρνkξ
ν
k | +

|ΔρνNξνN |
ρν,N+

=
1

ρν,N+

N∑
k=1

|Δρνkξ
ν
k | ≤

1

ρν,N+

N∑
k=1

|Δρνk(0)ξνk (0)|,

where the latter inequality is obtained by Lemma 4.1.
We can finally state our main result.
Theorem 4.4. Let ρ̄ ∈ BV and assume that WFT approximate solutions are constructed

taking the initial datum ρ̄ν as in (4.1). Assume that ρ̄ ≥ ρ̃ > 0; then

(4.15) |xν+1(t) − xν(t)| ≤
2−(ν+1)

ρ̃
TV (ρ̄).

In particular, xν(t) converges uniformly to some x(t) solution of (1.2) when ν → +∞. Since
the grid mesh parameter is Δx = 2−ν as shown by (4.1), the convergence speed estimate is
linear in Δx.

Proof. Recall that ην(t) = xν+1(t) − xν(t). By Lemma 4.3, for every t it holds that

(4.16) |ην(t)| ≤
1

ρ̃

∑
|Δρνk(0)ξνk (0)|.

As noted above, the shifts at time 0 between ρν and ρν+1 are bounded by 2−(ν+1); see Figure 3.
Then, we get

|ην(t)| ≤
2−(ν+1)

ρ̃

∑
|Δρνk(0)| =

2−(ν+1)

ρ̃
TV (ρ̄).

Thus xν(t) converges uniformly exponentially to some function x(t). By the results of Colombo
and Marson [6], x is a solution of (1.2).

A possible extension of Theorem 4.4 if initial data vanish is given below.
Theorem 4.5. Consider a single road [a, b]. Then, ∀α ∈ (0, 1) there exist ρν → ρ and

xν+1 → x such that

|ρ− ρν | < 2−να(b− a),(4.17)

|xν+1 − xν | ≤ 2−ν(1−α)TV (ρ̄).(4.18)

Proof. It is well known that in the scalar case the following holds:

|ρ(t) − ρν(t)|L1 ≤ |ρ(0) − ρν(0)|L1 .

Let us take ρν(0) → ρ̄ such that ρν(0) ≥ 2−να. Then, applying Theorem 4.4, we get
(4.17).
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Figure 5. Traffic circle.

5. Numerical tests. Simulation results and animations for numerical tests presented in
this section are available on the web page [2].

Here we present a study of the trajectory of a car moving into a traffic circle: the evolution
of densities was already discussed in [3]. More precisely, by reproducing the evolution in
time of traffic, we compute the time needed by a car for covering a fixed path within a
traffic circle composed by 8 roads and 4 junctions, as depicted in Figure 5. There are two
junctions with one incoming and two outgoing roads, precisely the junction (1R, 2R, 3) and
the junction (3R, 4R, 4). Thus we need to assign the corresponding distribution coefficients,
namely, (α1R,3, α1R,2R) and (α3R,4, α3R,4R). We assume all of them to be equal to α = 0.5.
For junctions with one outgoing road, namely, (1, 4R, 1R) and (2R, 2, 3R), we need to fix a
right of way parameter between the two incoming roads in order to describe the priority to
pass through the junction, as prescribed by rule (C) in section 2.

We consider the following three cases for the priorities of the roads 1 and 2 bringing traffic
to the circle:

(1) q1 = q1(1, 4R, 1R) = q2 = q2(2, 2R, 3R) = 0.25;
(2) q1 = q1(1, 4R, 1R) = q2 = q2(2, 2R, 3R) = 0.5;
(3) q1 = q1(1, 4R, 1R) = q2 = q2(2, 2R, 3R) = 0.75.

Setting parameters as in (1), 4R is the through street with respect to road 1 and road 2R
is the through street with respect to 2. This means that the traffic inside the circle has the
priority with respect to the entering traffic. However, if we fix priorities as in (3), the situation
is exactly opposite. Case (2), instead, represents the case of the same priority for the traffic
inside the circle and that incoming.

As in [3], we consider the initial data

ρ1(0, x) = 0.25, ρ2(0, x) = 0.4, ρ3(0, x) = 0.5, ρ4(0, x) = 0.5,(5.1)

ρ1R(0, x) = 0.5, ρ2R(0, x) = 0.5, ρ3R(0, x) = 0.5, ρ4R(0, x) = 0.5,

and, for roads entering the circle, we impose the following boundary conditions:

(5.2) ρ1,b(t) = 0.25, ρ2,b(t) = 0.4.

Starting from the configuration given by initial data (5.1), but setting alternatively the right
of way parameters according to the three mentioned cases, the behavior of traffic is different.
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Figure 6. On the left, exit time for q1 = q2 = 0.25; on the right, exit time for q1 = q2 = 0.5 for boundary
data (5.2).

In particular, with priorities set as in (1), shock waves causing an increase in the value of
density on incoming roads 1 and 2 are rapidly produced. On the other hand, the density on
roads within the circle is kept at a low level.

In case (2), the evolution of the density is similar to the previous case, except for the
situation on roads 2R and 4R, where a shock with zero speed is produced.

In case (3) after a short period of time, shocks propagating backward along roads 2R
and 4R provoke an increase in the density inside the circle until traffic becomes completely
blocked.

From the analysis of the three considered cases, we want to see how the behavior of a
driver moving into the traffic circle can be influenced by the regulation of priority parameters.

Assume that the driver follows the route (1, 1R, 2R, 3R, 4). This means that the car enters
the circle from road 1, turns around for 3/4 of the circle, and finally exits to road 4. In the
next figures we show that right of way parameters affect the time for covering the path. In
particular, in Figure 6 the curve of the exit time as a function of the initial time t0 varying
in [0, 20] is depicted for q1 = q2 = 0.25 and q1 = q2 = 0.5. The graph on the left underlines
that, after a certain value of the initial time (t0 ∼ 9), the exit time becomes stable and
corresponds to T = 13.3. Similarly, the graph on the right shows that for t0 ≥ 12 exit time
takes asymptotically the value T = 16.1.

On the other hand, setting q1 = q2 = 0.75, independently by the initial time t0, the car
cannot exit the circle, since traffic within the circle is blocked.

The graph on the left side of Figure 7 represents a comparison between the cases (1)
and (2) as regards the space covered by the car when starting time is t0 = 8. As we can
observe, taking priority parameters q1 = q2 = 0.25, the time to exit the circle is lower, even if
the first part of the trip is faster for the choice (2). Starting again at time t0 = 8 and setting
right of way parameters according to (3), the car cannot exit by the second road of the path,
namely, road 1R, and, consequently, it stops; see the graph in Figure 7 on the right.

Then, keeping the initial data (5.1) as before, we impose at the left endpoint of roads 1
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Figure 7. Time-space diagram of the car trajectory for t0 = 8. On the left, comparison between the cases
(1) and (2); on the right, priorities set as in (3).
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Figure 8. Exit time for q1 = q2 = 0.25 (-) and q1 = q2 = 0.5 ( · · ·) when t0 varies, with A = 1 (on the left)
and A = 5 (on the right) for periodic boundary data (5.3).

and 2 a periodic data bounded in [0.1, 0.4], namely,

(5.3) ρ1,b(t) = ρ2,b(t) =
1

4
+

3

20
sin(At), t ≥ 0,

where A > 0. In Figure 8 the graphs of the time for covering the path for A = 1 (on the left)
and A = 5 (on the right) are depicted, with the initial time t0 varying in [0, 40].

Observing Figure 8, obtained for q1 = q2 = 0.25, we can see that after a certain value
of the initial time (t0 ∼ 9), the exit time becomes more stable, until it reaches the value
T = 13.3, around which oscillations occur. Similarly, setting q1 = q2 = 0.5 for t0 ≥ 12, the
time for covering the path shows oscillations around T = 16.1.

This last simulation shows how choice (1) is preferable with respect to choice (2) to reduce
the travel time of drivers. Moreover, such convenience is stable with respect to time-varying
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Table 1
CPU time and computation of AΔx at T = 8 for varying Δx.

T = 8

Δx CPU time AΔx

0.1 0.51 s 0.005423

0.05 1.23 s 0.002119

0.025 2.61 s 0.001588

0.0125 5.18 s 0.000635

0.00625 10.13 s 0.000319

Figure 9. Car moving on a highway segment where a car accident occurred.

incoming traffic. In fact, even introducing oscillations with different widths, the two cases of
priority parameters still produce quite different travel times.

5.0.1. Test of efficiency and of convergence of the algorithm based on the Godunov
scheme. Let us consider a car traveling on a single road parametrized by the interval [0, 2],
where the initial and boundary data are, respectively, given by

(5.4) ρ(0, x) =

⎧⎨
⎩

0.3 if 0 ≤ x ≤ 0.2,
0.1 if 0.2 < x ≤ 0.5,
0.8 if 0.5 < x ≤ 2,

ρ(t, 0) = 0.3.

If the car starts traveling at time t = 0 with initial position x0 = 0 the time needed to exit
the road is T = 8. In Table 1 we present the results obtained by applying the simulation
algorithm with the Godunov scheme to the proposed example. On one hand we are interested
in evaluating the CPU time occupied by the algorithm and on the other hand we estimate
the difference between the two positions at final time T , namely, AΔx = |xΔx(T )−xΔx

2
(T )| =

|xν(T )−xν+1(T )|, computed numerically when the space mesh parameter Δx = 2−ν decreases.
The results in Table 1 represent numerical evidence of the convergence (with a linear rate)
of the algorithm, where the evolution in time of the density is computed by the Godunov
scheme, which ensures stability of solutions and thus represents a good compromise between
numerical accuracy and occupation of CPU time.

All the simulations have been performed by a personal computer, processor AMD Athlon
XP 2400 Mhz, RAM 512 Mb.

5.1. Application of the tracking algorithm to highway accidents. We consider the prob-
lem of exactly determining the traveling time of a car in case of an accident on a highway.
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Figure 10. Evolution of traffic density (line) and car position (point).

More precisely, we consider a bounded highway segment and a car entering it at time t = 0.
On the same segment an accident is present at position R and a consequent queue extending
backward up to position L; see Figure 9, where (left and right) endpoints of the queue are
depicted. We assume to know the inflow of the highway segment and the time tr at which cars
involved in the accident will be removed, thus permitting a free flow of traffic. The question
we want to answer is: How much time is needed by the car to cross the congested road?

Using our algorithm we can compute such traveling time. The presence of the accident
is simulated as a red light at point R up to time tr, when the light turns green. If tr is big
enough, the car will reach the back of the queue at L and stop there. After time tr, the flow
will start again at R and the corresponding rarefaction wave (accelerating cars) will eventually
reach L, letting the car move.

In Figure 10 a time shot of the evolution of the traffic density on the highway and of the
car trajectory is given. Related animations can be found on the web page [2].

6. Conclusions. A new approximation algorithm for tracking the position of a car trav-
eling on a road network is here developed. First the density on the network is simulated
using a Godunov or a Wave Front Tracking (WFT) scheme. Then the position of the car is
reconstructed determining the effects of interactions with density waves.

The theoretical framework of problem (1.2) was set up in [6].

The algorithm is tested on a portion of an urban network, i.e., a traffic circle. In particular,
the time for covering the path of a single driver is measured, showing the convenience of setting
the right of way parameters so as to give priority to traffic inside the circle with respect to
the entering traffic. Furthermore, a possible application of the algorithm is presented.

As a theoretical result of the present work, the exponential uniform convergence of car
trajectories is proved using the WFT algorithm and assuming BV initial data.

Acknowledgment. The authors would like to thank the anonymous referees for many
helpful suggestions which improved the paper.
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Zürich, Birkhäuser Verlag, Basel, 1992.

[18] M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded
roads, Proc. Roy. Soc. London Ser. A, 229 (1955), pp. 317–345.

[19] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), pp. 42–51.

http://www.iac.rm.cnr.it/~bretti/Car.html


SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 2, pp. 532–560

Macroscopic Dynamics of Complex Metastable Systems: Theory, Algorithms,
and Application to B-DNA∗

Illia Horenko†, Evelyn Dittmer†, Filip Lankas‡, John Maddocks‡, Philipp Metzner†, and

Christof Schütte†

Abstract. This article is a survey of the present state of the transfer operator approach to the effective dynamics
of metastable complex systems, and the variety of algorithms associated with it. We introduce new
methods, and we emphasize both the conceptional foundations and the concrete application to the
conformation dynamics of a biomolecular system. The algorithmic aspects are illustrated by means
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1. Introduction. With the increasing availability of ever more powerful computational
resources, there is current interest in performing long numerical simulations of large nonlinear
dynamical systems, for example, biomolecules, and in examining rather detailed properties of
the results. For example, there is a current effort to understand the sequence-dependent phys-
ical properties of B-form DNA via the construction and analysis of a self-consistent data base
of 39 compatible simulations, each of a 15 base pair fragment or oligomer, with the oligomers
constructed in such a way that each of the 136 possible independent tetramer sequences is
present at least twice [5]. The time series generated in this particular project comprise more
than half a terabyte of data. It is accordingly evident that there is an ever increasing need to
analyze such time series efficiently, with mathematical algorithms that are practical for data
sets of this order of magnitude. In particular, many nonlinear dynamical systems, including
biomolecules and specifically DNA, exhibit the phenomenon of metastability ; i.e., the trajec-
tory is localized in one subregion of phase space for comparatively long time scales, before
undergoing a rapid and rare transition to another region, where it then stays for a compara-
tively long residency time before eventually undergoing another rapid transition, and so on.
Figure 10 illustrates this phenomenon via a plot of a single, scalar-dependent variable, in this
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case a certain torsional angle in one of the DNA backbones between two particular base pairs
in a simulation of a poly(AT) oligomer, where A and T denote the base pair of adenine (A)
and thymine (T). The time series is of length 105, being a sampling of a 100 nanosecond sim-
ulation at every picosecond. The time series is evidently multiwell and exhibits metastability
with essentially instantaneous sharp transitions between wells that are separated by 180◦ or
so, with rapid oscillations within each well during the long residency times.

The purpose of this article is to survey existing, and introduce new, methods for the
identification of the metastable substates that are exhibited in a particular time series, and
to estimate the transition probabilities between these sets. The primary messages of the
article are the following. First, the notion of the number of metastable states is a hierarchical
concept—the appropriate number of metastable sets to be identified in a given time series
depends upon the phenomena to be modeled. Second, and nevertheless, the numbers of
metastable states are not arbitrary; rather, appropriate choices of the numbers of metastable
sets can be identified via various clustering techniques. For example, if the dimension of the
time series is not too large, a certain transfer operator can be explicitly computed and the
appropriate possible numbers of metastable states can be associated with gaps in the spectrum
of the operator via a Perron cluster analysis, while the metastable sets themselves can be
identified from the associated eigenfunctions. Third, the usual methods for the computation
of the transfer operator suffer from the curse of dimensionality, which means that the methods
are not practicable for large systems. However, when the dimensionality of the time series is
too high, one may be able to use hidden Markov models (HMMs) or the new method of HMM
stochastic differential equations (HMMSDEs) to identify metastable substates and to make
good estimates of the associated transition probabilities.

The theory developed in the article is illustrated with two examples. First, there is an
entirely tutorial and two-dimensional (2D) example involving the high friction or overdamped
Brownian dynamics of a particle in a multiwell potential, in which all the conclusions are en-
tirely explicit. Second, the theory is applied to the DNA simulation already mentioned above.
That series is of length 105 and is of high dimension (for details see section 2). In this context
the metastability analysis plays an important role in identifying basins within which the base
pair level, structural shape, and stiffness parameters of DNA can be approximated. The DNA
example lies within the class of problems that are too large for an explicit computation of the
transfer operator for the full system. However, we demonstrate that the metastable sets can
be captured via an HMMSDE analysis. We apply the HMMSDE analysis to a description of
the system in which the coordinates are backbone angles. In these coordinates the transitions
are very rapid, and the states can also be identified via a more standard, but appropriately
aggregated, HMM model. However, the HMMSDE analysis additionally yields insight about
nanomechanical properties of the molecule within each metastable well, e.g., local stiffness
matrices that may allow us to study the changes in elastic properties between conformations.

2. Metastability. The evolution of a single microscopic system is assumed to be given by
a homogeneous Markov process Xt = {Xt}t∈T in either continuous or discrete time with state
space X. We write X0 ∼ μ if the Markov process Xt is initially distributed according to the
probability measure μ. The motion of Xt is given in terms of the stochastic transition function

(1) p(t, x,A) = P[Xt+s ∈ A |Xs = x]
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for every t, s ∈ T, x ∈ X, and A ⊂ X that satisfies the well-known Chapman–Kolmogoroff
equation p(t + s, x,A) =

∫
X p(t, x,dz) p(s, z, A) [15].

We say that the Markov process Xt admits an invariant probability measure μ, or that μ
is invariant w.r.t. Xt if

∫
X p(t, x,A)μ(dx) = μ(A). In the following we always assume that

the invariant measure of the process under investigation exists and is unique. A Markov
process is called reversible w.r.t. an invariant probability measure μ if

∫
A p(t, x,B)μ(dx) =∫

B p(t, x,A)μ(dx) for every t ∈ T and A,B ⊂ X.

2.1. Transition probabilities and transfer operators. Metastability of some subset of the
state space is characterized by the property that the dynamical system is likely to remain
within the subset for a long period of time, until it exits and a transition to some other
region of the state space occurs. There are, in fact, several related but different definitions of
metastability in literature (see, e.g., [8, 11, 41, 42]); we will focus on the so-called ensemble
concept introduced in (2); for a comparison with, e.g., the exit time concept, see [40].

The objective is an identification of a decomposition of the state space into metastable
subsets and the corresponding “flipping dynamics” between these substates. In general, a
decomposition D = {D1, . . . , Dm} of the state space X is a collection of subsets Dk ⊂ X
with the following properties: (1) positivity μ(Dk) > 0 for every k, (2) disjointness up to null
sets, and (3) the covering property ∪m

k=1Dk = X. In particular, the appropriate number m
of metastable subsets must be identified. Within a transfer operator approach this can be
achieved via spectral analysis (see key idea below).

We define the transition probability p(t, B,C) from B ⊂ X to C ⊂ X within the time span
t as the conditional probability

(2) p(t, B,C) = Pμ[Xt ∈ C |X0 ∈ B] =
Pμ[Xt ∈ C and X0 ∈ B]

Pμ[X0 ∈ B]
,

where Pμ indicates that initially X0 ∼ μ. Then (2) may be rewritten as

(3) p(t, B,C) =
1

μ(B)

∫
B
p(t, x, C)μ(dx).

In other words, the transition probability quantifies the dynamical fluctuations within the
stationary ensemble μ. Concomitant with our ensemble dynamics approach to metastability,
we call a subset B ⊂ X metastable on the time scale τ > 0 if

p(τ,B,Bc) ≈ 0 or, equivalently, p(τ,B,B) ≈ 1,

where Bc = X \B denotes the complement of B.
Transfer operator. We define the semigroup of propagators or forward transfer operators

P t : Lr(μ) → Lr(μ) with t ∈ T and 1 ≤ r < ∞ as follows:

(4)

∫
A
P tv(y) μ(dy) =

∫
X
v(x)p(t, x,A)μ(dx)

for A ⊂ X. As a consequence of the invariance of μ, the characteristic function 1X of the
entire state space is an invariant density of P t; i.e., P t1X = 1X. Furthermore, P t is a Markov
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operator; i.e., P t conserves both norm ‖P tv‖1 = ‖v‖1 and positivity P tv ≥ 0 if v ≥ 0,
which is a simple consequence of the definition. Due to (4), the semigroup of propagators
mathematically models the evolution of subensembles in time.

The key idea of the transfer operator approach w.r.t. the identification of metastable de-
compositions can be described as follows:

Metastable subsets can be detected via eigenvalues of the propagator P close to
its maximal eigenvalue λ = 1; moreover, they can be identified by exploiting the
corresponding eigenfunctions. In doing so, the number of metastable subsets
is equal to the number of eigenvalues close to 1, including λ = 1 and counting
multiplicity.

This strategy was first proposed by Dellnitz and Junge [12] for discrete dynamical systems
with weak random perturbations and has been successfully applied to molecular dynamics in
different contexts [38, 39, 40]. Its justification is given below. The key idea requires the
following two conditions on the propagator P :

• (C1) The essential spectral radius of P is less than 1; i.e., ress(P ) < 1.
• (C2) The eigenvalue λ = 1 of P is simple and dominant; i.e., η ∈ σ(P ) with |η| = 1

implies η = 1.
In this article, two types of Markov processes will be considered: (1) high-friction Langevin
processes and (2) (Nosé–Hoover) constant temperature molecular dynamics. For both cases
the dynamics is reversible, and the transfer operator is self-adjoint. For type (1) examples,
conditions (C1) and (C2) are known to be satisfied under rather weak conditions on the
potential [40]. For type (2) examples, it is unknown whether or not the conditions are satisfied;
however, it is normally assumed in molecular dynamics that they are valid for realistically
complex systems in solution.

We define the metastability of a decomposition D as the sum of the metastabilities of its
subsets. That is, suppose that the time scale τ of interest is fixed. Then, for each arbitrary
decomposition Dm = {A1, . . . , Am} of the state space X into m sets, we define its metastability
measure by

meta(Dm) =

m∑
j=1

p(τ, Aj , Aj)/m.

For given m the optimal metastable decomposition into m sets can then be defined as that
decomposition into m sets which maximizes the functional meta.

The next result [29] justifies the above key idea.
Theorem 2.1. Let P τ : L2(μ) → L2(μ) denote a reversible propagator satisfying (C1)

and (C2). Then P τ is self-adjoint with spectrum of the form

σ(P τ ) ⊂ [a, b] ∪ {λm} ∪ · · · ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λm ≤ · · · ≤ λ1 = 1 and λi isolated eigenvalues that are counted according to
their finite multiplicities. Denote by vm, . . . , v1 the corresponding eigenfunctions, normalized
to ‖vk‖2 = 1. Let Q be the orthogonal projection of L2(μ) onto span{1A1 , . . . ,1Am}. Then
the metastability of an arbitrary decomposition Dm = {A1, . . . , Am} of the state space X can
be bounded from above by

p(τ, A1, A1) + · · · + p(τ, Am, Am) ≤ 1 + λ2 + · · · + λm,
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while it is bounded from below according to

1 + κ2λ2 + · · · + κmλm + c ≤ p(τ, A1, A1) + · · · + p(τ, Am, Am),

where κj = ‖Qvj‖2
L2(μ) and c = a ((1 − κ2) + · · · + (1 − κn)).

Theorem 2.1 highlights the strong relation between a decomposition of the state space
into metastable subsets and a Perron cluster of dominant eigenvalues close to 1. It states that
the metastability of an arbitrary decomposition Dm cannot be larger than 1 + λ2 + · · ·+ λm,
while it is at least 1 +κ2λ2 + · · ·+κmλm + c, which is close to the upper bound whenever the
dominant eigenfunctions v2, . . . , vm are almost constant on the metastable subsets A1, . . . , Am

implying κj ≈ 1 and c ≈ 0. The term c can be interpreted as a correction that is small
whenever a ≈ 0 or κj ≈ 1. It is demonstrated in [29] that the lower and upper bounds are
sharp and asymptotically exact.

2.2. Metastability analysis is hierarchical. The last theorem and the illustrations and
examples below contain one main message about metastability analysis: it has to be hierar-
chical. Whenever we approximate the optimal metastable decomposition D2 of state space
into, say, two sets, we should always be aware that there could be a decomposition D3 into
three sets for which meta(D3) is almost as large as meta(D2). For example, one or both of
the two subsets in D2 could decompose into two or several metastable subsets from which exit
is comparably difficult for the system under investigation.

However, whenever there is a gap in the spectrum of the transfer operator after m dominant
eigenvalues, then the results of, e.g., [28, 8], tell us that any decomposition into more than
m sets will be associated with a significantly larger drop in metastability as measured by the
function meta. In the context of applications to molecular dynamics, however, one should
always be aware that particular aspects of interest may make it desirable to explore the
hierarchy of metastable decompositions up to a certain depth that is not necessarily selected
only on the values of the functional meta.

2.3. Discretization and PCCA. Let χ = {χ1, . . . , χn} ⊂ L2(μ) denote a set of nonnegative
functions that are a partition of unity, i.e.,

∑n
k=1 χk = 1X. The Galerkin projection Πn :

L2(μ) → Sn onto the associated finite-dimensional ansatz space Sn = span{χ1, . . . , χn} is
defined by

Πnv =

n∑
k=1

〈v, χk〉μ
〈χk, χk〉μ

χk.

Application of the Galerkin projection to P τv = λv yields an eigenvalue problem for the
discretized propagator ΠnP

τΠn acting on the finite-dimensional space Sn. The matrix repre-
sentation of this finite-dimensional operator is given by the n×n transition matrix � = (�kl),
whose entries are given by

(5) �kl =
〈P τχk, χl〉μ
〈χk, χk〉μ

.

The transition matrix inherits the main properties of the transfer operator: it is a stochastic
matrix with invariant measure given by the invariant measure μ of P τ , it is reversible if P τ
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is self-adjoint, and (if the discretization is fine enough) it also exhibits a Perron cluster of
eigenvalues that approximates the corresponding Perron cluster of P τ , and with eigenvectors
that approximate the dominant eigenvectors of P τ [40]. It thus allows us to compute the
metastable sets of interest by computation of the dominant eigenvectors of � and by realization
of the identification strategy described in section 2.1 based on these (discrete) eigenvectors.
This has led to the construction of an aggregation technique called “Perron cluster cluster
analysis” (PCCA) [13, 14].

The entries of � can be computed from realizations of the underlying Markov process Xt.
We have

�kl =
1

〈χk, χk〉μ

∫
X
χk(x)Ex[χl(Xτ )]μ(dx).

If x0, . . . , xN denote a time series obtained from a realization of the Markov process with
time stepping τ , then the entries of � can be approximated from the relative transition rates
computed by means of this time series:

(6) �kl ≈ �(N)
kl =

∑N
j=1 χk(xj) · χl(xj+1)∑N

j=1 χk(xj)2
.

For a time series of whatever length, but with a high-dimensional configuration variable,
practical evaluation of the formula (6) may become problematic. There are two main reasons
for potential difficulties.

Trapping problem. The rate of convergence of �(N)
kl → �kl depends on the smoothness of

the partition functions χk as well as on the mixing properties of the Markov process [31]. The
latter property is crucial here: the convergence is geometric with a rate constant λ1 − λ2 =
1−λ2, where λ2 denotes the second largest eigenvalue (in modulus). In the case of metastability
with λ2 being very close to λ1 = 1, we will have dramatically slow convergence. This is of
no surprise because closeness of dominant eigenvalues is typically the main difficulty in all
approaches to biomolecular dynamics and statistics, and it is also a bottleneck of the transfer
operator approach. Much of the literature aims to tackle this trapping problem [4, 17]. In
our largest examples, evaluation of (6) is not practical. However, we will not go into the
depth of the discussion on overcoming the trapping problem, because we propose alternative
approaches. We will simply assume in all of the following that we have already generated
or can directly generate a time series that is “long enough” in the sense that it contains
statistically significant information about more than one—if not all—interesting metastable
states of the system under consideration. We will discuss later whether this is the case for our
poly(AT) DNA time series.

Curse of dimension. Any discretization of the transfer operator will suffer from the curse of
dimension whenever it is based on a uniform partition of all of the hundreds or thousands of
degrees of freedom in a typical biomolecular system. Fortunately, chemical observations reveal
that—even for larger biomolecules—the curse of dimensionality can be circumvented by ex-
ploiting the hierarchical structure of the dynamical and statistical properties of biomolecular
systems: only relatively few essential degrees of freedom are needed to describe the confor-
mational transitions (see next section); furthermore, the canonical density has a rich spatial
multiscale structure induced by the rich structure of the potential energy landscape. This
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structure induces a hierarchical cluster structure of the sampling data that can be identified
and used to define a multilevel discretization adapted to the structures of the statistical data
(see [40] or subsequent examples).

2.4. Illustrative example. For simplicity we consider the Markov process given by the
so-called high-friction Langevin equation which is the limit of high friction of the famous
Langevin equation; see [36, 39]. The high-friction Langevin equation is stated in the position
space only and is given by the equation

(7) ẋ = −∇xV (x) + σẆt,

with x(t) ∈ Rd being the position vector of the system, Wt denoting d-dimensional standard
Brownian motion, and σ denoting the noise intensity parameter. The SDE (7) defines a con-
tinuous time Markov process Xt with invariant probability measure μ(dx) ∝ exp(−βV (x))dx
with β = 2/σ2 [36]. There is a long history of using it as a simple toolkit for investigation
of dynamical behavior in complicated energy landscapes [10]. It is known that under weak
conditions on the potential function V the Markov process is reversible [26].

The associated semigroup (P t) of propagators admits a strong generator A such that the
semigroup can be written as P t = exp(tA). For twice continuously differentiable u ∈ L2(μ)
we have the identity

Au =

(
σ2

2
Δx −∇xV (x) · ∇x

)
u.

For details on A see the theory of Fokker–Planck equations and Kolmogoroff forward and
backward equations [36, 41]. Under appropriate conditions (the Perron cluster is a discrete
part of the spectrum) we can compute the dominant eigenvectors of P t via those of A.

For illustrative means we use the potential V illustrated in Figure 1 (thus setting d = 2).
Figure 2 shows typical realizations of the high-friction Langevin Markov process associated
with this potential (setting σ = 0.131). We observe that the vicinity of the wells in the
potential energy landscape can be approximately identified with the metastable sets of the
process; it is well known from large deviation theory that, in fact, for small enough noise
intensity, the vicinity of the wells of the potential energy landscape are the metastable sets
of high-friction Langevin processes (at least such wells that are separated from each other by
significant energy barriers) [28].

Next, we discretized the transfer operator of the process (fine grid with 100 × 100 dis-
cretization boxes in discretization domain [−3, 3] × [−3, 3]) for different values of τ , which
results in the dominant eigenvalues listed in Table 1.

While the eigenvector of the largest eigenvalue is constant, the corresponding second and
third eigenvectors of P τ in L2(μ) are shown in Figure 3 (they are identical for all values of τ
because of the semigroup property).

Having computed the dominant eigenvectors, we can determine the optimal metastable
decomposition by means of PCCA as introduced above. The results on the spectrum (see
τ = 0.1, for example) exhibit a hierarchy of metastability that is in perfect agreement with
the general insight on metastability of high friction Langevin motion: we can apply PCCA to
the first two eigenvectors of the transfer operator; this results in the metastable decomposition
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the potential at these points. We observe that the leftmost minimum is the deepest well separated by the most
pronounced energy barrier from the other two.
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Figure 2. Typical realization of the high-friction Langevin dynamics (both components (left/right) of the
state versus time) in the potential energy landscape V shown in Figure 1 for σ = 0.131.

Table 1
Leading four eigenvalues of transfer operator P τ for different values of τ for high-friction Langevin motion

with potential and parameters as described in the text.

σ(P τ ) λ1 λ2 λ3 λ4

τ = 0.01 1.000 0.999 0.997 0.959
τ = 0.10 1.000 0.994 0.975 0.656
τ = 1.00 1.000 0.937 0.776 0.015
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Figure 3. Second and third eigenvectors of the transfer operator for high-friction Langevin process in
potential of Figure 1 (details see text).
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Figure 4. Optimal metastable decomposition resulting from PCCA based on the first two (left) and first
three (right) eigenvectors of the transfer operator.

that distinguishes between the vicinity of the deepest well and the remaining state space (see
Figure 4, left). When applying PCCA to the first three eigenvectors, however, the resulting
metastable decomposition identifies the vicinities of all three wells as the metastable regions
of the system (see Figure 4, right). This outcome is desirable and typical: metastable de-
composition via spectral properties of the transfer operator is hierarchical in the sense that
the process of including more and more leading eigenvalues uncovers finer and finer details of
metastability within the system; see [40, 28].

So, what happens if we take the first four eigenvectors? This we can immediately under-
stand by comparing the values of the functional meta for the optimal metastable decomposi-
tions Dm into m = 1, 2, 3, 4 sets (τ = 1) as given in Table 2: Between m = 3 and m = 4 there
is a significant drop in metastability, indicating that it makes no real sense to speak of four
metastable sets for the system under consideration.

3. Algorithms. As already mentioned we assume herein that some “long enough” time
series (xt)t=t0,...,tN of states (i.e., atomic positions and or momenta) of the system under
consideration is already given. We are mainly interested in the case that the states xtl are
from some high-dimensional state space Rd. In this section we will often consider time series
of some observables (Zt)t=t0,...,tN computed from the time series (xt), e.g., the time series of
torsion angles or inter base pair parameters; however, we could also consider the case Z = x.
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Table 2
Metastabilities of the optimal metastable decomposition Dm into m = 1, 2, 3, 4 sets (as computed by PCCA

from the dominant eigenvectors) and its theoretical upper bound as in Theorem 2.1.

m 1 2 3 4

meta(Dm) 1.000 0.967 0.899 0.613
1
k

∑m
k=1 λk 1.000 0.969 0.904 0.682

We will subsequently follow the following basic idea: from statistical analysis of the time
series given we (1) construct a finite-state Markov jump process that models the hops between
the metastable conformations, and (2) for each conformation we parameterize an appropriate
stochastic model that allows us to approximate the dynamics of the systems as long as it is
within the respective conformation. In [23, 24, 25] appropriate algorithms have been derived
that combine hidden Markov models (for the construction of the unobserved jump process)
and optimal, likelihood-based parameterization of the local stochastic models. We will review
this framework here.

3.1. Algorithms based on hidden Markov models. Suppose the system under considera-
tion has a metastable decomposition. Then, at any time t the system will be in exactly one of
the associated metastable sets Bq ⊂ X, q = 1, . . . ,m. Therefore, at each time t we have some
“metastable state” q(t) being represented by the number of the presently visited metastable
set. Whenever a time series of values of observables (or “observations”) Z = (Zt)t=t0,...,tN

is given, we want to identify the time series of metastable states q = (qt)t=t0,...,tN associated
with it. However, while the time series (Zt) is observed, i.e., known, the series (qt) is hidden
within the data.

Suppose that the observed data (Zt) is given with constant time stepping τ ; i.e., tk =
tk−1 + τ for all k = 1, . . . , N . Setting t0 = 0, we have tk = kτ and especially T = tN = Nτ .
For the sake of simplicity of notation we thus may simply write t = 0, . . . , T .

The probability to go from one metastable/hidden state q to another, q′, is given by
�qq′ = p(τ,Bq, Bq′). That is, the sequence (qt) should be seen as the realization of a Markov
chain with M states with transition matrix �.

The observations Zt somehow result from the respective hidden state qt by a priori un-
known rules. For given time series of observations Z = (Zt)t=t0,...,tN one is interested in finding
the most probable series of metastable/hidden states.

Models like the one coarsely described above are well known as hidden Markov models
(HMMs). An HMM is a stochastic process with hidden and observable states; the hidden
states of an HMM form a Markov chain, while the observable states are understood as output
that is distributed according to a certain conditional distribution (conditioned to the hidden
state).

To describe the whole system, we need to know the number M of hidden states, the
transition matrix � between them, an initial distribution, and, for each state, a certain rule
governing the probability distribution for the observation.

Stationary output. In standard HMMs the output distributions result from independent
and identically distributed random variables; i.e., consecutive output states are statistically
independent. That is, conditioned on the hidden state, the output is simply randomly chosen



542 HORENKO ET AL.

from a stationary distribution. In application to the analysis of data produced in the context
of molecular dynamics, this means that the system reaches the thermodynamical equilibrium
distribution immediately after each transition between metastable states; this then is related
to abrupt jumps of some physical observables.

The most popular choice for such stationary distributions are (multivariate) normal dis-
tributions. However, in the case of circular data (like torsion angle positions in a molecular
dynamics simulation) the use of normal distributions often induces crucial problems due to
periodicity, and thus they have to be replaced by von Mises distributions [32].

The problem of the statistical analysis of the time series in this case will be reduced to the
identification of the Markov transition matrix and equilibrium statistical distributions (often
specified in a parameterized form) [3, 34, 35]. This approach was recently successfully applied
to analysis of torsion angle dynamics of a trialanine molecule [19].

SDE output. In contrast to the standard HMM approach with stationary output, molecular
systems typically do not reach local equilibrium immediately after each jump of the Markov
chain but relax into local equilibrium after some characteristic relaxation time (see Figure 11
in comparison to Figure 10). Moreover, when replacing stationary output distributions by
stochastic models of the local dynamics we can hope to get more insight into the dynamical
flexibilities of the molecular system within each conformation and perhaps of the mechanical
processes governing this flexibility.

In order to incorporate these aspects, we couple (1) the finite-state Markov jump process
that models the hops between the hidden states (= metastable conformations), and (2) SDE
dynamics within the respective conformation. Putting these types of local SDEs and the jump
process between conformations together, we get models of the form

ż(t) = F (q(t))(z − μ(q(t))) + Σ(q(t)) Ẇ (t),(8)

q(t) = Markov jump process with states 1, . . . , L,

where W (t) is denoting standard d′-dimensional Brownian motion (where d′ is the dimension of
the observations Zt), (Σ(1), . . . ,Σ(L)) noise intensity matrices, (μ(1), . . . , μ(L)) equilibrium po-
sitions, and (F (1), . . . , F (L)) appropriate stiffness matrices. The general aim of the HMMSDE
extension of the HMM approach is to find the optimal model of the above form for a given
time series (Zt) (in a maximum likelihood sense).

The formal solution to the local SDE ż = F (z − μ) + ΣẆ on the time interval [t, t+ τ ] is
given by

(9) z(t + τ) = μ + eτF (z(t) − μ) +

∫ τ

0
e(τ−s)FΣdW (s).

Thus, the probability density ρ(Zk+1|Zk) of observation of Zk+1 at time k + 1 under the
condition of observation of Zk at k is proportional to

exp

[
−1

2
ξ�k R

−1(τ) ξk

]
,
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where

ξk = Zk+1 − μ̄− eτF (Zk − μ̄) ,(10)

R(τ) =

∫ τ

0
esFΣΣ�esF

�
ds.(11)

We will now exploit this observation to construct the likelihood function of HMMSDEs.
Optimal parametrization. Both types of HMMs, whether with stationary output distribu-

tion or with SDE output, contain sets of parameters (the entries of the transition matrix �,
the initial output distribution v, as well as the parameters of SDEs or output distributions),
herein denoted by θ. We now want to identify optimal parameters for given observation data
Z = (Zt)t=1,...,T . We have to define the likelihood functional w.r.t. which we then will have to
determine the optimal parameters θ and the sequence of hidden states q = (qt)t=1,...,T .

For given parameters θ, the likelihood L(θ|Zt, qt) has to be the probability of output Zt

under the condition of being in metastable state qtj for given parameters θ:

(12) L(θ|Zt, qt) = p(Z, q|θ) = v(q0)ρ(Z0|q0)
T∏
t=1

�(qt−1, qt)ρ(Zt|qt, Zt−1),

where ρ(·|q, Zt−1) denotes the output distribution at time t under the condition that the
system is in hidden state qt. According to our observations above we have

ρ(Zt|qt, Zt−1) ∝ exp

[
−1

2
ξ�t R

−1(τ) ξt

]
,

with ξt and R as given by (10) and (11) with k = t, F = F (qt), Σ = Σ(qt), and μ = μ(qt).
The next task now will be to construct algorithms that
(1) determine the optimal parameters (�, μ(q), F (q),Σ(q))q=1,...,M by maximizing the like-

lihood L(θ|Z, q) (this is a nonlinear global optimization problem),
(2) determine the optimal sequence of hidden metastable states (qt) for given optimal

parameters, and
(3) determine the number of important metastable states. Up to now we also simply as-

sumed that the number M of hidden states is a priori given, but how can we determine
the appropriate number?

To solve problem (1) we will use the expectation-maximization (EM) algorithm. The EM
algorithm is a learning algorithm: it alternately iterates two steps, the expectation step and
the maximization step. Starting with some initial parameter set θ0, the steps iteratively refine
the parameter set; i.e., in step k the present parameter set θk is refined to θk+1. We will work
out the details of the EM algorithm for the problem under investigation by following the
general framework given in [6].

The key object of the EM algorithm is the expectation

(13) Q(θ, θk) = E
(
log p(Z, q|θ) |Z, θk

)
of the complete-data likelihood L(θ|Z, q) = p(Z, q|θ) (in our case given by (12)) w.r.t. the
hidden sequence q given the observation sequence and the current parameter estimate θk.
One step of the EM algorithm then realizes the following two steps:
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• Expectation step (E-step). This step evaluates the expectation value Q based on the
given parameter estimate θk.

• Maximization step (M-step). This step determines the refined parameter set θk+1 by
maximizing the expectation:

(14) θk+1 = argmax
θ

Q(θ, θk).

The maximization guarantees that L(θk+1) ≥ L(θk).

Algorithmic realizations of these two steps are standard for stationary Gaussian and von Mises
output [19]; for SDEs the results of the maximization step are given below; further algorithmic
details can be found in [23, 24, 25]. In both cases the necessary computational effort for
one step of the EM algorithm scales linearly in the length of the observation sequence and
quadratically in the number of hidden states.

Results of M-step in HMMSDE. In addition to the observation sequence (Zk)k=1,2,..., the
E-step in each iteration yields occupation probabilities νk(q), q = 1, . . . , L, of the hidden state
q at time k (i.e., νk(q) denotes the probability to be in hidden state q at time k according
to the present state of the EM-iteration). Then, denote the mean and covariance of the time
series (Z1, . . . , ZT ) in the state q by

Z̄
(q)
T =

1∑T−1
k=1 νk+1(q)

T−1∑
k=1

νk+1(q)Zk,

Cov
(q)
T (Z) =

1∑T−1
k=1 νk+1(q)

T−1∑
k=1

νk+1(q)(Zk − Z̄
(q)
T )(Zk − Z̄

(q)
T )�.

Furthermore, let the one-step correlation be defined as

Cor
(q)
T (Z) =

1∑T−1
k=1 νk+1(q)

T−1∑
k=1

νk+1(q)(Zk+1 − Z̄
(q)
T )(Zk − Z̄

(q)
T )� · Cov

(q)
T (Z)−1.

Finally, for the sake of convenience let δ
(q)
T denote

δ
(q)
T =

1∑T−1
k=1 νk+1(q)

T−1∑
k=1

νk+1(Zk+1 − Zk).

Then, the optimal estimators F̂ (q) and μ̂(q) for the parameters F (q) and μ(q) of the local SDEs
(i.e., the unique maximizers of the expectation of the likelihood) are given by the following
statement.

Theorem 3.1. Let Cov
(q)
T be positive definite for all i. Then the optimal estimator satisfies

exp(τF̂ (q)) = Cor
(q)
T ,(15)

μ̂(q) = Z̄
(q)
T + (Id − Cor

(q)
T )−1δ

(q)
T .(16)
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The second equation is valid whenever the typical case ‖Cor
(q)
T ‖ < 1 applies; we then have that

the spectrum of the optimal estimator for the stiffness satisfies σ(F̂ (q)) ⊂ C−.
Furthermore, we get a linear matrix equation for the optimal noise intensity matrix esti-

mator Σ̂(q)Σ̂(q)� :

(17) e−τF̂ (q)
W (q) = Σ̂(q)Σ̂(q)�eτF̂

(q)� − e−τF̂ (q)
Σ̂(q)Σ̂(q)� ,

where

W (q) = Ω(q)F̂ (q)� + F̂ (q)Ω(q),

Ω(q) =

(
1∑T−1

k=1 νk+1(q)

T−1∑
k=1

νk+1(q)d̂
(q)
k d̂

(q)�

k

)
,

d̂
(q)
k =

(
Zk+1 − μ̂(q) − eτF̂

(q)
(
Zk − μ̂(q)

))
.

The matrix equation (17) has a unique solution only if σ(F̂ (q)) ⊂ C− (see [25]).
This result from [25] gives us the opportunity to realize the required maximization ex-

plicitly simply by computing the autocorrelation matrices. There should be a warning: the
computation of F̂ (q) from exp(τF̂ (q)) is far from straightforward due to the nonuniqueness of
the matrix logarithm (see [25] for details and for appropriate procedures for the computation
of F̂ (q)).

Optimal sequence of hidden states. Based on the results of the EM algorithm, problem (2)
can be solved by applying the standard Viterbi algorithm [44]. For given θ and Z this algorithm
computes the most probable hidden path q∗ = (q∗0, . . . , q

∗
T ). This path is called the Viterbi

path. For an efficient computation we define the highest probability along a single path, for
the first t observations, ending in the hidden state Si at time t:

δt(q) = max
q0,q1,...,qt−1

P (q0, q1, . . . , qt = Si, Z0, Z1, . . . , Zt|θ).

This quantity is given by induction as

(18) δt(q
′) = max

1≤i≤M
[δt−1(q)�qq′ ]ρ(Zt|qt, Zt−1).

In addition, the argument q that maximizes (18) is stored in ψ in order to actually retrieve
the hidden state sequence. These quantities are calculated for each t and q′, and then the
Viterbi path will be given by the sequence of the arguments in ψ obtained from backtracking.
For more details see [19].

Number of metastable states. In the setup of all HMM techniques for a given observation
sequence, one is confronted with the task of selecting in advance the number M of hidden
states. There are no general solutions to this problem, and the best way to handle this problem
often is a mixture of insight and preliminary analysis. However, since our goal is to identify
metastable states we can proceed as suggested in [19]: start the EM algorithm with some
sufficient number of hidden states, say M , that should be greater than the expected number
of metastable states. After termination of the EM algorithm, take the resulting transition
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matrix A and aggregate the M hidden states into M ≤ M metastable states by means of
PCCA. The resulting conformation states will then allow an interpretation of the results in
terms of metastable states.

In all numerical experiments in the following, the initial parameter guesses are based on
the same procedure: the initial M ×M transition matrix is chosen to be a stochastic matrix
with offdiagonal entries 0.001 and identical diagonal entries. The initial values of the model
parameters were obtained by the respective re-estimation formulas of the EM algorithm based
on randomized determination of the probabilities P (Zt|qt, Zt−1) (they were chosen uniformly
distributed on [0, 1]).

Combination of results from different projections (aggregated HMM). Assume that we al-
ready applied HMMSDE or some HMM-based method to several low-dimensional observation
time series of the system under consideration, but to each one independently. Suppose that
the different time series simply are resulting from different projections of the full time series in
state space; for example, think of the different time series given by each single torsion angle of
the system, or of the time series given by each single of the leading proper orthogonal decom-
position (POD) modes. In this situation one may be interested in combining the hidden states
from each of the single projections into “higher-dimensional” metastable states of the system.
This can be done by analyzing the Viterbi paths derived from the single low-dimensional
observation time series: Suppose we are concerned with J low-dimensional time series and
therefore J Viterbi paths. The J Viterbi paths can be understood as a J-dimensional dis-
crete time series. Every state of this time series lies in the discrete state space consisting of
all possible combinations of the metastable states of the single low-dimensional time series.
We obviously can take this time series, compute its transfer matrix by counting transitions
between its discrete states, determine the dominant eigenmodes of this transfer matrix, and
again apply PCCA to identify metastable decompositions of the discrete state space. The sets
in such a metastable decomposition have to be interpreted as aggregates of the metastable
states from the low-dimensional time series where the aggregation is done based on additional
insight coming from the combination of all of the low-dimensional information. This concept
leads to the following algorithm:

1. Determine model parameters and Viterbi paths for each low-dimensional observation
time series.

2. Combine the Viterbi paths and compute the transfer matrix in the discrete state space
of combined metastable states.

3. Determine metastable decompositions via PCCA.

3.2. Illustrative example revisited. We now assume a time series (x(t))t=t0,...,tN with
tk − tk−1 = τ = 0.01 and N = 105 being given in the test system introduced in section 2.4.
For given t = t0, . . . , tN let x(t) ∈ R2 be the full state of the system.

For this choice of τ the transfer operator P τ = exp(τA) of the high-friction Langevin
motion considered in section 2.4 has the following dominant eigenvalues:

σ(P t) = {1.000, 0.999, 0.997, 0.959, . . .}.

Let us consider the two observation time series (Z
(j)
t )t=t0,...,tN , j = 1, 2, with Z

(j)
t = xj(t)

(the first and second components of the state of the system).
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Figure 5. Observation time series (Z
(1)
t ). Left: entire time axis. Right: magnification clearly exhibiting

metastability and overlapping. Color scale due to Viterbi path (see text below).

We first apply HMMSDE to observation time series (Z
(1)
t ) (see Figure 5 for illustration)

and set M = 3. Eleven iterations of the EM algorithm result in the transition matrix

� =

⎛
⎝ 0.9983 0.0013 0.0004

0.0017 0.9983 0.0000
0.0008 0.0000 0.9992

⎞
⎠

that has the spectrum
σ(�) = {1.000, 0.999, 0.997},

which agrees perfectly with the results of the transfer operator approach (that is based on the
full 2D information instead of on the reduced observation time series). The HMMSDE results
for the parameters of the potential and the noise intensities are given in Table 3 and are in
very good agreement with the results to be expected.

Table 3
Parameters of HMMSDE for training with (Z

(1)
t ).

Parameter j = 1 j = 2 j = 3

μ(j) 0.0552 1.0169 -0.9584

σ(j)2 0.1325 0.1321 0.1302

D(j) 0.5589 1.0507 0.9324

Next we apply HMMSDE to observation time series (Z
(2)
t ) (see Figure 5) and set M = 3.

Nine iterations of the EM algorithm result in the transition matrix

� =

⎛
⎝ 0.9987 0.0013 0.0000

0.0014 0.9981 0.0005
0.0000 0.0007 0.9993

⎞
⎠

with spectrum
σ(P t) = {1.000, 0.999, 0.997}.

The HMMSDE results now are again in good agreement with the results to be expected (see
Table 4).
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Table 4
Parameters of HMMSDE for training with (Z

(2)
t ).

Parameter j = 1 j = 2 j = 3

μ(j) 1.5526 -0.0084 -0.6693

σ(j)2 0.1318 0.1347 0.1343

D(j) 1.0607 0.5018 1.1037
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Figure 6. Observation time series (Z
(2)
t ). Left: entire time axis. Right: magnification clearly exhibiting

metastability and overlapping. Color scale due to Viterbi path (see text below).

Next we compute the Viterbi paths for the two HMMSDE results based on (O
(1)
t ) and

(O
(2)
t ), respectively. This yields the assignment to metastable states as illustrated in Figures

5 and 6, and in a 2D representation in Figure 7. We observe that the agreement of the
assignment with the metastable states resulting from the transfer operator approach (see
Figure 3) is good. However, as can be seen from the picture, the assignment of the points
in the transition regions gets ambiguous. The algorithm for combining the results of our two
different projections (see aggregated HMM algorithm described in section 3.1) yields the results
shown in Figure 8, where all points which are not clearly assigned to any of the metastable
states are identified as belonging to some “transition state.”
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Figure 7. Visualization of the assignment of states to the three metastable states as resulting from the
Viterbi paths computed via HMMSDE based on (Z

(1)
t ) (left) and (Z

(2)
t ) (right).
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Figure 8. Visualization of the assignment of states to the three metastable states (points of three different
color tones) and transition states (black crosses) as resulting from the clustering of both one-dimensional (1D)
Viterbi paths computed according to the transfer operator approach.

4. Application to molecular dynamics (MD) simulations of a DNA fragment.

4.1. MD and statistics. In classical MD atoms are described as mass points subject
to forces that are generated by specified classical interaction potentials V . The dynamical
behavior is described by a deterministic Hamiltonian system of the form

(19) q̇ = M−1ξ, ξ̇ = −∇q V (q),

defined on the state space X = R3N ×R3N with M denoting the diagonal mass matrix. Equa-
tion (19) models an energetically closed system, whose total energy, given by the Hamiltonian

(20) H(q, ξ) =
1

2
ξTM−1ξ + V (q),

is preserved under the dynamics.
It is well known that for every smooth function F : R → R the probability measure

μ(dx) ∝ F(H)(x)dx is invariant w.r.t. the Markov process Xt given by the solution of the
Hamiltonian system (19). The most frequent choice is the canonical density or canonical
ensemble

f(x) ∝ exp(−βH(x))

for some constant β > 0 that can be interpreted as inverse temperature. The associated
measure μ(dx) ∝ f(x)dx is called the canonical measure. The canonical ensemble is often
used in modeling experiments on molecular systems that are performed under the conditions
of constant volume and temperature � = 1

kBβ , where kB is Boltzmann’s constant. Obviously,
a single solution of the Hamiltonian system (19) can never be ergodic w.r.t. the canonical
measure, since it conserves the internal energy H, as defined in (20). One traditional aspect of
MD is the construction of (stochastic) dynamical systems that allow sampling of the canonical
ensemble by means of long-term simulation. Several approaches have been discussed, most
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of them reducing to the construction of a Hamiltonian system in some slightly extended
state space X̂, whose projection onto the lower-dimensional state space X of positions and
momenta generates a sampling according to (4.1). One of the most prominent examples is
the Nosé–Hoover thermostat [7].

4.2. 100 ns MD time series of GT (AT )6C DNA. The time series of interest in the
following was generated via an MD simulation of a 15 base pair fragment, or oligomer, using
the AMBER package [9]. The detailed protocol was that of the ABC project as described in
detail in [5]. That simulation provided a 100 ns time series of the oligomer with the sequence
GT (AT )6C with explicit water- and counterions (see Figure 9). The MD delivers a time series
of the Cartesian coordinates of all atoms (about 23000 atoms, including solvent). The MD
trajectory was sampled every picosecond to obtain a series of length 105.

Figure 9. Illustration of the 15-AT B-DNA oligonucleotide in atomic resolution. The attached violet
strings indicate the backbones. The molecular dynamics simulation referred to herein includes solvent (water-
and counterions), which is not shown here.

The variables in the time series that we work with are the physically motivated projections
onto two different sets of coarse-grained internal coordinates: either the torsion angle series
of the backbone data [37] or the inter base pair step parameters [20]. In either case the
dimension of the time series is 84, arising from the six degrees of freedom at each of the
14 junctions between 15 base pairs. At each sampling time the coarse-grain variables were
extracted from the full set of Cartesian coordinates following standard conventions. Depending
on the projection chosen, two basic temporal patterns of dynamics were found: abrupt, almost
instantaneous change of the backbone torsion angles (see Figure 10), and slow relaxations of
the inter base pair parameters with a relaxation time on the order of 1–2 ns (cf. Figure 11).

Both the backbone angle and base pair parameter descriptions of the DNA oligomer take
standard, sequence-independent values on the idealized B-form Watson–Crick double helix.
One of the motivations for the development of the time-series analysis developed here is to
extract and understand deviations from these standard values both as a function of sequence
and as a function of time.
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Figure 10. Time series of the first strand α-torsion angle for the junction 10. The dynamics exhibits sharp
transitions between the metastable sets.
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Figure 11. Time series of the inter base pair coordinate for the junction 10. The dynamics exhibits slow
relaxational transitions (in a nanosecond region) between the metastable sets.

In the following we will apply the techniques of section 3 to time series of all backbone
torsion angles that result from the 100 ns MD simulation described earlier in this section. This
time series of the backbone angles will be denoted by (Zt)t=1,...,100000 with Zt ∈ R84 arising
from the six backbone torsion angles (α, β, γ-angles at each of the strands) at each of the 14
junctions between 15 base pairs.

We will apply aggregated HMM (based on HMM with stationary van Mises output dis-
tribution for each single of the 84 torsion angle time series) and HMMSDE to the full 84-
dimensional time series. After a detailed separate analysis of these two algorithms we will
finally compare the outcome, especially the Viterbi paths. The section is tailored to demon-
strate the application and performance of the respective algorithms; herein discussion of pos-
sible physical implications of the results is not the focus of our consideration.
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4.3. Analysis via aggregated HMM. As can be seen from Figure 10, the torsion angles
exhibit a clearly metastable behavior with sharp transitions between the metastable states.
We start with the decomposition of the 84-dimensional torsion angle space into the 84 1D
spaces defined by each single angle. Then, we apply our HMM analysis of the dynamics to
each resulting single torsion angle time series. As a result, we get a set of 84 aggregated Viterbi
paths describing the conformational change between the metastable sets in the observed 100 ns
time series as identified from each single angle (for examples, see Figure 12). Of course,
the aggregation depends on the strictness of the metastability criteria, i.e., on the threshold
value above which eigenvalues of the associated transition matrices indicate metastability. To
demonstrate that the aggregation does not destroy important dynamical information about
metastability, we will in the following present two different results: one computed with a strict
threshold (0.97) and another computed with a less strict threshold (0.93).
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Figure 12. Time series of the first strand α, β, γ-backbone torsion angles for junction 2 (right-hand panel).
Left-hand panel: corresponding Viterbi paths as derived from the independent HMM analysis of these three tor-
sion angle time series with an eigenvalue threshold of 0.97 (this means that all eigenvalues of the corresponding
transition matrix ≥ 0.97 define the metastable sets).

This set of 84 aggregated Viterbi paths is a coarse-grained description of the original time
series and encapsulates the dynamical information about the process of the conformation
change in the full 84-dimensional torsion angle space. In order to extract this information,
we have to construct the transition matrix state space of the combined Viterbi path of the
84 single aggregated Viterbi paths as explained above. The resulting transition matrices have
469 combined states (for metastability threshold 0.97 for the aggregation of the single Viterbi
paths) or 12567 combined states (for threshold 0.93). Figure 13 represents the dependence
of the resulting eigenvalues of these transition matrices as a function of the lag time τ (lag
time τ = lΔt means that the transition matrix counts l-step transitions between instances t
and t + lΔt along the given time series). Increasing τ means decreasing correlation between
successive time steps and therefore a more informative spectrum. As can be seen in both cases,
the first eigenvalue gap can always be identified after the first four dominant eigenvalues, which
indicates a presence of four metastable sets in 84-dimensional space of torsion angles (for a
more detailed level of description a choice of six or eight eigenvalues would be also reasonable).

In Figure 14 we compare the obtained global Viterbi path describing the transitions be-
tween the resulting four metastable states based on the small transition matrix (469 states)
with the results based on the larger transition matrix (12567 states). As can be seen from
the figure, the two global Viterbi paths are similar but not identical. The difference between
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Figure 13. Eigenvalues of the two global transition matrices as functions of the lag time τ along the
respective global Viterbi path. Right-hand panel: metastability threshold 0.97; left-hand panel: metastability
threshold 0.93.
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Figure 14. Different global Viterbi paths, with each resulting from the first four eigenvalues of the global
transition matrices based on two different metastability thresholds for the aggregation of the underlying 84 single
angle Viterbi paths as described in the text. Red: threshold value 0.93, resulting in 12567 combined states; blue:
threshold value of 0.97, resulting in 469 combined states.

them can be explained by the presence of transition states (i.e., states that lie between the
metastable states and are visited by the molecule during the transition from one metastable set
to the other). Repetition of the analysis of the two transition matrices based on six dominant
eigenvalues results in identification of these transition regions as additional metastable states.
Then, the two global Viterbi paths (with six metastable states each) are almost identical.

Global three-dimensional (3D) structures of the DNA molecule as calculated from the
mean configurations of the corresponding metastable states are presented in Figure 15.

4.4. Analysis via HMMSDE. We will now apply the HMMSDE procedure to a full 84-
dimensional torsion angle time series. Before doing this, one should decide which form of
local multidimensional SDE dynamics is adequate to describe the observed time series; the
biophysical literature indicates that we should distinguish between Langevin diffusion (SDE
in positions and momenta) and overdamped diffusion (SDE in positions only); see [25] for
details. The ratio of the decay rates of position and momentum autocorrelation functions
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1
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Figure 15. Average 3D geometry of the four mean configurations defined by the four metastable states
shown in Figure 14. The 3D geometry is illustrated by a string-like representation of the backbone. Numbers
denote the indices of metastable states as in Figure 14. Visualization is based on AMIRA software [2].

can indicate which of the models should be applied. This means that if the momentum auto-
correlation decays much faster than the position autocorrelation function, then overdamped
diffusion (also called Smolochowski dynamics) can be used to describe the observed data.
Applying this criterion to the DNA data, we deduce that for a time step of 1 picosecond
between observations the overdamped diffusion can be used such that we consequently use
local overdamped diffusion models of the form

ż(t) = F (q(t))(z − μ(q(t))) + Σ(q(t)) Ẇ (t),

where z just denotes the vector of torsion angles. As has been already mentioned above,
application of the EM-algorithm results in finding some local optimum of the log-likelihood
functional. This also means that we should try to select an initial set of parameters that is
“close” to the global maximum of (13): If the initial guess for the hidden probabilities νi(t) is
not “too far off” from the real probabilities (w.r.t. the global maximum), it will take only a
“few” EM-iterations to find the optimal set of parameters. Therefore we start HMMSDE with
four hidden states and initialize the EM-iteration and take the hidden probabilities νi(t) as
resulting from the Viterbi path computed via aggregated HMM (cf. Figure 14). As expected,
it takes just a dozen iterations to get convergence, resulting in a 4×4 transition matrix of the
hidden Markov chain; its spectrum is as shown in Figure 16.

Comparison of the resulting Viterbi path associated with the 84-dimensional HMMSDE
model to the Viterbi path of the aggregated HMM procedure demonstrates the similarity of
the metastable structures identified (see Figure 17).

In addition to the Viterbi path, HMMSDE also yields (optimal) estimators for the pa-
rameters of the local overdamped diffusion models (stiffness, equilibrium positions, and noise
intensity matrices). Due to the fact that the Viterbi paths in Figure 17 are very similar, the
mean configurations of the conformational states (denoted by μ in (8)) are also very close to
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Figure 16. Four largest eigenvalues of the transition matrix of the hidden Markov process for full-dimension
HMMSDE (blue crosses) in comparison to those of aggregated HMM (metastability threshold 0.93, red circles).
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Figure 17. Viterbi path resulting from full-dimension HMMSDE in comparison to the global Viterbi path
resulting from aggregated HMM as of the previous section, with each resulting from the first four eigenvalues
of the transition matrices (metastability threshold 0.93 for aggregated HMM). Red: full-dimension HMMSDE;
blue: aggregated HMM.

those resulting from aggregated HMM as already shown in Figure 15. Closer inspection of the
resulting stiffness matrices allows us to get additional insights into physical properties of the
four resulting conformations. The stiffness matrices associated with each of the conformations
are shown in Figures 18–21. All four matrices are block-banded: we observe rather strong
couplings between neighboring torsion angles in the same strain, weaker coupling between
neighboring angles on opposed strains, and almost zero interaction between the angles not
directly adjacent to each other. The stiffness matrices are also periodic along the main diago-
nal and the subdiagonals. This feature can be explained by the periodicity of the underlying
DNA sequence. Finally, comparison among the individual stiffness matrices shows that the
first conformation is the “most stiff” one, whereas the three other conformations have “loose
spots” that correspond to the locations where transitions between the conformations take
place.

When repeating the entire HMMSDE analysis with different initial values for the EM and
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Figure 18. Optimal estimate for the stiffness matrix F of the first conformation as resulting from full-
dimension HMMSDE. For details of its computation, see text.
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Figure 19. Optimal estimate for the stiffness matrix F of the second conformation as resulting from
full-dimension HMMSDE. For details of its computation, see text.

Viterbi algorithms, we observe convergence to very similar results, even if the initial values
are quite different from the ones taken above (however, in some cases the number of iterations
increases significantly).
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Figure 20. Optimal estimate for the stiffness matrix F of the third conformation as resulting from full-
dimension HMMSDE. For details of its computation, see text.
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Figure 21. Optimal estimate for the stiffness matrix F of the fourth conformation as resulting from full-
dimension HMMSDE. For details of its computation, see text.

5. Conclusion. We have presented a variety of algorithmic concepts for the identification
of metastable states in dynamical systems. Possible strategies for application to very complex
metastable systems, and the performance of the resulting algorithms have been demonstrated
by analyzing a full-scale MD simulation of a poly-(AT) B-DNA oligomer.

In regard to the algorithmic aspects, our conclusion is that for realistically large simulations
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of biomolecules it is not practical to compute explicitly the full discretized transfer operator
in Cartesian coordinates. This is due to the curse of dimensionality. In contrast, aggregated
HMM and HMMSDE methods applied to a reduced time series with sharp transitions (the
backbone time series in the DNA example) can identify the metastable sets.

Our results show that the backbone dynamics of B-DNA exhibit metastable behavior
(visible in both base pair and torsion angles representations of the dynamics) on nano- to
microsecond time scales, and that this metastability might be sequence-dependent and of
importance for macroscopic modeling of B-DNA elasticity and dynamics. Most specifically
the average values of AT and TA base pair parameters are quantified and confirmed to be quite
distinct. In addition, the values of these averages are shown to depend upon the particular
metastable set of the oligomer.

On a less positive note, it is apparent that the simulation time scale of a few hundred
nanoseconds is much too short to compute transition probabilities for the backbone accurately,
i.e., to analyze quantitatively the possible sequence dependence of backbone conformation
transitions. Most specifically, the trajectory we have computed is demonstrably not ergodic.
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[18] A. Fischer, F. Cordes, and C. Schütte, Hybrid Monte Carlo with adaptive temperature in a mixed-

canonical ensemble: Efficient conformational analysis of RNA, J. Comput. Chem., 19 (1998), pp.
1689–1697.

[19] A. Fischer, S. Waldhausen, I. Horenko, E. Meerbach, and Ch. Schütte, Identification of
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[24] I. Horenko, E. Dittmer, and Ch. Schütte, Reduced stochastic models for complex molecular systems,
Comput. Vis. Sci., 9 (2006), pp. 89–102.
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On the Families of Periodic Orbits of the Sitnikov Problem∗
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Abstract. The main goal of this paper is to study analytically the families of symmetric periodic orbits of the
elliptic Sitnikov problem for all values of the eccentricity in the interval [0, 1), providing qualitative
and quantitative information on the bifurcation diagram of such families of periodic orbits. The basic
tool for proving our results is the global continuation method of the zeros of a function depending
on one parameter provided by Leray and Schauder and based in the Brouwer degree.
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1. Introduction. The Sitnikov problem is a special case of restricted 3-body problems
where the two primaries with equal masses are moving in a circular or an elliptic orbit of the
2-body problem, and the infinitesimal mass is moving on the straight line orthogonal to the
plane of motion of the primaries which passes through their center of mass.

When the orbit described by the primaries is circular the Sitnikov problem is known
as the circular Sitnikov problem. In 1907 Pavanini [33] expressed its solutions by means of
Weierstrassian elliptic functions. Four years later MacMillan [26] expressed the solutions
in terms of Jacobian elliptic functions (a detailed description of this work can be found in
Stumpff [38]). Some other analytical expressions for the solutions of this problem can be
found, for instance, in [39], [5], [42], [17], and [20]. The precise definition of the Sitnikov
problem is given in section 2.

The elliptic Sitnikov problem is the case when the orbit describing the primaries is elliptic.
This problem became important in 1960 when Sitnikov [37] used it to show, for the first time,
the possibility of the existence of oscillatory motions in the 3-body problem. The existence of
this kind of motion was predicted by Chazy [8], [9], [10] in 1922–1932, when he classified the
final evolutions of the 3-body problem. Later on Alekseev [2], [3], [4] in 1968–1969 proved that,
in the special case of the 3-body problem studied by Sitnikov, all of the possible combinations
of final motions in the sense of Chazy were realized. Moser [32] in 1973 gave alternative
proofs of the results of Alekseev which are simpler than those in [2], [3], [4]. Since then many
other authors have studied the circular or elliptic Sitnikov problem—for instance, Llibre and
Simó [24], Perdios and Markellos [34], Liu and Sun [21], Hagel [18], Hagel and Trenkler [19],
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Martinez-Alfaro and Chiralt [28], Dvorak [16], Kallrath, Dvorak, and Schlöder [23], Wodnar
[40], [41], [42], and Dankowicz and Holmes [15].

The families of symmetric periodic orbits of the elliptic Sitnikov problem have been studied
by several authors. These works assume sufficiently small values of the eccentricity and obtain
the periodic solution by continuing the known periodic orbit of the circular Sitnikov problem.
There are analytic studies by Corbera and Llibre [12], [13], using the analytical continuation
method of Poincaré, and Cabral and Xia [7], applying the subharmonic Melnikov method.
There are also numerical studies by Belbruno, Llibre, and Ollé [5] and Jiménez-Lara and
Escalona-Buend́ıa [22]. In this last paper the authors describe numerically some families of
symmetric periodic orbits for almost all values of the eccentricity e in [0, 1).

The main objective of this paper is to study analytically the families of symmetric periodic
orbits of the elliptic Sitnikov problem for nonnecessarily small values of the eccentricity e.
More precisely, we will show that some periodic orbits for e = 0 can be continued to all values
of e in [0, 1). In Theorems 3.1, 3.2, and 3.3 are the statements of our main results.

The main tool for proving our results is the global continuation of the zeros of a function
depending on one parameter provided by Leray and Schauder and based in the Brouwer degree;
see section 4. In section 5 we show that, with convenient formulation, the Sitnikov problem
satisfies the basic assumptions of the global continuation theorem. In section 6 we study
the dynamics around the unique equilibrium point of the Sitnikov problem. This equilibrium
point corresponds to one of the three collinear relative equilibrium solutions of Euler for the
general 3-body problem; see section 2 for more details. Finally, in section 7 we provide the
last steps in the proofs of Theorems 3.1, 3.2, and 3.3.

The use of the global continuation techniques in the study of nonlinear boundary value
problems is classical. We refer the reader to [36] for recent results applicable to general classes
of nonlinearities. In another context we should also mention the paper [29] by Mathlouthi.
He studies the Sitnikov problem with variational techniques and obtains results about the
existence of periodic solutions which are global in the sense that they are valid for arbitrary
eccentricity. The use of continuation methods will allow us to obtain many continuous families
and to be more precise about the oscillatory properties of the solutions.

2. The Sitnikov problem. Let m1 = m2 be two point masses (called primaries) describing
a circular or an elliptic orbit of the 2-body problem. We consider an infinitesimal mass m3

that moves on the straight line ρ orthogonal to the plane of motion of the primaries that passes
through their center of mass. The Sitnikov problem will consist of describing the motion of the
infinitesimal mass. In particular, if the primaries are moving in circular (respectively, elliptic)
orbits, we have the circular (respectively, elliptic) Sitnikov problem.

We choose the units of mass, length, and time so that m1 = m2 = 1/2, the gravitational
constant G = 1, and the period of the orbit described by the primaries is 2π. If z denotes the
position of the particle m3 in a coordinate system on ρ with origin at the center of mass of
the primaries (see Figure 1), then the equation of motion of the Sitnikov problem becomes

(2.1) z̈ = − z

(z2 + r2(t, e))3/2
,

where r(t, e) is the distance of the primaries to their center of mass and it is given by
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Figure 1. The Sitnikov problem.

(2.2) r(t, e) =
1

2
(1 − e cosu(t)),

which is a circular or an elliptic solution of the Kepler problem

(2.3) r̈ =
1 − e2

16 r3
− 1

8 r2
,

with eccentricity e = 0 or 0 < e < 1, respectively. Here u(t) is the eccentric anomaly which is
a function of time via the Kepler equation

(2.4) u− e sinu = t− �,

with � the time of pericenter passage.

Without loss of generality, when 0 < e < 1, we usually take the origin of time in such a
way that at t = 0 the primaries are at the pericenter of the ellipse (i.e., � = 0).

We note that system (2.1) depends on one parameter, the eccentricity e ∈ [0, 1).

When the eccentricity e is zero (that is, the primaries move on the circular orbit r(t) = 1/2
of the Kepler problem (2.3)), (2.1) becomes the equation of motion

(2.5) z̈ = − z

(z2 + 1/4)3/2

for the circular Sitnikov problem. This equation defines an integrable Hamiltonian system of
one degree of freedom with Hamiltonian

(2.6) H =
1

2
v2 −

(
z2 +

1

4

)−1/2

,
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Figure 2. The circular Sitnikov phase portrait.

where v = ż.

The orbits for the circular Sitnikov problem in the energy level h are described by the
curve H = h, where h varies in [−2,∞). Then, depending on the value of h, we have different
types of orbits in the phase space (z, v) (see Figure 2):

(1) when h < −2 we have no orbits;
(2) when h = −2 we have the equilibrium point (z = 0, v = 0) or equivalently the

trivial solution z(t) ≡ 0, which correspond to one of the well-known collinear relative
equilibrium solutions of Euler for the 3-body problem (see, for instance, [1]);

(3) when −2 < h < 0 we have periodic orbits;
(4) when h = 0 we have two parabolic orbits (i.e., two orbits that leave and reach infinity

with zero velocity);
(5) when h > 0 we have two hyperbolic orbits (i.e., two orbits that leave and reach infinity

with positive velocity).

If the eccentricity e ∈ (0, 1), then differential equation (2.1) corresponds to the elliptic
Sitnikov problem. We note that this differential equation is nonautonomous; i.e., the time
appears explicitly in the right-hand side of (2.1) through r(t, e). Moreover, r(t, e) is a periodic
function in t of minimal period 2π. Consequently all periodic solutions (z(t), ż(t)) of (2.1)
with e ∈ (0, 1) must have period a multiple of 2π. Hence, all periodic orbits of the infinitesimal
mass m3 for the elliptic Sitnikov problem are also periodic orbits involving the three masses.
Of course, in general, this was not the case for the circular Sitnikov problem.

3. Statement of the main results. Given an integer N ≥ 1, we define

ν = νN = [2
√

2N ],

where [·] denotes the integer part function. Our main result is the following.

Theorem 3.1. For each p = 1, . . . , ν and ε > 0 there exists a family (or a branch) of
solutions {(zs(t), es)}s∈[0,1) of (2.1) satisfying the following:

(1) The map (s, t) ∈ [0, 1) × R → (zs(t), żs(t), es) is continuous.
(2) The solutions zs(t) are even and 2Nπ-periodic; i.e., for all s ∈ [0, 1) we have

zs(−t) = zs(t), zs(t + 2Nπ) = zs(t).
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Figure 3. Families of periodic orbits.

(3) For each s ∈ [0, 1) we have that zs(0) > 0 (hence, the solution zs(t) is nontrivial; i.e.,
zs(t) �≡ 0), and zs(t) has exactly p zeros in the interval [0, Nπ].

(4) e0 = 0, es ∈ [0, 1 − ε] for each s and one of the following alternatives holds:
(4.a) es → 1 − ε and zs(0) → ξ > 0 as s ↗ 1;
(4.b) lims↗1 es = E exists with E < 1− ε, zs(t) converges to 0 as s ↗ 1, and the linear

differential equation

ÿ +
1

r(t, E)3
y = 0

has a nontrivial, even, 2Nπ-periodic solution with exactly p zeros in the interval
[0, Nπ].

Just to illustrate the theorem we sketch a hypothetical situation in Figure 3. For a fixed
N ≥ 2 we take three numbers 1 ≤ p1 < p2 < p3 ≤ ν and draw the sets A1, A2, A3 defined by

Ai = {(z(0), e) : z(t) is an even 2Nπ-periodic solution

with pi zeros in [0, Nπ], z(0) > 0, e ∈ [0, 1 − ε]}.

For p1 (respectively, p3) one finds a family satisfying (4.a) (respectively, (4.b)). For p2

both alternatives are possible.
The following result provides additional information about Theorem 3.1.
Theorem 3.2. The following statements hold.
(1) If p < N , then statement (4.a) of Theorem 3.1 holds.
(2) If p ≥ N , ρN < 1 − ε, and statement (4.b) of Theorem 3.1 holds, then E > ρN with

ρN = min

{
2

(
N

ν

)2/3

− 1, 1 − 2

(
N

ν + 1

)2/3
}
.



566 JAUME LLIBRE AND RAFAEL ORTEGA

We note that statement (1) of Theorem 3.2 provides families which can be globally contin-
ued to the whole interval of eccentricities [0, 1−ε]. In the case N/p ≤ 1, we do not know if the
continued family is defined or not in the whole interval [0, 1) but statement (2) of Theorem 3.2
gives us an estimation of the size of the interval of eccentricities where it can be extended.
Another consequence of the previous result is the existence of even solutions with minimal
period 2Nπ, N ≥ 2, for arbitrary eccentricity. It is sufficient to consider the global family
associated to p = 1. A similar result was obtained in [29]. After adapting Theorem 2 and
Corollary 3 of that paper to our notation, one obtains the existence of odd periodic solutions
with minimal period 2Nπ, N ≥ 2.

Finally, we are going to compare two different families of solutions. Given positive integers
M,N, p, q, 1 ≤ p ≤ νN , and 1 ≤ q ≤ νM , we denote by {(zs, es)} and {(z∗s , e∗s)} the families
given by Theorem 3.1 for the couples (p,N) and (q,M), respectively.

Theorem 3.3. Using the previous notation we assume that M/q > N/p.

(1) The sets {(zs(0), es) : s ∈ [0, 1)} and {(z∗s (0), e∗s) : s ∈ [0, 1)} do not intersect.
(2) If statement (4.a) of Theorem 3.1 holds for {(zs, es)}, then the same is true for

{(z∗s , e∗s)}.
(3) If statement (4.b) of Theorem 3.1 holds for {(z∗s , e∗s)} with E∗ = lims↗1 e

∗
s, then the

same is true for {(zs, es)} with E = lims↗1 es ≤ E∗.

4. Global continuation in the sense of Leray–Schauder. Given an open and bounded
subset Ω of R

d and a function f : Ω → R
d which is continuous and does not vanish on the

boundary of Ω (i.e., f(x) �= 0 for all x ∈ ∂Ω), we can define the Brouwer degree

deg(f,Ω),

sometimes denoted by deg(f,Ω, 0). As usual, Ω denotes the closure of Ω in R
d. There are

several equivalent ways to define this degree, and we refer the reader to [25], [30] for more
details. For completeness we sketch Nagumo’s definition. First we assume that f is of class
C1 and has a finite number of zeros x1, . . . , xn ∈ Ω with det f ′(xi) �= 0 for each i. Then

deg(f,Ω) =
n∑

i=1

sign det f ′(xi).

Now, given an arbitrary continuous function f , we approximate it by functions fk in the
previous conditions and define

deg(f,Ω) = lim
k→∞

deg(fk,Ω).

Given x0 ∈ Ω a zero of f (i.e., f(x0) = 0), if it is isolated in the set of zeros, then we can
define the Brouwer index of the zero by

ind(f, x0) = deg(f, U),

where U is a small neighborhood of x0. This definition is correct because x0 is isolated and
the degree has the property of excision.
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An important property of the degree is its invariance by homotopy. We now state a
generalized version where the domain changes with the parameter. It can be found in several
papers and books on degree theory, but it is already in [25] (see Lemma 3 of that paper).

Let A be a subset of R
d × [a, b]. If we denote by (x, λ) the points of R

d × [a, b], then we
define

Aλ∗ = {λ = λ∗} = {(x, λ) ∈ A : λ = λ∗}.
Lemma 4.1. Let U be an open and bounded subset of R

d × [a, b] and f : U → R
d be

continuous and such that f(x, λ) �= 0 for all (x, λ) ∈ ∂U . Then deg(fλ, Uλ) is independent of
λ, where fλ(x) = f(x, λ).

We remark that Uλ can be empty for some λ in that case, by Lemma 4.1, the degree is 0.
We conclude these preliminary remarks stating some properties of continua.
Lemma 4.2. Assume that X is a metric space, K ⊂ X is a compact set, and A,B ⊂ K

are compact sets such that there is no subcontinuum of K connecting A and B. Then there is
an open subset U of X satisfying A ⊂ U , B ∩ U = ∅, K ∩ ∂U = ∅.

Lemma 4.2 or a similar result is employed very often in papers on global bifurcation. See,
for instance, [35] and [30].

The next result is stated as a remark after the Théorème Fondamental in [25]. Actually,
the result in [25] is more general because it works in infinite dimensions for a compact map.
We will review the proof of [25]. See also [35] and [30].

Theorem 4.3. Let F : R
d × [a, b] → R

d be continuous, and Z = {(x, λ) : F (x, λ) = 0} be
the set of zeros of F . Assume that

(H1) Z is bounded, and
(H2) the set Za is finite and there is (x0, a) ∈ Za with ind(Fa, x0) �= 0.

Let C be the connected component of Z containing (x0, a). Then one of the following alter-
natives holds:

(a) C ∩ {λ = b} �= ∅.
(b) There exists (x1, a) ∈ Za, x1 �= x0, such that (x1, a) ∈ C.
Proof. Consider the metric space X = R

d×[0, 1] and the set K = Z. The assumption (H1)
implies that K is compact. Define

A = {(x0, a)}, B = (Z0 \A) ∪ {(x, b) : |x| ≤ M},

where M is a large constant so that Z is included in |x| < M . If neither (a) nor (b) holds,
then there is no subcontinuum of Z meeting A and B. We find U an open subset of X such
that

{(x0, a)} = Ua ∩ Z, Ub = ∅, Z ∩ ∂U = ∅.
By Lemma 4.1, the deg(Fλ, Uλ) is independent of λ. Since Ub = ∅, this degree must be zero.
On the other hand, by (H2) we have

deg(Fa, Ua) = ind(Fa, xa) �= 0.

This contradiction shows that (a) or (b) must hold.
In general, the continuum C can be rather pathological; however, there is a special case

in which one can guarantee that C is arcwise connected. In this case there are arcs joining all
points of C, and this corresponds to the usual idea of continuation.
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Theorem 4.4. Under the assumptions of Theorem 4.3 suppose that d = 1 and F is real and
analytic. Then, there is a continuum arc α : [0, 1] → Z, α(s) = (x(s), λ(s)) with x(0) = x0,
λ(0) = a such that either λ(1) = b or λ(1) = a and x(1) �= x0.

Many results on the effect of analyticity on global continuation can be seen in [14] and [6].
The local structure of the set of zeros of F (x, λ) = 0 says that C is locally arcwise connected.
Since C is, by definition, connected, we conclude that C is arcwise connected.

5. Periodic solutions of the Sitnikov problem. Equation (2.1) is the equation of motion
for the Sitnikov problem, where e ∈ [0, 1) is the eccentricity and r(t, e) is the distance of the
primaries to its center of mass. The eccentric anomaly u(t) satisfies

u(t + 2π) = u(t) + 2π, u(−t) = −u(t),

and so, by (2.2) and (2.4), r(t, e) is an even and 2π-periodic function.

Given an integer N ≥ 1, we shall be interested in even, 2Nπ-periodic solutions of (2.1).
They satisfy the boundary conditions

(5.1) ż(0) = ż(Nπ) = 0.

Let ϕ(t; ξ, e) be the solution of (2.1) satisfying

z(0) = ξ, ż(0) = 0.

This is a real analytic function in the arguments (t; ξ, e) ∈ R × R × [0, 1). Notice that these
solutions are globally defined in (−∞,+∞) because the nonlinearity in (2.1) is bounded. We
define

FN : R × [0, 1) → R, FN (ξ, e) = ϕ̇(Nπ; ξ, e).

The research of even 2Nπ-periodic solutions of (2.1) satisfying (5.1) is equivalent to the study
of the equation

FN (ξ, e) = 0.

We want to apply Theorem 4.4 to FN , and so we must verify its assumptions.

Toward assumption (H1). We first consider the circular Sitnikov problem

z̈ = − z

(z2 + R2)3/2

for some R > 0. Let ψ(t; ξ) be its solution satisfying

z(0) = ξ, ż(0) = 0, (ξ > 0).

Then, ψ(t; ξ) is periodic with minimal period T (ξ) > 0, limξ→+∞ T (ξ) = +∞, and

0 < ψ(t; ξ) < ξ, ψ̇(t, ξ) < 0 if t ∈
(

0,
T (ξ)

4

)
.

Fix ξ∗ > 0 such that T (ξ) > 4Nπ if ξ ≥ ξ∗.
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Proposition 5.1. Assume that r(t, e) ≥ R for all t, and let ϕ(t; ξ, e) be a solution of (2.1)
satisfying (5.1). Then |ξ| ≤ ξ∗.

Proof. The equation of motion (2.1) is invariant under the symmetry (z, t) → (−z,−t).
Therefore, we can assume that ϕ(0; ξ, e) = ξ > 0. Note that one can deduce from the equation
that ξ is a local maximum of ϕ(t; ξ, e). Also, by integrating the equation between 0 and Nπ,
one deduces that ϕ(t; ξ, e) changes sign in this interval. Let τ > 0 be the first zero of ϕ(t; ξ, e)
in [0, Nπ]. We must have

ϕ̇(t; ξ, e) < 0 for t ∈ (0, τ).

Otherwise, two consecutive critical points of ϕ(t; ξ, e) should be maxima.

Set ϕ = ϕ(t) = ϕ(t; ξ, e). For t ∈ (0, τ) we have

d

dt

(
1

2
ϕ̇2 − 1

(ϕ2 + R2)1/2

)
= ϕ̇

(
− ϕ

(ϕ2 + r2)3/2
+

ϕ

(ϕ2 + R2)3/2

)
≤ 0,

and consequently
1

2
ϕ̇2 − 1

(ϕ2 + R2)1/2
≤ − 1

(ξ2 + R2)1/2
.

For t ∈ (0, τ), ϕ is a solution of the differential inequality

ϕ̇ ≥ −
√

2

(
1

(ϕ2 + R2)1/2
− 1

(ξ2 + R2)1/2

)1/2

.

For t ∈
(
0, T (ξ)

4

)
, ψ(t) = ψ(t; ξ) satisfies the associated differential equation. In fact, ψ(t)

is the minimal solution of

ẋ = −
√

2

(
1

(x2 + R2)1/2
− 1

(ξ2 + R2)1/2

)1/2

, x(0) = ξ.

Therefore, the theory of differential inequalities implies that

ϕ(t) ≥ ψ(t) if 0 ≤ t ≤ min

{
τ,

T (ξ)

4

}
.

From here we conclude that τ ≥ T (ξ)/4. Thus Nπ > τ ≥ T (ξ)/4, and so ξ < ξ∗.
The previous proposition allows us to verify (H1) in each strip of the type R× [0, E] with

E < 1. In fact, if e ∈ [0, E], then r(t, e) ≥ (1 − E)/2, and we can apply the previous result
with R = (1 − E)/2.

Toward assumption (H2). We want to study the zeros of FN (·, 0). This is equivalent to
studying the solutions of

(5.2) z̈ = − z

(z2 + 1
4)3/2

, ż(0) = ż(Nπ) = 0.

As we already mentioned, the solutions ϕ(t; ξ, 0) are periodic with minimal period T (ξ), and
T (ξ) is an increasing function in ξ; see [5].



570 JAUME LLIBRE AND RAFAEL ORTEGA

By the symmetry, ϕ(t; ξ, 0) with ξ �= 0 is a solution of the boundary problem (5.2) if and
only if there is an integer p ≥ 1 such that T (ξ)/2 = Nπ/p.

Since inf T (ξ) = π/
√

2 (see [5]), we have 2Nπ/p > π/
√

2, and consequently p < 2
√

2N .
Define ν = νN = [2

√
2N ], and let ξ1 > · · · > ξν > 0 be the solutions of T (ξ)/2 = Nπ/p with

p = 1, . . . , ν. Then

(5.3) Z0 = {−ξ1, . . . ,−ξν , 0, ξν , . . . , ξ1}.

We compute the indices. Since T = T (ξ) is increasing, we have that

ϕ̇(Nπ; ξ, 0) > 0 if ξ < ξ1 close to ξ1,

ϕ̇(Nπ; ξ, 0) < 0 if ξ > ξ1 close to ξ1.

From here, ind(FN (·, 0), ξ1) = −1. In general,

(5.4) ind(FN (·, 0), ξp) = (−1)p.

The indices for −ξp can be computed using the symmetry. We also compute the index
at 0, although this information will not be employed in the rest of the paper. We do it by
linearization; i.e.,

ind(FN (·, 0), 0) = sign

(
∂FN

∂ξ
(0; 0)

)
.

We note that ∂FN
∂ξ (0; 0) = ẏ(Nπ), where y(t) is the solution of the variational problem

ÿ + 8y = 0, y(0) = 1, ẏ(0) = 0.

So, we have

ind(FN (·, 0), 0) = sign
(
− sin(2

√
2Nπ)

)
= (−1)ν+1.

To sum up: for e = 0 there exist ν = νN = [2
√

2N ] nontrivial, even, and 2Nπ-periodic
solutions of (5.2) with z(0) > 0. They can be labeled by the number of zeros of z(t) in [0, Nπ]
for p = 1, . . . , ν and

ϕ1(0) = ξ1 > · · · > ϕν(0) = ξν .

Moreover, the index of each of these solutions, ind(FN (·, 0), ξp), is ±1.
We summarize our knowledge of the set Z. We have the trivial continuum z = 0, e ∈ [0, 1).

Also, we have the solutions (ξi, 0). Since the index is different from zero, there is at least a
local branch emanating from them. Finally, we know that Z can only blow up as e ↑ 1.
We want to study the possible collisions of the branches emanating from ξi with the trivial
continuum. To this end we linearize around z = 0.

6. Linearization around the equilibrium. The main objective of this section is to prove
the next result.

Theorem 6.1. Consider the boundary value problem

(6.1) ÿ +
1

r(t, e)3
y = 0, ẏ(0) = ẏ(Nπ) = 0.
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Then, there exists a sequence {En,N}n≥1 satisfying 0 < E1,N < · · · < En,N < · · · < 1,
converging to 1, and such that there is a nontrivial solution of (6.1) if and only if e = En,N .
Moreover, E1,N > ρN (ρN was defined in statement (2) of Theorem 3.2), and the solution
yn corresponding to En,N has a number of zeros in [0, Nπ] which becomes arbitrarily large as
n ↑ ∞.

The linear differential equation (6.1) has been studied in detail in [28], and most of the
statements above follow from their results. There is an alternative way of studying this
equation. In fact, the change of the independent variable u− e sinu = t transforms (6.1) into

(1 − e cosu)
d2y

du2
− e sinu

dy

du
+ 8y = 0.

Here we have used (2.2). This is a particular case of the so-called Ince’s equation (see [27]),
which has been studied by several authors. In particular, the techniques of [31] can probably
be employed for the effective computation of the numbers En,N .

Let y(t; e) be the solution of the equation appearing in (6.1) which satisfies y(0) = 1,
ẏ(0) = 0. We study the zeros of ẏ(Nπ, e) = 0.

Proposition 6.2. If e ≤ ρN , then ẏ(Nπ, e) �= 0.
To prove Proposition 6.2 we need the following result, which is a well-known consequence

of Sturm comparison theory (see [11] for more details).
Lemma 6.3. Assume that a(t) is continuous, is 2Nπ-periodic, and for some n ≥ 0 satisfies( n

N

)2
≤ a(t) ≤

(
n + 1

N

)2

for all t ∈ R,

and that both inequalities are strict somewhere. Then, ÿ + a(t)y = 0 has no 2Nπ-periodic
solutions (excepting y ≡ 0).

In our case, if e ≤ ρN , since (1 − e)/2 ≤ r(t, e) ≤ (1 + e)/2, we have( ν

N

)2
≤ 8

(1 + e)3
≤ 1

r(t, e)3
≤ 8

(1 − e)3
≤

(
ν + 1

N

)2

.

Now, from Lemma 6.3, Proposition 6.2 follows.
Proposition 6.4. The number of zeros of y(t; e) in (0, Nπ) tends to infinity as e ↑ 1.
Proof. First, we notice that r(t, e) can be extended to e = 1. This extension is continuous

in both variables and, in particular, r(·, e) converges uniformly to r(·, 1) as e ↑ 1. Also, from
u− sinu = t (e = 1), we deduce that u(t, 1) = (6t)1/3a(t), where a is continuous and a(0) = 1.
Next

r(t, 1) =
1

2
(1 − cosu(t, 1)) = sin2 u(t, 1)

2
=

62/3

4
t2/3b(t),

with b continuous and b(0) = 1. Thus,

1

r(t, 1)3
=

16

9t2b(t)3
.

Let us fix a number γ in the interval (1/4, 16/9). For Δ > 0 small enough,

1

r(t, 1)3
>

γ

t2
, t ∈ (0,Δ].
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Consider the Euler equation ÿ+ γ
t2
y = 0. The solutions have infinitely many zeros accumulating

at t = 0 because γ > 1/4. This can be checked by direct integration. Now, given an arbitrary
m ≥ 1, we can find δ ∈ (0,Δ) such that the solutions of this Euler equation have at least
m + 1 zeros in the interval (δ,Δ). Since r(·, e) converges uniformly to r(·, 1), it is possible to
find e� < 1 such that

1

r(t, e)3
>

γ

t2
, t ∈ [δ,Δ], e ∈ [e�, 1].

By Sturm comparison theory, y(t, e) will have at least m zeros in [δ,Δ].
Proof of Theorem 6.1. Changing (6.1) to polar coordinates y = ρ cos θ, ẏ = ρ sin θ,

ẏ(Nπ, e) = 0 becomes equivalent to θ(Nπ, e) ∈ πZ. The angle θ(t, e) satisfies

θ̇ = − 1

r(t, e)3
cos2 θ − sin2 θ.

Thus, θ(t, e) is decreasing in t. When e is close to 1, θ(t, e) ∈ π/2 + Zπ for more and more
positive t’s in [0, Nπ]. This implies that

θ(Nπ, e) = inf
t∈[0,Nπ]

θ(t, e) → −∞

as e ↑ 1. The function e ∈ [0, 1) �−→ θ(Nπ, e) is analytic and lime↑1 θ(Nπ, e) = −∞. The
numbers En,N are the solutions of θ(Nπ, e) ∈ Zπ.

7. The conclusion. We need the following two lemmas.
Lemma 7.1. Let (zn(t), en) be a sequence of solutions of (2.1) satisfying żn(0) = żn(Nπ) =

0, zn(0) → 0, zn(0) �= 0, en → e0 < 1. Then, the number of zeros of zn(t) in [0, Nπ] coincides,
for large n, with the number of zeros in the same interval of the nontrivial solutions of

ÿ +
1

r(t, e0)3
y = 0.

In particular, e0 = En,N for some n.
Proof. By continuous dependence, zn(t) → 0 uniformly in [0, Nπ]. Define vn(t) =

zn(t)/zn(0). It satisfies

v̈n +
1

(zn(t)2 + r(t, en)2)3/2
vn = 0, vn(0) = 1, v̇n(0) = 0.

Again, by continuous dependence vn(t) converges in C1[0, Nπ] to the solution y(t) of

ÿ +
1

r(t, e0)3
y = 0, y(0) = 1, ẏ(0) = 0.

Since v̇n(0) = v̇n(Nπ) = 0, we have ẏ(0) = ẏ(Nπ) = 0. Thus, all the zeros of y(t) in [0, Nπ]
are in its interior. Since vn → y, v̇n → ẏ uniformly, and all the zeros of y(t) are nondegenerate
(i.e., y(τ) = 0 and ẏ(τ) �= 0), for large n we deduce that vn(t) and y(t) have the same number
of zeros.

Lemma 7.2. Let {xλ(t)}λ∈[0,1] be a family of functions in C1[0, T ] satisfying the following:
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(i) xλ(0) �= 0, xλ(T ) �= 0 for all λ ∈ [0, 1].
(ii) The zeros of xλ are nondegenerate (i.e., xλ(t)

2 + ẋλ(t)
2 > 0 everywhere).

(iii) The map (t, λ) ∈ [0, T ] × [0, 1] �−→ (xλ(t), ẋλ(t)) is continuous.
Then, the number of zeros of xλ in [0, T ] is independent of λ.

Proof. The lemma follows from the fact that the number of zeros is locally constant. This
is easy because functions which are C1 close and have nondegenerate zeros have the same
number of zeros.

Proof of Theorem 3.1. From the discussions of section 5 we know that searching for z(t),
even and 2Nπ-periodic solution of (2.1), is equivalent to finding a root of the equation

FN (z0, e) = 0 (z0 = z(0)).

In this way we are lead to the framework of section 4 and we shall apply Theorem 4.4 with
F = FN . The parameter λ is now the eccentricity and [a, b] = [0, 1 − ε]. Let us check that
(H1) and (H2) hold. The first condition follows from Proposition 5.1 and the discussion after
its proof. To deal with (H2) we recall the information obtained in section 5 about the set Z0,
as given by (5.3). There is a unique ξp ∈ Z0 ∩ (0,∞) with T (ξp)/2 = Nπ/p. Here we are
using p ≤ ν. We know from (5.4) that the index of FN (·, 0) at ξp is different from zero and so
(H2) holds for x0 = ξp. At this moment it is important to observe that the solution of (2.5)
with z(0) = ξp, ż(0) = 0 is even and 2Nπ-periodic and has exactly p zeros in [0, Nπ]. From
Theorem 4.4 we infer the existence of a continuous family {(ξ(s), es)}s∈[0,1] in R × [0, 1 − ε]
such that

FN (ξ(s), es) = 0, ξ(0) = ξp, e0 = 0,

and either

(7.1) e1 = 1 − ε

or

(7.2) e1 = 0, ξ(1) �= ξp.

Let zs(t) denote the solution of (2.1) for e = es which satisfies zs(0) = ξ(s), żs(0) = 0. The
family {(zs(t), es)}s∈[0,1] satisfies conditions (1) and (2) of Theorem 3.1, but there are no
a priori reasons to suppose that it also satisfies (3). We distinguish two cases.

Case 1. zs(0) > 0 for all s ∈ [0, 1].
Lemma 7.2 implies that zs(t) has p zeros in [0, Nπ] for each s ∈ [0, 1]. This proves that

(3) also holds. Assuming now that the first alternative (7.1) holds, we arrive at the searched
family satisfying (4.a). The second alternative (7.2) cannot occur, for otherwise e1 = 0 and
ξ(1) �= ξp. Then, since ξ(1) belongs to Z0 ∩ (0,∞), we deduce that ξ(1) = ξq for some q �= p.
This would imply that z1(t) has q zeros in [0, Nπ], a situation which would be incompatible
with (3).

Case 2. zs(0) vanishes for some s ∈ [0, 1].
Let σ ∈ (0, 1] be the first zero of zs(0), so that

zs(0) > 0 if s ∈ [0, σ), zσ(0) = 0.
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The family {(ẑs, ês)}s∈[0,1), with ẑs = zsσ and ês = esσ, satisfies (3). Again Lemma 7.2 has
been used. The definition of σ implies that lims→1− ês = eσ ∈ [0, 1−ε] and ẑs(t) converges to 0
as s → 1−. Finally, we apply Lemma 7.1 to conclude that eσ = En,N for some n. Moreover,
nontrivial solutions of (6.1) for e = eσ must have p zeros in [0, Nπ]. In this way we have
constructed a family satisfying (4.b), and the theorem is proven.

Proof of Theorem 3.2. Since r(t, es) < 1 everywhere, we can apply the Sturm comparison
theory to the equation appearing in (6.1) and to ÿ + y = 0, to deduce that the solutions of
(6.1) must have at least N zeros in the interval [0, Nπ]. So, if p < N , statement (4.b) does
not hold. Therefore, statement (1) of Theorem 3.2 is proved.

If e ≤ ρN , Proposition 6.2 says that (6.1) has no periodic solutions different from the
trivial one. So, statement (2) of Theorem 3.2 follows.

Proof of Theorem 3.3. We shall prove statement (1) by contradiction. Assume the exis-
tence of σ ∈ [0, 1) such that zσ(0) = z∗σ(0) and eσ = e∗σ. Since we know that żσ(0) = ż∗σ(0) = 0,
by uniqueness, zσ and z∗σ are the same periodic solution. This solution has periods 2πM and
2πN , having q zeros in [0,Mπ] and p zeros in [0, Nπ]. Let 2πs be the minimal period of this
solution. Then, there are integers m1 and m2 such that sm1 = M and sm2 = N . Let r be
the number of zeros of zσ in [0, sπ]. Therefore, m1r = q and m2r = p. So, M/q = N/p, which
is a contradiction. Consequently, statement (1) is proved.

Statements (2) and (3) follow from (1) and the fact that z∗0(0) > z0(0).

In short, using the global continuation method of the zeros of a function depending on one
parameter due to Leray and Schauder and based in the Brouwer degree, we have studied ana-
lytically the families of symmetric periodic orbits of the elliptic Sitnikov problem for all values
of the eccentricity in the interval [0, 1), providing qualitative and quantitative information
on the bifurcation diagram of such families of periodic orbits. The quantitative information
mainly is on the periods of the periodic orbits and on some estimations where the different
families of periodic orbits can start or end. The precise statements of these results are in
Theorems 3.1, 3.2, and 3.3.
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Abstract. We consider nonlinear time dependent reaction diffusion systems in one space dimension that exhibit
multiple pulses or multiple fronts. In an earlier paper two of the authors developed the freezing
method that allows us to compute a moving coordinate frame in which, for example, a traveling
wave becomes stationary. In this paper we extend the method to handle multifronts and multipulses
traveling at different speeds. The solution of the Cauchy problem is decomposed into a finite
number of single waves, each of which has its own moving coordinate system. The single solutions
satisfy a system of partial differential algebraic equations coupled by nonlinear and nonlocal terms.
Applications are provided to the Nagumo and the FitzHugh–Nagumo systems. We justify the
method by showing that finitely many traveling waves, when patched together in an appropriate
way, solve the coupled system in an asymptotic sense. The method is generalized to equivariant
evolution equations and is illustrated by the complex Ginzburg–Landau equation.

Key words. multipulses, partial differential algebraic equations, unbounded domains, equivariance, Lie groups
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1. Introduction. Consider a parabolic system for a function u(x, t) ∈ R
m on the real line

(1.1) ut = Auxx + f(u, ux), x ∈ R, t ≥ 0, u(x, 0) = u0(x), x ∈ R,

where A ∈ R
m,m is assumed to be positive definite and f : R

2m → R
m is assumed to be

smooth. We are interested in systems that have more than one traveling wave solution

(1.2) uj(x, t) = wj(x− cjt), j = 1, . . . , N,

traveling at different speeds cj and with limiting behavior

(1.3) w−
j = lim

ξ→−∞
wj(ξ), w+

j = lim
ξ→∞

wj(ξ).

It is frequently observed that such systems exhibit special solutions that look like a superpo-
sition of several waves. In Figure 1 we illustrate the case of two pulses and two fronts that
travel in opposite directions (c1 < 0 < c2) and that can be patched together (i.e., w+

1 = w−
2 );

see section 2 for a more precise definition of the meaning of patching. Solutions of this type
are usually called multifronts or multipulses depending on whether the limits at ±∞ agree
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w1 w2
∑

wj

w1 w2
∑

wj

Figure 1. Single pulses/multipulse and single fronts/multifront.

or disagree. There is quite an extensive literature that studies existence and stability of mul-
tifronts and multipulses close to a fixed pulse configuration with the single pulses far apart
and with a common speed; see [15], [13], [14], [16], [22], [7]. More recently, in [23] a center
manifold is constructed that contains all types of multipulses (even infinitely many) with large
spacings that travel at a slowly varying speed.

In this paper we consider a finite number of pulses, respectively, fronts, that travel at
different speeds. We provide a working definition for multifront solutions in an asymptotic
sense that will be sufficient for our approach. Note that in the recent paper [17] the authors
construct an invariant manifold that contains and attracts such solutions up to a certain time
instance prior to collision.

The main goal of this paper is to numerically construct a decomposition of the solution
u(x, t) of the Cauchy problem (1.1) of the form

(1.4) u(x, t) =
N∑
j=1

vj(x− gj(t), t).

The idea is to find functions vj : R × [0,∞) → R
m, (ξ, t) �→ vj(ξ, t) that approximate the jth

profile in the multifront and that have a rather local support when compared to the overall
solution u(x, t). The functions gj : R → R denote the time-dependent position of the jth
profile and will be determined by the numerical process as well. The N -dimensional system
that determines the vj will be set up such that the linear superposition (1.4) is an exact
solution of the nonlinear system (1.1) and such that this system can be solved on a much
smaller domain than the original equation. Note that, if repelling pulses or fronts appear as
in Figure 1, growing spatial domains are needed to compute and represent the solution of
(1.1), while our system will be solved on a domain of moderate size that stays constant for
all times. Moreover, our method will produce the individual velocities automatically without
any a posteriori analysis of simulation data.

We follow the freezing approach for single waves in [4], [5] (see [12] for a related approach)
by setting up an appropriate phase condition for each of the single profiles vj . In section 2 we
derive the basic system of N partial differential algebraic equations (PDAEs) for the functions
vj that will be solved numerically. The nonlinearities in this system contain nonlocal terms
due to the different positions of the single profiles.

For the numerical computations we truncate this system to a finite interval, use appropriate
boundary conditions, and discretize by finite elements in space and BDF methods (based on
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backward differentiation formulae) in time. In section 3 we show several applications of our
method to multifronts that occur in the Nagumo and in the FitzHugh–Nagumo systems. It
may come as a surprise that the method even works in cases for which it was not designed,
namely, fronts or pulses that collide and annihilate each other.

In section 4 we give a certain theoretical justification of our method. It is shown that
appropriately modified waves (1.2) satisfy the PDAE system in an asymptotic sense.

Finally, in section 5 we generalize our “decompose and freeze” approach to general evolu-
tion equations that are equivariant with respect to the action of a (not necessarily compact)
Lie group. As an application we discuss the decomposition of solutions of a complex Ginzburg–
Landau equation that has a two-dimensional group of equivariances.

2. Decomposition of multifronts. Let us be more precise about the process of patching
single waves (1.2). Assume that the left and right limits of the waves match in the sense that

(2.1) w+
j = w−

j+1, j = 1, . . . , N − 1.

Then we write down the superposition

(2.2) U(x, t) =
N∑
j=1

ŵj(x− cjt), ŵj(ξ) =

{
w1(ξ), j = 1,

wj(ξ) − w−
j , j ≥ 2,

where we have subtracted the left limits so that the modified profiles ŵj (cf. Figure 2) fit
together upon summation. In particular, this guarantees by (2.1)

(2.3) lim
x→∞

u(x, t) =

N∑
j=1

w+
j −

N∑
j=2

w−
j = w+

N .

1 1

−1

w1 = ŵ1

w2

ŵ2

ŵ1(· − c1t) + ŵ2(· − c2t)

Figure 2. The modified profiles ŵj, and asymptotic 2-front solution ŵ1(x − c1t) + ŵ2(x − c2t) at t > 0,
c1 < 0 < c2.

In section 4 we will show that U(x, t) defined by (2.2) satisfies (1.1) in an asymptotic
sense, i.e.,

(2.4) ‖Ut − (AUxx + f(U,Ux))‖ → 0 as t → ∞

for some suitable norm ‖ · ‖, e.g., the L2-norm.
Our goal is to set up a decomposition (1.4) that approaches the form (2.2) in an asympotic

sense.
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We use a bump function ϕ ∈ C∞(R,R) that satisfies

(2.5) 0 < ϕ(x) ≤ C ∀x ∈ R

and has its main mass located near zero. The precise form of ϕ is not important, but we
mention that both numerical computation and the theory in section 4 work for exponential
decay of type ϕ(t) 
 e−β|x|k , β > 0, k ≥ 1.

We look for a solution of the form (1.4) and insert this into (1.1). We suppress the
arguments (x− gj(t), t) of vj and find

ut =

N∑
j=1

[vj,t − vj,ξgj,t]

=

N∑
j=1

Avj,ξξ + f

(
N∑
k=1

vk,

N∑
k=1

vk,ξ

)

=

N∑
j=1

[
Avj,ξξ +

ϕ(· − gj(t))∑N
k=1 ϕ(· − gk(t))

f

(
N∑
k=1

vk,

N∑
k=1

vk,ξ

)]
.

(2.6)

Note that the quotients

(2.7)
ϕ(x− gj(t))∑N
k=1 ϕ(x− gk(t))

form a time-dependent partition of unity and that the denominator never vanishes due to
(2.5). In (2.6) we have used this partition to localize the nonlinear part of the vector field but
not the solutions themselves.

A sufficient condition for (2.6) to hold is that each of the terms in brackets vanishes.
Substituting ξ = x− gj(t) and μj = gj,t leads to the following system of N coupled PDEs for
ξ ∈ R, t ≥ 0,

vj,t(ξ, t) = Avj,ξξ(ξ, t) + vj,ξ(ξ, t)μj(t) +
ϕ(ξ)∑N

k=1 ϕ(ξ − gk + gj)

· f
(

N∑
k=1

vk(ξ − gk + gj , t),

N∑
k=1

vk,ξ(ξ − gk + gj , t)

)
, j = 1, . . . , N,

(2.8)

and the simple set of ODEs

(2.9) gj,t = μj(t), j = 1, . . . , N.

In the following it will be convenient to write v = (v1, . . . , vN ), g = (g1, . . . , gN ), and μ =
(μ1, . . . , μN ) and to abbreviate terms in (2.8):

Fj(v, g)(ξ, t) = Qg
j (ξ, t)f

(
N∑
k=1

vk(ξ
g
kj , t),

N∑
k=1

vk,ξ(ξ
g
kj , t)

)
,

Qg
j (ξ, t) =

ϕ(ξ)∑N
k=1 ϕ(ξgkj)

, ξgkj = ξ − gk(t) + gj(t).

(2.10)
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x0 g0
1

x1 g0
2

x2 xN−1 g0
N−1

xN

Figure 3. Decomposition of the initial data u0.

We note that the nonlinear terms Fj(v, g) couple the single functions vk, k = 1, . . . , N , in
a nonlocal fashion. From the derivation we also see that one can allow j-dependent bump
functions ϕj that take the size of the jth profile into account. The quotient in (2.7) then reads

(2.11)
ϕj(x− gj(t))∑N
k=1 ϕk(x− gk(t))

.

The system will be completed by initial conditions for vj , gj and by phase conditions that
compensate for the extra unknowns μj .

We impose initial conditions

vj(ξ, 0) = v0
j (ξ), ξ ∈ R, j = 1, . . . , N,(2.12)

gj(0) = g0
j , j = 1, . . . , N,(2.13)

that should satisfy

(2.14) u0(x) =

N∑
j=1

v0
j (x− g0

j ), x ∈ R.

In most of our applications below we first select v0
j , g

0
j and then define u0 by (2.14). If, on

the other hand, u0 is given, then one has to do some surgery to find appropriate values for
v0
j and g0

j . Assume, for example, that a function u0 is given that forms plateaus near points

x0 < x1 < . . . , xN (see Figure 3). Then one may choose g0
j = 1

2(xj−1 + xj) for j = 1, . . . , N
and, similar to (2.2), define

v0
j (ξ) = −u0(xj−1) +

⎧⎪⎨
⎪⎩
u0(xj−1), ξ + g0

j ≤ xj−1,

u0(ξ + g0
j ), xj−1 ≤ ξ + g0

j ≤ xj ,

u0(xj), xj ≤ ξ + g0
j ,

j = 2, . . . , N − 1,

and

v0
1(ξ) =

{
u0(ξ + g0

1), ξ + g0
1 ≤ x1,

u0(x1), x1 ≤ ξ + g0
1,
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v0
N (ξ) =

{
0, ξ + g0

N ≤ xN−1,

u0(ξ + g0
N ) − u0(xN−1), xN−1 ≤ ξ + g0

N .

Next we discuss the choice of phase condition that will make the solution of the system
(2.8), (2.9), (2.13), (2.14) unique. For the case of freezing single waves, two possibilities were
suggested in [4], [5].

First, suppose that we have template functions v̂j (e.g., v̂j = v0
j ) to which we would like

the vj to stay as close as possible. This requires the distance dj(g) = ‖vj(·, t) − v̂j(· − g)‖L2

to achieve its minimum at g = 0 for all times. Differentiating with respect to g yields the
necessary conditions

(2.15) 〈vj − v̂j , v̂j,ξ〉L2 = 0, j = 1, . . . , N.

In the terminology of differential algebraic equations this constraint leads to an index 2 prob-
lem. If we differentiate (2.15) with respect to t and use (2.8), we have

(2.16) ψfix(v, μ) = (μj〈v̂j,ξ, vj,ξ〉L2 + 〈v̂j,ξ, Avj,ξξ + Fj(v, g)〉L2)Nj=1 = 0.

If 〈v̂j,ξ, vj,ξ〉L2 = 0, then we can determine μj from this equation and thus have reduced the
problem to index 1.

Second, choose the values μj so that vj,t in (2.8) is minimized at each time instance.
Geometrically this requires that the time derivative vj,t(·, t) is orthogonal to the group orbit
{vj(· − g, t) : g ∈ R} at all times. This leads to the phase condition

(2.17) ψorth(v, μ) = (〈vj,ξ, vj,t〉L2)Nj=1 = (〈vj,ξ, Avj,ξξ + μjvj,ξ + Fj(v, g)〉L2)Nj=1 = 0,

which allows us to solve for μj whenever vj,ξ is nonconstant. Note that (2.17) can be obtained
from (2.16) when replacing v̂j,ξ by vj,ξ. The complete system to be solved is now given by the
PDAE (2.8), (2.9), (2.12), (2.13) with either (2.16) or (2.17) as phase condition.

The relative merits of both types of conditions have been discussed for the single freezing
in [4], [20]. It was shown in [20], [19] that the fixed phase condition leads to a well-posed
PDAE in the neighborhood of a relative equilibrium in one space dimension. Moreover, the
PDAE as well as its discretization on a finite interval have the wave and its velocity as an
asymptotically stable steady state in the classical Lyapunov sense. In [5] we have shown
that this pertains on the continuous level to the orthogonality constraint (2.17). Locally near
relative equilibria there is not much of a difference between both conditions. It is hard to
make a general statement for more global situations, when the initial data are far from any
equilibrium. Generally, the orthogonality condition is more flexible globally since it requires
no preknowledge of the solution, whereas the fixed phase condition tends to lead to PDAEs
with a better conditioning.

We conclude with some remarks concerning the numerical solution of the PDAE system.
In section 3 we will discretize the PDAE as a whole by conventional methods. It is clear that
the effort of solving the system grows linearly with the number of pulses or fronts present
in the solution. On the other hand, in contrast to the original equation, one can solve the
PDAE system on a fixed and relatively small spatial domain. So far, the interaction terms
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that need values outside this domain were calculated by extrapolating with constant boundary
values. One may think of reducing the spatial domain further by solving linearized equations
(explicitly) in the outside domain and using this for calculating the interaction. We have not
yet pursued the details of such an extension. A method of this type will be reminiscent of the
vortex blob method in fluid dynamics (see [2], [8]), which follows moving vortices and then
uses the Biot–Savart law for treating interactions.

3. Applications. We illustrate the method on two examples which possess traveling fronts
and pulses—the Nagumo and the FitzHugh–Nagumo equations—which both model nerve
conduction.

For two components the PDAE (2.8), (2.9) with the phase fixing condition (2.16) reads

v1,t = Av1,ξξ + v1,ξμ1(t) +
ϕ(·)

ϕ(·) + ϕ(· − g2 + g1)
f(v1(·, t) + v2(· − g2 + g1, t)),

v2,t = Av2,ξξ + v2,ξμ2(t) +
ϕ(·)

ϕ(·) + ϕ(· − g1 + g2)
f(v2(·, t) + v1(· − g1 + g2, t)),

0 = 〈v1(·, t) − v̂1, v̂1,ξ〉, 0 = 〈v2(·, t) − v̂2, v̂2,ξ〉,
g1,t = μ1(t), g2,t = μ2(t),

(3.1)

with initial conditions (2.12), (2.13) that will be specified below.
To solve (3.1) numerically we restrict to a finite interval [−L,L] and impose Dirichlet or

Neumann boundary conditions. Then we use the finite element package Comsol MultiphysicsTM

[6] with second order elements in space and a BDF method in time. As a bump function we
first set ϕ(x) = exp(−x2/α) with suitable α. Later we see that the computations prove to be
quite robust with respect to the choice of ϕ.

Whenever the nonlocal terms in the nonlinearity f have to be evaluated at arguments
outside the computational domain, we extrapolate with the boundary values vj(±L). Inside
[−L,L] we use linear interpolation. As in the case of freezing single waves, we cannot expect
the solutions vj(·, t) to converge to ŵj from (3.1) but rather to an approximation ŵL

j that
solves the stationary boundary value problem on [−L,L].

3.1. Nagumo equation. A simple example is the scalar Nagumo equation [3]

(3.2) ut = uxx + u(1 − u)(u− a), u(x, t) ∈ R, x ∈ R, t > 0,

where a ∈ (0, 1
2).

It has explicit traveling waves connecting the stationary points w−
1 = w+

2 = 0 and w+
1 =

w−
2 = 1:

w1(ξ) =
1

1 + exp(−ξ√
2
)
, c1 =

√
2 (a− 1

2),

w2(ξ) =
1

1 + exp( ξ√
2
)
, c2 = −

√
2 (a− 1

2).

(3.3)

In addition, there exists a multitude of other solutions which can be computed explicitly [1].



584 WOLF-JÜRGEN BEYN, SABRINA SELLE, AND VERA THÜMMLER
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Figure 4. Fronts moving in opposite directions in the Nagumo equation, and evolution of superposition uc

and velocities μ1, μ2.

Figure 5. Fronts moving in opposite directions in the Nagumo equation, and evolution of frozen fronts v1, v2.

We use a = 1
4 , the spatial stepsize Δx = 0.1, and v̂1 = v0

1, v̂2 = v0
2 as template functions for

the phase fixing condition. As bump function we take ϕ(ξ) = exp(x2/α), where the parameter
α = 20 is chosen such that the function is localized around the region of interest (see Figure 7).
This setting will be used for all computations with the Nagumo equation, unless indicated
otherwise.

In Figures 4 and 5 we show the result of a computation starting with initial data v0
1, v

0
2,

g0
1, g

0
2 that add up to a hat function u0 via the superposition (2.14). For the numerical solution

on the finite interval [−L,L], L = 50 we use Dirichlet boundary conditions

v1(−L, t) = w−
1 = 0, v2(−L, t) = 0, v1(L, t) = w+

1 = 1, v2(L, t) = w+
2 − w−

2 = −1.

Figure 4 displays the sum (1.4),

(3.4) uc(x, t) = v1(x− γ1(t), t) + v2(x− γ2(t), t),
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while Figure 5 shows the components v1 and v2. The darker shaded regions indicate the two
moving intervals γj(t) + [−L,L], j = 1, 2, where uc uses the computed values of v1 or v2,
whereas the lighter shaded regions use exclusively the extrapolated boundary values of v1 and
v2. After a short transient period the components v1, v2 and the velocities μ1, μ2 become
stationary with opposite values resulting in a broadening plateau for u. The slopes of the
plateau travel at speeds μ1 = −μ2 in opposite directions.
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Figure 6. Nagumo equation: Difference of traveling plateau and superposition of frozen fronts.

For comparison, we show in Figure 6 the pointwise difference |udns(x, t) − uc(x, t)| and
the L2 difference ‖udns(·, t) − uc(·, t)‖L2 between the function uc and a solution udns that is
obtained by solving (3.2) directly on a sufficiently large interval.

There is very good agreement of the two solutions except in two thin layers close to the
two fronts. Note that such errors cannot be corrected by a single phase shift, and, therefore,
the L2- error becomes asymptotically constant; see Figure 6 (right) and (3.6) below. For the
individual solutions vj of (3.1) we expect in suitable norms

(3.5) vj(·, t) − ŵj(· − τj) → 0, μj(t) → cj as t → ∞, j = 1, 2.

Since we do not use the given profiles (3.3) for the phase condition, we can expect only
convergence toward ŵj(· − τj) for some suitable time shift τj . This shift is determined by the
phase condition in (3.1), i.e., 〈ŵj(· − τj) − v̂j , v̂j,ξ〉 = 0. From the last equation in (3.5) we
then obtain

gj(t) − (cjt + g0
j ) → τj as t → ∞.

Therefore, our numerical calculation suggests that the exact solution udns of (3.2) satisfies in
a suitable norm

(3.6) udns(·, t) −
(
ŵ1(· − c1t− g0

1 − τ1) + ŵ2(· − c2t− g0
2 − τ2)

)
→ 0 as t → ∞

provided the difference of initial positions g0
2 − g0

1 is sufficiently large and the difference of
initial values udns(·, 0)−

(
ŵ1(·− g0

1)+ ŵ2(·− g0
2)
)

is sufficiently small. A proof of such a result
is a work in progress.
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Figure 7. Comparison of functions ϕ(x) = exp(−x2/α) and ϕ(x) = sech(−x/β) with equal integral.

In Figure 8 we show the behavior of time derivatives ‖ut‖ and ‖μt‖ (left) including a
comparison of ‖ut‖ for different bump functions (right). The second function is ϕ(ξ) =
sech(x/β), where β is chosen such that the integrals of both functions over R coincide; see
Figure 7. For a certain time interval the rate of decay is the same for both bump functions.
From the numerical data one finds the slope 0.25 which coincides with the spectral gap between
zero and the smallest negative eigenvalue of the linearization about the single traveling waves
w1 and w2. This relation was verified in [20], [19] for the case of freezing a single wave.
For larger times t the decay is better for the Gaussian ϕ(x) = exp(−x2/α) than for the
sech-function. The effect vanishes on larger computational domains where both functions are
sufficiently localized.

In the second numerical experiment we consider a situation that, in a sense, is opposite
to the first case; see Figures 9 and 10. We start with a downward hat function and obtain
two fronts traveling toward each other with opposite speeds. Eventually they annihilate each
other resulting in a value of zero for the speeds μ1, μ2. In Figure 10 one can observe slight
disturbances in v1, v2 during the strong interaction at collision. Note that after the collision the
superposition (1.4) yields a constant, although the components v1, v2 cannot become constant
due to Dirichlet boundary conditions. Rather, the asymptotic state of our system is formed
by two ramp functions that are at rest and add up to a constant; see Figure 10. As before
we observe a phase shift difference when comparing this with the solution of (3.2) on a large
interval; see

Figure 11. But in this case the difference converges to zero as the constant solution is
approached. Similar results are obtained for Neumann boundary conditions.

In Figures 12 and 13 we consider a case where a two-front turns into a single front. This
is a case where the number N of components in our ansatz is larger than the number of
components which constitute the final solution. This does not create any problems for our
method. We use boundary conditions that do not require any a priori knowledge of the limiting
stationary points for the components v1 and v2. Instead of prescribing v±1 and v±2 directly, we
require v−1 + v−2 = w− and v+

1 + v+
2 = w+ and impose Neumann boundary conditions at the

remaining ends. If one insists on Dirichlet boundary conditions for every single wave, then
additional boundary layers will develop.

In the current example the wave behind has a larger speed and merges with the first wave.
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Figure 8. Nagumo equation: ‖ut‖ and ‖μt‖ (on a logarithmic scale) versus time and ‖ut‖ (on a logarithmic
scale) for functions ϕ(x) = exp(−x2/α), α = 20 and ϕ(x) = sech(−x/β), β = 8.5.
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Figure 9. Collision in the Nagumo equation, and evolution of superposition uc and velocities μ1, μ2.

This is correctly reproduced by our method. The speeds μ1, μ2 of both components converge
to the same value and the superposition of the profiles v1, v2 forms a single front; see Figure 12.

In Figure 14 we show the difference between superposition and solution of the original
equation on a large interval. After the strong interaction the rates of decay for ||ut||L2 and
‖μt‖ (not shown) turn out to be quite similar to the previous case in Figure 8.

3.2. FitzHugh–Nagumo system. The two component FitzHugh–Nagumo system (FHN)

Vt = Vxx + V − 1

3
V 3 −R,

Rt = ε(V + a− bR)
(3.7)

models nerve conduction and possesses different types of traveling wave solutions such as
fronts, multifronts [11], and pulses [9], [10]. We consider the same parameters a = 0.7, b = 0.8,
ε = 0.08 as in [4] for which traveling pulses exist. Because of reflectional symmetry, with each
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Figure 10. Collision in the Nagumo equation, and evolution of frozen fronts v1, v2.
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Figure 11. Collision in the Nagumo equation, and evolution of difference |udns(x, t) − uc(x, t)| and of L2

difference ‖udns(·, t) − uc(·, t)‖L2 .

solution its mirror image is also a solution traveling at opposite speed. It is important to note
that, due to the lack of diffusion in the second equation of (3.7), the PDAE system (3.1) is
of mixed hyperbolic-parabolic type. In the two R-equations the convective terms that allow
freezing form the principal part, and this requires some cautionary measure for the numerical
solution. With the finite element code Comsol MultiphysicsTM we used streamline diffusion
(δsd = 0.25) in order to treat the hyperbolic part correctly. The system is solved on [−70, 70]
with Dirichlet boundary conditions, stepsize Δx = 0.1, and ϕ(x) = sech(x/β), β = 11.3
(results for a Gaussian ϕ are similar).

First we consider the formation of two pulses out of a single initial pulse. This situation
was already studied in [4] with the single freezing method. There only one of the two forming
pulses could be frozen depending on the choice of phase condition. Figure 15 displays the
behavior of the superposition (1.4) as obtained by our method, and Figure 17 shows the
difference to a solution of (3.7) obtained directly on a large interval. While the difference
is small in most of the space time domain, the L2-difference appears to grow linearly with
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Figure 12. Merging fronts in the Nagumo equation, and evolution of superposition uc and velocities μ1, μ2.

Figure 13. Merging fronts in the Nagumo equation, and evolution of frozen fronts v1, v2.

0 200 400 600 800 1000
0.025

0.03

0.035

0.04

0.045

0.05

0.055

t

L 2
-d

iff
er

en
ce

Figure 14. Nagumo, and evolution of difference ‖udns(·, t) − uc(·, t)‖L2 .
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Figure 15. Splitting of a pulse in the FHN, and evolution of superposition V = uc and of velocities μ1, μ2.

Figure 16. Splitting of a pulse in the FHN, and evolution of pulses V1 traveling to the left and V2 traveling
to the right.

time. This is in contrast to the parabolic case, and we suspect that the effect is due to the
hyperbolic part of the frozen equation.

In Figure 16 one observes that the components V1 and V2 develop tiny secondary waves
that travel toward the boundary. The superposition is still correct until these reach the
boundary. When they arrive a slight disturbance of the superposition in the middle of the
interval develops (at about t = 90; see Figure 17). We expect that these boundary effects
can be further reduced by using, e.g., transparent boundary conditions. After the separation
phase both pulses quickly reach their asymptotic states (see Figure 16), and ||ut|| decays
exponentially, as in the Nagumo case; see Figure 18.

Now we take the two traveling pulses which have been computed in this way and inter-
change their initial positions g0

j . Then the two pulses start to move toward each other and
eventually annihilate, as shown in Figure 19. The difference of the superposition and the
solution of the original equation on a large domain behaves in a fashion quite similar to the
Nagumo case. At the collision both wave speeds converge to zero. Figure 20 shows that both
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Figure 17. Splitting of a pulse in the FHN, difference of the two-pulse computed on a large domain, and
superposition of frozen single pulses V1, V2.
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Figure 18. Splitting of pulse in the FHN and behavior of ‖ut‖, u = (V1, R1, V2, R2), and ‖μt‖.

0 50 100 150 200
−1

−0.5

0

0.5

1

t

 

 
μ1
μ2

Figure 19. Collision of pulses in the FHN, and evolution of superposition uc = V and velocities μ1, μ2.
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Figure 20. Collision of pulses in the FHN, and evolution of frozen pulses V1, V2.

components V1 and V2 converge to constants.
Contrary to the case of fronts, this can lead to numerical difficulties for large times since

our phase conditions are no longer well-posed for constant functions (cf. (2.16), (2.17)). We
note that after collision we have again the situation where we use a larger number N than
necessary for representing the solution and where our method reproduces the behavior in a
consistent manner.

4. Asymptotic properties of multifronts. In this section we show that traveling waves,
when shifted as in (2.2), satisfy the PDAE system (2.8) in an asymptotic sense as t → ∞.
This will imply a corresponding property of the superposition (2.2) for the original system
(1.1).

Definition 4.1. A smooth function V : R
N → R

m is called an asymptotic N -front solution
of (1.1) if there exist constants

c1, c2, . . . , cN

such that

(4.1) u(x, t) = V (x− c1t, . . . , x− cN t)

satisfies

(4.2) ||(ut −Auxx − f(u, ux))(·, t)||L2 → 0 as t → ∞.

We look for asymptotic N -front solutions of the type

(4.3) V (x1, . . . , xN ) =

N∑
j=1

ŵj(xj),

where ŵj is defined in (2.2) and wj(x − cjt) are C2-smooth traveling waves of (1.1). In
particular, they satisfy the stationary equation

(4.4) 0 = Awj,ξξ + cjwj,ξ + f(wj , wj,ξ).
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With (2.10) let us write (2.8) as

(4.5) vj,t = Mj(v, g) = Avj,ξξ + vj,ξgj,t + Fj(v, g), j = 1, . . . , N.

For the special functions

(4.6) vj = ŵj , gj(t) = cjt, j = 1, . . . , N, t ∈ R+,

we show in Theorem 4.2 below that

(4.7) ||Mj(ŵ, g)(·, t)||L2 → 0 as t → ∞;

i.e., they are asymptotic steady states of the nonautonomous system (4.5). Using the basic
calculation (2.6) we obtain that

(4.8) u(x, t) =

N∑
j=1

ŵj(x− cjt)

satisfies the estimate

||(ut −Auxx − f(u, ux))(·, t)||L2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

Mj(ŵ, g)(· − cjt, t)

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

→ 0 as t → ∞.

Therefore, the function (4.3) is an asymptotic N -front solution.
Theorem 4.2. Let wj(x− cjt), j = 1, . . . , N , be C2-smooth traveling wave solutions of the

system (1.1) that satisfy for some constants C,α > 0

c1 < c2 < · · · < cN ,(4.9)

‖wj(ξ) − w±
j ‖ ≤ Ce∓αξ and ‖wj,ξ(ξ)‖ ≤ Ce−α|ξ|, j = 1, . . . , N,(4.10)

w+
j = w−

j+1, j = 1, . . . , N − 1.(4.11)

Moreover, let ϕ ∈ C∞(R,R) be a function for which the exponential estimate

(4.12) C0e
−β0|x| ≤ ϕ(x) ≤ C1e

−β1|x|, x ∈ R,

holds for some positive constants C0 ≤ C1 and β1 < β0.
Then the shifted waves ŵj from (2.2) and gj(t) = cjt satisfy for some constants C, ε > 0

(4.13) ||Mj(ŵ, g)(·, t)||L2 ≤ Ce−εt ∀t ≥ 0,

where Mj denotes the right-hand side in the PDAE system (4.5). In particular, V (x1, . . . , xN ) =∑N
j=1 ŵj(xj) is an asymptotic N -front solution of (1.1).
Remark 4.3. Clearly, this result does not yet prove the behavior of the numerical solutions

observed in section 3. For such a result we must show that the PDAE system (4.5) is well-
posed and, moreover, that for stable traveling waves the solutions vj(·, t) converge to ŵj in a
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suitable way as t → ∞ for sufficiently small initial perturbations. We think of Theorem 4.2
as a first step toward such a result that justifies the overall ansatz in section 2.

Remark 4.4. The theorem remains valid for more general bump functions that satisfy

C0e
−β0|x|k ≤ ϕ(x) ≤ C1e

−β1|x|k , x ∈ R, with 0 < C0 ≤ C1, 0 < β1 < β0, k ≥ 1.

The case k = 2 was used in some of our simulations above. The following proof will show that
the only modifications occur in the estimates on the intervals marked by Qg

j in Figure 21 and
in the condition (4.17) that determines the subdivision of the real line.

Proof. Let us first note that (4.10) and (4.4) imply limξ→±∞wj,ξξ(ξ) = 0 and hence

(4.14) f(w±
j , 0) = 0.

As noted above it suffices to prove (4.13). For ease of reading we restrict our attention to the
case where f depends on u only, f(u, ux) = f(u). Using (4.14), (4.4), and (4.10) the details of
the general case can be filled in easily. In the following we use C to denote a generic constant.
First, the stationary equation (4.4) yields

||Mj(ŵ, g)(·, t)||2L2
=

∣∣∣∣∣
∣∣∣∣∣Qg

j (·, t)f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj)

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ C

⎡
⎣∫

R

Qg
j (ξ, t)

2

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ

+

∫
R

(1 −Qg
j (ξ, t))

2|f(wj(ξ))|2dξ

⎤
⎦ =: I1 + I2.

We estimate the integrals I1, I2 separately. When comparing f arguments we frequently use
the following equality:

(4.15)
N∑
k=1

ŵk(ξ
g
kj) − wj(ξ) =

j−1∑
k=1

(wk(ξ
g
kj) − w+

k ) +

N∑
k=j+1

(wk(ξ
g
kj) − w−

k ).

Consider first I1 and indices 2 ≤ j ≤ N − 1. For q > 0 sufficiently small we define

γ±k = (1 ± q)(ck − cj)t, γ0
k = (ck − cj)t

and partition R into subintervals as follows (cf. Figure 21):

−∞ < γ+
1 < γ0

1 < γ−1 < γ+
2 < · · · < γ+

j−1 < γ0
j−1 < γ−j−1 < 0 = γ±0(4.16)

< γ−j+1 < γ0
j+1 < γ+

j+1 < · · · < γ−N < γ0
N < γ+

N < ∞.

Note that the relations γ−k < γ+
k+1 for k ≤ j − 1 and γ+

k < γ−k+1 for k ≥ j + 1 follow if q
satisfies
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Qg
jQg

jQg
j ff f

0γ−j−2 γ+
j−1 γ0

j−1 γ−j−1 γ−j+1 γ0
j+1 γ+

j+1 γ−j+2 γ0
j+2 γ+

j+2

Figure 21. Decomposition of the interval R.

q < min

{
ck+1 − ck

|2cj − ck − ck+1|
: 1 ≤ j ≤ N, 1 ≤ k ≤ N − 1

}
.

Our second condition on q is

(4.17) q <

min
(

min
j=2,...,N

(cj − cj−1), 1
)
β1

max
(

max
j=2,...,N

(cj − cj−1), 1
)
(β1 + β0)

.

For the estimate of I1 we use 0 ≤ Qg
j (·, ·) ≤ 1 and the fact that all arguments of f lie in a

compact interval. On each subinterval we use the smallness of either f or Qg
j , as indicated in

Figure 21. We obtain

I1 ≤ C

⎡
⎣∫ γ+

1

−∞

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ +

j−1∑
l=1

∫ γ0
l

γ+
l

Qg
j (ξ, t)

2dξ

+

j−1∑
l=1

∫ γ−
l

γ0
l

Qg
j (ξ, t)

2dξ +

j−2∑
l=1

∫ γ+
l+1

γ−
l

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ

+

∫ γ−
j+1

γ−
j−1

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ +

N∑
l=j+1

∫ γ0
l

γ−
l

Qg
j (ξ, t)

2dξ

+

N∑
l=j+1

∫ γ+
l

γ0
l

Qg
j (ξ, t)

2dξ +

N−1∑
l=j+1

∫ γ−
l+1

γ+
l

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ

+

∫ ∞

γ+
N

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,j)

)
− f(wj(ξ))

∣∣∣∣∣
2

dξ

⎤
⎦

=: Ib1 +

j−1∑
l=1

I1−
1,l +

j−1∑
l=1

I2−
1,l +

j−2∑
l=1

I3−
1,l + Ic1

+

N∑
l=j+1

I1+
1,l +

N∑
l=j+1

I2+
1,l +

N−1∑
l=j+1

I3+
1,l + Ie1 .

For the convenience of the reader here we give only the estimate for the crucial central term
Ic1 and defer the remaining laborious estimates to the appendix. With (4.9), (4.10), (4.11),
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and (4.15) we obtain

Ic1 ≤ C

∫ γ−
j+1

γ−
j−1

∣∣∣∣∣
N∑
k=1

ŵk(ξ + (cj − ck)t) − wj(ξ)

∣∣∣∣∣
2

dξ

≤ C

∫ γ−
j+1

γ−
j−1

⎛
⎝j−1∑

k=1

|wk(ξ + (cj − ck)t) − w+
k |

2 +

N∑
k=j+1

|wk(ξ + (cj − ck)t) − w−
k |

2

⎞
⎠ dξ

≤ C

⎡
⎣∫ γ−

j+1

γ−
j−1

j−1∑
k=1

e−2α(ξ+(cj−ck)t)dξ +

∫ γ−
j+1

γ−
j−1

N∑
k=j+1

e2α(ξ+(cj−ck)t)dξ

⎤
⎦

≤ C

[∫ γ−
j+1

γ−
j−1

e−2α(ξ+(cj−cj−1)t)dξ +

∫ γ−
j+1

γ−
j−1

e2α(ξ+(cj−cj+1)t)dξ

]

≤ C
[
e−2αq(cj−cj−1)t + e−2αq(cj+1−cj)t

]
.

5. Generalization to equivariant evolution equations. In this section we generalize the
idea from section 2 to evolution equations in Banach spaces that are equivariant with respect
to the action of a Lie group. The abstract setting follows the approach from [4], [5].

5.1. The abstract formulation. Consider an evolution equation

(5.1) ut = Au + F (u), u(0) = u0,

where A,F : Y ⊂ X → X are linear, respectively, nonlinear, operators from a dense subspace
Y of some Banach space X into X. We assume equivariance of both A and F with respect to
some action of the Lie group G on X,

a : G → GL(X), g �→ a(g);

that is,

(5.2) F (a(g)u) = a(g)F (u), A(a(g)u) = a(g)Au

holds for all u ∈ Y , g ∈ G. In order to mimic the partition of unity construction we assume
that there is a module E (i.e., a real vector space with an Abelian multiplication) acting on
X via

• : E ×X → X, (ϕ, u) �→ ϕ · u,
such that both distributive laws and the associative law hold.

Moreover, we assume that the group also acts on E via a possibly different action

α : G → GL(E), g �→ α(g),

such that for all g ∈ G, ϕ,ψ ∈ E, u ∈ X

α(g)(ϕψ) = (α(g)ϕ)(α(g)ψ),(5.3)

a(g)(ϕ · u) = (α(g)ϕ) · (a(g)u).(5.4)
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Furthermore, we assume that the map

a(·)u : G → X, g �→ a(g)u

is continuous for any u ∈ X and that it is continuously differentiable for any u ∈ Y with
derivative denoted by

d[a(g)u] : TgG → X, λ �→ d[a(g)u]λ.

Example 5.1. Consider as an example X = L2(R,C), G = S1 ×R with the action given by

(5.5) [a(θ, τ)u](x) = eiθu(x− τ), u ∈ X, (θ, τ) ∈ S1 × R.

Then with E = C0
unif (R,R) we find that (5.3), (5.4) hold for the setting α(θ, τ)ϕ(x) = ϕ(x−τ)

for ϕ ∈ E. Moreover, with this choice the action is continuous on E. We note, however, that
this property will not be needed for the arguments to follow.

In the following we assume that we are given some ϕ ∈ E such that
∑N

j=1 α(gj)ϕ is
invertible for any choice of gj ∈ G. In section 2 and in Example 5.1 above this property is a
consequence of (2.5). For the inverse element of some ϕ ∈ E we use the notation 1

ϕ = ϕ−1.
The generalization of (1.4) is to write the solution u as

(5.6) u(t) =
N∑
j=1

a(gj(t))vj(t),

with unknowns gj(t) ∈ G, vj ∈ Y . Inserting this into (5.1) and using equivariance (5.2) as
well as (5.3), (5.4) leads to

ut =

N∑
j=1

(a(gj)vj,t + d[a(gj)vj ]gj,t)

=

N∑
j=1

A(a(gj)vj) + F

(
N∑
k=1

a(gk)vk

)

=

N∑
j=1

a(gj)Avj +

N∑
j=1

α(gj)ϕ∑N
k=1 α(gk)ϕ

· F
(

N∑
k=1

a(gk)vk

)

=

N∑
j=1

a(gj)

[
Avj +

ϕ∑N
k=1 α(g−1

j gk)ϕ
· F

(
N∑
k=1

a(g−1
j gk)vk

)]
.

This equation is fulfilled if the vj , gj satisfy the system

(5.7) vj,t = Avj +
ϕ∑N

k=1 α(g−1
j gk)ϕ

· F
(

N∑
k=1

a(g−1
j gk)vk

)
− a(g−1

j )d[a(gj)vj ]gj,t.

We simplify the last term as in [5]. Let 1 be the unit element in G; then the tangent space
T1G is the Lie algebra associated with G. By dg(1) : T1G → TgG we denote the derivative of



598 WOLF-JÜRGEN BEYN, SABRINA SELLE, AND VERA THÜMMLER

the multiplication from the left by g at 1. Differentiating the relation a(g ◦ γ)v = a(g)(a(γ)v)
for v ∈ Y at γ = 1 yields

a(g)d[a(1)v]μ = d[a(g)v](dg(1)μ) for μ ∈ T1G, v ∈ Y.

Therefore, defining new coordinates μj(t) ∈ T1G by gj,t(t) = dgj(1)μj(t) turns (5.7) into

vj,t = Avj +
ϕ∑N

k=1 a(g
−1
j gk)ϕ

· F
(

N∑
k=1

a(g−1
j gk)vk

)
− d[a(1)vj ]μj

= Avj + Fj(v, g) − d[a(1)vj ]μj

(5.8)

and

(5.9) gj,t = dgj(1)μj .

As usual, we add initial data

(5.10) vj(0) = vj,0, gj(0) = gj,0, j = 1, . . . , N,

which should satisfy

(5.11) u0 =

N∑
j=1

a(gj,0)vj,0.

Finally, we assume that a continuous inner product 〈·, ·〉2 on X is available and use this
to derive N phase conditions each of dimension dim(G). Suppose we have template functions
v̂j and require the distance dist(vj ,O(v̂j)) = infg∈G ‖vj − a(g)v̂j‖2 to the group orbit O(v̂j) =
{a(g)vj : g ∈ G} to achieve its minimum at g = 1. Then we find the necessary condition

(5.12) 〈vj − v̂j , d[a(1)v̂j ]λ〉2 = 0 ∀λ ∈ T1G, j = 1, . . . , N.

While this generalizes (2.15), the corresponding generalization of (2.17) is

(5.13) 〈vj,t, d[a(1)vj ]λ〉2 = 0 ∀λ ∈ T1G, j = 1, . . . , N.

Note that this requires vj,t to be orthogonal to the group orbit O(vj) at all times. When
vj,t from (5.8) is inserted into (5.13), we obtain a linear system of dimension dim(G) for
μj(t) ∈ T1G that has a unique solution provided d[a(1)vj ] : T1G → X is one to one.

To realize the above abstract equations in R
s, where s = dim(G), we take a basis

{e1, . . . , es}, in the Lie algebra T1G and write μj =
∑s

i=1 μj,ie
i. Then the differentiated

form of (5.12) and (5.13) reads (cf. (2.16), (2.17))

B̂jμj = r̂j , where
(
(B̂j)ik

)s

i,k=1
=

(
〈d[a(1)vj ]e

k, d[a(1)v̂j ]e
i〉L2

)s

i,k=1
∈ R

s,s,

r̂j =
(
〈Avj + Fj(v, g), d[a(1)v̂j ]e

i〉L2

)s
i=1

(5.14)

and

(5.15)
Bjμj = rj , where ((Bj)ik)

s
i,k=1 =

(
〈d[a(1)vj ]e

k, d[a(1)vj ]e
i〉L2

)s

i,k=1
∈ R

s,s,

rj =
(
〈Avj + Fj(v, g), d[a(1)vj ]e

i〉L2

)s
i=1

.

Altogether we have to solve the differential algebraic system (5.8), (5.10) with phase conditions
(5.14) or (5.15).
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5.2. An application to the Ginzburg–Landau equation. The cubic quintic Ginzburg–
Landau equation [18], [21]

ut = αuxx + δu + f(u), f(u) = β|u|2u + γ|u|4u(5.16)

= αuxx + F (u)

with δ ∈ R, α, β, γ ∈ C, u(x, t) ∈ C shows a variety of coherent structures, like pulses, fronts,
sources, and sinks [21]. For certain parameter values this equation exhibits stable rotating
pulses [18] as well as fronts that rotate and travel simultaneously. Equation (5.16) has the
same equivariance as Example 5.1. Thus we write u as

(5.17) u(x, t) =
N∑
j=1

e−iθj(t)vj(x− τj(t), t)

and define μθ
j(t) by θj,t(t) = μθ

j(t) and μτ
j (t) by τj,t(t) = μτ

j (t). The system (5.8) is of the form

vj,t(ξ, t) = Avj(ξ, t) + iμθ
j(t)vj(ξ, t) + μτ

j (t)vj,ξ(ξ, t)

+
ϕ(ξ)∑N

k=1 ϕ(ξ − τk(t) + τj(t))
F

(
N∑
k=1

e−i(θk(t)−θj(t))vk(ξ − τk(t) + τj(t), t)

)
.

The phase conditions are derived from the L2-inner product in the corresponding two dimen-
sional real system.

0 = 〈Re(vj − v̂j),Re(v̂j,ξ)〉L2 + 〈Im(vj − v̂j), Im(v̂j,ξ)〉L2 ,

0 = 〈Re(vj − v̂j), Im(v̂j)〉L2 − 〈Im(vj − v̂j),Re(v̂j)〉L2 , j = 1, . . . , N.

For numerical computations we used the parameters a = 1, δ = −0.1, β = 3+ i, γ = −2.75+ i
for which the fronts and pulses mentioned above exist.

We first look at the case where the solution for the original system consists of two waves
that rotate at the same speed but travel in opposite directions. As Figure 22 shows, this is
reproduced correctly by our method. The values obtained from extrapolation are shown in
grey shades.

The components v1, v2 given in Figure 23 become stationary and the parameters μτ
i , μ

θ
i ,

i = 1, 2, converge quickly to the correct values for the velocities of rotation and translation.
Again the difference to a solution of the QCGL problem (5.16) on a large domain gives similar
results as in section 3.1 (not shown), and the decay of the time derivative is exponential
as before; see Figure 24 (left). Figures 25 and 26 show another result in a case where the
multipulse consists of a rotating stationary pulse and a rotating traveling front with the decay
rate displayed in Figure 24 (right).

6. Conclusions. We propose a numerical method for separating drifting motions of inter-
acting pulses and fronts in a nonlinear reaction diffusion system. The method builds on an
earlier approach for freezing single pulses and fronts in a comoving frame that is determined
by the numerical process. The contribution of this paper is to embed the given equation into
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Figure 22. Fronts moving in opposite directions in the QCGL system: Evolution of superposition Re(uc)
and velocities μτ
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Figure 23. Fronts moving in opposite directions in the QCGL system: Evolution of frozen fronts u1 =
Re(v1), u2 = Re(v2).

a system of N PDEs where N is at least the number of pulses, respectively, fronts, that is
expected for the solution. An essential feature of the approach is to decompose the nonlinear
vector field by a time-dependent partition of unity into local parts that decouple when pulses
and fronts are far apart. Each subsystem is expected to describe a single front or pulse in its
own moving reference frame, and the superposition of these single solutions provides an exact
solution of the original system. Except for the nonlinear coupling terms, each subsystem re-
tains a certain shift symmetry that is made use of by imposing appropriate phase conditions.
Altogether, a system of partial differential algebraic equations (PDAEs) arises that is solved
numerically by restricting to a finite domain and employing suitable time integrators.

There are at least two advantages of our method over solving the original equation on a
(potentially very large) domain. Each subsystem can be solved on a relatively small and time-
independent domain. The advantage becomes more pronounced the further apart the fronts
and pulses are in the original system. Interactions in the far field are treated by extrapolating
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Figure 24. Fronts moving in opposite directions in the QCGL system: Evolution of temporal change ‖ut‖L2

and ‖μt‖ for two fronts (left) and pulse and front (right).
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Figure 25. Pulse and front moving in opposite directions in the QCGL system: Evolution of superposition
Re(uc) and velocities μτ
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the solutions of the subsystems. Second, the approach provides direct access to the shape and
velocity of the pulses and fronts present in the original solution. It avoids any a posteriori
analysis of the numerical data in order to extract such information. The price to be paid for
this advantage is the size of the system to be solved, which grows with the number of pulses
occurring.

The method turns out to be quite robust with respect to the choice of bump function which
forms the building block of the decomposition. Moreover, several numerical tests confirm that
the method is able to handle strong interactions that occur during collision or merging of
pulses. Typically, after such collisions the dimension of our system is larger than necessary
for decomposing the solution. Then the method still works and provides single components
that add up to the correct solution and travel at a common speed or do not travel at all.

The theoretical foundation of the proposed method is still in its beginning phase. We
prove that single waves of the given system provide a solution of our PDAE system in an
asymptotic sense. Future work will require us to show that the PDAE system is generally
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Figure 26. Pulse and front moving in opposite directions in the QCGL system: Evolution of frozen pulse
u1 = Re(v1) and front u2 = Re(v2).

well-posed. Moreover, for the case of stable waves repelling each other, one expects that the
set of single waves forms an asymptotically stable equilibrium for the PDAE system.

Finally, the method is formulated in the abstract framework of equivariant evolution equa-
tions, which encourages applications to much more general equations than the one-dimensional
reaction diffusion systems discussed in this paper. First successful numerical tests are pro-
vided for the quintic-cubic Ginzburg–Landau equation with a two-dimensional group of equiv-
ariances.

Appendix A. Proof of Theorem 4.2 (continued). From the Lipschitz property of f and
(4.12), (4.9), (4.10), (4.11), (4.14), (4.15), (4.17) we obtain the following estimates:

Ib1 ≤ C

∫ γ+
1

−∞

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ + (cj − ck)t)

)
− f(w−

1 ) + f(w−
j ) − f(wj(ξ))

∣∣∣∣∣
2

dξ

≤ C

∫ γ+
1

−∞

N∑
k=1

|wk(ξ + (cj − cl)t) − w−
k |

2dξ

≤ C

∫ γ+
1

−∞

N∑
k=1

e2α(ξ+(cj−ck)t)dξ ≤ C

∫ γ+
1

−∞
e2α(ξ+(cj−c1)t)dξ

≤ Ce−2αq(cj−c1)t;

for l ∈ {1, . . . , j − 1},

I1−
1,l ≤ C

∫ γ0
l

γ+
l

ϕ(ξ)2

ϕ(ξ + (cj − cl)t)2
dξ

≤ C

∫ γ0
l

γ+
l

e2((β1−β0)ξ−β0(cj−cl)t)dξ ≤ Ce2((β0−β1)q−β1)(cj−cl)t;
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for l ∈ {1, . . . , j − 1},

I2−
1,l ≤ C

∫ γ−
l

γ0
l

ϕ(ξ)2

ϕ(ξ + (cj − cl)t)2
dξ

≤ C

∫ γ−
l

γ0
l

e2((β1+β0)ξ+β0(cj−cl)t)dξ ≤ Ce2((β0+β1)q−β1)(cj−cl)t;

for l ∈ {1, . . . , j − 2},

I3−
1,l ≤ C

∫ γ+
l+1

γ−
l

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ + (cj − ck)t)

)
− f(w+

l ) + f(w−
j ) − f(wj(ξ))

∣∣∣∣∣
2

dξ

≤ C

[∫ γ+
l+1

γ−
l

l∑
k=1

|wk(ξ + (cj − ck)t) − w+
k |

2dξ

+

∫ γ+
l+1

γ−
l

N∑
k=l+1

|wk(ξ + (cj − ck)t) − w−
k |

2dξ

]

≤ C

[∫ γ+
l+1

γ−
l

l∑
k=1

e−2α(ξ+(cj−ck)t)dξ +

∫ γ+
l+1

γ−
l

N∑
k=l+1

e2α(ξ+(cj−ck)t)dξ

]

≤ C

[∫ γ+
l+1

γ−
l

e−2α(ξ+(cj−cl)t) + e2α(ξ+(cj−cl+1)t)dξ

]

≤ C
[
e−2αq(cj−cl)t + e−2αq(cj−cl+1)t

]
.

We further obtain for l ∈ {j + 1, . . . , N}

I1+
1,l ≤ C

∫ γ0
l

γ−
l

ϕ(ξ)2

ϕ(ξ + (cj − cl)t)2
dξ

≤ C

∫ γ0
l

γ−
l

e2((−β1−β0)ξ−β0(cj−cl)t)dξ ≤ Ce2((β0+β1)q−β1)γ0
l ;

for l ∈ {j + 1, . . . , N},

I2+
1,l ≤ C

∫ γ+
l

γ0
l

ϕ(ξ)2

ϕ(ξ + (cj − cl)t)2
dξ

≤ C

∫ γ+
l

γ0
l

e2((β0−β1)ξ+β0(cj−cl)t)dξ ≤ Ce2((β0−β1)q−β1)γ0
l ;
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and for l ∈ {j + 1, . . . , N − 1},

I3+
1,l ≤ C

∫ γ−
l+1

γ+
l

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ + (cj − ck)t)

)
− f(w+

l ) + f(w+
j ) − f(wj(ξ))

∣∣∣∣∣
2

dξ

≤ C

[∫ γ−
l+1

γ+
l

l∑
k=1

|wk(ξ + (cj − ck)t) − w+
k |

2dξ

+

∫ γ−
l+1

γ+
l

N∑
k=l+1

|wk(ξ + (cj − ck)t) − w−
k |

2dξ

]

≤ C

[∫ γ−
l+1

γ+
l

l∑
k=1

e−2α(ξ+(cj−ck)t)dξ +

∫ γ−
l+1

γ+
l

N∑
k=l+1

e2α(ξ+(cj−ck)t)dξ

]

≤ C

[∫ γ−
l+1

γ+
l

l∑
k=1

e−2α(ξ+(cj−cl)t)dξ +

∫ γ−
l+1

γ+
l

N∑
k=l+1

e2α(ξ+(cj−cl+1)t)dξ

]

≤ C
[
e−2αqγ0

l + e−2αqγ0
l+1

]
.

Finally, we have

Ie1 ≤ C

∫ ∞

γ+
N

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ + (cj − ck)t)

)
− f(w+

N ) + f(w+
j ) − f(wj(ξ))

∣∣∣∣∣
2

dξ

≤ C

N∑
k=1

|wk(ξ + (cj − ck)t) − w+
k |

2dξ ≤ C

∫ ∞

γ+
N

N∑
k=1

e−2α(ξ+(cj−ck)t)dξ

≤ C

∫ ∞

γ+
N

e−2α(ξ+(cj−cN )t)dξ ≤ Ce−2αq(cN−cj)t.

For j = 1, the estimate of I1 has fewer terms:

I1 ≤ C

⎡
⎣∫ γ−

2

−∞

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,1)

)
− f(w1(ξ))

∣∣∣∣∣
2

dξ +

N∑
k=2

∫ γ0
k

γ−
k

Qg
1(ξ, t)

2dξ

+

N∑
k=2

∫ γ+
k

γ0
k

Qg
1(ξ, t)

2dξ +

N−1∑
k=2

∫ γ−
k+1

γ+
k

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,1)

)
− f(w1(ξ))

∣∣∣∣∣
2

dξ

+

∫ ∞

γ+
N

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,1)

)
− f(w1(ξ))

∣∣∣∣∣
2

dξ

⎤
⎦

=: Ic1 +

N∑
k=2

I1+
1,k +

N∑
k=2

I2+
1,k +

N−1∑
k=2

I3+
1,k + Ie1 .
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I1+
1,k , I

2+
1,k , I

3+
1,k , I

e are estimated as before, and for Ic1 we have

Ic1 ≤ C

∫ γ−
2

−∞

N∑
k=2

e2α(ξ+(c1−ck)t)dξ ≤ C

∫ γ−
2

−∞
e2α(ξ+(c1−c2)t)dξ

≤ Ce−2αq(c2−c1)t.

The estimate of I1 for j = N proceeds as follows:

I1 ≤ C

⎡
⎣∫ γ+

1

−∞

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,N )

)
− f(wN (ξ))

∣∣∣∣∣
2

dξ +

N−1∑
k=1

∫ γ0
k

γ+
k

Qg
N (ξ, t)2dξ

+

N−1∑
k=1

∫ γ−
k

γ0
k

Qg
N (ξ, t)2dξ +

N−2∑
k=1

∫ γ+
k+1

γ−
k

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,N )

)
− f(wN (ξ))

∣∣∣∣∣
2

dξ

+

∫ ∞

γ−
N−1

∣∣∣∣∣f
(

N∑
k=1

ŵk(ξ
g
k,N )

)
− f(wN (ξ))

∣∣∣∣∣
2

dξ

⎤
⎦

=: Ib1 +

j−1∑
k=1

I1−
1,k +

j−1∑
k=1

I2−
1,k +

j−2∑
k=1

I3−
1,k + Ic1.

The terms Ib1, I
1−
1,k , I

2−
1,k , I

3−
1,k are treated as before, and for Ic1 we have

Ic1 ≤ C

∫ ∞

γ−
N−1

N−1∑
k=1

e−2α(ξ+(cN−ck)t)dξ

≤ C

∫ ∞

γ−
N−1

e−2α(ξ+(cN−cN−1)t)dξ ≤ Ce−2αq(cN−cN−1)t.

Finally, we estimate I2. For 2 ≤ j ≤ N − 1 we partition into four terms:

I2 ≤ C

[∫ γj−1

−∞
|f(wj(ξ))|2dξ +

∫ 0

γj−1

(1 −Qg
j (ξ, t))

2dξ

+

∫ γj+1

0
(1 −Qg

j (ξ, t))
2dξ +

∫ ∞

γj+1

|f(wj(ξ))|2dξ
]

=: I2,1 + I2,2 + I2,3 + I2,4,

where

γk = q(ck − cj)t.
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Employing the same estimates as above, we find

I2,1 ≤ C

∫ γj−1

−∞
|f(wj(ξ)) − f(w−

j )|2dξ

≤ C

∫ γj−1

−∞
e2αξdξ ≤ Ce2αγj−1 ,

I2,2 ≤ C

∫ 0

γj−1

(
∑j−1

k=1 ϕ(ξ + (cj − ck)t) +
∑N

k=j+1 ϕ(ξ + (cj − ck)t))

ϕ(ξ)2

2

dξ

≤ C

⎡
⎣∫ 0

γj−1

j−1∑
k=1

e−2(β0+β1)ξ−2β1(cj−ck)t +

N∑
k=j+1

e2(−β0+β1)ξ+2β1(cj−ck)tdξ

⎤
⎦

≤ C

∫ 0

γj−1

e−2(β0+β1)ξ−2β1(cj−cj−1)t + e2(−β0+β1)ξ+2β1(cj−cj+1)tdξ

≤ C(e2((β0+β1)q−β1)(cj−cj−1)t + e2(β0−β1)q(cj−cj−1)t−2β1(cj+1−cj)t),

I2,3 ≤ C

∫ γj+1

0

(
∑j−1

k=1 ϕ(ξ + (cj − ck)t) +
∑N

k=j+1 ϕ(ξ + (cj − ck)t))

ϕ(ξ)2

2

dξ

≤ C

⎡
⎣∫ γj+1

0

j−1∑
k=1

e2(β0−β1)ξ−2β1(cj−ck)t +

N∑
k=j+1

e2(β0+β1)ξ+2β1(cj−ck)tdξ

⎤
⎦

≤ C

∫ γj+1

0
e2(β0−β1)ξ−2β1(cj−cj−1)t + e2(β0+β1)ξ+2β1(cj−cj+1)tdξ

≤ C
[
e2(β0−β1)γj+1−2β1(cj−cj−1)t + e2((β0+β1)q−β1)(cj+1−cj)t

]
,

I2,4 ≤ C

∫ ∞

γj+1

|f(wj(ξ)) − f(w+
j )|2dξ ≤ C

∫ ∞

γj+1

e−2αξdξ ≤ Ce−2αγj+1 .

For j = 1 we estimate I2 as follows:

I2 ≤ C

[∫ −qt

−∞
|f(w1(ξ))|2dξ +

∫ 0

−qt
(1 −Qg

1(ξ, t))
2dξ

+

∫ γ2

0
(1 −Qg

1(ξ, t))
2dξ +

∫ ∞

γ2

|f(w1(ξ))|2dξ
]

=: I2,1 + I2,2 + I2,3 + I2,4.

I2,3 and I2,4 are estimated as before, and for I2,1 and I2,2 we obtain

I2,1 ≤ C

∫ −qt

−∞
|f(w1(ξ)) − f(w−

1 )|2dξ ≤ C

∫ −qt

−∞
e2α1ξdξ ≤ Ce−2α1qt,

I2,2 ≤ C

∫ 0

−qt

∑N
k=2 ϕ(ξ + (c1 − ck)t)

ϕ(ξ)2

2

dξ ≤ C

∫ 0

−qt

N∑
k=2

e2(−β0+β1)ξ+2β1(c1−ck)tdξ

≤ C

∫ 0

−qt
e2(−β0+β1)ξ+2β1(c1−c2)tdξ ≤ C(e2(β0−β1)qt−2β1(c2−c1)t).
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Similarly, we find for j = N

I2 ≤ C

[∫ γN−1

−∞
|f(wN (ξ))|2dξ +

∫ 0

γN−1

(1 −Qg
N (ξ, t))2dξ

+

∫ qt

0
(1 −Qg

N (ξ, t))2dξ +

∫ ∞

qt
|f(wN (ξ))|2dξ

]

=: I2,1 + I2,2 + I2,3 + I2,4.

I2,1 and I2,2 are as before, and I2,3, I2,4 satisfy

I2,3 ≤ C

∫ qt

0

∑N−1
k=1 ϕ(ξ + (cN − ck)t)

ϕ(ξ)2

2

dξ ≤ C

∫ qt

0

N−1∑
k=1

e2(β0−β1)ξ−2β1(cN−ck)tdξ

≤ C

∫ qt

0
e2(β0−β1)ξ−2β1(cN−cN−1)tdξ ≤ Ce2(β0−β1)qt−2β1(cN−cN−1)t,

I2,4 ≤ C

∫ ∞

qt
|f(wN (ξ)) − f(w+

N )|2dξ ≤ C

∫ ∞

qt
e−2αξdξ ≤ Ce−2αqt.
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[20] V. Thümmler, The effect of freezing and discretization to the asymptotic stability of relative equilibria,
J. Dynam. Differential Equations, 20 (2008), pp. 425–477.

[21] W. van Saarloos and P. C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex
Ginzburg-Landau equations, Phys. D, 56 (1992), pp. 303–367.

[22] E. Yanagida and K. Maginu, Stability of double-pulse solutions in nerve axon equations, SIAM J. Appl.
Math., 49 (1989), pp. 1158–1173.

[23] S. Zelik and A. Mielke, Multi-pulse evolution and space-time chaos in dissipative systems, Mem. Amer.
Math. Soc., to appear.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 2, pp. 609–649

Mechanisms for Frequency Control in Neuronal Competition Models∗
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Abstract. We investigate analytically a firing rate model for a two-population network based on mutual inhibi-
tion and slow negative feedback in the form of spike frequency adaptation. Both neuronal populations
receive external constant input whose strength determines the system’s dynamical state—a steady
state of identical activity levels or periodic oscillations or a winner-take-all state of bistability. We
prove that oscillations appear in the system through supercritical Hopf bifurcations and that they
are antiphase. The period of oscillations depends on the input strength in a nonmonotonic fashion,
and we show that the increasing branch of the period versus input curve corresponds to a release
mechanism and the decreasing branch to an escape mechanism. In the limiting case of infinitely slow
feedback we characterize the conditions for release, escape, and occurrence of the winner-take-all
behavior. Some extensions of the model are also discussed.

Key words. Hopf bifurcation, antiphase oscillations, slow negative feedback, winner-take-all, release and escape,
binocular rivalry, central pattern generators
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1. Introduction. Competition models have a long tradition in ecology and population
biology (see, e.g., [22]). Typically, the competition involves negative interactions in the battle
for a common resource. Eventually, one of the participant populations emerges as the winner
eliminating the competitors. This framework has appeared in models of neuronal development
where the competition is for synapse formation such as the development of neuromuscular
connections for innervated muscle fibers and for the formation of ocular dominance columns
and topographic maps (as reviewed in [35]). The notion of competition has also been applied
in the modeling of various neuronal computational tasks. Winner-take-all behavior, when one
neural population remains active and the others inactive indefinitely as a result of inhibitory
interactions, has been proposed in models for short term memory and attention [13] or for the
selection and switching in the striatum of the basal ganglia under both normal and pathological
conditions [15, 21].

The winner-take-all steady state may persist for a long time but not indefinitely if some
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mechanism for slow fatigue or adaptation is at work. In this case one population may be
dominant for a while, then another, and so on. Competition between, say, two neuronal
populations, via reciprocal inhibition and slow adaptation underlies models for alternating
rhythmic behavior in central pattern generators (CPGs) [11, 32, 6, 33] and in perceptual
bistability [17, 37, 24]. CPGs consist of neural circuits that drive alternately contracting
muscle groups. Perceptual bistability refers to a class of phenomena in which a deeply am-
biguous stimulus gives rise to two different interpretations that alternate over time, only one
being perceived at any given moment. Slow adaptation may be implemented via a cellular
mechanism (fatigue in the spike generation mechanism) or a negative feedback in the coupling
(depression of the synaptic transmission mechanism). In some neuronal competition models
the alternations may be irregular and caused primarily by noise, with adaptation playing a
secondary role [30, 10, 24].

Both for CPGs and perceptual bistability the issue of oscillations’ frequency or period
detection (and eventually control) seems to be important. For example, a classical example
of perceptual bistability is binocular rivalry whose properties were summarized in the so-
called Levelt’s propositions [19]. In binocular rivalry, a subject views an ambiguous stimulus
in which each eye is presented with a drastically different image. Instead of perceiving a
mixture of the two images, the subject reports (over a large range of stimulus conditions)
an alternation between the two competing percepts; one image is perceived for a while (a
few seconds), then the other, etc. Levelt’s proposition IV (LP-IV) states that increasing
the contrast of the rivaling images increases the frequency of percept switching, or, in other
words, that dominance times of both perceived images decrease with equal increase of stimulus
strength. Since 1968, binocular rivalry has been investigated intensively in other psychophysics
experiments [2, 25, 20, 1, 28, 29, 3], in experiments using fMRI techniques [34, 26, 38, 18],
and also in modeling studies [17, 37, 10, 24].

In a recent modeling paper, Shpiro et al. [31] show that for a class of competition models,
the LP-IV type of dynamics occurs in fact only within a limited range of stimulus strength.
Outside this range four other types of behavior were observed: (i) fusion at a very high level
of activity, (ii) winner-take-all behavior, (iii) a region where dominance times increase with
stimulus strength (as opposed to LP-IV), and then (iv) fusion again for very low levels of
activity (see Figure 3F in section 2). These differences between experimental reports and
theory have important implications, either predicting new possible dynamics in binocular
rivalry or, if future experiments do not confirm them, pointing to the necessity for other types
of models. Meanwhile, it is important to understand the sources or mechanisms that lead to
the nonmonotonic dependence of oscillation period on the stimulus strength for this class of
neuronal competition models. Our paper aims to investigate this issue.

We analyze a firing rate model in which competition between populations is a result of a
combination of reciprocal inhibition and a slow negative feedback process. We prove that, as
the input strength changes, oscillations appear in the system through a Hopf bifurcation and
that they are antiphase. Due to the two time scales involved in the system there is a regime
where periodic solutions take the form of relaxation-oscillators. Their period of oscillations
depends nonmonotonically on the input strength, say, I: in a range of low values for I, the
period increases with I, and we show that the dynamics is due to a release mechanism; on
the other hand, in a range of higher values for I, the period decreases with I, and escape is
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Figure 1. Network architecture of neuronal competition model.
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Figure 2. Graphical representations of generic (A) gain function S; (B) its inverse F ; and (C) first
derivative F ′.

the underlying mechanism (see section 4; we define release as the case when the switch in
dominance during oscillation occurs due to a significant change in the response to an input
to the dominant population. On the contrary, escape corresponds to the case of a significant
change in the input-output function for the suppressed population). For intermediate values
of I, winner-take-all is possible and we explain how it appears. Then in section 5 we present
some model modifications that allow for reducing, or even excluding, one of the escape and
release regimes, thus leading to a monotonic period versus input curve.

2. The mathematical model. The model we investigate in this paper assumes a network
architecture of two populations of neurons (Figure 1) that respond to two competing stimuli
of equal strength:

u̇1 = −u1 + S(I − βu2 − ga1),

u̇2 = −u2 + S(I − βu1 − ga2),

τ ȧ1 = −a1 + u1,

τ ȧ2 = −a2 + u2.(2.1)

Variables uj (j = 1, 2) measure short-time and spatially averaged firing rates of the two
populations that inhibit each other. The system is nonlinear due to the gain function S;
it is the steady input-output function for the population and it has a sigmoid shape as in
Figure 2A. The strength of inhibition is modeled by the positive parameter β, while I is the
control parameter directly associated to the external stimulus strength (e.g., it grows with
growing stimulus strength such as contrast). Each population is subject to a slow negative
feedback process aj such as spike frequency adaptation of positive strength g. Since variables
aj evolve in much slower time than uj , the parameter τ takes large values, τ � 1 (e.g., the
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time-scale for uj is about 10 msec, while for aj it is about 1000 msec).
Remark 2.1. In general, firing-rate models like (2.1) include in the equation of uj a non-

linear term of the form S(I + αuj − βuk − gaj). The product αuj is associated with the
intrapopulation recurrent excitation. It is important to note that for neuronal competition
model (2.1) we have disallowed recurrent excitation (taken α = 0) in order to preclude an
isolated population (β = 0) from oscillating on its own. This is a restriction imposed by
experimental observations on binocular rivalry and other perceptual bistable phenomena.

The nonlinear gain function S that appears in the differential equations for uj is usually
defined in neuronal models by

(2.2) S(x) =
1

1 + e−r(x−θ)

with positive r and real θ.
Function S is invertible with F = S−1 a C∞(0, 1)-function and F ′(u) = 1

ru(1−u) (Figure

2B–C). Based on this example, we consider the following assumptions for the gain function S.
S : R→ (0, 1) is a differentiable, monotonically increasing function with S(θ) = u0 ∈ (0, 1)

and limx→−∞ S(x) = 0, limx→∞ S(x) = 1. Moreover, its first and second derivatives satisfy
the conditions limx→±∞ S ′(x) = 0, S ′′(x) > 0 for x < θ, S ′′(x) < 0 for x > θ, and S ′′(θ) = 0,
so S ′ has a maximum at θ.

As a consequence, S is invertible with F = S−1 : (0, 1) → R monotonically increasing
function such that limu→0 F (u) = −∞, limu→1 F (u) = ∞, F (u0) = θ, and limu→0 F

′(u) =
limu→1 F

′(u) = ∞, F ′′(u) < 0 for u ∈ (0, u0), F ′′(u) > 0 for u ∈ (u0, 1), F ′′(u0) = 0.
Obviously, F ′ has a minimum value at u0 which is F ′(u0) = 1/S ′(θ).

Additionally we assume that F is a C∞-function on (0, 1), or at least C2 on (0, 1) and C∞

on (0, 1) \ {u0}.
The typical graphs of function S and its corresponding F and F ′ are drawn in Figure

2A–C. We used the example (2.2) with parameter values r = 10 and θ = 0.2; obviously in
this case S(θ) = u0 = 0.5.

All the experiments that motivated our work report oscillatory phenomena with frequen-
cies tightly connected to the stimulus strengths. Moreover, as Levelt [19] pointed out for
binocular rivalry, those experiments show large ranges for stimulus strength where the corre-
sponding oscillation periods/frequencies behave monotonically. What kind of possible mech-
anism is behind this type of dynamics is the question we will focus on in this paper.

Given the neuronal competition model (2.1), the goal is to examine the effect the parameter
I has on the existence of oscillations and on their period. The system is a simplified version
of an entire class of competition models that, as we found [31], share important dynamical
features.

To illustrate those commonalities we draw in Figure 3A–E the timecourses of activity vari-
ables u1(t) and u2(t) for different values of control parameter I. Then we summarize the result
in the bifurcation diagram of the period T versus I (Figure 3F). Other parameter values are
fixed to β = 1.1, g = 0.5, τ = 100, and S as in (2.2) with r = 10 and θ = 0.2 (here u0 = 1/2).
The system (2.1) exhibits five possible types of behavior: for large values of I (region I in
Figure 3F) both populations are active at identically high levels (Figure 3A); the timecourses
of u1(t) and u2(t) tend to a stable steady state larger than u0. As I decreases (region II,
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Figure 3. Bifurcation diagrams and examples of activity timecourses for neuronal competition model (2.1)
with parameter values g = 0.5, τ = 100, r = 10, θ = 0.2, and β = 1.1 (A–G), respectively, β = 0.75 (H–I).
Timecourses of u1, u2 corresponding to panel F for different values of I: (A) I = 1.86, (B) I = 1.5, (C) I = 1,
(D) I = 0.5, and (E) I = 0.08. Bifurcation diagrams of period T of the network oscillation versus input strength
I (F and H). Bifurcation diagram of population activity u1 versus I (G and I).

Figure 3F) the system starts oscillating with u1(t) and u2(t) alternatively on and off (Fig-
ure 3B); in this region the period of oscillation decreases with increasing input strength. At
intermediate values of I a winner-take-all kind of behavior is observed (region III, Figure 3F);
depending on the choice of initial conditions, one of the two populations is active indefinitely,
while the other one remains inactive (Figure 3C). Decreasing I even more (region IV, Fig-
ure 3F) the neuronal model becomes oscillatory again (Figure 3D) with u1 and u2 competing
for the active state; however, for this range of parameter the oscillation period T increases
with input value I—an opposite behavior to that observed in region II. Last, for small values
of stimulus strength (region V, Figure 3F) both populations remain inactive at identically low
level firing rates (Figure 3E); the timecourses of u1(t) and u2(t) tend to a stable steady state
less than u0.

To further characterize system (2.1)’s dynamics as the input value I is varied, we also
construct the local bifurcation diagram of amplitude response u1 to I (Figure 3G). For the
parameter ranges I and V the trajectories are attracted to a stable fixed point satisfying
the ũ1 = ũ2 condition (thick line in Figure 3G). This fixed point becomes unstable (dashed
line) in regions II, III, and IV, where the attractor is replaced by either a stable limit cycle
(regions II and IV: branched filled-circle curves corresponding to the maximum and minimum
amplitudes during rivalry oscillations) or another stable fixed point with ũ1 �= ũ2 (region III).
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Due to the symmetry in the equations of (2.1) whenever (ũ1, ũ2, ã1, ã2) is an equilibrium point,
(ũ2, ũ1, ã2, ã1) is as well. The local bifurcation diagram suggests the existence of some Hopf
and pitchfork bifurcations in the model that we will further investigate in section 3.

There is another common feature of many neuronal competition models based on reciprocal
inhibition architecture with slow negative feedback in the form of spike frequency adaptation
and/or synaptic depression [31]: the absence of the winner-take-all behavior when inhibition
strength β is sufficiently small. As we illustrate in Figure 3H–I for β = 0.75 (all other
parameters are the same as above), the winner-take-all regime at intermediate I disappears.
However, the dependency of period T on stimulus strength remains nonmonotonic.

An intriguing question is: What are the neuronal mechanisms underlying the two distinct
dynamics—one of increasing period with increase of stimulus strength (for smaller values of
input), and one of decreasing period (for larger values)? This issue is discussed in section 4
and then extended in section 5.

Our general goal is to understand and possibly to analytically characterize the numerical
results obtained for this specific competition model (2.1). Consequently, as already pointed
out, this step will help us understand the typical behavior of an entire class of neuronal
competition models.

3. Oscillatory antiphase solutions and local analysis. In this section we use methods
from local bifurcation theory [14, 16] to prove the existence of periodic solutions (u1(t), u2(t),
a1(t), a2(t)) for the two-population network (2.1). We also show that the main variables u1

and u2 oscillate in antiphase, therefore competing for the ON/active state.
The bifurcation diagrams obtained numerically in section 2 suggest the existence of an

equilibrium point satisfying u1 = u2 no matter the value of parameter I. Let us now investigate
system (2.1) theoretically.

All equilibria satisfy the conditions u1 = S(I−βu2−ga1), u2 = S(I−βu1−ga2), a1 = u1,
and a2 = u2 that are equivalent (due to the invertibility of S) to F (u1) = I − βu2 − ga1,
F (u2) = I − βu1 − ga2, and a1 = u1, a2 = u2. Looking for a particular type of equilibrium
point, that is, for points with u1 = u2, we obtain the equation I = H(u) with H defined by

(3.1) H : (0, 1) → R, H(u)
def
= F (u) + (β + g)u.

Since F is monotonically increasing on (0, 1) with vertical asymptotes limu→0 F (u) = −∞ and
limu→1 F (u) = ∞, (3.1) has a unique solution uI ∈ (0, 1) for any real value of the parameter
I. Moreover, from the identity I = F (uI) + (β + g)uI we compute

(3.2)
duI
dI

=
1

β + g + F ′(uI)
,

so a decrease in I leads to a decrease in uI with limI→∞ uI = 1 and limI→−∞ uI = 0.
The neuronal competition model (2.1) always possesses an equilibrium of the type (uI , uI ,

uI , uI). Its stability properties are then defined by the linearized system dY/dt = AY , Y =
(u1 − uI , u2 − uI , a1 − uI , a2 − uI)

T, where ( )T stays for the transpose, and matrix

A =

⎛
⎜⎜⎝

−1 −β/F ′(uI) −g/F ′(uI) 0
−β/F ′(uI) −1 0 −g/F ′(uI)

1/τ 0 −1/τ 0
0 1/τ 0 −1/τ

⎞
⎟⎟⎠ .
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This form of the matrix relies on the equality S ′(I−βu2−ga1) = S ′(F (u1)) = S ′(S−1(u1)) =
1/(S−1)′(u1) = 1/F ′(u1), which is true at the equilibrium point.

The characteristic equation of A takes the form[
(λ + 1)

(
λ +

1

τ

)
+

g

τF ′(uI)

]2

−
[

β

F ′(uI)

(
λ +

1

τ

)]2

= 0.

As a difference of squares it can be decomposed into two quadratic equations: the first is
λ2 + λ

(
1 + 1

τ + β
F ′(uI)

)
+ 1

τ

(
1 + g+β

F ′(uI)

)
= 0, so two eigenvalues of the matrix A, say, λ1 and

λ2, have negative real part no matter the value of parameter I. The other eigenvalues λ3 and
λ4 satisfy the second quadratic equation λ2 + λ

(
1 + 1

τ − β
F ′(uI)

)
+ 1

τ

(
1 + g−β

F ′(uI)

)
= 0, and

their real part can change sign when I is varied.
For |I| sufficiently large, uI is close to either zero or one, keeping F ′(uI) larger than both

β/(1 + 1
τ ) and β − g (see Figure 2C); the corresponding equilibrium point (uI , uI , uI , uI) is

asymptotically stable.
There are two ways this equilibrium point can lose stability: either through a pair of

purely imaginary eigenvalues λ3,4 = ±iω at F ′(uI) = β/(1 + 1
τ ) or through a zero eigenvalue

λ3 = 0, λ4 < 0 at F ′(uI) = β − g. Which of these two cases occurs first depends on the
relationship between β/(1 + 1

τ ) and β − g: if β/(1 + 1
τ ) > β − g, i.e., β/g < τ + 1, then the

eigenvalues λ3, λ4 change the sign of their real part from negative to positive by crossing the
imaginary axis (λ3,4 = ±iω); if β/g > τ + 1, then the case λ3 = 0, λ4 < 0 is encountered first.

At this point we remind the reader of our assumption of a large time constant value τ .
(The competition between the populations in the network comes from the combination of
two important ingredients: reciprocal inhibition and the addition of a slow negative feedback
process.) Therefore, it makes sense to situate ourselves in the case of β/g � τ , which implies

(3.3) β < g(τ + 1).

Inequality (3.3) can be interpreted as a feature of the neuronal competition model to be rather
(adaptation) feedback-dominated than (inhibitory) coupling-dominated.

We will assume in the following that parameters g and τ are fixed and that β is chosen
such that (3.3) is true.

Another observation is that the graph of F ′ has a well-like shape with positive minimum
at 1/S ′(θ) as in Figure 2C. Consequently the straight horizontal line y = β/(1+ 1

τ ) intersects
it twice (if β/(1+ 1

τ ) > 1/S ′(θ)), once (for the equality), or not at all (if β/(1+ 1
τ ) < 1/S ′(θ)).

As observed in numerical simulations, in order for the system to oscillate, a sufficiently large
inhibition strength has to be considered. Mathematically that reduces to

(3.4) β >
1 + 1/τ

S ′(θ)
.

Thus we are able to characterize the stability of the equilibrium (uI , uI , uI , uI).
Theorem 3.1. The dynamical system (2.1) has a unique equilibrium point with u1 = u2,

say, eI = (uI , uI , uI , uI), for any real I. The value uI increases monotonically with I and
belongs to the interval (0, 1).

Let us assume that the adaptation-dominance condition (3.3) is true.
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(i) If β < 1+1/τ
S ′(θ) , then eI is asymptotically stable for all I ∈ R.

(ii) If β > 1+1/τ
S ′(θ) , then there exist exactly two values u∗hb, u

∗∗
hb ∈ (0, 1) such that u∗hb < u0 <

u∗∗hb and

(3.5) F ′(u∗hb) = F ′(u∗∗hb) =
β

1 + 1
τ

.

The equilibrium point eI is asymptotically stable for all I ∈ (−∞, I∗hb)∪ (I∗∗hb ,∞) and unstable
for I ∈ (I∗hb, I

∗∗
hb ), where I∗hb = H(u∗hb), I∗∗hb = H(u∗∗hb) defined by (3.1). At I∗hb and I∗∗hb the

stability is lost through a pair of purely imaginary eigenvalues.
Proof. (i) Since β − g < β/(1 + 1

τ ) < 1/S ′(θ) = min(F ′), all eigenvalues of the linearized
system about eI have negative real part.

(ii) The conclusion is based on the properties of F ′, which decreases on interval (0, u0)
and increases on (u0, 1) with F ′(u0) = min(F ′). The sum λ3 +λ4 changes sign from negative
to positive when I increases through I∗hb and then back from positive to negative when passing
through I∗∗hb . For I ∈ (I∗hb, I

∗∗
hb ) at least one real part of λ3 and λ4 is positive, so eI is unstable.

At I = I∗hb and I = I∗∗hb we have λ3,4 = ±iω. For all other values of I we have λ3 + λ4 < 0,
λ3λ4 > 0; so eI is asymptotically stable.

Since the equilibrium point eI becomes unstable through a pair of purely imaginary eigen-
values as I crosses the values I∗hb and I∗∗hb , we expect to find there two Hopf bifurcation points.
Indeed, in section 3.1 we prove the existence of a supercritical Hopf bifurcation at both I∗hb
and I∗∗hb and, as a consequence, the existence of stable oscillatory solutions for system (2.1).

3.1. Normal form for the Hopf bifurcation. In the following we assume that both in-
equalities (3.3) and (3.4) are true; that is, we take the coupling in (2.1) to be sufficiently
strong but still adaptation-dominated.

Let us use the notation I∗ for any of the critical values I∗hb and I∗∗hb and similarly the
notation u∗ for u∗ ∈ {u∗hb, u∗∗hb}. Then the linearization matrix A at u∗ becomes

A0 =

⎛
⎜⎜⎝

−1 −(1 + 1
τ ) − g

β (1 + 1
τ ) 0

−(1 + 1
τ ) −1 0 − g

β (1 + 1
τ )

1
τ 0 − 1

τ 0
0 1

τ 0 − 1
τ

⎞
⎟⎟⎠ ,

and it has eigenvalues λ1,2 with Re(λ1,2) < 0 and λ3,4 = ±iω,

(3.6) ω =
1

τ

√
g(τ + 1)

β
− 1.

The system (2.1) has an equilibrium eI for any I ∈ R; we translate eI to the origin with
the change of variables vj = uj −uI , bj = aj −uI (j = 1, 2) and obtain a system topologically
equivalent to (2.1),

v̇1 = −v1 + S(F (uI) − βv2 − gb1) − uI ,

v̇2 = −v2 + S(F (uI) − βv1 − gb2) − uI ,

τ ḃ1 = −b1 + v1,

τ ḃ2 = −b2 + v2.(3.7)



FREQUENCY CONTROL IN COMPETITION MODELS 617

Near u∗, u∗ �= u0, we expand the nonlinear terms in (3.7) with respect to uI and obtain for
v1 (and similarly for v2) an equation of the form

v̇1 = −v1 − S ′(F (uI)) · (βv2 + gb1) +
1

2
S ′′(F (uI)) · (βv2 + gb1)

2(3.8)

− 1

6
S ′′′(F (uI)) · (βv2 + gb1)

3 + h.o.t.

Here h.o.t. means the higher order terms. The parameter value I∗ is a possible Hopf bifur-
cation, so we consider small perturbations about it and about the solution u∗. That is, we
take

(3.9) I − I∗ = ε2α, V (t) = εV0(t) + ε2V1(t) + ε3V2(t) + · · · ,

where α is the bifurcation parameter and V = (v1, v2, b1, b2)
T.

The expansions of the coefficients S(k)(F (uI)), k = 1, 2, 3, . . . , with respect to ε take the
form S ′(F (uI)) = (1 + 1

τ )/β + αAε2 + O(ε4), S ′′(F (uI)) = B + O(ε2), and S ′′′(F (uI)) =
D + O(ε2), where A, B, and D are defined by

(3.10) A = − F ′′(u∗)

F ′(u∗)2(β + g + F ′(u∗))
, B = − F ′′(u∗)

F ′(u∗)3
, D =

3F ′′(u∗)2 − F ′(u∗) · F ′′′(u∗)

F ′(u∗)5

(see Appendix A for more details). Let us introduce the following notation: for two vectors
U = (v1, v2, b1, b2)

T and W = (w1, w2, c1, c2)
T we define first the quantities ṽij = βvj + gbi,

w̃ij = βwj + gci, and then, using the scalars from (3.10), we define the operators

L0U =
dU

dt
− A0U, ΛU = −αA (ṽ12, ṽ21, 0, 0)T,

B(U,W ) =
B

2
(ṽ12w̃12, ṽ21w̃21, 0, 0)T, C(U,U,U) = −D

6
(ṽ3

12, ṽ
3
21, 0, 0)T.

Then based on (3.8), (3.9), and (3.10), we write system (3.7) as

L0V0 = ε[B(V0, V0) − L0V1] + ε2[C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2] + O(ε3) .

The construction of the normal form relies on an algorithm that we describe in Appendix A
(see also [4, 5] for a similar approach) and that involves tedious calculations; we present here
only the main result.

Theorem 3.2. Let us assume that conditions (3.3) and (3.4) are true (sufficiently strong
coupling and adaptation-dominated system), and take I∗ ∈ {I∗hb, I∗∗hb}, u∗ ∈ {u∗hb, u∗∗hb} as in
Theorem 3.1. Then the system (2.1) has in the neighborhood of I∗ the normal form

(3.11) ż = Aϕ(I − I∗) z − Lz2z̄,

where z is a complex variable and

L = 4τ2ω2 |ϕ|2
|ψ|2ϕψ

(
β + g

2
+ iβωτ

)
B2 + 2τ2ω2|ϕ|2ϕ

(
2(β + g)

1 + ( gβ + 1)(1 + 1
τ )

B2 −D

)
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with ϕ = β
2 + ig−β

2τω , ψ = 2 − 3g
β + 1

τ

(
5 − 3g

β

)
− 4iω(τ + 1), and A,B,D as in (3.10).

In order to show that I∗hb and I∗∗hb are supercritical Hopf bifurcation points, we need to
check that the coefficient of z2z̄ has negative real part, i.e., that Re(L) > 0.

As we prove in the appendix, for our range of parameters β, g, and τ , the first term in L

has indeed positive real part (see (A.3)); on the other hand, the real part of the second term
(see (A.4)) is larger than

βτ2ω2|ϕ|2B2F ′(u∗)

(
F ′(u∗)F ′′′(u∗)

F ′′(u∗)2
− 2

)
.

Remark 3.1. The inverse of function S defined by (2.2) satisfies the condition

(3.12) F ′(u∗)F ′′′(u∗) > 2F ′′(u∗)2.

Moreover, the inequality (3.12) is true not only for u∗ but for all u ∈ (0, 1).
We use this observation to state our next result.
Theorem 3.3. Let us assume the same hypotheses as in Theorem 3.2. Given at u∗ ∈

{u∗hb, u∗∗hb} the property (3.12) for the gain function S, the input value I∗ is a supercritical
Hopf bifurcation point for system (2.1). The stable limit cycle occurs on the left side of I∗∗hb
(that is, for sufficiently close I < I∗∗hb) and on the right side of I∗hb (I > I∗hb).

Proof. The Hopf bifurcation is supercritical since Re(L) > 0 in the normal form; the
nondegeneracy condition is Re(Aϕ) = Aβ/2 �= 0.

The sign of A is opposite to the sign of F ′′(u∗), so A > 0 for u∗hb and A < 0 for u∗∗hb.
Consequently the sign of Re(Aϕ(I − I∗)) that shows the direction of limit cycle bifurcation is
positive for I > I∗hb and I < I∗∗hb .

Remark 3.2. It is possible to obtain supercritical Hopf bifurcation points for other types of
gain-function than (3.12), as long as Re(L) has positive value. When (3.12) is not valid, the
sign of Re(L) will be computed directly from the definition formula of L.

3.2. Antiphase oscillations. The stable limit cycle that exists in the neighborhood of
the bifurcation points I∗hb (for I > I∗hb) and I∗∗hb (for I < I∗∗hb ) is a periodic solution L1(t) =
(u1(t), u2(t), a1(t), a2(t)) of period, say, T . Due to the symmetry of the system (2.1) with
respect to the group Γ = {14, γ} where 14 is the unitary 4-by-4 matrix and

γ =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

L2(t) = γL1(t) = (u2(t), u1(t), a2(t), a1(t)) is also a periodic solution for (2.1). L2 results
automatically from solution L1 by relabeling the two network’s populations. Moreover, it
belongs to the same neighborhood of the equilibrium point as L1 does.

Since the limit cycle born through the Hopf bifurcation is unique, the corresponding phase
space trajectories of L1 and L2 coincide. Therefore, there exists a phase shift α0 ∈ [0, T ) such
that L2(t) = L1(t + α0). This implies u2(t) = u1(t + α0) and u1(t) = u2(t + α0), i.e.,
u1(t) = u1(t + 2α0) for all real t [12]. The phase shift α0 needs to satisfy α0 = kT/2 with k
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an integer, so k is either k = 0 or k = 1. If k = 0, the two populations in the network will
oscillate in synchrony. If k = 1, we have u2(t) = u1(t + T/2) and a2(t) = a1(t + T/2), which
means an antiphase oscillation.

Let us assume for the moment that k = 0. Then U(t) = (u1(t), u1(t), a1(t), a1(t)) is a
periodic solution of (2.1), and, as a consequence, (u1(t), a1(t)) is a periodic solution of the
two-dimensional system

u̇1 = −u1 + S(I − βu1 − ga1), τ ȧ1 = −a1 + u1.

This contradicts Bendixon’s criterion: the expression

∂

∂u1
(−u1 + S(I − βu1 − ga1)) +

∂

∂a1

(
−a1

τ
+

u1

τ

)
= −1 − βS ′(I − βu1 − ga1) −

1

τ

is always negative, so our initial assumption should be false.
Excluding the first case, the limit cycle has to be an antiphase solution of (2.1): the two

populations compete indeed for the active state (see, for example, Figure 3B or 3D).
We state our conclusion in the following theorem.
Theorem 3.4. Let us assume that conditions (3.3) and (3.4) are true and the coefficient

L in the normal form (3.11) has positive real part. Then the stable limit cycle obtained at
the supercritical Hopf bifurcation (as I crosses either I∗hb or I∗∗hb) corresponds to an antiphase
oscillation: the limit cycle of period T satisfies u2(t) = u1(t + T/2) and a2(t) = a1(t + T/2)
for any real t.

3.3. Multiple equilibria for large enough inhibition. Our local analysis shows how stable
oscillations occur in system (2.1)—through a Hopf bifurcation. The uniform equilibrium point
eI has four eigenvalues, λ1 and λ2 with negative real part independent of I (Re(λ1,2) < 0), and
λ3 and λ4 that can cross the imaginary axis. Besides Hopf, another type of local bifurcation
appears in (2.1) when one of the eigenvalues λ3, λ4 takes zero value, that is, when F ′(uI) =
β − g. Because of the system’s symmetry we expect it to be a pitchfork bifurcation.

Numerical simulations of system (2.1) reveal indeed the existence of additional equilibrium
points. However, they exist for stronger (Figure 3G, β = 1.1) but not for weaker inhibition
(Figure 3I, β = 0.75). We explain analytically how that happens.

Theorem 3.5. (i) If β − g < 1/S′(θ), then the dynamical system (2.1) has a unique equi-
librium point for all real I and this is eI = (uI , uI , uI , uI).

(ii) For strong inhibition,

(3.13) β − g > 1/S ′(θ),

there are exactly two values, say, u∗pf , u
∗∗
pf ∈ (0, 1), such that u∗pf < u0 < u∗∗pf and

(3.14) F ′(u∗pf ) = F ′(u∗∗pf ) = β − g.

At I∗pf = H(u∗pf ) and I∗∗pf = H(u∗∗pf ) defined by (3.1), the equilibrium point eI has a zero
eigenvalue.

Proof. The condition that characterizes the equilibrium points of (2.1) is equivalent to
G(u1) = G(u2) = I−β(u1 +u2), where we define G by G(u) = F (u)+(g−β)u, u ∈ (0, 1). We
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have limu→0 G(u) = −∞, limu→1 G(u) = ∞, and G ′(u) = F ′(u) + g − β ≥ F ′(u0) + g − β =
1/S ′(θ) + g − β. Obviously, based on hypothesis (i), we have G ′(u) > 0. Therefore, G is a
monotonically increasing function; so it is injective, and the conclusion follows immediately.
Statement (ii) results from the shape of F ′.

By constructing the normal form of the system around the bifurcation point I∗pf or I∗∗pf ,
we prove the existence of a subcritical pitchfork bifurcation. Therefore, in the neighborhood
of I∗pf or I∗∗pf the system (2.1) has multiple (three) equilibria. However, since the pitchfork
is subcritical, the two newly born equilibrium points are unstable. In the four-dimensional
eigenspace they actually possess two unstable modes (see Remark 3.4).

In some cases these nonuniform equilibria (having u1 �= u2) might change their stability
for I between I∗pf and I∗∗pf . Depending on the initial condition a trajectory will be attracted
either to the fixed point with u1 > u2 or to that with u1 < u2, so one population is dominant
and the other is suppressed forever. We call this type of dynamics in (2.1) winner-take-all
behavior. The issue of the existence of the winner-take-all regime will be discussed separately
in section 4.2. In this section we focus only on the mechanism that introduces additional
equilibrium points to system (2.1).

Theorem 3.6. Let us assume β/(1 + 1
τ ) > β − g > 1/S ′(θ) and take I◦ ∈ {I∗pf , I∗∗pf},

u◦ ∈ {u∗pf , u∗∗pf} as in (3.14), I◦ = F (u◦) + (β + g)u◦. Then the system (2.1) has in the
neighborhood of I◦ the normal form

(3.15) ż =
(I − I◦)F ′′(u◦)

2β[g(τ + 1) − β]
z +

(β − g)2

6[g(τ + 1) − β]

(
F ′(u◦)F ′′′(u◦) − 3

2
F ′′(u◦)2 +

3g

2β

)
z3.

Moreover, if the gain function S satisfies (3.12) at u◦ ∈ {u∗pf , u∗∗pf}, then I◦ is a subcritical
pitchfork bifurcation point for the system (2.1). Two additional unstable equilibrium points
occur on the left side of I∗∗pf (I < I∗∗pf ) and on the right side of I∗pf (I > I∗pf ).

Proof. The construction of the normal form is sketched in Appendix B. Since (3.12)
is true, the coefficient of z3 in the normal form is positive and the pitchfork is subcritical.
Additional equilibrium points appear for (I−I◦)F ′′(u◦) < 0 with F ′′(u◦) negative at u∗pf and
positive at u∗∗pf .

Remark 3.3. In case of adaptation-dominated systems (when condition (3.3) or, equiva-
lently, β/(1 + 1

τ ) > β − g is true) we conclude the following: (1) for weak inhibition (β − g <
β/(1 + 1

τ ) < 1/S′(θ)), system (2.1) has a unique equilibrium point eI which is asymptotically
stable for all I; (2) for some intermediate value of inhibition (β − g < 1/S′(θ) < β/(1 + 1

τ )),
the system still has a unique equilibrium point for all I but this becomes unstable in the inter-
val (I∗hb, I

∗∗
hb ). However in order to obtain this case we need to properly adjust the maximum

gain to the adaptation parameters (i.e., we need S ′(θ) > 1/(τg)); (3) for strong inhibition
( 1/S′(θ) < β−g < β/(1+ 1

τ )), additional equilibrium points occur in system (2.1) for I > I∗pf
and I < I∗∗pf .

Remark 3.4. In case of strong inhibition and adaptation-dominated system we obtain u∗hb <
u∗pf < u0 < u∗∗pf < u∗∗hb and

I∗hb < I∗pf < I0 < I∗∗pf < I∗∗hb .

(Note that I0 = H(u0) is independent of β.) At each I between I∗hb and I∗∗hb , the equilibrium
point eI has at least one eigenvalue of positive real part. In fact for I ∈ (I∗hb, I

∗
pf )∪ (I∗∗hb , I

∗∗
pf ),
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Figure 4. Dynamical regimes in system (2.1) as inhibition strength β and stimulus strength I vary (other
parameters are fixed: g = 0.5, τ = 100, r = 10, θ = 0.2). To the left of curve Ihb (solid line) the system has a
unique stable equilibrium, and this satisfies u1 = u2 (simultaneous activity); in the region between curves Ihb
and Iw (dashed line) the system oscillates; then to the right of Iw the system has a winner-take-all behavior
(two stable and one unstable equilibria). The curve Ipf (dotted line) indicates a transition from one equilibrium
to multiple equilibria in (2.1). While the attractor’s type (limit cycle) does not change between Ihb and Iw, the
number of equilibria does: we find one unstable equilibrium between Ihb, Ipf and three unstable equilibria between

Ipf , Iw. The turning points of curves Ihb, Ipf , and Iw are obtained at β = 1+1/τ
S ′(θ) = 0.404, β = g+1/S ′(θ) = 0.9,

and βwta = 1.0387, respectively.

it has exactly two eigenvalues with positive real part and for I ∈ (I∗pf , I
∗∗
pf ) it has only one

eigenvalue with positive real part. Due to the multidimensionality of the eigenspace, at I∗pf
and I∗∗pf the equilibrium eI does not actually change its stability (even if an eigenvalue takes
zero value). Instead two new (nonuniform) equilibria are born (e.g., Figure 3G). The two
nonuniform equilibria inherit the number of unstable modes from their “parent”–fixed point,
which means they have exactly two unstable modes.

As we see, condition (3.13) is necessary but not sufficient to obtain a winner-take-all
behavior in system (2.1). In section 4.2, equations (4.11) and (4.10), we will determine the
minimum value of β for which winner-take-all exists (βwta) and the corresponding values I∗w,
I∗∗w where transition from oscillation to winner-take-all dynamics takes place. We summarize
all these results in Figure 4 by drawing the bifurcation diagram in the parameter plane (I, β).

4. Release, escape, and winner-take-all mechanisms in neuronal competition models.
As we mentioned in section 1, some common features are observed for a large class of neuronal
competition models based on mutual inhibition and slow negative feedback process. An im-
portant example is the nonmonotonic dependency of the rivalry-oscillation’s period T on the
stimulus strength I: in a range of small values for I the period increases with input strength;
however, there exists another range for I, at larger values, where the period decreases with
stimulus strength. These two dynamical regimes are usually separated by another one that is
nonoscillatory; it occurs for sufficiently strong inhibition and corresponds to winner-take-all
behavior (see Figures 3F and 3H).

The goal of this section is to characterize the underlying mechanisms of the above dynam-
ical scheme. We aim to understand what causes the two opposite rivalry dynamics: as we will
see, a release kind of mechanism is associated with the increasing branch of the T versus I
curve (region IV in Figure 3F); on the other hand, for the decreasing branch of the I-T curve
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(region II in Figure 3F), an escape mechanim is responsible.

The terms release and escape were previously introduced by [36] for inhibition-mediated
rhythmic patterns in thalamic model neurons and then extended and refined by [32] for Morris–
Lecar equations. Most cases include an autocatalytic process either intrinsic by voltage-gated
persistent inward currents or synaptic by intrapopulation recurrent excitation. In neuronal
competition model (2.1) mutual inhibition plays the role of autocatalysis: one population
inhibits the network partner that inhibited it; thus the combination of these two negative
factors has a positive effect on its own activity. Rhythmicity is obtained due to a fast positive
feedback (disinhibition) and a slow negative feedback process. The slow negative feedback
process can be either an intrinsic property of the neuronal populations (e.g., spike frequency
adaptation as in (2.1)) or a property of the inhibitory connections between them (e.g., synaptic
depression). A simplified model similar to (2.1) but with synaptic depression and a Heaviside
step-gain function was analytically investigated in [33]. Numerical results for models with
synaptic depression and smooth sigmoid gain functions were also reported in [33] and [31].

In the context of neuronal competition models we define release and escape mechanisms
as follows: The two populations in the network oscillate in antiphase competing for the active
state; for the dominant population of variable, say, u1, the net input I−βu2−ga1 decreases as
the slow negative feedback accumulates; on the contrary, for the suppressed population u2 the
feedback recovers (decays) so the net input I−βu1−ga2 increases. However, since the function
S is highly nonlinear, equal changes in the net input I−βuj−gak of both populations can lead
to drastically different changes in the corresponding effective response S(I −βuj − gak). This
transformation has a direct influence on the variation of u1 and u2. The switch in dominance
is due either to a significant, more abrupt change (decrease) in the response to an input to the
dominant population, or, on the contrary, to a significant change (increase) in the response
to an input to the suppressed population. In the first case the dominant population loses
control, its activity drops, and it no longer suppresses its competitor, which becomes active.
We call this mechanism release. In the latter case, when the input-output function S of the
suppressed population changes faster, this population regains control, its activity rises, and it
forces its competitor into the inhibited state. We call this mechanism escape.

Intuitively, escape occurs for higher stimulus ranges than release. Therefore, we expect
that an escape (release) mechanism underlies the dynamics in region II (region IV) in Figure 3F
with decreasing (increasing) I-T curve. For large values of I the gain function for the dominant
population is relatively constant and close to 1 while that for the suppressed population falls
in the interval where it is steeper. For example, let us consider the fast plane (u1, u2) and
assume that u1 is ON and u2 is OFF; then the dominance switching point is on the shallow
part of the active population nullcline u1 = S(I − βu2 − ga1) and on the steeper part of the
down population nullcline u2 = S(I − βu1 − ga2) (see the animation 70584 01.gif [3.7MB]
in Appendix C). A larger variation in u2 than in u1 is expected, and that corresponds to
the escape mechanism. For small values of I the gain function for the dominant population
is steeper (the steeper part of active population nullcline u1 = S(I − βu2 − ga1)), while the
gain function for the suppressed population is relatively constant and close to 0 (the shallow
part of the down population nullcline u2 = S(I−βu1 − ga2))—see the animation 70584 02.gif
[3.8MB] in Appendix C. That is what we call release.

For sufficiently large inhibition β, at intermediate I the effective response to an input to

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_02.gif
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both populations might end up being relatively constant: closer to 1 for the active population
and closer to 0 for the down population. The switching does not take place anymore; instead
a winner-take-all dynamics is obtained.

In the following we investigate analytically how the period of oscillations for system (2.1)
depends on the input strength and show that the increasing (decreasing) branch of the I-T
curve is associated with the release (escape) mechanism. Our analysis is done in two steps:
first, in section 4.1, we consider the limiting case sigmoid function S(x) = Heav(x − θ) such
that S(x) = 0 if x < θ and S(x) = 1 if x > θ; the function does not obey the hypotheses in
section 2, but it provides a useful example where escape, release, and winner-take-all dynamics
are easily characterized. Then in section 4.2 we return to the case of smooth sigmoid func-
tion and describe the notions defined above in this more general context. We find a precise
mathematical characterization for the minimum value of β and then for the corresponding
input values, say, I∗w and I∗∗w , where the winner-take-all regime appears. In the absence of a
winner-take-all regime we provide a mathematical definition for the transition between escape
and release.

4.1. A relevant example: The Heaviside step function. The choice of S(x) = Heav(x−θ)
allows us to solve completely for the intervals of the stimulus strength I where oscillations
and winner-take-all dynamics exist. For system (2.1) with a Heaviside step function, there are
only four possible equilibrium points: (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), and (0, 0, 0, 0). Here
(1, 1, 1, 1) and (0, 0, 0, 0) correspond respectively to the simultaneously high and low activity
states observed in numerical simulations in regions I and V of Figure 3F. Oscillations can
occur only between the states (u1, u2) = (1, 0) and (u1, u2) = (0, 1) in which one population is
dominant and the other one is suppressed. Let us now determine the necessary and sufficient
conditions for the oscillations to exist. The idea used in our analysis is similar to that in
[17] and [33].

In the fast plane, the nullclines of u1 and u2 consist in two constant plateaus of zero
and unit value discontinuously connected at a “threshold” point (I − (θ + ga1))/β and
(I − (θ + ga2))/β, respectively (Figure 5A). During oscillation, due to the change in slow
variables a1 and a2 these thresholds move along the vertical and horizontal axes. For example,
assuming u1 = 1, u2 = 0, the slow equations become τ ȧ1 = −a1 + 1 > 0 and τ ȧ2 = −a2 < 0;
thus the u1-nullcline moves down while the u2-nullcline moves to the right. If these nullclines
slide enough and the thresholds cross either 0 (for the u1-nullcline) or 1 (for the u2-nullcline),
i.e., either a1J = (I − θ)/g or a2J = (I − (θ + β))/g are reached, then the equilibrium point
(u1, u2) = (1, 0) disappears and the system will be attracted to (u1, u2) = (0, 1). The switch
takes place and the slow equations change to τ ȧ1 = −a1 < 0, τ ȧ2 = −a2 +1 > 0, now pushing
the nullclines in opposite directions. As we explain below, depending on which of the two
jumping values a1J or a2J is reached first, a release or an escape mechanism will underlie the
oscillation.

We note that for an oscillatory solution, u1+u2 = 1 always, and so τ(ȧ1+ȧ2) = 1−(a1+a2).
Asymptotically, the slow dynamics will occur along the diagonal a1 +a2 = 1 of the unit square
(Figure 5D or 5F). The positions the horizontal line a2 = (I − (θ+β))/g and the vertical line
a1 = (I − θ)/g have relative to the unit square is important when the trajectory points to the
lower-right corner; on the other hand, when the trajectory points to the upper-left corner, the
position of vertical line a1 = (I − (θ + β))/g and horizontal line a2 = (I − θ)/g will matter.
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Figure 5. System (2.1)’s dynamics for large inhibition strength (β/g > 1) and Heaviside step function.
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Therefore, in the slow plane (a1, a2) (see Figure 5B–5H) we are interested in the intersection
of the unit square (grey) with the square defined by the possible jumping values (I−(θ+β))/g
(blue) and (I − θ)/g (red). If the red line is reached, then the active cell (uj = 1) becomes
suddently inactive (uj = 0), allowing its competitor to go up. That is why we call this case a
release mechanism; otherwise, if the blue line is reached first, then the suppressed cell becomes
suddenly active, forcing its competitor to go down. That is the escape mechanism.

As parameter I decreases, the blue-red square slides down along the first diagonal, starts to
intersect the grey unit square, and then leaves it (Figure 5B–5H). The way those two squares
intersect determines the system’s dynamics, so we need to take into account the relative size
of their sides: 1 and β/g.

Theorem 4.1 (five modes of behavior for large enough inhibition strength). Let us assume
that β/g > 1. The following five dynamical regimes exist for the neuronal competition model
(2.1) with S(x) = Heav(x− θ).

(i) If I ≥ θ + β + g/2, then the system’s attractor is the simultaneously high activity state
u1 = u2 = 1.

(ii) If θ+β < I < θ+β+g/2, then the system oscillates between the states (u1, u2) = (1, 0)
and (u1, u2) = (0, 1) due to an escape mechanism. The period of oscillations decreases with I
and satisfies

(4.1) Tescape = 2τ ln

(
g

I − (θ + β)
− 1

)
.

(iii) If θ+ g ≤ I ≤ θ+β, then the system is in a winner-take-all regime with fast variables
either (1, 0) or (0, 1) depending on the initial condition choice.

(iv) If θ + g/2 < I < θ + g, then the system oscillates between the states (u1, u2) = (1, 0)
and (u1, u2) = (0, 1) due to a release mechanism. The period of oscillations increases with I
and satisfies

(4.2) Trelease = 2τ ln

(
g

θ + g − I
− 1

)
.

(v) If I ≤ θ + g/2, then the system’s attractor is the simultaneously low activity state
u1 = u2 = 0.

Proof. Since β/g > 1, there are exactly seven relative positions of the blue-red square to
the unit square that lead to conclusions (i) to (v).

(i) For 1 ≤ (I − (θ + β))/g (Figure 5B) both a1, a2 are smaller than (I − (θ + β))/g, so
I − βui − gak ≥ I − β − g ≥ θ, and we always have u1 = u2 = 1.

If 1/2 ≤ (I − (θ + β))/g < 1 < (I − θ)/g (Figure 5C), let us assume u1 = 1, u2 = 0, and
a1 + a2 = 1 as initial values. The slow variable a1 increases while a2 decreases; in this case
only a2 can cross the horizontal blue line, producing the jump of u2 from 0 to 1. However,
just after the jump, in the equation of u1 we have I − βu2 − ga1 = I − β − g(1 − a2J) =
2(I− (β+ θ))−g+ θ ≥ θ, which keeps u1 at its value 1. Therefore, the point will be attracted
to the corner (a1, a2) = (1, 1) and the oscillation dies.

(ii) For 0 < (I − (θ + β))/g < 1/2 < 1 < (I − θ)/g (Figure 5D), a2 will first cross the blue
line and induce a sudden change in u2. Then in the u1-equation we obtain I − βu2 − ga1 =
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I − β − g(1 − a2J) = 2(I − (β + θ)) − g + θ < θ, which forces u1 to take zero value. The fast
system switches from (1, 0) to (0, 1) and the slow dynamics changes its direction of movement
along the upper-left–lower-right diagonal of the unit square. The change I − βu1 − ga2 =
I − ga2 ≥ I − g ≥ θ does not affect the new value u2 = 1; oscillation exists indeed and its
projection on the slow plane is the segment defined by the intersection of the unit square’s
secondary diagonal with the two blue lines. When I decreases, the length of this segment
increases, so it will take longer to go from one endpoint to the other. We expect the period T
to increase as I decreases. Indeed, at the jumping point, the slow variable for the suppressed
population takes the value af := a2J = (I − (θ+ β))/g; however, just after the previous jump
it was ai := 1−a1J = 1− (I− (θ+β))/g. Therefore, from τ ȧ2 = −a2 we compute the solution
a(t) = aie

−t/τ , t ∈ (0, T/2). The period T of oscillation is T = 2τ ln(ai/af ), i.e., exactly (4.1).
Moreover, dT/dI < 0, so T decreases with I.

(iii) By choosing I such that (I − (θ + β))/g < 0 < 1 ≤ (I − θ)/g, the unit square
falls completely inside the blue-red square (Figure 5E). Starting at u1 = 1, u2 = 0 we have
I − βu2 − ga1 = I − ga1 ≥ I − g ≥ θ and I − βu1 − ga2 = I − β − ga2 ≤ I − β < θ; the slow
variables a1 and a2 continue to increase, respectively, decrease, approaching the lower-right
corner of the unit square, and a winner-take-all state is achieved. For u1 = 0, u2 = 1, the
point (a1, a2) will be attracted to the upper-left corner.

(iv) Decreasing I even more, we enter the region (I−(θ+β))/g < 0 < 1/2 < (I−θ)/g < 1
(Figure 5F). Here the threshold is crossed at the red line and (when u1 = 1, u2 = 0) u1 jumps
from 1 to 0. In the u2-equation, the expression I − βu1 − ga2 becomes I − g(1 − a1J) =
2(I − θ)− g + θ ≥ θ, which leads to u2 = 1. That is the release mechanism. In the slow plane
(a1, a2) the point changes its direction of movement; the oscillation occurs along the segment
defined by the intersection of the unit square’s secondary diagonal with the two red lines. The
length of this segment decreases as I decreases; it takes less time to go from one endpoint
to the other, so we expect the period T to decrease. Indeed, for the release mechanism,
af := a1J = (I − θ)/g, with value just after the previous jump ai := 1 − a2J = 1 − (I − θ)/g.
The slow differential equation is now τ ȧ1 = 1−a1, that is, a(t) = 1−(1−ai)e

−t/τ , t ∈ (0, T/2).
The period T of oscillation satisfies T = 2τ ln((1−ai)/(1−af )), or (4.2). Obviously dT/dI > 0.

(v) Oscillations cannot exist anymore for (I−(θ+β))/g < 0 ≤ (I−θ)/g ≤ 1/2 (Figure 5G).
Say, again, that we have u1 = 1, u2 = 0: only a1 can reach the threshold (red) line for u1 to
become inactive. However, just after the jump, in the u2-equation the net input I−βu1−ga2 =
I − g(1 − a1J) = 2(I − θ) − g + θ is still less than θ, and it keeps u2 at zero. Both slow
variables start to decrease approaching the corner (a1, a2) = (0, 0). The oscillation dies, and
the fast system has (0, 0) as a single attractor. For even smaller values of input strength,
(I − (θ + β))/g < (I − θ)/g < 0 (Figure 5H), it is true that I − βui − gak ≤ I < θ and
u1 = u2 = 0.

Remark 4.1. We note that in the escape regime, T → 0 as I → θ+β + g/2 and T → ∞ as
I → θ + β. Similarly, in the release regime, T → 0 as I → θ + g/2 and T → ∞ as I → θ + g.

Case (iii) in Theorem 4.1 (case (E) in Figure 5) is not possible if the side of the blue-red
square is smaller than the unit. Therefore, the winner-take-all dynamics is eliminated. On
the other hand, the blue-red square can lie completely inside the unit square. Then we need
to distinguish between two cases: the point moving along the secondary diagonal of the unit
square may first reach the blue line (Figure 6A) or the red line (Figure 6B).
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Figure 6. (A) Escape and (B) release mechanisms for low inhibition strength (β/g < 1) in system (2.1)
with Heaviside step function.

Theorem 4.2 (no winner-take-all regime for low inhibition strength). Let us assume that β/g
< 1. Then the neuronal competition model (2.1) with S(x) = Heav(x − θ) exhibits only four
dynamical regimes.

If I ≥ θ + β + g/2, then the system’s attractor is the high activity state u1 = u2 = 1.
Similarly, if I ≤ θ + g/2, the system’s attractor is the low activity state u1 = u2 = 0.

For intermediate values of input strength, the system oscillates between the states (u1, u2)
= (1, 0) and (u1, u2) = (0, 1). If θ + (β + g)/2 < I < θ + β + g/2, oscillations occur due
to an escape mechanism; the period T decreases with I and satisfies (4.1). If θ + g/2 < I <
θ + (β + g)/2, then a release mechanism underlies the oscillations and T increases with I
according to (4.2).

Moreover, at ITmax = θ + (β + g)/2 the system has maximum oscillation period

Tmax = 2τ ln

(
1 + β/g

1 − β/g

)
.

Proof. Let us assume again initial conditions u1 = 1, u2 = 0, and a1 + a2 = 1; therefore,
a1 increases and a2 decreases. In order to first reach the blue line (Figure 6A), the inequality
1− (I − (θ + β))/g < (I − θ)/g, i.e., I > ITmax, must be true. When the blue line is reached,
the down variable u2 switches from 0 to 1. If (I − (θ + β))/g < 1/2, the net input for u1

becomes Ne := I−βu2−ga1 = I−β−g(1−a2J) = 2(I−β−θ)−g+θ < θ, so u1 changes to 0
and oscillation occurs due to an escape mechanism. If (I− (θ+β))/g ≥ 1/2, then Ne ≥ θ and
u1 remains 1; the fast system has (1, 1) as an attractor. Similar arguments are used for the
release mechanism; the condition for intersection with the red line (Figure 6B) is equivalent
to the inequality 1 − (I − θ)/g > (I − (θ + β))/g, i.e., I < ITmax. For both (4.1) and (4.2),
T → Tmax as I → θ + (β + g)/2. Also, Tescape → 0 as I → θ + β + g/2 and Trelease → 0 as
I → θ + g/2.

4.2. Global features of the competition model with smooth sigmoid gain function.
Numerical simulations of system (2.1) with smooth gain function S indicate that the limit
cycle born through the Hopf bifurcation as in section 3 takes a relaxation-oscillator form just
beyond the bifurcation (Figure 3B and 3D). That is, because of the two time-scales involved
in the system, variables u1 and u2 evolve much faster than a1 and a2 (τ � 1). We use this
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observation to describe for (2.1) the relaxation-oscillator solution in the singular limit 1/τ = 0.
In the plane (a1, a2) of slow variables we construct the curve of “jumping” points from the
dominant to the suppressed state of each population, and back. This curve is the equivalent
of the blue-red square from the case of Heaviside step function, and similarly it consists of two
arcs associated with an escape and release mechanism, respectively. Then we give analytical
conditions for the winner-take-all regime to exist.

4.2.1. The singular relaxation-oscillator solution. For large values of τ let us consider the
slow time s = εt (ε = 1/τ ; ′ = d/ds) and rewrite system (2.1) as εu′1 = −u1+S(I−βu2−ga1),
εu′2 = −u2 + S(I − βu1 − ga2), a

′
1 = −a1 + u1, a

′
2 = −a2 + u2.

In the singular perturbation limit ε = 0 any solution will belong to the slow manifold Σ
defined by −u1 + S(I − βu2 − ga1) = 0, −u2 + S(I − βu1 − ga2) = 0 or, based on the inverse
property of S (S−1 = F ),

Σ =

{
(u1, u2, a1, a2) : u1, u2 ∈ (0, 1), a1, a2 ∈ R, and(4.3)

u2 = S(I − βu1 − ga2), a1 =
1

g
[I − F (u1) − βS(I − βu1 − ga2)]

}
.

The surface Σ is multivalued and can be visualized by plotting a1 as a function of u1 and a2

(Figure 7).
Then the slow dynamics is according to equations a′1 = −a1 + ũ1(a1, a2), a′2 = −a2 +

ũ2(a1, a2), where (ũ1, ũ2, a1, a2) ∈ Σ. The “slow” nullclines are characterized by additional
conditions: a1 = u1 for a1-nullcline (N1) and a2 = u2 for a2-nullcline (N2); geometrically these
are two curves situated on the surface Σ and defined by

N1(a
′
1 = 0) =

{
(u1, u2, a1, a2) : u1 = a1, u2 = S(I − βa1 − ga2(a1)),(4.4)

a2 =
1

g

[
I − βa1 − F

(
I − ga1 − F (a1)

β

)]
with a1 ∈ (α1, α2)

}
and

N2(a
′
2 = 0) =

{
(u1, u2, a1, a2) : u1 = S(I − βa2 − ga1(a2)), u2 = a2,(4.5)

a1 =
1

g

[
I − βa2 − F

(
I − ga2 − F (a2)

β

)]
with a2 ∈ (α1, α2)

}
.

Here α1, α2 ∈ (0, 1) are the unique solutions of the equations F (α1) + gα1 = I − β and
F (α2) + gα2 = I, respectively.

The equilibrium points are at the nullclines’ intersection, which means a1 = u1 and a2 = u2

simultaneously on Σ. They are characterized by the conditions

(4.6) N1 ∩ N2 : u1 = a1, u2 = a2, F (a1) + ga1 + βa2 = F (a2) + ga2 + βa1 = I.

We recall from section 3 that if β > (1+ 1
τ )/S ′(θ) (which in the limit case ε = 0 corresponds

to β > 1/S ′(θ)), there exist two values of input parameter I∗hb < I∗∗hb such that the system has
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Figure 7. Projection of the slow manifold Σ on the space (u1, a1, a2). System (2.1)’s parameters are
β = 1.1, g = 0.5, θ = 0.2, r = 10, and I = 1.5 (A–C), respectively, I = 1 (D–F). The curve SN of saddle-nodes
(jumping points) is represented in blue-red (C, F). Nullclines N1 (magenta) and N2 (black curve) intersect in
three points for (B) I = 1.5 and (E) I = 1. However, either the equilibrium points can all lie on the middle
branch of Σ (A), that is, inside the curve of saddle-nodes (C), or two equilibrium points can move to the lateral
branches, outside of SN (D, F).

a unique stable equilibrium point for I ∈ (−∞, I∗hb) ∪ (I∗∗hb ,∞). This equilibrium point takes
the form eI = (uI , uI , uI , uI) with uI ∈ (0, 1), F (uI)+ (β+ g)uI = I, and it becomes unstable
at I∗hb and I∗∗hb ; a stable limit cycle appears for I > I∗hb and I < I∗∗hb . The critical parameter
values are defined by I∗hb = F (u∗hb) + (β + g)u∗hb and I∗∗hb = F (u∗∗hb) + (β + g)u∗∗hb with u∗hb, u

∗∗
hb

according to (3.5). Again, in the limit case ε = 0, condition (3.5) becomes

(4.7) F ′(u∗hb) = F ′(u∗∗hb) = β,
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and obviously we have F ′(uI) < β for each I ∈ (I∗hb, I
∗∗
hb ).

Moreover, if β − g > 1/S ′(θ), two additional equilibrium points occur for I > I∗pf and
I < I∗∗pf through a pitchfork bifurcation. However, at least in the neighborhood of I∗pf or
I∗∗pf , these equilibrium points are unstable. Their coordinates (u1p, u2p) satisfy (4.6), so either
u1p < uI < u2p or u1p > uI > u2p. In addition, they are close to uI for all I sufficiently close
to I∗pf or I∗∗pf ; in conclusion, at least in a small region, F ′(u1p) < β and F ′(u2p) < β.

In Figure 7 we plotted the projection on the three-dimensional space (u1, a1, a2) of the
slow manifold Σ and the nullclines N1 and N2 (N1 is colored in magenta and N2 is colored in
black; because Σ is defined over the full range −∞ to ∞ with respect to a1 and a2, we plot
only part of it). All plots are done for S as in (2.2), β = 1.1, g = 0.5, r = 10, θ = 0.2, and two
values of input strength, I = 1.5 (Figure 7A–C) and I = 1 (Figure 7D–F). For these values of
parameters we have I∗pf = 0.4064 and I∗∗pf = 1.5936, so at both I = 1.5 and I = 1 the system
has three equilibrium points; nullclines intersect three times and the middle intersection point
is exactly eI . We note that all equilibrium points are unstable at I = 1.5 while two of them
become stable at I = 1 (see also Figure 3G).

On the surface Σ we have ∂u1
∂a1

= g/[β2S ′(I − βu1 − ga2) − F ′(u1)] and ∂u1
∂a2

= −βg/[β2 −
F ′(u1)/S

′(I − βu1 − ga2)], i.e.,

∂u1

∂a1
=

gF ′(u2)

β2 − F ′(u1)F ′(u2)
and

∂u1

∂a2
= − βg

β2 − F ′(u1)F ′(u2)
.

For an initial condition (u1, u2, a1, a2) with u1 sufficiently large (close to 1) we have ∂u1
∂a1

< 0

and ∂u1
∂a2

> 0; therefore, a simultaneous increase in a1 and decrease in a2 lead to a decrease

in u1. Similarly, for a choice of u1 sufficiently low (close to 0), ∂u1
∂a1

< 0, ∂u1
∂a2

> 0, and a
simultaneous decrease in a1 and increase in a2 lead to an increase in u1. On the other hand,
the limit cycle exists for some I ∈ (I∗hb, I

∗∗
hb ). Since here eI ∈ Σ with F ′(uI) < β, we have

∂u1
∂a1

> 0 and ∂u1
∂a2

< 0 in a neighborhood of this equilibrium point; the behavior of u1 with
respect to a1 and a2 is opposite that previously described.

Therefore, relative to the plane (u1, a1) the surface Σ has a cubic-like shape: its left
and right branches decrease with u1 while the middle branch increases. The curve of lower
(u1 < u2) and upper (u1 > u2) knees on Σ is defined by F ′(u1)F

′(u2) = β2 (blue-red curve
in Figure 7C and 7F). As we show in the following, when the trajectory on surface Σ reaches
the curve of knees on its upper side, the point will jump from the right branch of Σ to its
left branch. Similarly, when it reaches the lower side of the curve of knees, the point will
jump from the left to the right branch of Σ. In the plane of fast variables (u1, u2) the curve
of knees corresponds to a saddle-node bifurcation (a node approaching a saddle then merging
with it and disappearing—see the animations 70584 01.gif [3.7MB] and 70584 02.gif [3.8MB]
in Appendix C). For this reason we also call it the curve of saddle-nodes (SN) or the curve
of jumping points. It is defined by the equations

(4.8) SN : F ′(u1J)F ′(u2J) = β2, a1J =
1

g
[I −F (u1J)−βu2J ], a2J =

1

g
[I −F (u2J)−βu1J ].

We do not prove here the existence of the relaxation-oscillator singular solution. We aim
only to provide the reader with the intuition for how oscillations occur in the competition

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70584_02.gif
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model (2.1) if a smooth sigmoid is taken as a gain function. Thus, if the oscillations exist
and, for example, u1 is dominant and u2 is suppressed (u1 > u2), we have −a1 + u1 > 0,
−a2 + u2 < 0, so a1 increases and a2 decreases. They push u1 down and the point moves
on the trajectory until it reaches SN at an upper knee U of coordinates (u1J , u2J); here the
derivatives ∂u1

∂a1
and ∂u1

∂a2
become infinite, so u1 jumps from the upper to the lower branch of

Σ (Figure 8A–8B). On the lower branch (u1 < u2) we have −a1 + u1 < 0 and −a2 + u2 > 0,
so u1 increases and the point will move due to the decrease of a1 and increase of a2 until it
touches SN at L. At L the point jumps up to the right branch of Σ. The projection of the
limit cycle on the slow plane (a1, a2) is a closed curve that touches the projection of SN at
two points (a1J , a2J) and (a2J , a1J) symmetric to the line a1 = a2 (Figures 8C and 9B).

4.2.2. Release, escape, and winner-take-all in the competition model with smooth
sigmoid gain function. Analogous to our analysis in section 4.1 we consider in the following
the projection of the curve of jumping points SN on the slow plane (a1, a2). As mentioned
above, if the up-to-down jump takes place at (a1J , a2J), then the down-to-up jump is at
(a2J , a1J); so the projection is a closed curve symmetric to the diagonal a1 = a2.

We consider in (a1, a2) the curve Γ0 of equations

A1 = −1

g
[F (u1J) + βu2J ], A2 = −1

g
[F (u2J) + βu1J ]

with F ′(u1J)F ′(u2J) = β2. Then from (4.8) we have

a1J = A1 +
I

g
, a2J = A2 +

I

g
.

For a given I, the projection of SN on the slow plane (say, Γ = ΓI) is exactly the translation
of Γ0 with quantity (I/g, I/g) along the first bisector. Obviously as I decreases, the curve
Γ moves down on the upper-right–lower-left direction (Figure 9B). That is similar to the
movement of the blue-red square for the case of the Heaviside step function in section 4.1
(Figure 5).

Let us consider now an oscillatory solution that exists for some I ∈ (I∗hb, I
∗∗
hb ). If popula-

tion 1 is dominant (u1 > u2), then −a1 + u1 > 0 and −a2 + u2 < 0 imply u1 − u2 > a1 − a2.
On the other hand, since the trajectory is on Σ, we also have a1 = [I − F (u1) − βu2]/g,
a2 = [I − F (u2) − βu1]/g, and thus a1 − a2 = [β(u1 − u2) − (F (u1) − F (u2))]/g. At the
jumping point a1 reaches its maximum and a2 its minimum, so 0 < a1J − a2J < u1J − u2J

can be written as

(4.9) 0 < W (u1J) =
1

g

(
β − F (u1J) − F (u2J)

u1J − u2J

)
< 1.

The point (u1J , u2J), u1J > u2J , satisfies F ′(u1J)F ′(u2J) = β2 and describes the part
of SN that corresponds to the upper knees. Let umβ, uMβ ∈ (0, 1) be the values defined by
umβ < u∗hb < u0 < u∗∗hb < uMβ , F ′(umβ) = F ′(uMβ) = β2/F ′(u0) = β2S ′(θ) (see the shape of
F ′ in Figure 2C). Then the upper branch of SN results by gluing together three arcs on which
(1) u1J increases between u∗∗hb and uMβ (so u2J decreases from u∗∗hb to u0); (2) u1J decreases
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Figure 8. (A–B) Limit cycle solution and the slow manifold Σ for system (2.1) with parameters I = 1.5,
β = 1.1, g = 0.5, r = 10, θ = 0.2, and τ = 5000. (C) The projection of the limit cycle on the slow plane
(a1, a2); P1, P2, and P3 are the projections of the equilibrium points.

from uMβ to u0 (and u2J decreases from u0 to umβ); (3) u1J continues to decrease from u0 to
u∗hb (however, u2J increases now between umβ and u∗hb).

We can plot the expression W (u1J) from (4.9) for u1J ∈ [u∗∗hb, uMβ ] and u1J ∈ [u∗hb, uMβ ]
with the corresponding u2J = u2(u1J) and check if the graph is below the horizontal line
W = 1 (Figure 9A). If for all combinations (u1J , u2J) we have W < 1, then the winner-take-
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Figure 9. (A) The graph of W = W (u1J) for upper knees on SN computed for g = 0.5, r = 10, θ = 0.2, and
S as in (2.2). At β = 0.75 (dashed-dotted curve) the maximum value of W is less than unity: Winner-take-all
regime does not exist; at β = 1.1 (thick curve) the maximum value of W is larger than unity: the values of I
where winner-take-all occurs correspond to u1J at points a and b. (B) Projection Γ of the curve of saddle-nodes
on the slow plane (a1, a2) for β = 0.75, g = 0.5, r = 10, θ = 0.2, S as in (2.2), and two values of input I = 1.2
and I = 1; Γ moves down on the first bisector direction as I decreases. The blue side is associated to the right
branch of W in panel A, from W = 0 to Wmax (an escape mechanism), and the red side is associated to the
left branch of W from Wmax to 0 (a release mechanism).

all regime does not exist in the interval (I∗hb, I
∗∗
hb ). Otherwise, for (u1J , u2J) where W = 1 we

can compute the values of I where winner-take-all occurs (see below).
Remark 4.2. Let us observe that W (u1J) = [β − F ′(ξ)]/g for some intermediate ξ between

u2J and u1J . At u1J = u2J = u∗∗hb or u1J = u2J = u∗hb (that represents exactly the equilibrium
point eI at I = I∗∗hb and I∗hb, respectively) we have F ′(ξ) = β; therefore, we can extend by
continuity the function W |[u∗∗hb, uMβ ] at u1J = u∗∗hb and the function W |[u∗hb, uMβ ] at u1J = u∗hb
by taking W = 0 at these edges.

For gain function S as in (2.2) and different values of β we plotted the curve W ; the
curve W always has a maximum value Wmax for some uWmax

1J ∈ (u0, uMβ) with u2 = u2(u1) ∈
(umβ, u0). Here ∂u2/∂u1 = −[F ′(u2)F

′′(u1)]/[F
′(u1)F

′′(u2)] > 0. W measures the relative
distance between the values of slow variables against that between fast variables. Based on
this observation we color SN, and obviously Γ, in blue for (u1J , u2J) starting at (u∗∗hb, u

∗∗
hb) and

varying until it reaches (uWmax
1J , uWmax

2J ) and in red for (u1J , u2J) between (uWmax
1J , uWmax

2J )
and (u∗hb, u

∗
hb) (Figures 7C, 9B). The first corresponds to the right branch of W from W = 0

to Wmax, and the latter corresponds to the left branch of W from Wmax to 0.
Well inside the interval that defines the blue part of Γ (that is, not too close to the

value uWmax
1J that gives the maximum W ) we have either u0 < u2J < u∗∗hb < u1J or u∗hb <

u2J < u0 < u∗∗hb < u1J ; so F ′(u2J) < β < F ′(u1J). However, we recall that F ′(u2J) =
1/S ′(I − βu1J − ga2J) and F ′(u1J) = 1/S ′(I − βu2J − ga1J). That means that the gain
function S has at the jump a bigger slope at I − βu1 − ga2, the net input to the suppressed
population, than at I−βu2−ga1, the net input to the dominant population; in other words, the
gain to the suppressed population falls in the range of steeper S. According to the definitions
introduced at the beginning of section 4, this case corresponds to an escape type of dynamics.

On the red part of Γ there is an opposite behavior: at least away from the edge uWmax
1J

we have either u2J < u∗hb < u0 < u1J < u∗∗hb or u2J < u∗hb < u1J < u0 < u∗∗hb. That is,
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F ′(u2J) = 1/S ′(I − βu1J − ga2J) > β > F ′(u1J) = 1/S ′(I − βu2J − ga1J). At the jump the
gain S ′(I − βu2 − ga1) to the dominant population falls in the range of steeper S than that
to the suppressed population. We called this a release mechanism.

In fact, the values uWmax
2J and uWmax

1J with uWmax
2J < u0 < uWmax

1J (and not u∗hb and u∗∗hb)
determine what we generically call the “steeper” part of S. For the particular case of gain
function symmetric to its inflection point (θ, u0), i.e., for S such that S(θ + x) +S(θ− x) = 1
it can be shown that indeed uWmax

2J = u∗hb and uWmax
1J = u∗∗hb (for example, S as in (2.2); see

Remark 4.3). However, in other cases that is not true anymore; then it is more difficult to
interpret the terms escape and release for u1J close to uWmax

1J , the passage point from one
dynamical regime to another.

Occurrence of the winner-take-all regime. We can determine now the minimum value of
β, say, βwta, where the winner-take-all regime occurs in system (2.1). Moreover, for a given
β > βwta we find the corresponding values of I that delineate this regime.

We note that if I ∈ (I∗hb, I
∗
pf ]∪ [I∗∗pf , I

∗∗
hb ), then system (2.1) has a unique equilibrium point

and it belongs to the middle branch of Σ (F ′(uI) < β).
For I > I∗pf or I < I∗∗pf sufficiently close to the pitchfork bifurcation point, system (2.1)

has three equilibria and all are situated again on the middle branch of Σ, inside SN, the
curve of lower and upper knees (Figure 7A and 7C). That is because F ′(u1p) < β and
F ′(u2p) < β, so F ′(u1p)F

′(u2p) < β2. A trajectory that starts on either the upper or
the lower branch of Σ cannot approach an equilibrium point since it will first reach SN,
and so the system oscillates. However, for intermediate values of I between I∗pf and I∗∗pf ,
two of the equilibrium points may move on the lateral branches of Σ and become stable
(F ′(u1p)F

′(u2p) > β2; see Figure 7D and 7F). That is the case where the winner-take-all
regime occurs. We should point out that the equilibrium eI = (uI , uI , uI , uI) always remains
unstable for I ∈ (I∗pf , I

∗∗
pf ) ⊂ (I∗hb, I

∗∗
hb ). The boundary between oscillatory and winner-take-all

dynamics is obtained when the equilibrium points (u1p, u2p) belong to SN, that is, when on
SN both a1 = u1 and a2 = u2 are true. We find in the following the values of I where
winner-take-all appears.

The values of I, say, Iw, that delineate the winner-take-all regime are defined by

F ′(u1J)F ′(u2J) = β2,

1

g

(
β − F (u1J) − F (u2J)

u1J − u2J

)
= 1,(4.10)

Iw = F (u1J) + gu1J + βu2J [ = F (u2J) + gu2J + βu1J ].

The left-hand side of the second equation in (4.10) is in fact W (u1J). Since the curve
W always has a maximum value Wmax for some uWmax

1J ∈ (u0, uMβ), the line W = 1 can be
either above the maximum or below it. If Wmax < 1 (Figure 9A, β = 0.75), then there is no
winner-take-all regime. If Wmax > 1 (Figure 9A, β = 1.1), then there exist two values for u1J

where the curve W intersects the horizontal line W = 1.
The critical (minimum) value βwta where the winner-take-all regime appears in system

(2.1) results from the case of Wmax = 1; i.e., it satisfies the conditions W (u1J) = 1 and
W ′(u1J) = 0. Thus the minimum value βwta that introduces winner-take-all dynamics in
system (2.1) is defined by
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F ′(u1J)F ′(u2J) = β2, u1J �= u2J ,

(F (u1J) − F (u2J))[F ′(u1J)F ′′(u2J) + F ′(u2J)F ′′(u1J)]

= (u1J − u2J)[F ′(u1J)2F ′′(u2J) + F ′(u2J)2F ′′(u1J)],

βwta = g +
F (u1J) − F (u2J)

u1J − u2J
.(4.11)

Remark 4.3. We note that due to its particular form (2.2), S is symmetric about the point
(θ, u0) with u0 = 0.5. The graph of F ′ is symmetric to the vertical line u = 0.5, i.e.,
F ′(1 − u) = F ′(u) for all u ∈ (0, 1), and so F ′′(1 − u) = −F ′′(u). In this particular
case we have F ′(u∗hb) = F ′(u∗∗hb) = β, so u∗hb = 1 − u∗∗hb and F ′′(u∗hb) = −F ′′(u∗∗hb). According
to (4.11) the maximum value Wmax is obtained exactly at u1J = u∗∗hb, u2J = u∗hb.

For gain function S as in (2.2) and different values of β we plotted the curve W and
determined the interval [I∗w, I

∗∗
w ] where winner-take-all occurs. For example, choosing r = 10,

θ = 0.2, g = 0.5, and β = 1.1, we have Wmax = 1.1046 and I∗w = 0.697 (computed at
u1J = 0.7158, u2J = 0.0424) and I∗∗w = 1.303 (computed at u1J = 0.9576, u2J = 0.2842).
The minimum value of β for the winner-take-all regime is βwta = 1.0387. As expected from
our analysis in section 3.3, the value of β that guarantees existence of multiple equilibria in
system (2.2), i.e., βpf = g + 1/S ′(θ) = 0.9, is smaller than βwta.

For the same choice of parameters as above (β = 1.1, g = 0.5, and S as in (2.2) with
r = 10, θ = 0.2), we plot the projection of the limit cycle and the curve of saddle-nodes on
the slow plane (a1, a2) for different values of parameter I. Figure 10A gives the bifurcation
diagram of activity u1 versus input strength I for τ = 100. In the rest of the panels we choose
τ = 5000 to mimic the singular limit cycle solution with jumping points exactly on the curve
of saddle-nodes (for smaller τ , e.g., τ = 100, the jumping points do not belong to the curve
of saddle-nodes but fall close to it). In this case we have

I∗hb = 0.1434, I∗pf = 0.4064, I∗w = 0.697, I∗∗w = 1.303, I∗∗pf = 1.5936, I∗∗hb = 1.8566.

At larger values of I (I = 1.7 and I = 1.5) oscillation is due to an escape mechanism (Fig-
ure 10B–C); at an intermediate value I = 1 the system is in the winner-take-all regime
(Figure 10D); at smaller values of I (I = 0.5 and I = 0.3) oscillation is due to a release mech-
anism (Figure 10E–F). Besides the limit cycle other important trajectories are the equilibrium
points. There are three unstable equilibria for I = 1.5 and I = 0.5 but only one equilibrium
point at I = 1.7 and I = 0.3. At I = 1 two out of three equilibria are stable.

Remark 4.4. Equations (4.11) and (4.10), used to determine the critical β where the win-
ner-take-all regime exists in system (2.1) and then, for β > βwta, to estimate I∗w and I∗∗w ,
prove to be reliable. The estimations obtained by this method are in excellent agreement with
the results found in system (2.1)’s numerical simulations for both symmetric and asymmetric
gain functions. The latter case is discussed in section 5.

5. Neuronal competition models that favor the escape (or release) dynamical regime.
As seen in section 4.1, the dynamical scheme of T versus I is symmetric to I = θ + β+g

2 for
S, the Heaviside step function. When the winner-take-all regime exists, its corresponding
I-input interval is equally split around the value θ + β+g

2 , that is, θ + g ≤ I ≤ θ + β as in
Theorem 4.1. Moreover, an equal input range is found for both release and escape mechanisms:
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Figure 10. (A) Bifurcation diagram of activity u1 versus input I for β = 1.1, g = 0.5, r = 10, θ = 0.2,
τ = 100. (B–F) Projection of the limit cycle and the curve of saddle-nodes on the slow plane (a1, a2) for different
values of parameter I chosen according to the bifurcation diagram in panel A; however, in order to mimic the
singular limit cycle solution we choose here τ = 5000. Symbol ∗ indicates the location of equilibria. At large
values of I oscillation is due to an escape mechanism: (B) I = 1.7, (C) I = 1.5; (D) at intermediate value
I = 1 winner-take-all dynamics is observed; then at low values of I oscillation is due to a release mechanism:
(E) I = 0.5, (F) I = 0.3. Single (panels B, F) or multiple (panels C, E) unstable equilibria can coexist with the
limit cycle.

θ + g
2 < I < θ + g and θ + β < I < θ + β + g

2 as in Theorem 4.1, or θ + g
2 < I < θ + β+g

2

and θ + β+g
2 < I < θ + β + g

2 as in Theorem 4.2. Therefore, it seems reasonable to ask to
what extent the symmetry of the I-T dynamical scheme about a specific value I∗ relates to
the geometry of S and, more generally, to the form of the equations in (2.1). We address
this question in the following and find a heuristic method to reduce one of the two ranges of
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escape and release mechanisms while still maintaining the other one.
First let us note that we obtain a result similar to that in section 4.1 for any smooth

sigmoid S as long as it is symmetric about its threshold. The threshold (say, th) is defined as
the value where the gain function reaches its middle point: for S taking values between 0 and 1,
it is S(th) = 0.5. The terminology comes from the fact that if a net input to one population
is below the threshold (x < th), then it determines a weak effective response (S(x) < 1/2);
at equilibrium that would correspond to an inactive state. On the other hand, a net input
above the threshold (x > th) determines a strong effective response (S(x) > 1/2) which, at
equilibrium, corresponds to an active state. The symmetry condition of S with respect to
the threshold is described mathematically by the equality S(th + x) + S(th − x) = 1 for any
real x or, equivalently, S(x) + S(2 th − x) = 1. The gain function defined by (2.2) is such an
example: in this case the threshold is exactly the inflection point θ (S ′′(θ) = 0; S(θ) = 0.5).

Theorem 5.1. If the gain function S satisfies S(θ + x) + S(θ − x) = 1, then system (2.1)
with input I∗ is diffeomorphic equivalent to system (2.1) with input I = 2θ + β + g − I∗.

Proof. Due to the symmetry of S, equation ˙̃u1 = −ũ1 +S(I∗−βũ2−gã1) with the change
u1 = 1− ũ1, u2 = 1− ũ2, a1 = 1− ã1, a2 = 1− ã2 becomes u̇1 = −u1 + 1−S(I∗−β(1−u2)−
g(1−a1)) = −u1+S((2θ+β+g−I∗)−βu2−ga1); on the other hand, equation τ ˙̃a1 = −ã1+ũ1

becomes τ ȧ1 = −a1 + u1. Therefore, system (2.1) with input I∗ is diffeomorphic equivalent
to system (2.1) with input (2θ + β + g − I∗).

Remark 5.1. Theorem 5.1 implies that system (2.1) has the same type of solutions for any
two values of input strength I1 and I∗1 such that 1

2(I1 + I∗1 ) = θ + β+g
2 . Moreover, if at I1

and I∗1 an oscillatory solution of period T1 and T ∗
1 exists, then, due to the diffeomorphism,

T1 = T ∗
1 . Obviously, if T1 < T2 for I1 < I2 < θ + β+g

2 , then T ∗
1 < T ∗

2 for the corresponding

values I∗1 > I∗2 > θ+ β+g
2 . Therefore, for symmetric S to its inflection point (threshold in this

case), the intervals of I for regions II and IV (see Figure 3F or H) have the same length and
are symmetric to the line I = θ + β+g

2 .
In order to explore the effect the asymmetry of S has on the bifurcation diagram, we

consider S to be

(5.1) S(x) =

⎧⎨
⎩

2u0/
(
1 + e

− r
2u0

(x−θ)
)
, x ≤ θ,

1 − 2(1 − u0)/
(
1 + e

− r
2(1−u0)

(θ−x)
)
, x > θ,

with u0 ∈ (0, 1).
Therefore the inflection point θ and the threshold th satisfy S(θ) = u0 and th > θ if

u0 < 1/2, respectively, th < θ if u0 > 1/2.
The graphs of S as in (5.1) and their corresponding F ′ (where F = S−1) are drawn in

Figure 11A–B with parameter values r = 10, θ = 0.2, and u0 = 0.1, 0.5, 0.9. Then the I-T
bifurcation diagram for the competition model (2.1) is constructed at β = 0.75 (Figure 11C).
Numerical results show that the symmetry of this bifurcation diagram is indeed a direct
consequence of the symmetry of S to its threshold. Such is the case u0 = 0.5. For other
choices of u0 one of the two regions that correspond to the increasing and decreasing I-T
branch is favored (it is wider)—the former when u0 > 1/2 and the latter when u0 < 1/2.

Recall from section 4 the definition (4.8) for the curve SN of jumping points (with its
projection Γ on the plane of slow variables (a1, a2)) and the definition (4.9) for W that char-
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Figure 11. Consider parameter values r = 10, θ = 0.2, g = 0.5, τ = 100 and gain functions S as in (5.1)
with u0 = 0.1, 0.5, 0.9. (A) Graphs of S. (B) Their corresponding F ′ where F = S−1. (C) Bifurcation diagram
for period T versus input I in system (2.1) as β = 0.75. (D) The graph of W = W (u1J) for upper knees on SN

computed as β = 0.75. (E–F) Projection Γ of the curve of saddle-nodes on the slow plane (a1, a2) for β = 0.75,
I = 1.2, and u0 = 0.1, 0.9. The blue side is associated to the escape mechanism and the red side to the release
mechanism. The asymmetry of S to the threshold favors (E) escape if u0 < 1/2 and (F) release if u0 > 1/2.

acterizes escape, release, and winner-take-all regimes. The shape of W changes dramatically
with u0 (Figure 11D, β = 0.75) but not at all with β. However, for any fixed u0 the curve W
always has a unique maximum point; this maximum moves down as β decreases.

The asymmetry of S leads to an asymmetry of the curve Γ: for u0 < 1/2 we have
u0 < uWmax

1J < u∗∗hb, u
Wmax
2J < u∗hb, and the curves SN and Γ have a longer blue part than
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red part; the escape mechanism is favored (Figure 11E, u0 = 0.1). On the contrary, for
u0 > 1/2 the release mechanism is favored since the red part of Γ is longer: uWmax

1J > u∗∗hb
and u∗hb < uWmax

2J < u0 (Figure 11F, u0 = 0.9). We can understand this specific behavior
by looking at the network populations’ dynamics about the threshold: in case of u0 < 1/2
the maximum gain to each population is reached for some net input below the threshold
(S′(θ) = maxS′ with S(θ) = u0, so θ < th); then about the threshold th the gain S′ has a
decreasing trend. Consequently, there is a wider range for inputs where the inactive popula-
tion has a significant gain compared to the active population, and so the escape mechanism is
favored (the suppressed population regains control on its own, thus becoming active). On the
other hand, if u0 > 1/2, the maximum gain to the network’s populations is reached for some
net input above the threshold (θ > th) and the gain has an increasing trend in the vicinity of
th. Therefore, the release mechanism is indeed much more easily obtained.

Remark 5.2. The function S defined by (5.1) does not entirely satisfy the hypotheses in-
troduced in section 2. In this case F ′′′(u0) does not exist anymore at u0 �= 1/2 even if we
still have F as C2(0, 1) and C∞ ((0, 1) \ {u0}). Nevertheless this property does not affect our
analytical results (e.g., the expansion we used in section 3 to prove the existence of stable os-
cillatory solutions still makes sense since it is done locally about some point u∗ different than
u0). Consequently, all the results found for system (2.1) in previous sections remain valid.

5.1. A competition model that favors escape. In [31] we investigated four distinct
neuronal competition models: a model by Wilson [37], one by Laing and Chow (the LC-
model [17]), and two other variations of the LC-model that we called depression-LC and
adaptation-LC. The latter is exactly the system (2.1) with symmetric sigmoid function. Be-
sides the models’ commonalities we also noticed some differences: in some cases the bifurcation
diagrams show a preference of the system to the escape mechanism (the region of I that cor-
responds to the decreasing I-T branch is wider; see Figures 3 and 4 in [31]). Moreover, for
sufficiently low inhibition in Wilson’s and the depression-LC models the increasing (release-
related) branch can disappear completely. Based on the results obtained in the present paper,
we can explain those numerical observations.

Let us take, for example, Wilson’s model for binocular rivalry [37, 31]. Since the time-scale
for inhibition is much shorter than the time-scale for the (excitatory) firing rate, we can assume
that the inhibitory population tracks the excitatory population almost instantaneously. Thus
Wilson’s model becomes equivalent to a system of the form

u̇1 = −u1 +
γ(I − βu2)

2
+

(θ + a1)2 + (I − βu2)2+
,

u̇2 = −u2 +
γ(I − βu1)

2
+

(θ + a2)2 + (I − βu1)2+
,

τ ȧ1 = −a1 + gu1,(5.2)

τ ȧ2 = −a2 + gu2,

where γ is a positive constant and [x]+ is defined as [x]+ = 0 if x < 0 and [x]+ = x if x ≥ 0.
As in (2.1), parameters β and g represent here the strength of the inhibition and adaptation; I
is the external input strength. We see that in the differential equations for uj the nonlinearity
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is introduced through a function

S̃(x; Θ) =
γ[x]2+

Θ2 + [x]2+
,

that is, u̇1 = −u1 + S̃(I − βu2; θ + a1) and u̇2 = −u2 + S̃(I − βu1; θ + a2). We note that S̃
is asymptotic to γ as x → ∞ and satisfies S̃ = 0 for x ≤ 0 and S̃(Θ; Θ) = γ/2, which means
Θ is the threshold. To compare system (5.2)’s dynamics with that of (2.1), we will assume
without loss of generality that γ = 1.

By the change of variables w1 = βu1 − I, w2 = βu2 − I, A1 = βa1/g− I, A2 = βa2/g− I,
the system (5.2) is diffeomorphic equivalent to

ẇ1 = −w1 + βS̃(−w2; θ1) − I,

ẇ2 = −w2 + βS̃(−w1; θ2) − I,

τȦ1 = −A1 + w1,(5.3)

τȦ2 = −A2 + w2

with θ1(t) = θ + g
β (A1(t) + I) and θ2(t) = θ + g

β (A2(t) + I).
On the other hand, let us consider the system (2.1) with S as in (2.2). By a similar

change of variables w1 = βu1 − I, w2 = βu2 − I, A1 = βa1 − I, A2 = βa2 − I this system is
diffeomorphic equivalent to

ẇ1 = −w1 + βS(−w2; θ1) − I,

ẇ2 = −w2 + βS(−w1; θ2) − I,

τȦ1 = −A1 + w1,(5.4)

τȦ2 = −A2 + w2

with θ1(t) and θ2(t) as above. The threshold of S (rewritten as S(x; θ) = 1/(1 + e−r(x−θ)))
is θ.

As we can see, up to the specific expression of the gain function, Wilson’s and the
adaptation-LC models are equivalent. The reason Wilson’s model shows preference to the
escape mechanism instead of release (while for the adaptation-LC model the interval ranges
for escape and release dynamics have equal length) resides in the asymmetric shape of S̃ with
respect to its threshold. The threshold is Θ but the maximum gain is obtained at Θ√

3
< Θ

(S̃′′
xx(x; Θ) = 0 at x = Θ√

3
). The resulting behavior is similar to that of S as in (5.1) with

u0 < 1/2 (S′′(θ) = 0, S(θ) = u0, and θ < th). The role of θ is played by Θ√
3

and the

corresponding value for u0 is S̃( Θ√
3
; Θ) = 1/4.

Remark 5.3. In fact, the difference between S̃ and asymmetric S from (5.1) is more subtle.
Take again γ = 1; the restriction of S̃ on (0,∞) is invertible with inverse F̃ defined on (0, 1)

by F̃ (u; Θ) = Θ
√

u
1−u . In systems (5.3) and (5.4) the graph of F̃ ′

u, F̃
′
u(u; θj) =

θj

2(1−u)
√

u(1−u)

has a well-like shape similar to that of the graph of F ′
u(u; θj) =

4u2
0

ru(2u0−u) if u ∈ (0, u0] and
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4(1−u0)2

r(1−u)(1−2u0+u) if u ∈ (u0, 1). However, F̃ ′
u depends on θj (that implicitly means dependence

on the slow variable) while F ′
u does not. That explains why, for S as in (5.1), when they exist,

the Hopf bifurcation points always come in pairs (and oscillations start at both points with the
same frequency—see (3.5) and (3.6) in section 3); so release and escape oscillatory regimes
(even if not equally balanced) always coexist for (2.1). On the contrary, in Wilson’s model
(5.2) the dependence of F̃ ′

u on the slow variable allows us to find a (reduced) parameter regime
where only the escape mechanism is possible [31].

5.2. Competition models with nonlinear slow negative feedback. The local analysis
pursued in section 3 shows that the uniform equilibrium point eI can lose its stability through
either a Hopf bifurcation (at exactly two values I∗hb and I∗∗hb ) or a pitchfork bifurcation (at
exactly two values I∗pf and I∗∗pf ). This result comes from the intersection of the graph of F ′

(which has a well-like shape) with the straight horizontal lines y = β

1+ 1
τ

and y = β − g,

respectively. This type of intersection restricts the possibilities to either I∗hb < I∗pf < I∗∗pf < I∗∗hb
or I∗pf < I∗hb < I∗∗hb < I∗∗pf . The first case corresponds to a feedback/adaptation-dominated
neuronal competition model and ensures the existence of stable oscillations in (2.1). Moreover,

these appear with the same frequency ω = 1
τ

√
g(τ+1)

β − 1 at both values I∗hb and I∗∗hb , and they

are due to two different mechanisms: escape (for larger values of I) and release (for lower
values of I). Thus we conclude that in system (2.1) escape and release oscillatory regimes
always coexist. The choice of asymmetric gain function with respect to its threshold helps to
reduce one or another regime but cannot eliminate it completely.

Nevertheless there is a way to modify (2.1) such that the new obtained system shows
preference to either the escape or release mechanim; moreover, as for Wilson’s model, in some
parameter regime we can find only escape-based oscillations (or, vice versa, only release-based
oscillations). In this sense we consider the neuronal competition model with nonlinear slow
negative feedback

u̇1 = −u1 + S(I − βu2 − ga1),

u̇2 = −u2 + S(I − βu1 − ga2),

τ ȧ1 = −a1 + a∞(u1),(5.5)

τ ȧ2 = −a2 + a∞(u2)

with S as in (2.2) and

(5.6) a∞(x; θa) = 1/
(
1 + e−ra(x−θa)

)
.

We obtain the following result, which is similar to Theorem 5.1.
Theorem 5.2. Consider the nonlinear term a∞(x; θa) defined by (5.6). If the gain function

S satisfies S(θ + x) + S(θ − x) = 1, then system (5.5) with input I∗ and slow equation
nonlinearity a∞(x; θa) is diffeomorphic equivalent to system (5.5) with input I = 2θ+β+g−I∗

and slow nonlinearity a∞(x; 1 − θa).
Proof. With the change of variables u1 = 1 − ũ1, u2 = 1 − ũ2, a1 = 1 − ã1, a2 = 1 − ã2,

system (5.5) with input I∗ and nonlinear term in the slow equation a∞(x; θa) takes the form
(5.5) with input (2θ + β + g − I∗) and a∞(x; 1 − θa).
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Figure 12. Bifurcation diagrams for neuronal competition model (5.5): (A) population activity u1 versus
input strength I; (B) period T of the network oscillations versus I. Parameter values are β = 1.1, g = 0.5,
τ = 100, θ = 0.2, r = 10, ra = 10, and θa = 0.7. Functions S and a∞ are defined by (2.2) and (5.6).

If θa = 1/2, we have a∞(x; θa) = a∞(x; 1 − θa), and thus the system (5.5) has the same
type of solutions for any two values of input strength I1 and I∗1 such that 1

2(I1 +I∗1 ) = θ+ β+g
2 .

As for the case of linear adaptation (where the choice was a∞(u) = u), the intervals of I where
the period of oscillations increases and decreases have the same length and are symmetric to
the line I = θ + β+g

2 .

The symmetry of the I-T bifurcation diagram can be destroyed by choosing θa �= 1/2. As
numerical simulations of system (5.5) show, the choice of θa > 1/2 leads to a preference of the
system for the escape mechanism (decreasing T versus I). On the contrary, for θa < 1/2 the
system shows preference to the release mechanism (increasing T versus I).

For parameters β = 1.1, g = 0.5, τ = 100, and θ = 0.2, r = 10 for S and ra = 10 and
θa = 0.7 for a∞, we plot in Figure 12 the bifurcation diagram of population activity u1 versus
the stimulus strength I and then the period T versus I. In Figure 12A we observe that the
Hopf bifurcation point that existed for low value of I in case of linear adaptation disappears
now. Instead we find a supercritical pitchfork bifurcation where stable nonuniform equilibrium
points are born (they correspond to the winner-take-all case). The increasing branch of T
versus I graph disappears while the decreasing branch is still present (Figure 12B). We find
only four dynamical regimes (as opposed to the five described in Figure 3F and G): fusion
(equal activity levels) for large and low input, winner-take-all, and oscillations with decreasing
T as function of I for intermediate values of stimulus strength.

By choosing θa = 0.3 the bifurcation diagrams in Figure 12 are virtually mirrored along
the stimulus axis; in this case only the increasing I-T branch exists.

We explain these numerical results through an analytical approach. Similarly to the
local analysis in section 3, we note that system (5.5) has a unique uniform equilibrium eI =
(uI , uI , a∞(uI), a∞(uI)) for any real I. The value uI ∈ (0, 1) is defined by equation I =
F (uI) + βuI + ga∞(uI) and decreases with a decrease in I; moreover, limI→∞ uI = 1 and
limI→−∞ uI = 0. The characteristic equation of the linearization matrix about eI is a product

of two factors: λ2 + λ
(
1 + 1

τ + β
F ′(uI)

)
+ 1

τ

(
1 + ga′∞(uI)+β

F ′(uI)

)
= 0 and λ2 + λ

(
1 + 1

τ − β
F ′(uI)

)
+

1
τ

(
1 + ga′∞(uI)−β

F ′(uI)

)
= 0. Thus two of the eigenvalues always have negative real part, while the
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other two show the type of stability for eI . Decreasing I, the stability of eI is lost either
through a pair of purely imaginary eigenvalues at F ′(uI) = β/(1 + 1

τ ), F ′(uI) + ga′∞(uI) > β
or through a zero eigenvalue at F ′(uI) + ga′∞(uI) = β and F ′(uI) > β/(1 + 1

τ ).
Assume now that θa is greater than 1/2 and close to 1. For large I the corresponding

fixed point eI has uI close to 1 and in the vicinity of θa. Since this is the steeper (almost
linear) part of a∞, we can approximate a∞(uI) ≈ kuI . The condition F ′(uI) = β/(1 + 1

τ ),
F ′(uI) > β− ga′∞(uI) = β− gk, can be attained (at least for adaptation-dominated systems)
and stable oscillations occur. On the other hand, for small I, the fixed point eI has uI close
to 0 and further away from θa. The function a∞ is almost constant there, so a′∞(uI) ≈ 0. Then
F ′(uI) + ga′∞(uI) ≈ β > β/(1 + 1

τ ) and the stability of eI is lost through a zero eigenvalue (a
pitchfork bifurcation).

Remark 5.4. We note that the choice of θa > 1/2 sufficiently close to 1 helps the slow
variable for the suppressed population, say, a1, to change faster than the slow variable for the
dominant population, say, a2. Since a∞(u1) is approximately constant to zero and a∞(u2) falls
onto the linear part of the sigmoid, a1 decays almost exponentially according to τ ȧ1 ≈ −a1,
while a2 grows more slowly according to τ ȧ2 ≈ −a2 + ku2. The input-output function of
the suppressed population changes faster, favoring escape. An opposite effect is obtained for
θa < 1/2.

6. Discussion. We investigated a class of competition models that describe rhythmic
(alternating) phenomena that arise in a range of neural contexts including perception of
ambiguous sensory stimuli (such as binocular rivalry) and motor coordination (as in CPGs).
These models rely on mutual inhibition between populations of neurons and a slow process
in the form of spike frequency adaptation and/or synaptic depression, and they have the
following commonalities [31].

A decrease in the strength of the input to the noise-free system leads to five possible types
of dynamics: (i) at high values of input strength both competing populations are active at
equal levels; (ii) by decreasing the input strength the system enters an oscillatory regime with
the oscillation period increasing as input decreases; (iii) then for lower input the system is in
a winner-take-all regime where only one population is dominant while the other is suppressed
forever; (iv) continuing to decrease the input strength, the system oscillates again; in this
region the oscillation period decreases as the input decreases; (v) at low values of input,
oscillations disappear and both competing populations are inactive at an equal level. In
addition, for weak inhibition the winner-take-all regime does not occur; however, the period
of oscillations still depends on the input strength in a nonmonotonic fashion.

In a computational study of a model similar to (2.1), the authors of [23] also report
transitions between simultaneous activity (single equilibrium), oscillations, and winner-take-
all. The bifurcation diagram (Figure 4) in the parameter plane (I, β) resembles Figure 9
in [23]. However, Moldakarimov et al. were interested mostly in how the system’s dynamics
changes with inhibition strength (an internal parameter of the system) and not with stimulus
strength. By analyzing the influence of stimulus on the oscillations’ frequency/period, we
provide a refined characterization of possible behaviors in this class of competition models.

The five dynamical regimes mentioned above were illustrated in Figure 3 for system (2.1),
our choice as a particular example. Despite the fact that it has some limitations such as a lack
of recurrent excitation, a symmetric gain function, and a nonsaturating a∞(u), system (2.1)



644 R. CURTU, A. SHPIRO, N. RUBIN, AND J. RINZEL

has the advantage of being simple enough to allow for a thorough analytical investigation while
still displaying the dynamical characteristics found in a larger class of models. Thus, for (2.1)
we proved the existence of oscillations and we showed that they are antiphase as expected for a
network of two competing populations. Moreover, by considering the period of oscillations T as
a function of input strength I, we proved that the I-T graph is nonmonotonic. We associated
the increasing I-T branch with a release mechanism and the decreasing branch with an escape
mechanism. Release occurs for lower values of I. It means that during oscillation the dominant
population loses control due to accumulating slow negative feedback and it becomes unable
to suppress its competitor; consequently the latter becomes active and thereby takes the role
of suppressor. On the contrary, escape occurs for higher values of I and it means that the
suppressed population regains control on its own, starts to inhibit its competitor, and forces
it into the down state. Moreover, using singular perturbation techniques, we characterized
in the limiting case the conditions for occurrence of winner-take-all dynamics at intermediate
values of stimulus strength.

Our presumption is that the potential for alternation of percepts depends on neuronal
competition. If competition were significantly reduced or eliminated (say, effectively making
β very small in the model), alternations would not occur in the presence of a stimulus. That is,
we suppose that an isolated population would not oscillate. To satisfy this constraint we have
disallowed recurrent excitation in (2.1): this precludes oscillations in an isolated population
for any input value I. Perhaps for this goal the complete elimination of recurrent excitation is
an extreme way to satisfy the constraint. Alternatively, we could consider systems with fast
equations of the form u̇j = −uj+S(I+αuj−βuk−gaj) and allow for some recurrent excitation
but not strong enough to let an isolated population oscillate (e.g., take α < (1 + 1

τ )/S′(θ)).
This modification, however, does not affect our conclusion on the nonmonotonicity of the
period of oscillations versus input strength curve (not shown): both “release” and “escape”
branches still appear.

Other modifications of (2.1) that favor either release or escape as responsible for oscillations
were discussed in section 5. One extension of (2.1) allows the gain function to be asymmetric
with respect to the threshold. This maintains one of the two oscillatory regimes while reducing
the other one. A different rendition of (2.1) invokes a nonlinear slow negative feedback (a
sigmoidal-shaped a∞(u)) and completely eliminates one of the two regimes. The existence of
the saturating branches for a sigmoidal a∞(u) introduces an asymmetry in the system; thus
under some specific conditions either the suppressed population recovers from slow negative
feedback faster than the dominant population accumulates its own negative feedback (favoring
escape, see Figure 12), or the reverse occurs. Interestingly, adding noise to these specially
designed models, we automatically recover the nonmonotonicity of the period versus input
curve [31].

Oscillations in mutually inhibitory neuronal networks based on fast-slow dynamics [27]
as well as the terms “release” and “escape” [36, 32] were previously discussed for neuronal
networks in the presence of local autocatalysis. The autocatalysis was either an intrinsic pro-
cess (like voltage-gated persistent inward currents) or a synaptic process (like intrapopulation
recurrent excitation). Other models assumed networks of excitatory cells interacting through
a global inhibitory feedback that typically produce the winner-take-all dynamics; the inhibi-
tion was dynamic with a slow time-scale and induced more complicated oscillatory patterns
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with one cell being active for a while and then spontaneously turning off and allowing another
one to take over [8]. Contrary to these examples, there is no autocatalysis in the neuronal
competition models we investigate here. Instead the alternation is a combined result of two
processes: mutual inhibition that acts effectively as a fast positive feedback (disinhibition) and
a slow negative feedback (adaptation, but that could alternatively be synaptic depression).

Appendix A. Normal form for Hopf bifurcation. To construct the normal form for the
Hopf bifurcation, in section 3 we use the expansion of S(k)(F (uI)), k = 1, 2, 3, . . . , with respect
to ε. That is obtained as follows: take, for example,

f1(I)
def
= S ′(F (uI)) = f1(I

∗ + ε2α) = f1(I
∗) + f ′

1(I
∗)ε2α + O(ε4).

Here f1(I
∗) = S ′(F (u∗)) = 1/F ′(u∗) = (1 + 1

τ )/β and f ′
1(I) = S ′′(F (uI)) · F ′(uI) · duI/dI.

Based on (3.2), f ′
1(I) = S ′′(F (uI))·F ′(uI)/(β+g+F ′(uI)). On the other hand, since u ≡

S(F (u)), we have 1 ≡ S ′(F (u)) ·F ′(u), and further 0 ≡ S ′′(F (u)) ·F ′(u)2 +S ′(F (u)) ·F ′′(u),
i.e., S ′′(F (u)) = −F ′′(u)/F ′(u)3. Therefore,

f1(I) =
1 + 1/τ

β
− F ′′(u∗)

F ′(u∗)2(β + g + F ′(u∗))
ε2α + O(ε4) .

Similarly, we compute

f2(I)
def
= S ′′(F (uI)) = f2(I

∗ + ε2α) = f2(I
∗) + O(ε2) = − F ′′(u∗)

F ′(u∗)3
+ O(ε2)

and f3(I)
def
= S ′′′(F (uI)) = f3(I

∗ + ε2α) = f3(I
∗) + O(ε2) = S ′′′(F (u∗)) + O(ε2). From

S ′′(F (u)) = −F ′′(u)/F ′(u)3 we obtain S ′′′(F (u)) = [3F ′′(u)2 − F ′(u) · F ′′′(u)]/F ′(u∗)5, so

f3(I) =
3F ′′(u∗)2 − F ′(u∗) · F ′′′(u∗)

F ′(u∗)5
+ O(ε2).

Normal form. Let us now present the main steps in the algorithm for the construction of
the normal form starting with

(A.1) L0V0 = ε[B(V0, V0) − L0V1] + ε2[C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2] + O(ε3) .

In the limit ε → 0, the vector V0 is a solution of the linear system L0V0 = 0 with two
eigenvalues λ1,2 of negative real part and two purely imaginary eigenvalues λ3,4 = ±iω. Thus
V0 belongs to the center manifold; i.e., for an eigenvector ξ ∈ C4 of A0 that satisfies A0ξ = iωξ,
say,

(A.2) ξ = (−τω + i, τω − i, i, −i)T,

the solution V0 takes the form

V0(t) = w(t)ξeiωt + w̄(t)ξ̄e−iωt.

However, since L0V0 = O(ε), w(t) is ε-dependent, and it can be written in slow time s = ε2t
as w = w(s). In the singular perturbation expansion, w(s) = w(s)|ε=0 + dw

ds |ε=0
ε2t + O(ε4).
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With notation Z = w(s)|ε=0, Z
′ = dw

ds |ε=0
, and so on (here ′ stands for the derivative with

respect to the slow time), we have w = Z + ε2tZ ′ + O(ε4) and

V0 =
(
Zξeiωt + Z̄ξ̄e−iωt

)
+ ε2t

(
Z ′ξeiωt + Z̄ ′ξ̄e−iωt

)
+ O(ε4) .

Then we compute L0

(
teiωtξ

)
= eiωtξ, L0

(
te−iωtξ̄

)
= e−iωtξ̄ and B

(
ξeiωt, ξeiωt

)
= 1

2Bb2p e2iωt,
B
(
ξ̄e−iωt, ξ̄e−iωt

)
= 1

2Bb̄ 2p e−2iωt, B
(
ξeiωt, ξ̄e−iωt

)
= 1

2B|b|2p, where b = βτω + i(g− β) and
p = (1, 1, 0, 0)T. Equation (A.1) becomes

L0V1 =
1

2
Z2Bb2p e2iωt +

1

2
Z̄2Bb̄ 2p e−2iωt + ZZ̄B|b|2p+ ε

[
−Z ′ξeiωt − Z̄ ′ξ̄e−iωt

+ C(V0, V0, V0) + 2B(V0, V1) + ΛV0 − L0V2

]
+ O(ε2),

so we look for solutions V1 of the form

V1 = w2ξ1e
2iωt + 2ww̄ξ2 + w̄2ξ3e

−2iωt = Z2ξ1e
2iωt + 2ZZ̄ξ2 + Z̄2ξ3e

−2iωt + O(ε2).

From the singular perturbation expression we determine ξ1 = 1
2Bb2(2iωI − A0)

−1p, ξ2 =
−1

2B|b|2A−1
0 p, and ξ3 = ξ̄1, that is,

ξ1 =
Bb2ψ

2|ψ|2 (1 + 2iτω, 1 + 2iτω, 1, 1)T, ξ2 =
B|b|2

2
[
1 +

(
g
β + 1

) (
1 + 1

τ

)](1, 1, 1, 1)T,

where ψ = 1 − 4ω2τ +
( g
β + 1

) (
1 + 1

τ

)
− 4iω(τ + 1).

Then we compute C(V0, V0, V0), B(V0, V1) and ΛV0 = −αA(Zb eiωt + Z̄b̄ e−iωt)q + O(ε2)
with q = (1,−1, 0, 0)T and obtain

L0V2 = −(Z ′ξ + αAZbq) eiωt + Z2Z̄b2b̄q eiωt

⎛
⎝−D

2
+

(β + g)B2

1 +
(

g
β + 1

) (
1 + 1

τ

)
+

B2(β + g + 2iβωτ)ψ

2|ψ|2

⎞
⎠+ e3iωt(. . .) + cc + O(ε).

In order for the solution V2 to exist, the right-hand side of the above equation should be
orthogonal on the eigenvectors of the adjoint operator L∗

0 = − d
dt −AT

0 on the space of periodic
solutions V (t) = V (t + 2π

ω ) with inner product

〈V,W 〉 =
ω

2π

∫ 2π
ω

0

4∑
i=1

vi(t)w̄i(t) dt, V = (vi)
T
i=1,4, W = (wi)

T
i=1,4.

That means the right-hand side should be orthogonal on
{
ηeiωt, η̄e−iωt

}
with η solution of

AT
0 η = −iω η and ξ · η̄ = 1; that is,

η = − 1

4ωτ
(1, −1, −1 − iωτ, 1 + iωτ)T.
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We obtain the normal form Z ′ = αAϕZ − LZ2Z̄ with L as in Theorem 3.2.
By rescaling I−I∗ = ε2α and z(t) = εZ(ε2t) = εZ(s), we have ż = dz/dt = εdZds

ds
dt = ε3Z ′;

the above differential equation becomes exactly (3.11).
First Lyapunov coefficient. We would like to determine sufficient conditions for the Hopf

bifurcation to be supercritical, i.e., for Re(L) > 0.
We now use inequality (3.3) to show that the first term in the sum that defines L has

positive real part:

Re

(
ϕψ

(
β + g

2
+ iβωτ

))
= (2βg)τ +

1

4
(7g2 + 5βg − 6β2) +

1

4τ
(7g2 − 6βg + 3β2)

> 2β2 − 2βg +
1

4
(7g2 + 5βg − 6β2) +

1

4τ
(7g2 − 6βg + 3β2)

=
1

4
(7g2 − 3βg + 2β2) +

1

4τ
(7g2 − 6βg + 3β2) > 0 .(A.3)

For the second term, (3.3) implies

l1 =
2(β + g)

1 +
(

g
β + 1

) (
1 + 1

τ

) =
2

1
β+g + 1

F ′(u∗)

>

(
1 +

1

τ + 1

)
F ′(u∗) > F ′(u∗).

Therefore, the real part of the second term satisfies

(A.4) βτ2ω2|ϕ|2B2

(
l1 −

D

B2

)
> βτ2ω2|ϕ|2B2F ′(u∗)

(
F ′(u∗)F ′′′(u∗)

F ′′(u∗)2
− 2

)
.

Appendix B. Normal form for pitchfork bifurcation. The construction of this normal
form follows similar steps to those in section 3.1 and Appendix A. Here F ′(u◦) = β − g with
u◦ ∈ {u∗pf , u∗∗pf} and I◦ ∈ {I∗pf , I∗∗pf}.

The operators B, C, Λ, and L0 are defined in the same way as in section 3.1 with coefficients
A,B,D as in (3.10). However, the derivatives of F at the bifurcation point u◦ take different
values, so S ′(F (uI)) = 1/(β − g) +αAε2 + O(ε4), S ′′(F (uI)) = B + O(ε2), and S ′′′(F (uI)) =
D + O(ε2) with A, B, and D evaluated at either u∗pf or u∗∗pf . The matrix of the linearized
system is now

A0 =

⎛
⎜⎜⎜⎝

−1 − β
β−g − g

β−g 0

− β
β−g −1 0 − g

β−g
1
τ 0 − 1

τ 0
0 1

τ 0 − 1
τ

⎞
⎟⎟⎟⎠

and has a zero eigenvalue. Therefore, we find an eigenvector ξ (A0ξ = 0) and an eigenvector
η of the adjoint matrix (AT

0 η = 0) such that ξ · η = 1. They are

ξ = (1,−1, 1,−1)T, η =
1

2(β − g(τ + 1))
(β − g,−β + g,−τg, τg)T.

With the perturbation I − I◦ = ε2α, V (t) = εV0(t) + ε2V1(t) + ε3V2(t) + · · · , we obtain
that V0 belongs to the eigenspace, that is, V0 = w(t)ξ. The expansion with respect to the
slow time (s = ε2t, w = w(s), Z = w(s)|ε=0, etc.) implies V0 = (Z + ε2tZ ′ + O(ε4))ξ and

L0V1 = Z2B(ξ, ξ) + ε[−Z ′ξ + Z3C(ξ, ξ, ξ) + 2B(V0, V1) + ZΛξ − L0V2] + O(ε2).
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The vector V1 is chosen to be of the form V1 = w2ξ1 = Z2ξ1 + O(ε2) with ξ1 orthogonal on η.

It results in ξ1 = −A−1
0 B(ξ, ξ), i.e., ξ1 = B2(β−g)3

4β (1, 1, 1, 1)T. The normal form is

Z ′ = (Λξ · η)Z + [C(ξ, ξ, ξ) · η + 2B(ξ, ξ1) · η]Z3.

From Λξ = αA(β − g)q, C(ξ, ξ, ξ) = D
6 (β − g)3q, B(ξ, ξ1) = −B2

8β (β − g)4(β + g)q (where

q = (1,−1, 0, 0)T), and by rescaling I − I◦ = ε2α and z(t) = εZ(ε2t) = εZ(s), we obtain
exactly (3.15).

Appendix C. Additional material. To illustrate system (2.1)’s dynamics under the escape
and release mechanisms we run numerical simulations in XPPAUT [7, 9] with S as in (2.2),
r = 10, θ = 0.2, and parameters β = 1.1, g = 0.5, τ = 100 as in Figure 3F. Then in the
fast plane (u1, u2) we obtain the trajectory of the point on the rivalry limit cycle: the point
is drawn as a black thick dot; the u1-nullcline is colored in red, and the u2-nullcline is colored
in blue.

70584 01.gif [3.7MB] illustrates the escape mechanism for I = 1.5.
70584 02.gif [3.8MB] illustrates the release mechanism for I = 0.5.
The small black square corresponds to the slow plane (a1, a2), where we included in green

the projection of the limit cycle trajectory. This picture shows how the slow negative feed-
back accumulates for the dominant population and then how it recovers for the suppressed
population (e.g., if u1 is ON and u2 is OFF, then a1 increases and a2 decreases). Then the
cycle repeats.
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Classification of Spatially Localized Oscillations in Periodically Forced Dissipative
Systems∗

J. Burke†, A. Yochelis‡, and E. Knobloch†

Abstract. Formation of spatially localized oscillations in parametrically driven systems is studied, focusing on
the dominant 2:1 resonance tongue. Both damped and self-excited oscillatory media are consid-
ered. Near the primary subharmonic instability such systems are described by the forced complex
Ginzburg–Landau equation. The technique of spatial dynamics is used to identify three basic types
of coherent states described by this equation—small amplitude oscillons, large amplitude recip-
rocal oscillons resembling holes in an oscillating background, and fronts connecting two spatially
homogeneous states oscillating out of phase. In many cases all three solution types are found in
overlapping parameter regimes, and multiple solutions of each type may be simultaneously stable.
The origin of this behavior can be traced to the formation of a heteroclinic cycle in space between
the finite amplitude spatially homogeneous phase-locked oscillation and the zero state. The results
provide an almost complete classification of the properties of spatially localized states within the
one-dimensional forced complex Ginzburg–Landau equation as a function of the coefficients.

Key words. forced complex Ginzburg–Landau equation, 2:1 resonance, spatial dynamics, localized states,
oscillons

AMS subject classifications. 35B32, 35B60, 35G20

DOI. 10.1137/070698191

1. Introduction. The study of parametrically driven oscillatory systems has a long his-
tory dating back to Faraday’s experiments in 1831 [16]. A single periodically driven nonlinear
oscillator exhibits a number of intriguing phenomena when the natural oscillation frequency
and the driving frequency are close to strong resonance [2, 23]. These include frequency lock-
ing, hysteresis, and various types of chaotic oscillations [2, 19, 23]. Many of these phenomena
are present in spatially extended systems as well, including charge-density waves [6], autocat-
alytic surface reactions [14], cardiac activity [20], the Belousov–Zhabotinsky (BZ) chemical
reaction [34], and optical parametric oscillators [54]. Such systems admit, in addition, dif-
ferent types of spatially structured oscillations such as different types of standing waves and
spirals [10, 25, 32, 39, 41, 42, 43, 46, 53, 60]. These phenomena are usually easiest to see in
the vicinity of the subharmonic resonance, so called because the system responds with half
the forcing frequency. In the following we refer to this resonance as the 2:1 resonance, and
the resonance tongue containing homogeneous oscillations phase-locked to half the forcing
frequency as the 2:1 resonance tongue. As is well known, these phase-locked states typically
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(a) SSO (b) SRO (c) SIF (d) SSF

Figure 1. Sketch of (a) a stable standard oscillon (SSO), (b) a stable reciprocal oscillon (SRO), (c) a stable
Ising front (SIF), and (d) a stable structured front (SSF). The arrows indicate that after one period of forcing
the profile switches from the solid profile to the dotted profile and hence returns to the original configuration only
after two periods of the forcing. Although the front in (d) is also of Ising type, the terminology used emphasizes
the difference in the front profiles. Despite their lack of reflection symmetry, the SIFs and SSFs do not drift.
This is in contrast to the so-called Bloch fronts (not shown) which do drift (see text).

coexist with the trivial state along one of the boundaries of the resonance tongue [17, 46].

Recent experiments on parametrically driven granular media have revealed, in addition,
the presence of spatially localized oscillations that have been called oscillons [1, 35, 38, 52, 50].
These oscillations are embedded in a stationary background (Figure 1(a)) and also oscillate
with half the forcing frequency [35, 52]. In the following we refer to states of this type as
standard oscillons. Additional experiments have identified other types of spatially localized
structures [4, 44]. These include hole-like states in a background oscillating state (Figure 1(b))
referred to here as reciprocal oscillons [57]. In such states both the hole and the background
oscillate with half the forcing frequency, and hence both oscillate synchronously. In addition,
experiments on the BZ reaction subjected to stroboscopic optical forcing and on vertically
driven granular media reveal the presence of monotonic (or Ising) fronts connecting domains
of spatially homogeneous oscillations, each phase-locked to half the forcing frequency but 180◦

out of phase. Such Ising fronts are often found in the same parameter regime as the reciprocal
oscillons already mentioned, i.e., near the boundary of the 2:1 resonance tongue [40]. The Ising
fronts can in turn undergo instabilities leading to traveling (Bloch) fronts [11, 18]. In two space
dimensions, a transverse instability of Ising fronts may lead to the formation of standing wave
labyrinths [60], while in the Bloch front case spiral turbulence was observed [39].

In this paper we show that much of this phenomenology can be captured by the forced com-
plex Ginzburg–Landau (FCGL) equation [10, 15] valid near onset of the primary subharmonic
instability. We use this equation to provide a comprehensive classification of the properties of
the three types of spatially localized structures mentioned above—standard oscillons, recipro-
cal oscillons, and fronts—in different parameter regimes. Since the FCGL equation provides
a spatial unfolding of the 2:1 strong resonance familiar from dynamical systems theory [19], it
can be considered the “normal form” for this resonance in spatially extended systems. As such
it arises naturally and inevitably in the applications mentioned above and will arise at small
amplitude in all extended oscillatory systems driven at frequency close to twice the natural
oscillation frequency. Thus the only difference between these applications lies in the values
of the coefficients which are system-specific and have to be computed in terms of physical
parameters via standard techniques. Examples can be found in [37, 49] for the case of optical
parametric oscillators; see also [5]. In cases where the primitive field equations (or the system
parameters) are not known, as frequently occurs in chemical [33, 60] and granular [4, 55]
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systems, the FCGL equation is frequently used as a model equation to describe the observed
behavior, particularly in two or more space dimensions.

The presence of spatially localized states in the FCGL equation should come as no surprise.
As already mentioned, the parametric forcing generally leads to coexistence between a spatially
homogeneous phase-locked oscillation and the trivial state along one of the boundaries of the
resonance tongue. In these circumstances one can expect to find fronts connecting these
two states, and by combining such fronts back-to-back one can construct spatially localized
states. In the following we think of structures of this type as heteroclinic cycles in space and
employ spatial dynamics [9] coupled with numerical branch following techniques to establish
the presence of such cycles in appropriate parameter regimes [57]. In addition, we demonstrate,
following [28], that such cycles can be responsible for the presence of multiple stable standard
and reciprocal oscillons in overlapping parameter regions. We also demonstrate that different
types of stable monotonic (Figure 1(c)) and structured (Figure 1(d)) fronts, i.e., different types
of heteroclinic orbits, can be present in this region as well. Thus the presence of heteroclinic
cycles is responsible, under appropriate conditions, for the profusion of stable homoclinic and
heteroclinic structures in certain regions of parameter space. These include states we refer to
as single-pulse states (discussed above), as well as a variety of so-called multipulse states that
resemble bound states of the single-pulse states, and different types of fronts.

Our classification divides naturally into two parts corresponding, in the absence of para-
metric forcing, to damped and self-excited oscillations. In section 2 we introduce the FCGL
equation describing the 2:1 resonance in one spatial dimension and review the properties of
spatially homogeneous phase-locked states, i.e., the states that oscillate with half the fre-
quency of the forcing. In section 3 we focus on the damped oscillatory regime and identify
analytically bifurcations to small amplitude spatially localized states of homoclinic type, all
of which are unstable. We next present the results of numerical continuation, which allows
us to follow these states toward larger amplitude; these results indicate that these solutions
terminate in a (spatial) heteroclinic bifurcation and show that in some parameter regimes the
homoclinic states acquire stability in the vicinity of this bifurcation. We identify the resulting
states with the observed standard oscillons. In addition, we find two further types of spatially
localized states, corresponding to the reciprocal oscillons and front-like states. The former
bifurcate from the spatially homogeneous phase-locked states at finite amplitude and are also
homoclinic; in contrast, the front-like states correspond to heteroclinic connections between
two phase-locked states 180◦ out of phase. Both types may terminate in the same heteroclinic
bifurcation as the standard oscillons. We show that the reciprocal oscillons may acquire sta-
bility near this global bifurcation, while the various structured fronts may do so as well. In
section 4 we present parallel results for the case of self-excited oscillations and discuss the im-
pact of the bifurcation to Bloch fronts on the stability of both Ising and structured fronts. The
paper concludes in section 5 with a discussion of the results and their significance for ongoing
experiments. Details of the analytical computations are relegated to several appendices.

2. The forced complex Ginzburg–Landau equation. We consider a continuous system
in one spatial dimension near a bifurcation to spatially homogeneous oscillations with natural
frequency ω in the presence of spatially homogeneous forcing with frequency Ω. As is well
known, interesting dynamical behavior is associated with strong resonances of the form Ω :
ω = n : 1, 1 ≤ n ≤ 4 [2, 23]. Of these the resonance tongue associated with the subharmonic
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resonance Ω ≈ 2ω is the broadest and therefore ideally suited for experimental study [14, 18,
32, 39, 53]. Inside the resonance tongue the system responds to the forcing with oscillations
at frequency Ω/2, corresponding to phase-locked states [2, 23]. Outside of the tongue the
frequency difference |ω − Ω/2| is too large and the response frequency is no longer locked to
the forcing frequency.

In the present paper we are interested in including large-scale spatial modulation in this
theory. Thus we suppose that a dynamical observable w takes the form

(2.1) w = w0 + AeiΩt/2 + c.c. + · · · ,

where w0 represents the equilibrium state, A(x, t) is a complex amplitude, and the ellipses
denote higher order terms. The oscillation amplitude A(x, t) obeys the FCGL equation [10, 15]

(2.2) At = (μ + iν)A− (1 + iβ)|A|2A + (1 + iα)Axx + γĀ,

where μ represents the distance from onset of the oscillatory instability, ν is the detuning from
the unforced frequency, and α, β, and γ represent dispersion, nonlinear frequency correction,
and the forcing amplitude, respectively. Here Ā is the complex conjugate of A. Equation
(2.2) can be derived by standard asymptotic methods from the relevant governing equations
provided the amplitude A remains small, i.e., provided the system is close to onset of sponta-
neous spatially homogeneous oscillations and the forcing amplitude is suitably small. In the
absence of forcing, these oscillations grow when μ > 0 but decay when μ < 0.

With the exception of the trivial solution A = 0, stationary solutions of (2.2) are all
“phase-locked” in the sense that they correspond to observables w in the original system that
oscillate at exactly half the driving frequency, Ω/2. We use the term uniform state to refer to
a phase-locked state that is independent of x. States of this type take the form A = R exp(iφ),
where

(2.3) R2 =
(
R±)2 ≡

β(ν − νβ) ±
√
ρ2
βγ

2 − (ν − βμ)2

ρ2
β

,

and φ = φ± solves

(2.4) cos 2φ± =
(R±)

2 − μ

γ
, sin 2φ± =

ν − β (R±)
2

γ
.

The uniform phase-locked states exist provided R2 > 0. Here ρβ ≡
√

1 + β2 and

(2.5) νβ ≡ −μ

β
.

In the following we denote the two branches of solutions in 0 ≤ φ± < π by A±
u , so ImA±

u ≥ 0;
the solutions in π ≤ φ± < 2π which lie exactly out of phase with A±

u correspond to −A±
u .

When ν > νβ, the A−
u states appear via a subcritical bifurcation from A = 0 when the

forcing amplitude γ reaches γ = γ0,

(2.6) γ0 ≡
√

μ2 + ν2,



CLASSIFICATION OF SPATIALLY LOCALIZED OSCILLATIONS 655

ν

γ  

(a)

R
e 

A

γ

R
e 

A

γ

ν

γ  

(b)

R
e 

A
γ

R
e 

A

γ

−1 0 1
0

1

γ
0

γ
0

γ
b

νβ

A
u

+

−A
u

+

A=0
γ

0

A
u

+

−A
u

+

A
u

−

−A
u

−

A=0
γ

0

γ
b

−1 0 1
0

1

γ
0

γ
0

γ
bνβ

A
u

+

−A
u

+

A=0
γ

0

A
u

+

−A
u

+

A
u

−

−A
u

−

A=0
γ

0

γ
b

Figure 2. The boundary of the 2:1 resonance tongue in the (ν, γ) plane when α = 1, β = 2, and (a)
μ = −0.5, (b) μ = 0.5. The line γ = γ0 is plotted as solid (dashed) when the bifurcation to uniform phase-
locked states is supercritical (subcritical). The shaded region indicates the existence of spatially uniform solutions
A+

u . The lower panels show typical bifurcation diagrams when the bifurcation at γ0 is supercritical (ν < νβ)
and subcritical (ν > νβ). In the bifurcation diagrams solid (dotted) lines represent solutions which are stable
(unstable) with respect to uniform perturbations. In (b) the A+

u state may be stabilized either at γb or at a Hopf
bifurcation.

and are unstable. These states annihilate with the A+
u in a saddle-node bifurcation at γ = γb,

(2.7) γb ≡
|ν − βμ|

ρβ
.

In contrast, when ν < νβ, the A+
u states bifurcate supercritically from A = 0 at γ0 and the

saddle-node bifurcation is absent. The line γ = γb is tangent to the curve γ = γ0 at ν = νβ,
as shown in Figure 2.

The large number of parameters in (2.2) is responsible for a wide range of behavior. In
section 3 we consider the case of damped oscillations, μ < 0, followed by the self-excited
case, μ > 0, in section 4. Without loss of generality we restrict both discussions to the case
β > 0 but allow α to be positive or negative. The resulting half-space splits into five regions
(Figure 3), independently of μ, each characterized by distinct behavior in the (ν, γ) plane; we
are free to choose γ > 0 but must allow ν to be positive or negative. Bifurcation diagrams
showing branches of stationary solutions A(x) as a function of the parameter γ correspond to
vertical (constant ν) slices through this plane. In general, the types of solutions present in
such diagrams are determined by the value of ν relative to a few critical values, such as νβ.

3. Damped oscillatory regime. In this section we examine solutions to (2.2) in the
damped case, μ < 0. The resonance region containing the states A±

u is shown in Figure 2(a)
and is characteristic of the uniform solutions found in all five regions of the (α, β) parameter
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Figure 3. The (α, β) parameter plane splits into five regions based on the behavior of the solutions. The
line α = 0 divides III from IV, while the line α = β divides II from III. The curves dividing I from II and
IV from V are given by z(α, β) = 0, cf. (3.18); z < 0 in I and V but z > 0 in II–IV. These results are
independent of the sign and value of μ.

plane introduced in Figure 3, provided that μ < 0. In the following we refer to these as
Regions I−–V−, where the superscript refers to the sign of μ. The A = 0 state is stable to
uniform perturbations in γ < γ0 and unstable in γ > γ0. The A+

u state is present in the
shaded region and is stable with respect to spatially uniform perturbations; the A−

u state is
present in γb < γ < γ0 and is unstable. Thus the parametric forcing is responsible for the
creation of a region of bistability between A = 0 and A+

u , defined by ν > νβ, γb < γ < γ0

(Figure 2(a)). This region plays an important role in what follows.
There are two types of nonuniform solutions of (2.2)—spatially periodic and spatially

localized. To study these, we rewrite (2.2) in terms of the real and imaginary parts of the
amplitude A, U ≡ ReA and V ≡ ImA:

(3.1)

[
Ut

Vt

]
= (L + N )

[
U
V

]
.

Here L is the linear operator

(3.2) L =

[
μ + γ −ν
ν μ− γ

]
+

[
1 −α
α 1

]
∂xx,

while N includes the nonlinear terms:

(3.3) N = −
(
U2 + V 2

) [1 −β
β 1

]
.

The steady states of this system satisfy a fourth order ordinary differential equation (ODE)
in x that can be studied using a combination of bifurcation theory and numerical branch
following techniques. It is important to recognize that (3.1) is reversible in the sense that
it is invariant under the spatial reflection x → −x. In the following we think of x as a
time-like variable and classify the states of interest as either homoclinic or heteroclinic orbits
depending on the behavior of A(x) as x → ±∞. In addition, we distinguish between “small”
amplitude states, which bifurcate from the trivial state A = 0, and “large” amplitude states
that are related to the finite amplitude uniform phase-locked states A+

u . Small amplitude orbits
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homoclinic to A = 0 correspond to standard oscillons, while large amplitude orbits homoclinic
to A+

u correspond to reciprocal oscillons. Heteroclinic orbits between ±A+
u correspond to

the observed fronts. In either case a localized solution must leave a homogeneous state as
x increases from x = −∞ and must approach a homogeneous state (same or different) as
x → ∞. Thus we examine both the stability of the uniform states in time as well as their
stability in x, i.e., their temporal and their spatial eigenvalues.

3.1. Small amplitude states for α > 0. In this subsection we analyze, analytically and
numerically, small amplitude states which bifurcate from the A = 0 state. We first consider
the case α > 0 spanning the Regions I−–III− of the (α, β) plane shown in Figure 3. The
behavior in α < 0, spanning Regions IV− and V−, is described in a subsequent section.

3.1.1. Temporal stability of A = 0. The (complex) growth rate s of an infinitesimal
perturbation of the trivial state A = 0 with wavenumber k,

(3.4)

[
U
V

]
= ε

[
u
v

]
eikx+st + c.c.,

where ε � 1 and u, v are constants, is given by

(3.5) s2 + 2s(k2 − μ) + k4ρ2
α − 2k2α(ν − να) + γ2

0 − γ2 = 0.

Here ρα ≡
√

1 + α2 and

(3.6) να ≡ −μ

α
.

The A = 0 state is stable at any value of the parameters such that Re s < 0 for all k. Analysis
of the dispersion relation reveals three bifurcations of interest. The first occurs at γ0 and is
a pitchfork bifurcation to the uniform phase-locked states A±

u . This bifurcation is associated
with the change in stability of the k = 0 mode. The growth rate of this mode near γ0, for
|k| � 1, is given by

(3.7) s(k, γ) ≈ −α

μ
(ν − να)k2 − γ0

μ
(γ − γ0)

and indicates that the A = 0 state is stable for all γ < γ0 provided ν < να; at γ0 this state loses
stability with respect to uniform disturbances and is unstable to a range of wavenumbers in
γ > γ0, as shown in Figure 4(a). In contrast, when ν > να, the A = 0 state is already unstable
to spatially nonuniform perturbations when the k = 0 bifurcation takes place (Figure 4(b)).

The second bifurcation associated with the dispersion relation (3.5) is a finite wavenumber
(Turing) bifurcation, present when ν > να (Figure 4(b)). Here the A = 0 state is stable for
small γ and first loses stability at γ = γa,

(3.8) γa ≡ |ν − μα|
ρα

,

to perturbations with wavenumber ka,

(3.9) ka ≡
√

α(ν − να)

ρα
.
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Figure 4. Dispersion relation for the A = 0 state showing the growth rate Re s and oscillation frequency
Im s of perturbations as a function of the wavenumber k for several values of γ. When α > 0, (a) corresponds
to ν < να and (b) to ν > να, and vice versa when α < 0.
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Figure 5. Temporal stability along the A = 0 branch as a function of γ: solid (dotted) lines represent stable
(unstable) solutions. The insets show the spatial eigenvalues λ of A = 0 in the complex λ plane. When α > 0,
(a) corresponds to ν < να and (b) to ν > να, and vice versa when α < 0.

The resulting bifurcation produces a branch of spatially periodic states with wavenumber ka.
When γ > γa, the A = 0 state is unstable to a range of wavenumbers (which includes k = 0
once γ > γ0).

The above results are summarized in Figure 5: the state A = 0 is stable in time (solid
line) for γ < γ0 when ν < να and for γ < γa when ν > να. The dots indicate that A = 0 is
unstable.

The third bifurcation, mentioned briefly in the introduction, is a Hopf bifurcation corre-
sponding to Re s = 0, Im s 
= 0 at k = 0. This bifurcation occurs at μ = 0 provided γ < ν
and produces a branch of spatially uniform oscillations. This mode and its interaction with
the Turing mode have been studied in [58, 59] but are not considered in the present paper,
which focuses on values of μ away from μ = 0.

The line γ = γa defined in (3.8) is tangent to the curve γ = γ0 at να. Figures 6 and 7 show
this line in relation to γ0 and γb for Regions II− and III− in the α > 0 quadrant of Figure 3. A
similar plot for Region I− is omitted since the behavior resembles that found in Region II−. In
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Figure 6. The (ν, γ) plane for Region II−. The curves γa and γd correspond to bifurcations in ν > να and
να < ν < νz (solid lines), and to Belyakov–Devaney points elsewhere (dotted lines). Thus γd forms the lower
boundary of the region (shaded) of stable spatially uniform solutions A+

u in the interval να < ν < νz (barely
visible). The picture for Region I− is qualitatively similar except for the absence of the tangency at νz since
νz < νβ. Thus in I− γd forms the lower boundary of the shaded region everywhere in ν > να. Other notation
is the same as in Figure 2. Parameters: μ = −0.5, α = 2, β = 1.

these figures γa is shown as a solid line in ν > να where it corresponds to a Turing bifurcation.
For later reference it is also plotted (as a dotted line) in ν < να. Thus the A = 0 state is stable
up to γa when this is plotted as a solid line and up to γ0 elsewhere. The value of νβ and the
location of γb are determined by nonlinearity and have no bearing on the linear stability of
A = 0 discussed above, but the value of να relative to νβ will play an important role in what
follows. We therefore distinguish between the case να < νβ (i.e., α > β, spanning Regions I−

and II−) and the case να > νβ (i.e., α < β, Region III−). Although γa must lie below γ0, it
is clear from these figures that it may lie either above or below γb. For future reference we
include in these figures a third critical value, νz, as well as a curve labeled γd; both are related
to finite amplitude effects discussed below.

For spatially nonuniform steady states A(x), whether spatially extended or localized, the
linearized stability problem constitutes an eigenvalue problem for the growth rate s. This
problem has in general an infinite number of solutions, although only the eigenvalues with
the largest growth rates are of interest. In the following we omit the details of the required
computations (these are similar to those in [7]) but indicate whether a particular solution
is stable or unstable. In the case of instability we indicate the number and shape of the
eigenfunctions whose eigenvalues s have positive real part. For spatially localized states the
two commonest instabilities are amplitude and phase instabilities. The former is characterized
by an eigenfunction with the same parity (even or odd) as the steady state A(x), while the
latter has the opposite parity. In both instances the corresponding eigenvalues are real.

3.1.2. Spatial eigenvalues of A = 0. As mentioned above, a necessary condition for the
presence of an exponentially localized state that approaches A = 0 as x → ±∞ is that this
state have at least one spatial eigenvalue with positive real part and one with negative real
part. In this section we identify the regions in the (ν, γ) plane where this is the case. This
amounts to examining the stability in x of the fixed point A = 0. The spatial eigenvalues λ
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Figure 7. The (ν, γ) plane for Region III−. In (a) shading indicates the presence of stable uniform states
A+

u , while in (b) it indicates the existence of stable reciprocal oscillons (SROs). In (c) the light shading indicates
existence of stable Ising fronts (SIFs), while the darker shading indicates the (very narrow) region of existence
of stable structured fronts (SSFs), shown more clearly in the inset. The heteroclinic cycle forms along the
dot-dashed line γ∗. The remaining notation is the same as in Figure 6. Parameters: μ = −0.5, α = 1, β = 2.

of this fixed point are determined by linearizing (3.1) around the A = 0 state:

(3.10)

[
U
V

]
= ε

[
u
v

]
eλx.

The four eigenvalues satisfy a quadratic equation for λ2,

(3.11) ρ2
αλ

4 + 2α(ν − να)λ2 + (γ2
0 − γ2) = 0.

In particular, if λ is an eigenvalue, then λ̄ and −λ are as well. Consequently there are four
possibilities: (i) the spatial eigenvalues are real, (ii) there is a quartet of complex eigenvalues,
(iii) the spatial eigenvalues are imaginary, and (iv) two eigenvalues are real and two are
imaginary. The transition from (i) to (ii) is via a Belyakov–Devaney point [9], while the
transition from (ii) to (iii) corresponds to a (spatial) Hopf bifurcation with 1:1 resonance [26].

Localized states correspond to intersections of the stable and unstable manifolds of A = 0.
In cases (i) and (ii) this state has a two-dimensional stable and a two-dimensional unstable
manifold. These manifolds are transverse to the two-dimensional fixed point subspace of the
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symmetry x → −x and A → A and hence intersect in a structurally stable way [56]; i.e.,
we expect localized states in cases (i) and (ii) only. In contrast, in case (iv) the stable and
unstable manifolds are only one-dimensional and homoclinic orbits are exceptional [30, 36].

The motion of the eigenvalues in the complex λ plane as γ varies depends critically on the
value of ν relative to να > 0. We begin by observing that for small γ the eigenvalues form a
complex quartet as in case (ii). When ν < να (Figure 5(a)) these eigenvalues collide on the
real axis in a Belyakov–Devaney point when γ = γa. Because this collision occurs away from
the imaginary λ axis, it does not correspond to a local bifurcation of the A = 0 state. Above
γa the eigenvalues split but remain on the real axis, as in case (i). As γ continues to increase,
two of the eigenvalues move toward the origin and collide at λ = 0 when γ = γ0. This collision
does correspond to a bifurcation, and in fact it is at γ0 that the uniform phase-locked states
A±

u bifurcate from A0. For γ > γ0 the zero eigenvalues split along the imaginary axis, resulting
in eigenvalue structure (iv). In contrast, when ν > να (Figure 5(b)), the complex eigenvalues
that collide at γa do so on the imaginary axis at λ = ±ika. This is the Hopf bifurcation with
1:1 resonance (in space) or equivalently the Turing bifurcation (in time) mentioned above. In
the language of spatial dynamics the spatially extended states produced at this bifurcation
are referred to as spatially periodic states with wavenumber ka. Above γa the eigenvalues split
but remain imaginary, as in case (iii). Two of these collide at the origin when γ = γ0 and
split along the real axis, resulting, as before, in eigenvalue structure of type (iv). Thus when
ν < να, spatially localized states may exist everywhere in γ < γ0, while for ν > να they are
expected in γ < γa only. These regimes correspond precisely to those where the A = 0 state
is stable in time, as indicated in Figure 5. This observation is significant since localized states
in general inherit any instabilities of the background asymptotic state (but see [3, 48]).

3.1.3. Localized states bifurcating from γ = γ0. The uniform phase-locked states A−
u

bifurcate from A = 0 at γ0, and this bifurcation is subcritical if ν > νβ. In Appendix A we
show that if in addition ν < να (Figure 5(a)), then at γ0 there is in addition a subcritical
bifurcation to localized states. Near γ0 these take the form

(3.12) A±
L,0(x) = ±(η0 + i)

√
γ0 − γ

b0/2
sech

(√
γ0 − γ

−a0
x

)
,

where η0 ≡ (γ0 − μ)/ν, a0 ≡ α(ν − να)/γ0 < 0, and b0 ≡ 2β(ν − νβ)(γ0 − μ)/ν2 > 0. These
localized states are biasymptotic to A = 0 as x → ±∞ and are present in Region III− of the
(α, β) plane only, provided νβ < ν < να, γ ≤ γ0 (Figure 7).

These analytical solutions can be followed away from γ0 using numerical continuation [13].
Figure 8 shows the resulting bifurcation diagram typical of νβ < ν < να in Region III−. In
this and all subsequent bifurcation diagrams we plot solutions in terms of their norms
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Figure 8. Bifurcation diagram for νβ < ν < να in Region III−, showing the branches of localized states
A±

L,0 found by continuing the solution (3.12) away from γ0, as well as the uniform states A±
u . Solid (dotted)

lines correspond to stable (unstable) solutions. Right panels show profiles of A+
L,0 at locations (a), (b), and (c),

respectively; panel (c) shows a broad homoclinic orbit near γ∗ ≈ 0.6289 decomposed into a pair of nearly
heteroclinic connections, one connecting A = 0 to A+

u (solid line) and the other connecting A+
u to A = 0

(dashed line). Parameters: μ = −0.5, α = 1, β = 2, ν = 0.4 with (a) γ = 0.639, (b) γ = 0.635, (c) γ = 0.6289.

(3.13) N =

√
1

L

∫ L/2

−L/2
{|A|2 + |∂xA|2}dx,

where L is the large but finite spatial period used in the numerical computations. Typically
L = 200. Figure 8 shows not only the uniform phase-locked states A±

u but also the branches
of spatially localized solutions A±

L,0 found by continuing the analytical result (3.12) away from

γ0. Solutions along these branches are always even in x, A±
L,0(−x) = A±

L,0(x). In addition

the two branches of solutions are related by the symmetry A+
L,0(x) = −A−

L,0(x) and therefore
always have identical norms in the bifurcation diagram. The right panels in Figure 8 show
sample solutions along the A+

L,0 branch. Near γ0 the profile is broad (Figure 8(a)). As
γ decreases away from γ0, the solution first contracts in x forming a well-localized state
(Figure 8(b)). However, as γ approaches the value γ∗, these localized states broaden again,
with A+

L,0 spending more and more “time” near the uniform value A+
u . The resulting broad

homoclinic orbit can be thought of as a pair of nearly heteroclinic orbits, the first connecting
A = 0 to A+

u and the second connecting A+
u back to A = 0 (Figure 8(c)). We refer to this

pair of heteroclinic connections as a heteroclinic cycle. Numerical branch following reveals
that the branches of localized states A±

L,0 approach γ∗ monotonically from above; as a result

the A±
L,0 solutions remain unstable to an amplitude (even) mode throughout their range of

existence. In γ < γ∗ the broad localized states of the type shown in Figure 8(c) evolve in time
by decreasing their width and eventually collapsing to the (stable) uniform profile A = 0. In
contrast, in γ > γ∗ states of this type grow in width, filling more and more of the domain
with the (stable) uniform phase-locked state A+

u .
The point γ∗ at which a heteroclinic cycle is present is analogous to the so-called Maxwell

point in the theory of variational systems [7, 45], where it corresponds to the equal energy
case. It turns out that the multiplicity of steady states near γ∗ is determined by the spatial
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eigenvalues of the two states connected by the cycle and hence is independent of the type of
system.

3.1.4. Localized states bifurcating from γ = γa. Recall that for ν > να the four spatial
eigenvalues of the trivial state form a complex quartet when γ < γa, collide at λ = ±ika when
γ = γa, and then split but remain imaginary when γ > γa. For this case, weakly nonlinear
analysis in the vicinity of γa (see Appendix B) reveals that there is a branch of small amplitude
spatially periodic solutions given by

(3.14) AP,a(x) = (ηa + i)

√
γa − γ

ba
cos(kax + ϕ),

where the phase ϕ is arbitrary, ba ≡ 6ηa(β − α), and, since α > 0,

(3.15) ηa = α + ρα > 0

(see (B.7) in Appendix B). Consequently this bifurcation is supercritical whenever β < α;
in this case no additional localized states bifurcate from γa. This is the case in Regions I−

and II− of Figure 3. In contrast, when β > α (Region III−), the bifurcation to spatially
periodic states is subcritical, and localized spatial oscillations of the form

(3.16) AL,a(x) = (ηa + i)

√
γa − γ

ba/2
sech

(√
γa − γ

aa
x

)
cos(kax + ϕ)

bifurcate from A = 0 simultaneously with the spatially periodic states and in the same di-
rection. Here aa ≡ 2ρ2

αk
2
a/γa > 0. Bifurcations of this type occur in Figure 7 in the region

ν > να with the localized oscillations present below the line γ = γa. Within the asymptotic
analysis, the phase ϕ in (3.16) is again arbitrary, but terms beyond all orders select solutions
with the phases ϕ = 0, π/2, π, 3π/2 [8, 31]. In the following we therefore distinguish between
families of even (Aeven

L,a ; ϕ = 0, π) and odd (Aodd
L,a ; ϕ = π/2, 3π/2) parity homoclinic solutions.

The analytical solutions in (3.14) and (3.16) can be followed away from γa using numerical
continuation, as shown in Figure 9. The left panel of the figure shows the branch of spatially
periodic states AP,a as well as the branches of both even and odd localized states AL,a. The
branch of uniform phase-locked states A±

u is shown for reference. The right panels show
sample solutions along the two branches of localized states. The small amplitude localized
states are broad near γa (Figure 9(a),(c)); as γ decreases away from γa, the envelope of these
states contracts in x, forming well-localized packets (Figure 9(b),(d)). As γ decreases toward
γ∗, the profiles of both even and odd states broaden. Near γ∗ the even localized states Aeven

L,a

can be thought of as a pair of nearly heteroclinic orbits, the first of which connects A = 0
to A+

u with the second connecting A+
u back to A = 0 (Figure 9(c)). In contrast, Aodd

L,a near

γ∗ consists of three parts: a pair of nearly heteroclinic orbits connecting A = 0 to ±A+
u on

either side of a heteroclinic connection between A+
u and −A+

u (Figure 9(f)). The numerical
results again suggest that at γ∗ there exist heteroclinic cycles connecting A = 0 and ±A+

u . As
in Figure 8, the branches of localized states approach γ∗ monotonically from above, and the
solutions are always unstable. The Aeven

L,a branch is unstable to a single amplitude (even) mode,

while the Aodd
L,a branch is unstable to two modes, an amplitude (odd) mode and a phase (even)
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Figure 9. Bifurcation diagram for ν > να in Region III−, showing branches of odd and even parity localized
states AL,a found by continuation of the solutions (3.16) away from γa, as well as the spatially periodic states
AP,a and the uniform states A±

u . Solid (dotted) lines correspond to stable (unstable) solutions. (a)–(f) Profiles
of AL,a at the locations indicated in the left panel. Panel (c) shows that the broad homoclinic orbits present
near γ∗ ≈ 1.437 on the Aeven

L,a branch can be thought of as pairs of nearly heteroclinic connections between A = 0
and A+

u (solid and dashed lines). Panel (f) shows that the corresponding odd parity states take the form of a
pair of nearly heteroclinic connections between A = 0 and ±A+

u (solid lines), with a nearly heteroclinic orbit
from A+

u to −A+
u (dashed) in between. Parameters: μ = −0.5, α = 1, β = 2, ν = 2, with (a),(d) γ = 1.76,

(b),(e) γ = 1.70, (c),(f) γ = 1.437.

mode. The AP,a states are likewise always unstable; although the nature of this instability
varies throughout Region III−, the unstable modes typically correspond to long wavelength
disturbances.

The heteroclinic cycles identified in the bifurcation diagrams in Figures 8 and 9 occur along
the line γ∗ in Figure 7, corresponding to Region III−; the line emerges from the tangency at νβ
that creates the saddle-node bifurcation and passes continuously from νβ < ν < να (Figure 8)
to ν > να (Figure 9).

3.1.5. Small amplitude states for α < 0. When α < 0 as in Regions IV− and V−, the
critical value να is negative. This change in sign requires a reinterpretation of the equations
derived above. In this case the dispersion relation (3.5) predicts that the Turing bifurcation
of the A = 0 state at γa is present when ν < να instead of ν > να. Figures 10 and 11
show the (ν, γ) plane for Regions IV− and V−, respectively, with γa plotted as a solid line in
ν < να, where it corresponds to a bifurcation point. Because the analysis at γa performed in
Appendix B now applies in ν < να, the expression for ηa in (B.7) reduces to

(3.17) ηa = α− ρα < 0.

Moreover, when ν > να, the spatial eigenvalues at γ0 are real, and the collision of eigenvalues at
γa occurs on the real axis; localized states are therefore expected in γ < γ0 (as in Figure 5(a)).
In contrast, when ν < να, the eigenvalues at γ0 are imaginary and the collision at γa occurs
on the imaginary axis. In this case localized states are expected in γ < γa (as in Figure 5(b)).

The change in sign of ηa also affects the bifurcations from γa present in α < 0. As β > α
everywhere in this quadrant the bifurcation to the spatially periodic states AP,a is supercritical
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u , while in (b) it indicates the SSO region. Parameters: μ = −0.5, α = −2, β = 2.5.

throughout Regions IV− and V−. Moreover, no bifurcations to localized spatial oscillations
of the form (3.16) can take place.

Expression (3.12) remains valid in α < 0: in both Regions IV− and V−, νβ > να and
hence a branch of small amplitude single-peaked localized states bifurcates subcritically at γ0

whenever ν > νβ; such states are therefore present in γ < γ0 (see Figures 10 and 11). Thus
the only small amplitude localized states in Regions IV− and V− are those associated with γ0.

We can follow the branches of analytically known small amplitude states away from γ0 us-
ing numerical continuation. In Regions IV− and V− this branch behaves like the corresponding
branch in Figure 8 and approaches γ∗ monotonically whenever ν is near νβ. However, new be-
havior is found when ν � νβ (Figure 12): the branch of localized states A±

L,0 now approaches
γ∗ in an oscillatory fashion, undergoing an infinite sequence of saddle-node bifurcations as it
winds toward it; cf. [28]. At each saddle-node bifurcation the stability of the localized states
changes: the localized states near γ0 are unstable, but there is a region surrounding γ∗, be-
tween the first and second saddle-node bifurcations, within which there is a finite multiplicity
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of stable localized states (Figure 13). We label this region SSO since it contains states that
correspond in the physical system (2.1) to stable standard oscillons, i.e., stable localized states
that are biasymptotic to A = 0 as x → ±∞.

The location of the SSO states in the (ν, γ) plane in Region V− is shown in Figure 11(b)
and takes the form of a wedge straddling γ∗, increasing in width as ν increases. The emergence
of γ∗ from the tangency at νβ is difficult to make out in Figure 11(b); a closeup for a different
set of parameters elsewhere in Region V− is shown in Figure 14. Near νβ, in the domain
labeled (a) in Figure 14, the branch of localized states A±

L,0 approaches γ∗ monotonically from
γ0. The SSO region appears only when ν exceeds νβ sufficiently, in the domain labeled (b) in
Figure 14. Numerically we find that the SSO region first appears near the crossing of γ∗ and
the curve γd (to be defined in the next section). Moreover, there is good theoretical reason
to believe that the SSO region in fact emerges from this codimension-two point, although
it is initially exponentially thin and hence numerically invisible. There is a similar SSO
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Figure 14. Closeup of the SSO region in the (ν, γ) plane in Region V−. In region (a) γ∗ < γd and the
approach of small amplitude localized states to γ∗ is monotonic; in (b) γ∗ > γd and the approach is via a series
of saddle-node bifurcations, the first two of which define the boundaries of the SSO region (shaded). Parameters:
μ = −1, α = −5, β = 50.

region present in Region IV−, but it is orders of magnitude thinner than the one shown for
Region V−.

3.2. Large amplitude states in z > 0. In the previous subsection we found it convenient
to consider separately the small amplitude behavior in α > 0 and α < 0. In this section we
turn to a study of large amplitude states, discussing separately the cases z > 0 and z < 0,
where

(3.18) z(α, β) ≡ −α(1 − β2) + 2β

(see below). The former spans Regions II−–IV− in the (α, β) plane of Figure 3, while the
latter inequality characterizes Regions I− and V−.

3.2.1. Stability of A = A±
u . The stability of the uniform phase-locked states in time is

determined by linearizing (3.1) about these states and looking for solutions of the form eikx+st.
The resulting dispersion relation is

s2 − 2s
(
μ− k2 − 2|A±

u |2
)

+ (1 + α2)k4 + 2
[
2(1 + αβ)|A±

u |2 − (μ + αν)
]
k2(3.19)

+ 4
[
(μ + βν)|A±

u |2 + γ2 − γ2
0

]
= 0.

Consider first the stability near γ0, where the uniform phase-locked states bifurcate from
A = 0. The amplitude of these states near this point is given by

(3.20) |A±
u (γ)|2 = −γ0(γ − γ0)

β(ν − νβ)
+ . . . .

This expression is valid both in the subcritical case (γ < γ0, ν > νβ), in which A−
u bifurcates

from γ0, and in the supercritical case (γ > γ0, ν < νβ), in which A+
u bifurcates from γ0. For

small wavenumbers the growth rate near this bifurcation is given by

(3.21) s(k, γ) ≈ −α

μ
(ν − να)k2 +

2γ0

μ
(γ − γ0).



668 J. BURKE, A. YOCHELIS, AND E. KNOBLOCH

(a)

 γ
0
 A=0

A
u
+

(b)

 γ
0
 A=0

A
u
−

Figure 15. Temporal stability of A = 0 and the uniform phase-locked states A±
u near γ0 when α > 0,

ν < να, and the bifurcation at γ0 is (a) supercritical or (b) subcritical: Solid (dotted) lines represent stable
(unstable) solutions. The insets show the spatial eigenvalues λ of these states in the complex λ plane.

Thus, when the bifurcation is subcritical, the A−
u state which emerges from γ0 is unstable to

the k = 0 mode, as shown in Figure 15(b). When the bifurcation is supercritical, the A+
u

state that emerges from γ0 inherits the stability of the A = 0 state from γ < γ0: when α > 0,
it is stable when ν < να and unstable when ν > να. An example of the former is shown in
Figure 15(a).

We next analyze the dispersion relation near the saddle-node bifurcation of uniform phase-
locked states at γ = γb, present in ν > νβ. At this point the amplitude |Au(γb)| of these states
is given by

(3.22) |Au(γb)|2 =
β(ν − νβ)

ρ2
β

,

while nearby it is

(3.23) |A±
u |2 = |Au(γb)|2 ±

√
2γb(γ − γb)

ρβ
+ . . . .

The dispersion relation near the saddle-node, valid for small k, reduces to

(3.24) s(k, γ) ≈ −
z(ν − νz)k

2 ± 2ρ3
β|Au(γb)|2

√
2γb(γ − γb)

ρ2
β(2|Au(γb)|2 − μ)

,

where

(3.25) νz ≡ −(1 − β2) + 2αβ

z
μ

and z is as defined in (3.18). The “+” sign in this expression refers to the upper branch A+
u ,

and the “−” sign to the lower branch A−
u . Once again the A−

u branch is always unstable
with respect to the k = 0 mode. Since μ < 0 and z > 0, the A+

u branch is stable near the
saddle-node when ν > νz but is unstable when ν < νz. The resulting stability assignments in
the neighborhood of the saddle-node of uniform phase-locked states are shown in Figure 16.

It follows that the behavior of the system at a given value of ν depends on the location of
νz relative to νβ. In Region II− (Figure 6), νz is greater than νβ; consequently, for νβ < ν < νz
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Figure 16. Temporal stability of the uniform phase-locked states: Solid (dotted) lines represent stable
(unstable) solutions. The insets show the spatial eigenvalues of the uniform states in a neighborhood of γb and
γd. When z > 0, (a) corresponds to ν > νz and (b) to ν < νz, and vice versa for z < 0.

the behavior near the saddle-node is described by Figure 16(b), while for ν > νz it is described
by Figure 16(a). In contrast, in Regions III− (Figure 7) and IV− (Figure 10), νz is less than νβ,
and the behavior shown in Figure 16(a) applies whenever a saddle-node is present (ν > νβ).

Since the A+
u state is necessarily stable at large γ, the presence of instability near γb

implies the presence of a further bifurcation which stabilizes the A+
u state as γ increases. This

bifurcation is a Turing bifurcation and occurs at γ = γd (Figure 16(b)), where

(3.26) γ2
d = γ2

b +

{
z(μ2 + ννz) + sgn[α− β]μραρ

2
βγ0

}2

4μ2ρ2
β(α− β)2

;

the associated wavenumber is given by

(3.27) kd =

√
μ + αν − 2|A+

u (γd)|2(1 + αβ)

ρα
.

These expressions apply when the A+
u state emerges from a supercritical bifurcation at γ0 as

well: an initially unstable state (ν > να) stabilizes as γ increases at γd.
In Region II− (Figure 6), the Turing bifurcation is present in να < ν < νz. The curve

γ = γd is tangent at να to the line γ = γa (and hence also to the curve γ = γ0), corresponding
to the simultaneous creation of both Turing instabilities (of A = 0 and A = A±

u ) at γ0. At
νz the curve γ = γd is tangent to the line γ = γb, corresponding to the annihilation of the
Turing bifurcation as it merges with the saddle-node of uniform phase-locked states. Between
these tangencies γd corresponds to bifurcations and hence forms the lower boundary of the
stable uniform phase-locked states within the resonance tongue. In Figure 6 we indicate this
portion of γd with a solid line (barely visible) to distinguish it from portions where it does
not correspond to bifurcations (shown dotted). In some places in Figure 6 the γ = γd curve
is difficult to distinguish from the other curves present; this is especially true at large values
of ν where γd − γb � 1.

In Region III− (Figure 7), the Turing bifurcation is absent. The curve γ = γd always
lies above γ0, but no tangencies are present. Finally, in Region IV− (Figure 10), the Turing
bifurcation reappears along with the tangency of γ = γd to γ = γa (and γ = γ0) at να. In this
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case the bifurcations are present in ν < να (solid line), and at the tangency the two Turing
bifurcations merge and annihilate. At large ν the curve γ = γd (dotted) approaches γ = γb
and becomes difficult to distinguish.

3.2.2. Spatial eigenvalues of A = A±
u . In this subsection we study the spatial eigen-

values of the uniform phase-locked states to identify the parameter regimes with possible
exponentially localized states biasymptotic to A = A±

u . These eigenvalues are determined by
linearizing (2.2) about A±

u and satisfy

(3.28) (1 + α2)λ4 + 2λ2
[
μ + αν − 2(1 + αβ)|A±

u |2
]
+ 4

[
(μ + βν)|A±

u |2 + γ2 − γ2
0

]
= 0.

As was the case above when considering the stability in time, we first examine the spatial
eigenvalues near γ0 where the uniform phase-locked states bifurcate from A = 0. At γ0 there
are two zero eigenvalues and two order one eigenvalues given by

(3.29) λ = ±Λ0 ≡ ±
√

−2α(ν − να)

ρα
.

When α > 0, these eigenvalues are real if ν < να and imaginary if ν > να, in agreement with
the eigenvalue analysis along the A = 0 branch described in section 3.1.2. Using (3.20) for
the amplitude of the uniform phase-locked states near γ = γ0, the small spatial eigenvalues
along this branch are given approximately by

(3.30) λ2 =
4γ0(γ − γ0)

ρ2
αΛ2

0

and hence are of the same sign as Λ2
0 when γ > γ0 and of the opposite sign when γ < γ0.

Thus a supercritical bifurcation to uniform phase-locked states at γ0 implies that the zero
eigenvalues split “toward” the large eigenvalues ±Λ0 and all four eigenvalues are either real
or imaginary (the eigenvalue structure (i) or (iii) in section 3.1.2). In contrast, when this
bifurcation is subcritical, the zero eigenvalues split in the direction “opposite” to the large
eigenvalues, and so two are real and two are imaginary (the eigenvalue structure (iv) in section
3.1.2). These spatial eigenvalues are shown in the insets in Figure 15 for the case ν < να,
where Λ0 is real; a similar figure holds in the case ν > να, where Λ0 is imaginary.

For the case shown in Figure 15(a), the spatial eigenvalues of the trivial state are such that
no localized states biasymptotic to A = 0 can exist in γ > γ0. But in this same range of γ the
eigenvalues of the uniform phase-locked state A+

u can support localized states, and indeed, as
shown in the next section, localized states in the form of fronts bifurcate supercritically from
γ0 whenever the eigenvalue structure in Figure 15(a) applies.

We next compute the eigenvalues of the uniform phase-locked states near the saddle-node
bifurcation at γ = γb. At the saddle-node, (3.28) has a pair of zero eigenvalues and a pair of
order one eigenvalues given by

(3.31) λ = ±Λb ≡ ±
√

2z(ν − νz)

ραρβ
.
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Since z > 0 these eigenvalues are real when ν > νz (Figure 16(a)) and imaginary when ν < νz
(Figure 16(b)). Using (3.23) for the amplitude along the A±

u branches near the saddle-node,
the zero eigenvalues become

(3.32) λ2 = ±4|Au(γb)|2
Λ2
b

ρβ
ρ2
α

√
2γb(γ − γb).

Here the “+” sign refers to the upper branch A+
u , and the “−” sign to the lower branch A−

u .
As shown in Figure 16, along the A+

u branch the zero eigenvalues split “toward” the large
eigenvalues and hence all four are either real or imaginary, while along the A−

u branch the
zero eigenvalues split in the “opposite” direction, and two eigenvalues are always real and two
are always imaginary. We conclude that when the bifurcation to uniform phase-locked states
is subcritical, the eigenvalues of the A−

u states are always of type (iv). Thus we do not expect
localized states involving A−

u . On the other hand, a branch of localized states involving A+
u

may emerge from the saddle-node at γ = γb when the eigenvalue structure is of the type shown
in Figure 16(a) but not in the case shown in Figure 16(b).

The eigenvalue analysis predicts one final bifurcation that can occur along the A+
u branch

of uniform phase-locked states: the four eigenvalues, which are either all real or all imaginary,
collide pairwise at γ = γd. The spatial eigenvalues at this collision are λ = ±ikd. In the case
in which the bifurcation to uniform phase-locked states at γ0 is subcritical and the A+

u branch
emerges from the saddle-node at γb, the collision occurs on the imaginary axis whenever the
eigenvalues ±Λb lie on the imaginary axis, as in Figure 16(b). If the eigenvalues ±Λb are
real, the collision occurs instead on the real axis, as in Figure 16(a). In contrast, when the
A+

u branch emerges directly from a supercritical bifurcation at γ0, the eigenvalue collision
occurs on the imaginary axis when the eigenvalues ±Λ0 are imaginary, as in Figure 5(b), and
on the real axis when they are real, as in Figure 5(a). When the collision at γd occurs on
the real axis, it corresponds to a global bifurcation, the Belyakov–Devaney point. When the
collision at γd occurs on the imaginary axis, it corresponds to a local bifurcation point; this
is precisely the Turing bifurcation at γd identified in section 3.2.1. In addition to identifying
the appearance of spatially extended Turing patterns, the eigenvalue analysis suggests that
spatially localized states that approach A+

u may also emerge from this bifurcation point into
γ > γd. Thus localized states may emerge either from γb or from γd but not both.

A comparison of the eigenvalue structure in Figures 5(a) and 16(a) shows that bifurcations
that occur at γ0 and γb are similar in nature; at both bifurcation points there are two zero
eigenvalues and two real eigenvalues, and localized states may exist nearby in γ < γ0 or γ > γb,
where the eigenvalue structure is of type (i). A comparison of Figures 5(b) and 16(b) shows
that the bifurcations that can occur at γa and γd are also similar. Both are reversible Hopf
bifurcations with 1:1 resonance [26], and localized states may exist in γ < γa or γ > γd, where
the eigenvalue structure is of type (ii). However, the small amplitude localized states that
bifurcate from γa and γ0 are biasymptotic to A = 0, while the large amplitude states that
bifurcate from γb and γd are biasymptotic to A+

u . As such, the former correspond to standard
oscillons, while the latter represent new states we refer to as reciprocal oscillons [57].

3.2.3. Fronts bifurcating from γ = γ0. In section 3.1.3 we examined the “small am-
plitude” spatially localized states that bifurcate from A = 0 at γ0 whenever the bifurcation
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Figure 17. Bifurcation diagram for ν < να in Region II−, showing the branches of front-like states A±
F,0

found by continuing the solution (3.33) away from γ0, together with the uniform states A+
u . The norm of A±

F,0

has been rescaled to distinguish it from the uniform states. Solid (dotted) lines correspond to stable (unstable)
solutions. (a)–(c) Sample front profiles. Parameters: μ = −0.5, α = 2, β = 1, ν = 0; (a) γ = 0.505,
(b) γ = 0.52, (c) γ = 0.65.

to the uniform phase-locked states is subcritical (ν > νβ). These states are biasymptotic to
A = 0 as x → ±∞. In this section we examine the so-called large amplitude states that
bifurcate from A = 0 at γ0 whenever the bifurcation to the uniform phase-locked states is
supercritical (ν < νβ). Appendix A shows that such states are present in γ > γ0 in Region II−

when ν < να (Figure 6), in Region III− when ν < νβ (Figure 7), and in Region IV− when
να < ν < νβ (Figure 10) and take the form

(3.33) A±
F,0(x) = ±(η0 + i)

√
γ − γ0

−b0
tanh

(√
γ − γ0

−2a0
x

)
,

where a0 < 0, b0 < 0. The “+” branch refers to fronts which asymptote to the uniform
phase-locked state A+

u as x → ∞ and to −A+
u as x → −∞, while the reverse is true for the

“−” branch. Thus both solutions have odd parity under spatial reflection and are fronts.

The analytical solutions (3.33) can be followed away from γ0 using numerical continuation.
Since heteroclinic cycles never form at these values of ν, the fronts extend to arbitrarily large
γ (Figure 17). Near γ0 the fronts are broad (Figure 17(a)) but become more localized as γ
increases (Figure 17(b),(c)). In the following we refer to these fronts as Ising fronts. Such
fronts are typically (although not necessarily) monotonic in x and are linearly stable to all
perturbations, even and odd.

3.2.4. Localized states bifurcating from γ = γb. The weakly nonlinear analysis per-
formed in Appendix C shows that when ν > νz a branch of spatially localized states exists
near the saddle-node bifurcation at γ = γb. These states are biasymptotic to A+

u and are
given by

(3.34) AL,b(x) = A+
u − 3Υ1(ξb + i)

√
γ − γb sech2

{(
Υ1

2ab/bb

)1/2

(γ − γb)
1/4 x

}
;
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Figure 18. Bifurcation diagram for ν > νz in Region II−, showing the branch of localized states AL,b found
by numerical continuation of the solution (3.34) away from γb, as well as the spatially periodic states AP,a and
the uniform states A±

u . The norm of AL,b has been rescaled to distinguish it from the uniform states. Solid
(dotted) lines correspond to stable (unstable) solutions. (a)–(c) Solution profiles at the locations indicated in
the left panel. Parameters: μ = −0.5, α = 2, β = 1, ν = 1.5, with (a) γ = 1.42, (b) γ = 1.45, (c) γ = 2.

the constants in this expression are defined in Appendix C. There is a similar branch of
localized states biasymptotic to −A+

u given by −AL,b(x). In Regions III− and IV− νz < νβ,
and hence the condition ν > νz automatically holds whenever a saddle-node is present. A
branch of localized states of this type therefore emerges from γb when ν > νz in Region II−

(Figure 6) but is present whenever there is a saddle-node in Region III− (Figure 7) and
Region IV− (Figure 10).

The analytical solution (3.34) can be followed away from γb using numerical continuation.
The behavior away from the saddle-node depends critically on whether or not a heteroclinic
cycle forms as γ increases away from γb. In the absence of such a cycle the branch of lo-
calized states simply extends to arbitrarily large γ, a situation that occurs when ν > νz in
Region II−, as shown in Figure 18. The solution profile near γb is broad and forms a shallow
dip in an otherwise uniform A+

u background (Figure 18(a)). Away from the saddle-node the
solution contracts in x, forming a well-defined hole in the A+

u background (Figure 18(c)), but
remains unstable throughout owing to a single unstable amplitude mode of even parity. The
supercritical branch of stable spatially periodic states AP,a is shown for clarity only near γa.

When a heteroclinic cycle is present, the branch of localized states emerging from the
saddle-node can approach γ∗ either monotonically or in an oscillatory fashion involving a
sequence of saddle-node bifurcations. In Region IV− only the former is observed (Figure 19),
while in Region III− both possibilities may occur (Figure 20). The heteroclinic cycle that forms
with increasing γ is identical to that responsible for the termination of the small amplitude
states, as can be seen by comparing, for example, the profiles in Figure 20(c) and Figure
9(c),(f); this is a manifestation of the reciprocity already noted in [12, 27].

When the approach to γ∗ is monotonic, the localized states are always unstable to a single
amplitude (even) mode. On the other hand, when the approach is oscillatory (observed only
in Region III−), the stability changes at successive saddle-node bifurcations, as illustrated in
Figure 21. As a result multiple stable reciprocal oscillons are present in a region straddling
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Figure 19. Bifurcation diagram for ν > νβ in Region IV−, showing the branch of localized states AL,b

found by numerical continuation of the solution (3.34) away from γb, as well as a branch AL found using
the homotopy method and the uniform states A±

u . The norms of the localized states have been rescaled to
distinguish them from the uniform states. Solid (dotted) lines correspond to stable (unstable) solutions. (a)–(c)
Solution profiles along AL,b at the locations indicated in the left panel. (d)–(f) Solution profiles along AL at the
locations indicated in the left panel. Parameters: μ = −0.5, α = −1.5, β = 1.25, ν = 2, with (a) γ = 1.645,
(b) γ = 1.730, (c),(f) γ = 1.752, (d) γ = 2, (e) γ = 1.8.
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Figure 20. Bifurcation diagram for ν � νβ in Region III−, showing the branch of localized states AL,b

found by numerical continuation of the solution (3.34) away from γb, as well as the spatially periodic states
AP,a and the uniform states A±

u . The norm of AL,b has been rescaled to distinguish it from the uniform states.
Solid (dotted) lines correspond to stable (unstable) solutions. A closeup of the behavior near γ∗ ≈ 1.437 is
shown in Figure 21. (a)–(c) Solution profiles at the locations indicated in the left panel. Parameters: μ = −0.5,
α = 1, β = 2, ν = 2, with (a) γ = 1.35, (b) γ = 1.49, (c) γ = 1.437.

γ∗; in Figure 21 we label this region SRO. The extent of the SRO region in the (ν, γ) plane
in Region III− is shown in Figure 7(b). The SRO region takes the form of a wedge straddling
the line γ∗ and increases in width as ν increases. As with the SSO region described in the
previous section, the SRO region is not created at νβ together with the line γ∗ but appears
only when ν sufficiently exceeds νβ. A closeup of this behavior is shown in Figure 22 for a
different set of parameters elsewhere in Region III−. In this figure it is easier to see that the
SRO region first appears only after the line γ∗ crosses the line γ = γa.
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Figure 22. Detail of the crossing of γ∗ and γa in the (ν, γ) plane of Region III−. In the domain labeled (a),
γ∗ > γa and the approach of large amplitude localized states and fronts to γ∗ is monotonic; in (b), γ∗ < γa and
the approach is via a series of saddle-node bifurcations. Left panel: The SRO region (shaded) defined by the
first two saddle-node bifurcations on the branch of localized states. Right panel: The SIF region (lightly shaded)
extends down to the first saddle-node bifurcation on the front branch, while the SSF region (dark) extends from
the second saddle-node to the third. Parameters: μ = −1, α = 2, β = 50.

3.2.5. Localized states bifurcating from γ = γd. A collision of spatial eigenvalues on
the imaginary axis at γd corresponds to a bifurcation point analogous to γa. For this case
weakly nonlinear analysis in the vicinity of γd (Appendix D) reveals that there is a branch of
spatially periodic solutions given by

(3.35) AP,d(x) = A+
u + 2(ξd + i)

√
γ − γd
bd

cos (kdx + ϕ)

and a branch of localized spatial oscillations of the form

(3.36) AL,d(x) = A+
u + 2(ξd + i)

√
γ − γd
bd/2

sech

{√
γ − γd
ad

x

}
cos (kdx + ϕ) ,

both of which bifurcate simultaneously from γd. Two similar branches also bifurcate at γd
from the −A+

u branch. The expressions for ξd, ad, and bd are unwieldy (see Appendix D)
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Figure 23. Bifurcation diagram for ν < να in Region IV−, showing the two branches of localized states
Aϕ=0

L,d and Aϕ=π
L,d , as well as the branch of uniform phase-locked states A+

u . For clarity the branches of spatially
periodic states AP,a and AP,d which bifurcate from γa and γd, respectively, are omitted. The norms of the
localized states have been rescaled to distinguish them from the uniform states. Solid (dotted) lines correspond
to stable (unstable) solutions. (a)–(c) Sample localized profiles along Aϕ=0

L,d . (d)–(f) Sample localized profiles
along Aϕ=π

L,d . Parameters: μ = −0.5, α = −1.5, β = 1.25, ν = −0.7, with (a),(d) γ = 0.895, (b),(e) γ = 1,
(c),(f) γ = 1.2.

but can easily be evaluated for specific parameter choices. We find that ad, bd > 0 for all
values of ν at which the collision at γd occurs on the imaginary axis. Thus, whenever γd is
a bifurcation point, both AP,d and AL,d emerge into γ > γd. This is the case in Region II−

when να < ν < νz and in Region IV− when ν < να; as already noted, γd never corresponds
to a bifurcation in Region III−.

The phase ϕ in (3.35) is arbitrary. Within the asymptotic analysis the phase ϕ in (3.36)
is also arbitrary, but terms beyond all orders select solutions with phases ϕ = 0, π. We refer
to these two solutions as Aϕ=0

L,d and Aϕ=π
L,d , respectively. These states are distinct, unrelated

by symmetry, and even in x. Odd states of the type present in (3.16) are excluded here since
these localized states represent small perturbations of a nontrivial uniform background state.

The two branches of solutions described analytically by (3.36) can be followed away from
the bifurcation point using numerical continuation. Since these solutions never apply when a
heteroclinic cycle is present, the corresponding solution branch extends to arbitrarily large γ,
as shown in Figure 23. The localized states are broad near γd (Figure 23(a),(d)) but contract
in x as γ increases, forming well-localized packets. At large γ the ϕ = 0 solution corresponds
to a single hole in the uniform A+

u background (Figure 23(c)), while the ϕ = π solution
corresponds to two adjacent holes (Figure 23(f)); we think of the latter as a bound state of
two holes. Both branches are unstable throughout: the ϕ = 0 solutions are unstable to a
single amplitude (even) mode, while the ϕ = π solutions are unstable to both an amplitude
(even) mode and a phase (odd) mode.

3.2.6. Additional large amplitude branches. All the branches of states presented thus
far were found by numerically continuing an approximate analytical solution away from a
local bifurcation. Some of these branches terminate in global bifurcations at γ∗. In this
section we show that there are, in addition, branches of large amplitude localized states
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Figure 24. Bifurcation diagram for ν � νβ in Region III−, showing the branches of fronts AF , as well as
the spatially periodic states AP,a and the uniform states A±

u . The norm of AF has been rescaled to distinguish it
from the uniform states. Solid (dotted) lines correspond to stable (unstable) solutions. A closeup of the behavior
near γ∗ ≈ 1.437 is shown in Figure 25. (a)–(c) Sample localized profiles along AF . The wide profile in (c) near
γ∗ can be thought of as a pair of nearly heteroclinic orbits between A = 0 and ±A+

u (solid and dashed lines).
Parameters: μ = −0.5, α = 1, β = 2, ν = 2, with (a) γ = 1.6, (b) γ = 1.394, (c) γ = 1.437.

and fronts for which we have no approximate analytical solution. We locate these branches
using a homotopy method: starting from an analytically known local solution, we follow the
corresponding solution branch to a large value of γ; we then change another parameter such
as α or ν at fixed large γ to move into a regime where no analytical solution exists; finally,
we follow this branch of large amplitude states back toward small γ. In the following we use
this technique to locate new classes of both localized and front-like states, with a particular
interest in locating stable states in the neighborhood of the line γ∗.

We find that the behavior of the large amplitude front-like states present at large γ depends
on the presence or absence of γ∗. When such a point is present, as in Region III− for ν > νβ,
the branch of fronts may approach γ∗ from above either monotonically or through a series
of saddle-node bifurcations. Numerically we observe that the former occurs when γ∗ > γa, a
condition that holds only very close to νβ. The latter occurs when γ∗ < γa and is the case for
all ν � νβ. A bifurcation diagram with this behavior is shown in Figure 24. In this case, the
fronts at large γ are simple monotonic (Ising) transitions from A+

u to −A+
u , but as one passes

between adjacent saddle-nodes the fronts develop extra structure near their midpoint, and we
refer to the resulting profiles as structured fronts. The Ising fronts are stable at large γ, but
stability switches at each saddle-node. Thus stable Ising fronts (SIFs) exist for all γ above
the first saddle-node, and stable structured fronts (SSFs) exist between the second and third
saddle-nodes. These regions are labeled SIF and SSF in the closeup shown in Figure 25.

In the absence of γ∗ our numerics suggest that the branch of Ising fronts always terminates,
as γ decreases, in a saddle-node bifurcation at γ = γk involving a second branch of front-like
states that also comes in from large γ. These new states resemble kinks [24] and are always
unstable with respect to an amplitude (odd) mode. An example of this behavior taken from
Region II− is shown in Figure 26. These kink fronts differ fundamentally from the structured
fronts created near γ∗, despite the fact that both are nonmonotonic transitions between ±A+

u .
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Figure 26. Bifurcation diagram for να < ν < νβ in Region II−, showing the branch of front states AF ,
as well as the spatially periodic states AP,a and the uniform states A±

u . The norm of AF has been rescaled to
distinguish it from the uniform states. Solid (dotted) lines correspond to stable (unstable) solutions. (a)–(c)
Sample localized profiles. Parameters: μ = −0.5, α = 2, β = 1, ν = 0.4, with (a),(c) γ = 0.66, (b) γ = 0.644.

The latter result when an Ising front develops extra structure near the midpoint at A = 0,
while the former are the result of nucleation as the nontrivial states on either side of the front
develop holes which are bound to the front.

In Region II− (Figure 6) there is no γ∗ line in the (ν, γ) plane and the only stable fronts
are monotonic. In ν < να the SIF region extends down to γ0, where the fronts A±

F,0 bifurcate
directly from A = 0. In ν > να the lower boundary of the SIF region consists of the line of
saddle-node bifurcations where the monotonic fronts collide with the kinks. This saddle-node
bifurcation always appears to lie (slightly) above γd, although in ν > νz both this saddle-node
and γd approach γb, and we can no longer determine the precise relation between the boundary
of the SIF region and γd.

Figure 7(c) shows the region of existence of stable fronts in Region III− and the associated
line γ∗. The SIFs extend down to γ0 in ν < νβ. Above νβ the behavior is difficult to make
out in Figure 7(c) but easier to see in Figure 22, corresponding to a value of the parameters
elsewhere in Region III−. In the domain directly above νβ, labeled (a) in this figure, the
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parameters in Region I−. Parameters: μ = −0.5, α = 2, β = 0.5, ν = −0.2, γ = 0.712.

approach to γ∗ is monotonic and the SIF region extends down only as far as γ∗. In the
domain labeled (b) the approach of the branch of fronts to γ∗ is through a series of saddle-
nodes and the SIF region extends beyond γ∗ to the first of these, which lies above γb. In the
latter case Region III− also contains an SSF region. The regime of existence is difficult to
make out in Figure 7(c), but in Figure 22 it is clear that the SSF region occupies a thin wedge
around the line γ∗ in the domain labeled (b). A comparison of Figures 7(b) and 7(c) (or the
closeups in Figure 22) shows the intimate relation between the SRO and SSF regions: both
are associated with nonmonotonic approach of a branch of large amplitude states to γ∗ and
are present at identical values of ν, although the widths of the regions (as determined by the
locations of the saddle-nodes) are different.

Figure 10(b) does the same for Region IV−. In να < ν < νβ the SIF region extends
down to γ0, where the fronts A±

F,0 bifurcate directly from A = 0. Below να the boundary
of this region consists of the line of saddle-nodes γk where the monotonic fronts collide with
the kinks; again this saddle-node always lies above γd. Above νβ the large amplitude fronts
always approach γ∗ monotonically from above, and the line γ∗ forms the boundary of the SIF
region.

The homotopy method can also be applied to the localized states. In Region II−, the
branch of large amplitude localized states AL,d that emerges from γd in να < ν < νz and the
branch of AL,b that emerges from γb when ν > νz each extends to large γ, where the profiles
resemble deep holes in a uniform A+

u background. When the localized states are continued
numerically in ν below να and then followed back to small γ we find that this hole deepens
and broadens as the localized state fills with −A+

u . Eventually the localized state becomes
wide enough that it resembles a pair of bound fronts between ±A+

u . We refer to such solutions
as localized bound fronts (LBFs), ALBF . A profile on the ALBF branch in Region I− is shown
in Figure 27 along with the Ising front at the same value of the parameters; the profiles are
nearly identical over the entire width of the front. The separation between the two fronts
increases as γ approaches γd from above. Although the numerical results are inconclusive, we
conjecture that this branch terminates at γd in a global bifurcation analogous to the Belyakov–
Devaney bifurcation. In this case we have two symmetrically related fixed points so that the
“single-pulse” orbit which persists in both γ < γd and γ > γd is the front connecting ±A+

u .
We interpret the LBFs as the simplest of the infinite multiplicity of multipulse states expected
to exist in γ > γd.
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LBFs are also present in Region III−, though only above the Belyakov–Devaney point γd.
As a result we find no additional localized states in the neighborhood of γ∗ since it always lies
far below γd.

In Region IV− the branch of large amplitude localized states AL,b that emerge from γb
in ν > νβ approaches γ∗ monotonically from below, while the branch AL,d that emerges
from γd in ν < να extends to large γ. The latter can be followed in ν not only into the
domain να < ν < νβ, where no analytical results apply, but also into ν > νβ corresponding
to the previously inaccessible range of parameter space above the line γ∗. When numerically
continued back toward small γ we find two types of behavior. At values of ν such that γd > γ∗,
the resulting solutions resemble the LBFs and are again found numerically only above γd. This
is so for να < ν < νβ as well as at some values of ν slightly above νβ. When ν exceeds νβ
sufficiently that γ∗ > γd, the branch of localized states approaches γ∗ monotonically from
above. It may be of interest to recall that in this same region the small amplitude localized
states A±

L,0 approach this same γ∗ in a series of saddle-node bifurcations (Figure 12). These
new large amplitude localized states, labeled AL in Figure 19, exist in addition to those that
bifurcate from the saddle-node at γb and approach γ∗ from below, and are everywhere unstable
to an amplitude mode. The AL profile at γ∗ consists of a heteroclinic cycle involving three
parts (Figure 19(f)): a front from A+

u to A = 0, a localized state biasymptotic to A = 0, and
another front from A = 0 to A+

u . This limiting profile is distinct from the limiting profile
(Figure 19(c)) along the AL,b branch that also terminates at γ∗, although the segments of
these profiles resembling fronts between A+

u and A = 0 are identical.

3.3. Large amplitude states in z < 0. When z < 0, as in Regions I− and V−, the
expressions presented above remain valid, but we must reinterpret the results. Specifically,
in (3.31) the order one eigenvalues at γb are now real when ν < νz and in this case large
amplitude localized states biasymptotic to A+

u are expected to emerge from the saddle-node
into γ > γb (as in Figure 16(a)). The collision of eigenvalues at γd occurs on the imaginary
axis and corresponds to a bifurcation point when ν > νz (as in Figure 16(b)).

In Region I−, νz, as defined in (3.25), is always less than νβ, and the behavior near
the saddle-node is necessarily of the type shown in Figure 16(b). In this region the Turing
bifurcations of the A = 0 and A+

u states are created in the tangency of γd and γa to γ0

at να, and γd remains a bifurcation point in all ν > να, where it forms the boundary of the
stable region of uniform phase-locked states within the resonance tongue. The large amplitude
localized states and fronts are similar to those found in Region II−, including the LBFs in
ν < να found using the homotopy method. Like Region II−, Region I− contains no heteroclinic
cycles, and no SRO or SSF regions are present.

The behavior in Region V− resembles very closely that of Region IV−. The one notable
exception is that in Region IV− the Turing bifurcation at γd was present only in ν < α,
while in Region V− it is also present in ν > νz where it defines the boundary of the region of
stable uniform phase-locked states. Nevertheless the large amplitude states observed in Re-
gion V− match those described previously for Region IV−, including the necessarily monotonic
approach of both localized states and fronts to γ∗.

3.4. Pinning near γ∗. Thus far we have identified numerically two types of behavior near
γ∗: a branch of states can approach γ∗ either monotonically or through a series of saddle-node
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bifurcations. We have exhibited examples of both types of behavior in our discussion of the
termination of small and large amplitude localized states, and of fronts. In this subsection
we show that the type of behavior observed is determined by the spatial eigenvalues of the
spatially uniform solutions connected by the heteroclinic cycles present at γ∗ [28].

We consider first the case of large amplitude localized states, such as those that emerge
from γb, shown in Figures 19 and 20. Near the saddle-node at γb these states represent small
perturbations of the A+

u state, and these grow in amplitude as γ approaches γ∗. Near this
point the inner region of the localized state approaches A = 0 and we can think of the localized
state as a combination of two fronts, one from A+

u to A = 0 and a second from A = 0 back to
A+

u . If the eigenvalues of the A = 0 state are complex, the approach to A = 0 will be via a
decaying oscillation in x; the departure from A = 0 will likewise be via a growing oscillation in
x. These oscillatory tails can be seen in the profile shown in Figure 20(c). Such oscillations are
responsible for the mutual “pinning” of the fronts that is, in turn, responsible for the series of
saddle-node bifurcations that must occur as the fronts move apart and the heteroclinic cycle
is approached. When the fronts are close to one another the interaction between them is
strong, and the pinning interval is therefore broad; when the fronts are far apart they interact
only weakly and the distance between successive saddle-node bifurcations shrinks. The widest
of these pinning intervals is the SRO region labeled in Figure 21. When the eigenvalues of
the A = 0 state are instead real, the approach to (and departure from) the A = 0 state is
exponential, and no oscillatory tails are present (Figure 19(b)). In this case pinning is absent,
and the branch of localized states approaches γ∗ monotonically.

There are three regions with γ∗ lines: Regions III−, IV−, and V−. In Regions IV− (Fig-
ure 10) and V− (Figure 11), the line γ∗ always lies in ν > νβ and always lies between γa and
γ0, in a region where the eigenvalues of A = 0 are real. In these two regions large amplitude
localized states experience no pinning, and the branches of these states must therefore ap-
proach γ∗ monotonically. In Region III− (Figure 7), the line γ∗ falls above γa when it is first
created at νβ, but as ν increases γ∗ crosses γa somewhere in the range νβ < ν < να and lies
below γa in ν > να. This crossing is shown in detail in Figure 22. In a very small range in ν
below this crossing, labeled (a) in the figure, the eigenvalues of A = 0 are real and there is no
pinning; above this crossing, in the range labeled (b), the eigenvalues are complex, resulting
in pinning and an associated SRO interval. The width of this interval increases from zero as
ν increases beyond the crossing point.

We can also use the same pinning argument to understand the creation of the SSF region
shown in Figure 7(c) and in the right panel of Figure 22. The monotonic fronts that exist at
large γ split as γ approaches γ∗, creating a broad inner region which fills with the A = 0 state
(Figure 24(c)). When the spatial eigenvalues of this state are complex the fronts experience
pinning and the approach of the branch of fronts to γ∗ will be via a series of saddle-node
bifurcations which define the SSF region. Because these same eigenvalues are responsible for
the SRO region of the large amplitude localized states, we expect the SSF and SRO regions
to be present in the same range of values of ν, as confirmed by Figure 22.

A similar argument applies in the case of small amplitude localized states biasymptotic to
A = 0, but in this case it is the A+

u (or −A+
u ) state which fills the inner region near γ∗. As

a result the behavior near γ∗, shown, for example, in Figures 8 and 12, is determined by the
spatial eigenvalues of A+

u . In Region III− the line γ∗ always lies below γd, and the eigenvalues
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of A+
u at γ∗ are therefore real. It follows that in this region the small amplitude localized states

cannot exhibit pinning and hence that the corresponding solution branch must approach γ∗

monotonically, as in Figures 8 and 9. In Regions IV− and V− the γ∗ line falls below γd when
it is first created in the tangency at νβ but crosses γd as ν increases. This crossing is shown
in detail in Figure 14. It follows that when ν is sufficiently larger than νβ, the approach to γ∗

becomes oscillatory, resulting in the SSO region shown in Figure 11(b).

3.5. Another type of pinning. In the preceding subsections we have seen a number of ex-
amples of what might be called classical pinning regions. The fundamental object responsible
for this behavior is a heteroclinic cycle between two distinct states, the A = 0 and A = A+

u

uniform states [28]. The LBFs can likewise be understood in terms of pinning, but in this case
the fundamental fronts are connections between ±A+

u found in the SIF regions. As such the
resulting homoclinic orbits could be called homoclinic cycles because the two states visited by
the trajectory are related by symmetry. If the spatial eigenvalues of the state A+

u are complex,
the two fronts will possess oscillatory tails that will interact and lead to preferred separations.
This notion is consistent with the numerical observation that these LBF states are only found
above γd, where the spatial eigenvalues are complex. Even when γd does not correspond to a
bifurcation point, the spatial eigenvalues below γd are real and no pinning can take place.

There are two important observations that distinguish this case from the previous results.
First, the heteroclinic orbits responsible for the classical pinning regions exist only along the
line γ∗, whereas the orbits responsible for the LBF states exist throughout the entire SIF
region. Thus, while the line γ∗ organizes the regions SSO, SRO, and SSF, it is less clear what
organizes the various LBF states. Second, due to symmetry, the Ising fronts that exist within
the SIF region do not drift. As such the pinning force does not oppose any natural tendency
of the bound fronts to drift but selects only the preferred separations.

It is also worth mentioning the states which result when the unstable kink fronts described
above are evolved in time. The holes on either side of the front deepen into a stable state
which resembles five bound Ising fronts (the original front plus two from the deepening of
each hole). Numerical simulations show that other stable states consisting of three or seven
bound Ising fronts also exist within much of the SIF regions. It is easy to imagine a large
multiplicity of fronts and localized states created in this manner. Thus although the focus of
this paper is on the stable states associated with the pinning of fronts near the γ∗ line, it is
clear that bound fronts play an important role in the full enumeration of stable solutions to
(2.2).

3.6. Multipulse branches near γ = γ∗. We have already seen that the region around γ∗

contains a large multiplicity of states associated with the pinning of fronts as some branches
wind toward γ∗. This region also contains a large multiplicity of branches beyond those
already discussed, referred to as multipulse branches [29]. Figure 9 shows two heteroclinic
cycles emerging monotonically from γ∗ toward small amplitude. The simplest of these is
Aeven

L,a , consisting of two bound heteroclinic connections from A = 0 to A+
u (Figure 9(c)). The

second slightly more complicated cycle, Aodd
L,a , consists of three parts: a heteroclinic connection

from A = 0 to A+
u , followed by a connection from A+

u to −A+
u , and finally a connection from

−A+
u back to A = 0 (Figure 9(f)). The existence of the front between A+

u and −A+
u at γ∗ is a

result of pinning and is responsible for the series of saddle-nodes as the large amplitude Ising
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Figure 28. Bifurcation diagram for ν � νβ in Region III−, showing branches of odd multipulse states Aodd
L,m

together with the branch Aodd
L,a of odd single-pulse states. For clarity the localized states are drawn as solid lines

even though they are everywhere unstable. (a)–(f) Sample localized profiles. Parameters: μ = −0.5, α = 1,
β = 2, ν = 2; (a),(c),(d),(f) γ = 1.437; (b) γ = 1.715; (e) γ = 1.663.

fronts approach γ∗ (Figure 25). In fact, the connection between A+
u and −A+

u in Figure 9(f)
is identical to the front profile shown in Figure 25(a). There are actually (infinitely) many
fronts connecting ±A+

u at γ∗, each of which can be used to assemble a different heteroclinic
cycle at this point. All cycles assembled in this way consist of two pulses and are odd. Figures
28(a),(d) show two examples, assembled using the fronts shown in panels (b) and (c) of
Figure 25, respectively. Figure 28 also shows the result of continuing these cycles numerically
away from γ∗ and toward small amplitude. The cycle Aodd

L,a is the only odd branch that
terminates in a local bifurcation at γa. Both of the other branches of odd states shown in the
figure terminate at saddle-node bifurcations in γ∗ < γ < γa. The other branches that collide
at these saddle-nodes also trace back to γ∗; these are also odd but consist of four pulses—not
two. These four-pulse states can each be decomposed into a heteroclinic cycle made of five
fronts. The profile shown, for example, in Figure 28(c) consists of a front from A = 0 to A+

u ,
followed by three fronts between A+

u and −A+
u , and finally a front from −A+

u back to A = 0.
Of the three intermediate fronts, two correspond to the profile shown in Figure 25(a) and the
third to the profile shown in Figure 25(b). We refer to these odd parity localized multipulse
states in general as Aodd

L,m.

Pinning also causes the branch of large amplitude localized states AL,b shown in Figure 20
to approach γ∗ in a series of saddle-node bifurcations, resulting in an infinite series of orbits
homoclinic to A+

u at γ∗. These profiles are shown in Figure 21. These homoclinic orbits can
be used to assemble additional heteroclinic cycles at γ∗ which have even parity, corresponding
to even multipulse localized states Aeven

L,m . The profiles of two such cycles are shown in Figures
29(a),(d) and are assembled using the localized states shown in Figures 21(a),(b), respectively.
Figure 29 shows the result of numerically continuing these even heteroclinic cycles away from
γ∗; the branch Aeven

L,a is shown for reference. As before, we find that the branches of two-pulse
states terminate in γ∗ < γ < γa in saddle-node bifurcations involving other branches which,
when followed back to γ∗, correspond to even heteroclinic cycles that are yet more complex.
For example, the profile shown in Figure 29(c) consists of five parts: a homoclinic orbit to
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Figure 29. Bifurcation diagram for ν � νβ in Region III−, showing branches of even multipulse states
Aeven

L,m together with the branch Aeven
L,a of even single-pulse states. For clarity the localized states are drawn as
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A+
u sandwiched between two heteroclinic fronts connecting ±A+

u and two more heteroclinic
connections from A−

u to A = 0.
The description of multipulse states is more complicated when ν < να and the bifurcation

from A = 0 to localized states occurs at γ0 instead of γa, and depends on the location of
γ∗ relative to γa. When γ∗ < γa, the multipulse states in the neighborhood of γ∗ can be
assembled as described above, but when these states are numerically continued into γ > γ∗,
they do not collide pairwise in saddle-node bifurcations. Instead the multipulse branches all
terminate at the Belyakov–Devaney point γa, which lies between γ∗ and γ0. As the branches
approach γa, the distance between the individual pulses that make up each profile is large
and they interact only weakly. When instead γ∗ > γa, the large amplitude localized states
and fronts approach γ∗ monotonically. In this case no small amplitude multipulse states are
present.

The results in Figures 28 and 29 give a glimpse of the large number of complex multipulse
localized states biasymptotic to A = 0 that are present near γ∗ when the large amplitude
states experience pinning. Likewise, at parameter values for which the small amplitude local-
ized states experience pinning (γd < γ∗) it is possible to assemble these pieces into complex
heteroclinic cycles that asymptote to ±A+

u . These can be followed away from γ∗ to large
amplitude. An example is shown in Figure 19. Evidently the AL profile shown in Figure 19(f)
can now be interpreted as a heteroclinic cycle to A+

u involving three parts: two fronts on
either side of a localized state. Although many complex heteroclinic cycles can be assembled
in this manner, we find numerically that it is difficult to continue all but the simplest ones
away from γ∗. Should any multipulse branches of this type exist in γ < γ∗, we expect that
they terminate pairwise above γd when this is a Turing bifurcation and at γd when it is a
Belyakov–Devaney point.

4. Self-excited oscillatory regime. In this section we describe solutions to (3.1) in the
self-excited oscillatory case, μ > 0. In this case we refer to the five regions of the (α, β) plane
shown in Figure 3 as Regions I+–V+. As in the damped case, the bifurcation to uniform



CLASSIFICATION OF SPATIALLY LOCALIZED OSCILLATIONS 685

(a)

ν

γ  

(b)

ν

γ  

−1 0 1
0

1

νβ  να ν
z

ν
H

γ
0

γ
b

γ
d

γ
a

γ
H

γ*

−1 0 1
0

1

νβ ν
H

γ
0

γ
b

γ
d

γ
NIB

γ
H

γ*

Figure 30. The (ν, γ) plane in Region I+. In (a) shading indicates the presence of stable uniform states
A+

u . In (b) the curve γ = γNIB marks the location of the nonequilibrium Ising–Bloch bifurcation which forms
the left boundary of the SIF region (shaded). Parameters: μ = 0.5, α = 2, β = 0.5. For these parameters,
νz = 2.75 and falls outside the range shown.

phase-locked states at γ0 is supercritical when ν < νβ and subcritical when ν > νβ. But in
the self-excited case νβ < 0, and the boundary of the resonance tongue in the (ν, γ) plane
differs qualitatively from that in the damped case, extending down to γb = 0 at ν = βμ
(Figure 2(b)). Each region is described below. For each region we describe the stability of the
uniform solutions in both t and x. We next consider the effect of the sign change in μ on the
analytical predictions of localized states and fronts, and then present numerical results which
show the extent in the (ν, γ) plane of stable states of either type.

4.1. Region I+. The resonance tongue in this region is shown in Figure 30(a). When
μ > 0 the A = 0 state is always unstable to a range of wavenumbers owing to the presence of
a k = 0 Hopf bifurcation; the A−

u state is also everywhere unstable. However, we expect that
when |μ| is small the effect of changing the sign of μ should be confined to small amplitude
states. Indeed, we find that the A+

u state remains stable at sufficiently large γ, although it
may lose stability with decreasing γ. This loss of stability defines a (new) boundary of the
resonance tongue and may arise in one of two ways. When ν < νH ,

(4.1) νH ≡ −(1 − β2)

2β
μ,

the uniform phase-locked states A+
u lose stability at a k = 0 Hopf bifurcation that occurs at

γ = γH , where

(4.2) γ2
H = γ2

b + ρ2
b

[μ
2
− |A+

u (γb)|2
]2

.

The curve γ = γH is shown in Figure 30(a) and forms the lower stability boundary for the
uniform phase-locked states when ν < νH . At ν = νH this curve is tangent to γb, and the Hopf
bifurcation turns into a Takens–Bogdanov bifurcation. Note that νH > νβ for all values of β,
independent of α. It follows that the above description of the Hopf bifurcation in Region I+
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also applies in Regions II+–V+. The dispersion relation (3.19) shows that the Hopf bifurcation
occurs when

(4.3) μ− 2|A+
u (γH)|2 = 0

and hence only in μ > 0.
The second possibility is that, as γ decreases, the A+

u state loses stability with respect to
a Turing bifurcation at γ = γd. Equation (3.26) for the location of this bifurcation remains
valid in μ > 0 and applies provided the critical wavenumber kd in (3.27) is real. In Region I+

the Turing bifurcation is present in ν > νz, at which point the curve γ = γd is tangent to the
line γ = γb. Between νH and νz the uniform phase-locked states remain stable down to the
boundary of the resonance tongue at the saddle-node at γb. Thus the A+

u phase-locked state
is stable in a subregion of the resonance tongue defined by γ > γH when ν < νH , γ > γb when
νH < ν < νz, and γ > γd when ν > νz.

The analysis of the spatial eigenvalues in the damped case also applies to the self-excited
case. Since α > 0 in Region I+, the spatial eigenvalue structure shown in Figure 5(a) applies to
the A = 0 state when ν < να, and that shown in Figure 5(b) applies when ν > να. The spatial
eigenvalues of the uniform phase-locked states in ν < νβ, where A+

u bifurcates supercritically
from γ0, are shown in Figure 15(a). Since z < 0 in Region I+, the spatial eigenvalues in the
neighborhood of the saddle-node are as shown in Figure 16(b) whenever νβ < ν < νz and, as
shown in Figure 16(a), whenever ν > νz. Of course, the stability assignments in these figures
do not necessarily carry over to the case μ > 0.

Figure 30 also shows the location of the line γ = γ∗ at which heteroclinic connections
between A = 0 and A = A+

u are present. The location of this line in the (ν, γ) plane differs
qualitatively from the μ < 0 case. As before, the line emerges from the tangency at νβ, but
because of the location of νβ and the orientation of the resonance tongue, it extends toward
smaller γ as ν increases and then terminates in a codimension-two point at which γ∗ = γb,
slightly above ν = βμ, where γb = 0. However, the line always lies below γd, and hence the
spatial eigenvalues of the uniform phase-locked state A+

u at γ = γ∗ are real (of type (i)). As
a result we do not expect localized solutions biasymptotic to A = 0 to exhibit pinning as
the branch approaches γ∗ and the profile fills with the A+

u state. The spatial eigenvalues of
the A = 0 state at γ∗ are also of type (i) near the tangency at νβ, but γ∗ crosses γ = γa
somewhere in νβ < ν < να, implying that in part of the domain in ν the spatial eigenvalues
of the trivial state at γ∗ are of type (ii). Thus the pinning which was responsible for the SRO
and SSF regions in μ < 0 may create similar structures in μ > 0 as well.

Several of the analytical solutions described in section 3 also apply in Region I+. We begin
with the states bifurcating from the A = 0 state even though we expect these to inherit the
instability of this state. The solution (3.14) describing the spatially periodic extended states
AP,a bifurcating from γa is valid in Region I+ when ν > να, but the sign of ηa and hence the
nature of the bifurcation depends on the value of ν relative to αμ. This critical value corre-
sponds to the point at which γa(ν) = 0 and is easily located graphically in Figure 30. Below
this value, the general expression for ηa in (B.7) reduces to ηa = α+ ρα > 0, and the bifurca-
tion to spatially periodic states is subcritical. Above ν = αμ we have instead ηa = α−ρα < 0,
and the bifurcation is supercritical. In the former case there is in addition a subcritical bifur-
cation from γa to spatially localized states AL,a as described by (3.16); in the latter no such
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localized states are present. When ν lies below να but above νβ, (3.12) describes the branch
of small amplitude spatially localized states A±

L,0 which emerge subcritically from γ0.

The branches of localized states, AL,0 and AL,a, can be followed away from their respective
bifurcation points using numerical continuation. For values of ν for which heteroclinic cycles
are present, AL,0 and AL,a always approach γ∗ monotonically in a manner very similar to
that shown in Figures 8 and 9. This is consistent with the expectation based on the spatial
eigenvalues of the A+

u state. However, the stability of these localized states in Region I+ is
different from that in the μ < 0 case. As before, there is an unstable amplitude mode with a
localized eigenfunction, but now there is in addition an infinite spectrum of unstable modes
with extended eigenfunctions, corresponding to instabilities inherited from the background
A = 0 state. There is also a range in ν, above the termination of the γ∗ line but below
ν = αμ, in which the AL,a branch emerges subcritically from γa but no heteroclinic cycle is
present. In this case the branch of localized states interacts instead with a secondary branch
of spatially periodic states that bifurcate from the subcritical AP,a states. The details of
this interaction and the (unstable) stationary states that result are beyond the scope of this
paper but resemble related behavior already studied in the context of the Swift–Hohenberg
equation [8].

An examination of the large amplitude localized states reveals several new examples of
interesting behavior. Large amplitude Ising fronts are found in Region I+ using the homotopy
method described above. The starting point for this method is the branch of fronts AF,0 in
(3.33) which bifurcate supercritically from γ0 when ν < νβ and extend to arbitrarily large γ.
At other values of ν, the behavior of the branch of fronts as γ decreases depends on whether
or not a heteroclinic cycle forms. When it does, the branch of fronts approaches γ∗ either
monotonically (near νβ, where γ∗ > γa and the spatial eigenvalues of A = 0 are real) or in a
series of saddle-nodes (when γ∗ < γa and these eigenvalues are complex). An example of the
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Figure 32. Space-time plot showing the evolution of four Bloch fronts, shown in terms of ImA. The
frames on the right show the profiles of ReA (thick lines) and ImA (thin lines) at two particular times. The
asymmetry of each Bloch front, which determines the drift direction, is most apparent in the latter. Parameters
are as in Figure 31, with γ = 0.4. The solution was generated on the periodic domain x ∈ [−240, 240] using a
spectral method with 1024 modes.

latter is shown in Figure 31(a). The front profiles that make up this branch look similar to
those shown in Figure 24. At large γ these correspond to monotonic Ising fronts between A+

u

and −A+
u but near γ∗ the profiles become structured and eventually approach a heteroclinic

cycle involving the state A = 0 as the branch approaches γ∗ in a series of saddle-nodes. But in
Region I+, all the fronts that exist near γ∗ are unstable due to a nonequilibrium Ising–Bloch
(NIB) bifurcation [11] at γNIB > γ∗, where the Ising fronts lose stability with respect to an
(even) phase mode. Below γNIB stability is transferred to a pair of counterpropagating Bloch
fronts, distinguished from the stationary Ising fronts by their lack of odd parity. As shown
in Figure 31(b) the speed c of the resulting Bloch fronts increases as the square root of the
distance from γNIB [11].

The motion of the Bloch fronts is shown in Figure 32. When two such fronts traveling
in opposite directions collide, they annihilate; fronts traveling in the same direction move at
identical speeds and therefore never collide. We surmise that the pinning mechanism discussed
in section 3.5 for Ising fronts also applies to Bloch fronts, although a detailed description of
this mechanism will be given elsewhere. We have, however, found examples of Bloch fronts
whose drift velocity is identically zero (i.e., pinned Bloch fronts) and in the neighborhood of
such states identified stationary localized states similar to the LBF states described above
(Figure 27) but resembling bound Bloch fronts.

At sufficiently large values of ν where no heteroclinic cycle forms, the branch of Ising fronts
annihilates instead with a branch of kinks in a saddle-node bifurcation, as shown previously
in Figure 26. The region of existence of SIFs in Region I+ is shown in Figure 30(b). Above
ν ≈ 0.5 the Ising fronts are stable all the way down to the saddle-node, where they join
with the kinks. Below this value of ν the fronts always lose stability with respect to an NIB
bifurcation prior to the saddle-node bifurcation. The line γ = γNIB is shown in Figure 30(b)
and forms the boundary of the SIF region. The figure shows that the NIB bifurcation prevents
the formation of a wedge of stable structured front (SSF) states around γ∗.

A similar story applies with regard to the large amplitude localized states in Region I+.
When νβ < ν < νz and the eigenvalue structure near the saddle-node is of the type shown in
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Figure 16(a), (3.34) describes the branch of localized states biasymptotic to A+
u which bifurcate

from the saddle-node at γb. Above νz the spatial eigenvalues of the uniform phase-locked states
are as shown in Figure 16(b), and in this case γd is a bifurcation point producing the states
described by (3.35) and (3.36). We find numerically that in this region the coefficients ad and
bd are again strictly positive and hence that the bifurcation at γd is always subcritical, with
the spatially periodic and localized states emerging into γ > γd. In either case the global
behavior of the AL,b and AL,d branches depends on whether a heteroclinic cycle forms. When
no such cycle forms, these branches extend to arbitrarily large γ and are always unstable. In
contrast, when it does form, the branch of localized states approaches the associated γ∗ either
monotonically or in a series of saddle-nodes as in the example shown in Figure 20. But unlike
the earlier examples, in Region I+ the branch of localized states does not change stability
at each saddle-node: as expected the broad localized states resembling heteroclinic cycles
between A = A+

u and A = 0 inherit the instability of the A = 0 state, but even the narrow
profiles, such as the analogue of the profile shown in Figure 21(b), are unstable. In time these
unstable localized states evolve into deeper localized states that split into two (Bloch) fronts
and drift away from each other. Thus, despite the multiplicity of localized states present in
this region, no wedge of stable reciprocal oscillons (SROs) around γ∗ results.

4.2. Region II+. The behavior in Region II+ mimics that of Region I+, including the
presence and general orientation of the line γ∗. The one notable difference is that the Turing
bifurcation of the uniform phase-locked states A+

u at γd is absent in this region. Thus the large
amplitude localized states always bifurcate from the saddle-node at γb. But the important
conclusions regarding the presence of the NIB bifurcation, the extent of the SIF region, and
the lack of SSF and SRO regions still apply.

4.3. Region III+. The resonance tongue in Region III+ is shown in Figure 33(a). The
existence and stability of the uniform phase-locked states are similar to those in Region I+.
At large γ these are stable. Above νH the stable region extends all the way to the boundary of
the resonance tongue at γb, while below νH the stable region extends only down to γH , where
the uniform state loses stability with respect to a Hopf bifurcation. In Region III+ the Turing
bifurcation at γd, present when ν lies between να and νz, falls below the Hopf bifurcation and
is therefore never part of the boundary of the stable uniform states.

The γ∗ line in Region III+ is drastically different when compared to Regions I+ and II+. In
this case it is created in a codimension-two point at which γ∗ = γb and extends to arbitrarily
large γ as ν increases. Because γ∗ always lies below γa, the spatial eigenvalues of A = 0 at γ∗

are complex. As a result branches of large amplitude localized states approach γ∗ in a series of
saddle-nodes. Unlike Regions I+ and II+, in Region III+ some of the resulting localized states
are stable despite the instability of the A = 0 state [47]. The shaded region in Figure 33(b)
shows the location of this truncated SRO region. At large values of ν the branch of large
amplitude localized states AL,b that emerges from the saddle-node at γb resembles that in
Figure 20, including stability assignments: the branch is initially unstable with respect to a
single (even) amplitude mode, and gains and loses stability repeatedly at successive saddle-
node bifurcations as the branch winds toward γ∗. However, when the localized state becomes
sufficiently wide, it loses stability in a Hopf bifurcation to an oscillatory mode with a spatially
localized eigenfunction. Provided this instability occurs below the second saddle-node, the
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Figure 33. The (ν, γ) plane in Region III+. In (a) shading indicates the presence of stable uniform states
A+

u . In (b) shading indicates the SRO region, while in (c) it indicates the SIF region. The three unlabeled
lines in (c) mark the first three saddle-nodes as the fronts approach γ∗. An SSF region exists near the γ∗ line,
between the second and third saddle-node, at larger values of ν. Parameters: μ = 0.5, α = 1, β = 2.

SRO region spans the entire range between the first and second saddle-nodes. At large ν
the Hopf bifurcation does in fact occur far “down” the AL,b branch, but as ν decreases this
instability occurs farther “up” the branch. Figure 34 shows a bifurcation diagram at a value
of ν sufficiently small that the Hopf bifurcation lies between the first two saddle-nodes. In this
case the truncated SRO region extends only from the first saddle-node down to the localized
Hopf bifurcation, labeled γH,L. Figure 33(b) shows that the line of localized Hopf bifurcations
γ = γH,L forms the boundary of the SRO region in the (ν, γ) plane. At sufficiently small
ν the SRO region is completely absent because the Hopf bifurcation occurs before the first
saddle-node. For reference, the location of the first two saddle-nodes is still indicated in the
figure even when they do not correspond to the boundary of the SRO region.

The behavior of the fronts in Region III+ is shown in Figure 33(c). In ν < να the fronts
AF,0 emerge supercritically from γ0 and extend to arbitrarily large γ. Using the homotopy
method, we find that at large positive values of ν, where heteroclinic cycles are present, the
complex eigenvalues of the A = 0 state result in front pinning and hence in the creation of
structured fronts. At intermediate values of ν the branch of fronts terminates, as γ decreases,
slightly above γb; here the branch becomes difficult to track numerically, and the nature of
this bifurcation remains unclear. The fronts are stable at large γ and either lose stability in
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Figure 34. (a) Bifurcation diagram in Region III+ showing the branch of localized states AL,b as well as
the uniform states A±

u . The branch of localized states undergoes a localized Hopf bifurcation at γH,L ≈ 0.51.
The norm of the branch of localized states has been rescaled to distinguish it from the uniform states. Solid
(dotted) lines correspond to stable (unstable) solutions. (b) Space-time plot showing a (stable) spatially localized
temporal oscillation in γ < γH,L, shown in terms of ImA. The oscillation period is T ≈ 14. The frames on the
right show the profile at two particular times separated by half a period. Parameters: μ = 0.5, α = 1, β = 2,
ν = 1.6. In (b), γ = 0.4 and the solution was generated on the periodic domain x ∈ [−70, 70] using a spectral
method with 512 modes; only half this domain is shown.
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Figure 35. Space-time plot showing a (stable) oscillating front, shown in terms of ImA. The oscillation
period is T ≈ 16.7; the frames on the right show the profile at two particular times separated by half a period.
Parameters are identical to those in Figure 34(b).

an NIB bifurcation as γ decreases or, when ν is sufficiently large, remain stable down to the
first saddle-node associated with the pinning region. As with the large amplitude localized
states, the SSF region is truncated at small values of ν by a Hopf bifurcation. This bifurcation
moves farther down the branch as ν increases and, at large values of ν (larger than the domain
shown in Figure 33(c)), an SSF region does appear.

Although in this paper we are primarily interested in time-independent solutions of (2.2),
it is noteworthy that some of the unstable localized states near γ∗ are found to evolve in time
into structures that remain spatially localized but are time-periodic. These oscillations are
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Figure 36. The (ν, γ) plane in Region IV+. In (a) shading indicates the presence of stable uniform states
A+

u , while in (b) it indicates the SIF region. The bifurcation along γd is supercritical between locations indicated
by �. In (b) the line γk corresponds to saddle-node bifurcations of the kink-like states. Parameters: μ = 0.5,
α = −1.5, β = 1.25.

confined to the inhomogeneous part of the profile, while the uniform part remains stationary
(Figure 34(b)). Such states belong to the branch of localized periodic solutions (not shown)
that emerges from the localized Hopf bifurcation at γH,L. In addition, the Hopf instability
of the fronts in the neighborhood of γ∗ leads to localized oscillating fronts (Figure 35). In
either case the frequency of the oscillations is not in general rationally related to the driv-
ing frequency, and hence states of this type correspond to multifrequency oscillations of the
observable w in the original system.

4.4. Region IV+. The resonance tongue in Region IV+, shown in Figure 36(a), resembles
that in Region III+, as does the location of the line γ = γ∗ in ν > βμ. However, since α < 0
in Region IV+ (and in Region V+), the critical value να is now positive, and the analytical
result (3.14) describing the bifurcation at γa to spatially periodic states is valid in ν < να.
In this range, the line γ = γa is shown as a solid line to indicate that it corresponds to
bifurcation points. For ν < αμ, ηa reduces to α−

√
1 + α2 < 0 and the bifurcation to spatially

periodic states at γa is supercritical, while for ν > αμ, ηa reduces to α+
√

1 + α2 > 0 and the
bifurcation is subcritical. In the former case no localized states are present near γa, while in
the latter case there is in addition a subcritical bifurcation to spatially localized states AL,a as
described by (3.16). Likewise, in ν > να there is a subcritical bifurcation to spatially localized
states AL,0, as described by (3.12), which emerge from γ0.

The uniform phase-locked states A+
u exist in γ > γ0, ν < νβ and in γ > γb, ν > νβ. The

locations of the Hopf (γH , present in ν < νH) and Turing (γd, present in ν < νz) bifurcations
of the uniform phase-locked states, as defined in (4.2) and (3.26), respectively, are also shown
in the figure. An inspection reveals that γd always lies above γH . As a result the boundary of
the stable uniform phase-locked states in ν < νz is γd, and the Hopf bifurcation does not play
an important role. Above νz the uniform states remain stable all the way to the saddle-node
at γb.

Likewise, the spatial eigenvalues of the uniform phase-locked states are of the type shown
in Figure 16(b) whenever ν < νz, in the range where γd is a bifurcation point. The spatially
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periodic states AP,d described by (3.35) bifurcate subcritically (into γ > γd) over most of
the domain. There is, however, a range of ν values for which this bifurcation is supercritical
(γ < γd), as indicated in Figure 36(a). In the former case the coefficients ad, bd defined in
Appendix D are both positive, and there is in addition a branch of spatially localized states
AL,d, given by (3.36), that emerges subcritically from γd. In the latter case ad > 0 while
bd < 0, and no localized states bifurcate from γd. When ν > νz, the spatial eigenvalues in the
neighborhood of γd and γb are described instead by Figure 16(a). In this case the localized
states AL,b given by (3.34) emerge from the saddle-node.

The γ∗ line for this region is also shown in the figure and emerges from a codimension-two
point defined by γ∗ = γd that lies slightly below ν = βμ (at which γb = 0). In contrast,
in Region III+ the analogous codimension-two point occurs at γ∗ = γb. It is clear from the
figure that the codimension-two point lies between the two �’s where no localized states are
known analytically, although a supercritical bifurcation to spatially periodic solutions AP,d

is present. Because the γ∗ line lies above γd in a region with complex spatial eigenvalues of
the A+

u state, we expect branches of small amplitude localized states near γ∗ to experience
pinning. While this is confirmed numerically, these SSO-like states inherit the instability of
the A = 0 background and are always unstable. Over the domain shown in the figure (up to
about ν = 2) the γ∗ line lies below γa, in a region with complex spatial eigenvalues of the
A = 0 state. Thus branches of large amplitude fronts and localized states near γ∗ are expected
to exhibit pinning. At larger values of ν the γ∗ line crosses above γa, the spatial eigenvalues
become real, and pinning cannot occur.

We consider first the behavior of the large amplitude localized states, found numerically
by continuing one of the analytically known solutions. The localized states AL,d that emerge
from γd below the leftmost � in the figure extend to arbitrarily large γ since, at these values
of ν, no heteroclinic cycles form. The localized states AL,d that emerge from γd above the
rightmost � in the figure, and the localized states AL,b that emerge from γb when ν > νz,
always approach a heteroclinic cycle and do so as expected either in a series of saddle-node
bifurcations or monotonically. These solutions are unstable near their creation at γd or γb to
a single amplitude mode; as γ increases, an additional localized Hopf mode destabilizes the
solutions below the γ∗ line, thereby eliminating a potential SRO region.

As for the fronts, these exist at large γ and can be found using the homotopy method
described above. Several types of behavior are observed as γ decreases. Below ν ≈ 0.2 the
Ising fronts terminate in a saddle-node bifurcation involving kink fronts. Above ν ≈ 0.5 a
heteroclinic cycle is present and the Ising fronts approach γ∗ as expected either in a series
of saddle-node bifurcations or monotonically. Between these two limits the behavior remains
unclear. The Ising fronts are stable at large γ. At large negative values of ν these fronts
remain stable down to the saddle-node bifurcation, where this branch merges with (unstable)
kinks. At less negative values the Ising fronts appear to lose stability above this saddle-node
to an NIB bifurcation. At large positive values of ν the Ising fronts also always lose stability
with decreasing γ, this time to a localized Hopf mode. The Hopf instability occurs above the
first saddle-node when the approach to γ∗ is through a series of saddle-nodes and above γ∗

when the approach is monotonic. As a result the boundary of the SIF region near γ∗ consists
of the line of localized Hopf bifurcations, and the structured fronts that may be present near
γ∗ are all unstable.
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Figure 37. The (ν, γ) plane in Region V+. Parameters: μ = 0.5, α = −2, β = 2.5.

In summary, Region IV+ exhibits pinning of both small and large amplitude states near
the γ∗ line, leading to a multiplicity of spatially localized but unstable states in its vicinity,
in regions resembling the SSO, SRO, and SSF regions already identified for μ < 0.

4.5. Region V+. The resonance tongue in Region V+ is shown in Figure 37 and resembles
Region IV+. The main difference relates to γd. First, the tangency at νz is now absent, and
hence γd is always a bifurcation point. It follows that the localized states AL,b emerging
from the saddle-node at γb are never present in this region. Instead the branches of localized
states AL,d emerge subcritically from γd, but only outside of the region marked by the two
�’s in the figure. Between these two points the bifurcation to spatially periodic states AP,d

is supercritical, and no localized states are predicted by local analysis. The second major
difference compared to Region IV+ is that now the line γH of Hopf bifurcations of the uniform
phase-locked states intersects the line γd (twice). Hence, there is a range in ν where the
boundary of the stable uniform solutions is made up of γH instead of γd. The codimension-
two points at which γd = γH have not been studied, but an analogous interaction between a
Turing bifurcation and a Hopf bifurcation of the A = 0 state has been considered [58, 59] and
is known to create interesting dynamics.

The behavior of the fronts and localized states observed by continuing these states numer-
ically also resembles that described for Region IV+. Both large and small amplitude states
approach the γ∗ line in a series of saddle-nodes creating SSO-like, SRO-like, and SSF-like
regions, but the resulting states are always unstable because the respective branch undergoes
a localized Hopf or an NIB bifurcation before reaching γ∗.

5. Discussion and conclusions. The present study was largely motivated by the discov-
ery in several distinct systems of subharmonic spatially localized temporal oscillations called
oscillons [4, 40, 44, 52]. The experiments indicate that oscillons of this type are present inside
the 2:1 resonance tongue, and it is natural in these circumstances to examine the vicinity of
the boundary of this region, where homogeneous phase-locked oscillations coexist with the
trivial state. This coexistence region is produced in response to the forcing and is found
even in systems exhibiting supercritical dynamics in the absence of forcing. In the absence
of primitive equations describing chemical or granular media, we have chosen to examine the
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possible existence of spatially localized structures within the framework of the forced complex
Ginzburg–Landau (FCGL) equation. This equation can be viewed as the normal form for
periodically forced oscillations near the 2:1 resonance in extended dissipative systems. As
such the FCGL equation describes the large-scale dynamics of all extended systems driven
sufficiently close to the onset of a primary oscillatory instability by a sufficiently weak peri-
odic force sufficiently close to the 2:1 temporal resonance. Within this equation the oscillon
problem reduces to the study of time-independent spatially localized solutions for the am-
plitude of these oscillations; i.e., the background oscillation at half the forcing frequency is
factored out. If this is restored and the corresponding states are recovered from (2.1), we see
that the localized structures we have called standard oscillons do indeed resemble the type
of localized temporal oscillation observed in the experiments, while the reciprocal oscillons
resemble holes in a background that also oscillates with half the forcing frequency. Likewise,
the Ising fronts [11] become phase kinks, connecting two nontrivial states oscillating exactly
out of phase.

5.1. Summary of the results. Our study employs the technique of spatial dynamics. We
have seen that this approach coupled with numerical branch following provides a powerful
technique for analyzing problems of this type. The spatial dynamics approach allows us to
view spatially periodic states as periodic orbits in space and identifies spatially localized states
with homoclinic (oscillons) or heteroclinic (fronts) orbits. More importantly, this approach
leads one to focus on the spatial eigenvalues of the spatially homogeneous states, and these
in turn allow one to identify the parameter regimes where localized structures are likely and
to interpret the large multiplicity of coexisting states as a consequence of a mechanism we
refer to as pinning. The same mechanism is, in addition, responsible for stabilizing some
of these states against time-dependent perturbations. As shown in the appendices, we have
used bifurcations in the spatial eigenvalues to construct analytically both spatially periodic
and spatially localized states, which can in turn be used to initialize numerical continuation.
These techniques led us to identify parameter regimes in which the various localized structures
are all organized around a special point in parameter space corresponding to the formation
of a heteroclinic cycle in space. We have called this point γ∗. Among the results from our
analysis are the following:

1. Identification of two distinct types of “small amplitude” oscillons, referred to collec-
tively as standard oscillons. Both are biasymptotic to the rest state A = 0 as x → ±∞.
The first of these bifurcates from A = 0 at the phase-locking threshold γ0 and resem-
bles a single bump; near the heteroclinic cycle at γ∗ these may be stable (SSO region
in Regions IV− and V−). The second consists of localized spatial oscillations of even
or odd parity that emerge from the Turing bifurcation at γa and are never stable.

2. Identification of two distinct types of “large amplitude oscillons,” biasymptotic to
A+

u or −A+
u as x → ±∞, referred to collectively as reciprocal oscillons. The first of

these emerges from the boundary of the fundamental 2:1 resonance tongue at γb and
resembles a hole in a uniform background; near γ∗ these may be stable (SRO region in
Regions III− and III+). The second type is an even parity localized spatial oscillation
on a uniform background that emerges from the Turing bifurcation at γd and is never
stable.

3. Identification of two classes of large amplitude front-like states called Ising fronts and
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Table 1
Summary of the behavior in the various regions of the (α, β) plane. Each region is defined uniquely by

columns 2–5. In column 6 “yes” (“no”) indicates the presence (absence) of a γ∗ line. In column 7 “yes”
indicates that an SSO region forms around a part of the γ∗ line, “no” indicates that an SSO region is absent
(either because there is no pinning at γ∗, or because additional instabilities eliminate stable standard oscillons),
while “.” indicates the absence of an SSO region due to the absence of the γ∗ line. The same notation is used
in column 8 to indicate the existence of SRO and SSF regions around γ∗. The final column emphasizes that
an SIF region is always present, regardless of the presence of γ∗.

SSO SRO/SSF SIF
Region sgn(μ) sgn(α) sgn(α− β) sgn(z) γ∗ line region regions region

I− − + + − no . . yes
II− (Fig. 6) − + + + no . . yes
III− (Fig. 7) − + − + yes no yes yes
IV− (Fig. 10) − − − + yes yes no yes
V− (Fig. 11) − − − − yes yes no yes

I+ (Fig. 30) + + + − yes no no yes
II+ + + + + yes no no yes
III+ (Fig. 33) + + − + yes no yes yes
IV+ (Fig. 36) + − − + yes no no yes
V+ (Fig. 37) + − − − yes no no yes

structured fronts, respectively; the latter possess internal structure in the front region
(cf. [61]). These states are stable in regions called SIF (present in all five regions of
the (α, β) plane) and SSF (present only in Regions III− and III+), respectively. The
SRO and SSF regions overlap, while the SSO region is present for distinct parameter
values.

4. Identification of a heteroclinic cycle at γ∗ between the trivial and the phase-locked
states A+

u in the subcritical region of the fundamental 2:1 resonance tongue, and
elucidation of its role as an organizing center not only for the standard oscillons,
but also for reciprocal oscillons and structured fronts. In addition, a variety of more
complex states referred to as multipulse states also emanates from the vicinity of γ∗.

5. Detailed discussion of the differences between the damped (μ < 0) and self-excited
(μ > 0) cases, and in particular between the stability properties of the localized
structures in these two cases; identification of stable large amplitude fronts even in the
absence of a heteroclinic cycle, including pinned and moving Bloch fronts.

The existence and stability results for localized states are summarized in the broadest terms in
Table 1. Regions I–V are defined in terms of analytically accessible properties of the spatially
uniform phase-locked states only. As a result, the existence and stability regions of some of
the other states may extend across the region boundaries.

5.2. Connection to experiments. The standard oscillons observed, for example, in ver-
tically vibrated granular media [52] resemble the single bump standard oscillons identified in
the FCGL equation (2.2). In the first explanation of this phenomenon, a second field was re-
quired to stabilize states of this type [51]. The present work shows that this type of standard
oscillon can be stable in damped driven systems even in the absence of a second field (SSO
region in Regions IV− and V−).

In contrast, experiments on the optically forced BZ reaction [40, 44] have revealed the
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presence of spot-like structures embedded in a background state that oscillates 180◦ out of
phase with the spot. These states resemble the states we have called reciprocal oscillons
and, in particular, the states AL,b and AL shown in Figures 18(c) and 19(d),(e), respectively.
However, our results indicate that these states are unstable unless the parameters are chosen
to lie in Region III+, close to γ∗, with ν � νβ (Figure 33(b)). Thus it may be more likely
that the observed spots may in fact correspond to the bound fronts ALBF shown in Figure 27,
should states of this type prove to be stable.

Existing experiments on the BZ system [40] also reveal that the diameter of the observed
reciprocal oscillons is comparable to the width of the Ising fronts connecting out-of-phase
spatially homogeneous oscillations. The experiments reveal, moreover, that the reciprocal
oscillons exist in a narrow parameter range near the onset of labyrinthine patterns, which in
turn form as finite amplitude patterns near the boundary of the 2:1 resonance tongue [4, 60].
These results are in qualitative agreement with simulations of a modified version of (2.2)
that includes interfacial tension [4]. In a companion paper [57] we present results of numerical
integration of (2.2) in time in two spatial dimensions. These results suggest that the reciprocal
oscillons and front-like structures described here in one spatial dimension possess analogues in
two spatial dimensions and show that stable spot-like states and stable front-like phase kinks
may indeed have similar widths and that both are found within the pinning region identified
in one spatial dimension. We use these results to conjecture that the observed labyrinthine
patterns are in fact the result of a transverse instability [4, 21, 22, 58] of the front-like states
associated with the reciprocal oscillons in the pinning region. This aspect of the problem will
be pursued in a future publication.

5.3. Future directions. From a broader theoretical perspective, the properties of the
FCGL equation summarized above resemble those discussed at greater length for the Swift–
Hohenberg equation (see [7] and references therein). This equation is also a bistable reversible
fourth order system in space. However, there are important differences between the two
sets of equations, the most significant being the fact that the Swift–Hohenberg equation is
variational. Although the FCGL equation can be reduced to the Swift–Hohenberg equation
in specific parameter regimes [4], in other regimes the stability properties of the two systems
will in general differ. In particular, as we have seen in this paper, the FCGL equation can
exhibit persistent time dependence, unlike the Swift–Hohenberg equation.

Although the Swift–Hohenberg equation is known to exhibit bistability between uniform
states of the type studied in this paper, recent work on this equation has focused on the
consequences of bistability between the trivial state and a spatially periodic state. As a result,
the fronts that bound a spatially localized state at either side can lock to the underlying spatial
structure, and the heteroclinic bifurcation opens out into a pinning region. This pinning
region is defined by pairs of branches of localized states that snake back and forth across
the Maxwell point, giving rise to a characteristic “snakes-and-ladders” structure [7, 8]. In
contrast, when the bistability is between two spatially homogeneous states, pinning arises
only from the oscillating tails. In this case the bounding fronts interact ever more weakly
as the distance between them increases, and the pinning region necessarily collapses to the
Maxwell point. Thus no true snaking occurs. Our study of the FCGL equation indicates
that the variational structure, while helpful in the physical interpretation of the pinning
region [8], is not a prerequisite for its presence in more general forced dissipative systems.
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Indeed, our results indicate that similar behavior will be present in other systems exhibiting
bistability between two spatially uniform states, provided that the system is reversible under
spatial reflection and of fourth or higher order in space. The reversibility property renders
the homoclinic connections corresponding to the standard and reciprocal oscillons structurally
stable (codimension-zero) while making the creation of the heteroclinic cycle between A = 0
and A = A+

u of codimension one and hence is responsible for making the behavior associated
with the pinning or snaking region of codimension one. In contrast, in nonreversible systems
such as those describing traveling pulses in the comoving frame [62], homoclinic connections
to homogeneous equilibria such as A = 0 and A = A+

u are of codimension one, while the
formation of a pair of heteroclinic connections is of codimension two. Despite this difference,
the behavior near each global connection, once formed, resembles that described here for the
FCGL equation [62].

The detailed survey of spatially localized oscillations presented in this paper provides
the necessary theoretical background for future experimental and theoretical explorations
of spatially extended parametrically driven dissipative systems and their association with
structured fronts, Bloch fronts, and labyrinthine patterns.

Appendix A. Weakly nonlinear analysis near γ = γ0. At γ = γ0 the A = 0 state has two
zero spatial eigenvalues and two nonzero spatial eigenvalues. In the following we assume that
μ < 0 and note that when α > 0 and ν > να the two nonzero eigenvalues are imaginary. In
this case we do not expect localized states nearby (Figure 5(b)). On the other hand, if α > 0,
ν < να, the two nonzero eigenvalues are real and for γ < γ0 the zero eigenvalues split along
the real axis (Figure 5(a)). Thus localized states may exist in γ < γ0. To find these states
we write γ = γ0 + ε2δ, where ε � 1 and δ is an order one quantity. Writing A ≡ U + iV , the
appropriate expansion of the fields U and V is

(A.1)

[
U
V

]
= ε

[
u1

v1

]
+ ε3

[
u3

v3

]
· · · ,

where all quantities depend on x via the slow spatial variable X ≡ εx only. With these scalings
the linear operator in (3.1) becomes L = L0 + ε2L2, where

(A.2) L0 =

[
μ + γ0 −ν

ν μ− γ0

]
, L2 =

[
δ 0
0 −δ

]
+

[
1 −α
α 1

]
∂XX ,

while the nonlinear operator becomes N (U, V ) = ε2N (u1, v1) + . . . .

At order ε stationary solutions to (3.1) satisfy

(A.3) L0

[
u1

v1

]
=

[
0
0

]
,

implying that

(A.4)

[
u1

v1

]
=

[
η0

1

]
B (X) ,
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where η0 ≡ (γ0 − μ)/ν and B(X) is a real-valued function of X. At order ε3 we obtain

(A.5) L0

[
u3

v3

]
= −{L2 + N (u1, v1)}

[
u1

v1

]
.

Since L0 is singular, (A.5) requires a solvability condition. The required condition is obtained
by taking the scalar product of the equation with the adjoint null eigenvector of L0, viz.,

(A.6) Ξ0 =
[
−η0 1

]
.

The result can be written in the form

(A.7) a0BXX = δB + b0B
3,

where a0 = α(ν − να)/γ0, b0 = 2β(ν − νβ)(γ0 − μ)/ν2. This equation admits spatially
homogeneous solutions B =

√
−δ/b0 or, equivalently,

(A.8)

[
U
V

]
=

[
η0

1

]√
γ0 − γ

b0
+ . . . ,

where the omitted terms are of higher order in |γ0−γ|. This solution bifurcates supercritically
when b0 < 0 (i.e., ν < νβ) and corresponds then to the A+

u states discussed in section 2.
When b0 > 0 (i.e., ν > νβ) the bifurcation is subcritical and the homogeneous solutions then
correspond to the A−

u states.

Equation (A.7) also admits several different space-dependent solutions. Based on the
eigenvalue analysis, we expect localized states only when ν < να, corresponding to a0 < 0.
When, in addition, b0 < 0 (i.e., ν < νβ), there is a supercritical bifurcation to front-like states
of the form

(A.9)

[
U
V

]
=

[
η0

1

]√
γ − γ0

−b0
tanh

(√
γ − γ0

−2a0
x

)
+ . . . .

In contrast, when b0 > 0 (i.e., ν > νβ), there is a subcritical bifurcation to localized states of
the form

(A.10)

[
U
V

]
=

[
η0

1

]√
γ0 − γ

b0/2
sech

(√
γ0 − γ

−a0
x

)
+ . . . .

Solutions of the latter type exist only if α < β, i.e., in Region III (since α > 0, by assumption).
Evidently at fixed values of the parameters α, β, μ, ν at most one of these solution branches
can be present.

Equation (A.7) has localized solutions analogous to (A.9) and (A.10) even when a0 > 0
(ν > να) where localized states are not expected. This expectation is confirmed by the
numerics: the approximate solutions constructed by the above method when a0 > 0 cannot
be extended away from γ = γ0 and do not represent valid solutions of the original FCGL
equation (2.2).
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A similar discussion applies when α < 0 but is omitted.

Appendix B. Weakly nonlinear analysis near γ = γa. At γ = γa the four spatial
eigenvalues of the A = 0 state collide at λ = ±ika, each of double multiplicity, where

(B.1) ka ≡
√

α(ν − να)

ρα
.

As in the previous appendix we assume that μ < 0, α > 0. In this case, ka is real when ν > να
and the eigenvalue collision occurs on the imaginary axis: below γa the eigenvalues form a
complex quartet and above γa they are imaginary (Figure 5(b)). In the theory of reversible
systems this situation is referred to as the reversible Hopf bifurcation [26], although here it
takes place in space instead of time. The theory predicts the presence of localized states in
γ < γa, consisting of oscillations with wavenumber ka modulated on a large scale owing to
the small real part of λ. In contrast, when ν < να, the wavenumber ka is imaginary and the
eigenvalue collision occurs on the real axis; thus no bifurcation occurs (Figure 5(a)).

To find the localized states expected when ν > να, we set γ = γa + ε2δ, where ε � 1 and
δ is an order one quantity, and allow all quantities to depend on both the short scale x and
the long scale X = εx. The appropriate expansion of the fields is

(B.2)

[
U
V

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ ε3

[
u3

v3

]
· · · .

With this scaling the linear operator in (3.1) becomes L = L0 + εL1 + ε2L2, where

L0 =

[
μ + γa −ν

ν μ− γa

]
+

[
1 −α
α 1

]
∂xx,(B.3)

L1 = 2

[
1 −α
α 1

]
∂x∂X , L2 =

[
δ 0
0 −δ

]
+

[
1 −α
α 1

]
∂XX ,(B.4)

while the nonlinear operator becomes N (U, V ) = ε2N (u1, v1) + . . . .
At order ε stationary solutions to (3.1) satisfy

(B.5) L0

[
u1

v1

]
=

[
0
0

]
,

and hence

(B.6)

[
u1

v1

]
=

[
ηa
1

]
B (X) eikax + c.c.,

where B(X) is a complex-valued function of X and

(B.7) ηa ≡ α + sgn(ν − αμ)ρα.

Since α > 0 and ν > να, the argument of sgn(.) is always positive, and

(B.8) ηa = α + ρα > 0.
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Expression (B.1) for ka is also obtained at this order.

The order ε2 terms in (3.1) are

(B.9) L0

[
u2

v2

]
= −L1

[
u1

v1

]
or

(B.10) L0

[
u2

v2

]
= −2iραka

[
1
ηa

]
BXeikax + c.c.

The solvability condition for this equation is obtained by taking the scalar product with the
adjoint null eigenvector,

(B.11) Ξa =
[
−ηa 1

]
e−ikax + c.c.,

and integrating over the real line. Since this condition is automatically satisfied, we solve
(B.10) and obtain

(B.12)

[
u2

v2

]
=

[
ηa
1

]
C(X)eikax + 2ika

ρ2
α

γa

[
0
1

]
BXeikax + c.c.,

where C(X) is an arbitrary complex-valued function that may be set to zero.

Proceeding to order ε3, we obtain

(B.13) L0

[
u3

v3

]
= −{L2 + N (u1, v1)}

[
u1

v1

]
− L1

[
u2

v2

]
.

The solvability condition for this equation takes the form

(B.14) aaBXX = −δB − baB|B|2,

where aa = 2ρ2
αk

2
a/γa, ba = 6ηa(β − α). The spatially periodic solution B =

√
−δ/ba e

iϕ, or,
equivalently,

(B.15)

[
U
V

]
= 2

[
ηa
1

]√
γa − γ

ba
cos (kax + ϕ) ,

is always present when ν > να and bifurcates subcritically when ba > 0 (i.e., β > α) or
supercritically when ba < 0 (i.e., β < α). The phase ϕ is arbitrary and is a result of spatial
translation invariance of (2.2).

In addition to the periodic states, there are two other types of solutions that are possible,
depending on the sign of the coefficient ba. When ba < 0 (i.e., β < α), there is a supercritical
bifurcation to front-like states of the form

(B.16)

[
U
V

]
= 2

[
ηa
1

]√
γ − γa
−ba

tanh

(√
γ − γa
2aa

x

)
cos (kax + ϕ) .
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These fronts connect two out-of-phase periodic states of the type described by (B.15). How-
ever, despite their intrinsic interest, solutions of this type cannot be computed by our tech-
niques, and their role in the dynamics of (2.2) remains unclear. Solutions of this type are
therefore omitted from all bifurcation diagrams.

In contrast, when ba > 0 (i.e., β > α), there is a subcritical bifurcation to localized states
of the form

(B.17)

[
U
V

]
= 2

[
ηa
1

]√
γa − γ

ba/2
sech

(√
γa − γ

aa
x

)
cos (kax + ϕ) ,

and no front-like states are present. The spatial phase ϕ remains arbitrary at the level of
(B.14), but this is no longer the case when terms beyond all orders are included. These terms
select the phases ϕ = 0, π/2, π, 3π/2; these correspond to odd (φ = π/2, 3π/2) and even
(φ = 0, π) solutions of (B.17); cf. [8].

Appendix C. Weakly nonlinear analysis near γ = γb. In this appendix we assume that
μ < 0, z > 0. In this case a saddle-node bifurcation involving the uniform phase-locked states
A+

u and A−
u occurs at γ = γb whenever ν > νβ. At this point the uniform state has two

zero spatial eigenvalues and two nonzero spatial eigenvalues, and the nonzero eigenvalues are
real provided ν > νz (Figure 16(a)). Along the A+

u branch the zero eigenvalues split along
the real axis, and localized states may exist in the form of orbits homoclinic to A+

u . To find
these states we write γ = γb + ε2δ, where ε � 1 and δ > 0 is an order one quantity. With
A = U + iV the localized states of interest can be written in the form

(C.1)

[
U
V

]
=

[
U
V

]+

+

[
u
v

]
,

where the first term is the uniform phase-locked state A+
u and the second corresponds to the

space-dependent terms that decay to zero as x → ±∞.

Based on the scaling defined above the uniform phase-locked states A+
u can be approxi-

mated by the series

(C.2)

[
U
V

]+

=

[
U0

V0

]
+ ε

[
U1

V1

]
+ ε2

[
U2

V2

]
+ . . . ,

where [
U0

V0

]
=

[
ηb
1

]
Υ0,

[
U1

V1

]
=

√
δ

[
ξb
1

]
Υ1,(C.3)

ηb = β + sgn(ν − βμ)ρβ, ξb =
ηbν + (1 − βηb)|Au(γb)|2
ν − (β + ηb)|Au(γb)|2

,(C.4)

Υ0 =
|Au(γb)|√

1 + η2
b

, Υ1 = sgn[ξbηb + 1]

√
ηb

(ξbηb + 1)(ξb − ηb)
.(C.5)
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Since μ < 0 and ν > νβ, the argument of sgn(.) in (C.4) is always positive, and ηb reduces to

(C.6) ηb = β + ρβ.

The sign of the coefficient Υ1 in (C.5) is chosen to ensure that the expansion in (C.2) corre-
sponds to the A+

u state; the opposite sign yields the A−
u state.

The second term in (C.1) can be expanded as

(C.7)

[
u
v

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ . . . ,

where all quantities depend on x via the slow spatial scale X ≡ ε1/2x. The linear operator in
(3.1) takes the form L = L0 + εL1 + ε2L2, where

(C.8) L0 =

[
μ + γb −ν

ν μ− γb

]
, L1 =

[
1 −α
α 1

]
∂XX , L2 =

[
δ 0
0 −δ

]
,

while the nonlinear terms take the form N = N0 + εN1 + ε2N2 + . . . , where

N0 = −
[
U0 V0

] [U0

V0

] [
1 −β
β 1

]
, N1 = −2

[
U0 V0

] [U1 + u1

V1 + v1

] [
1 −β
β 1

]
,(C.9)

N2 = −
{[

U1 + u1 V1 + v1

] [U1 + u1

V1 + v1

]
+ 2

[
U0 V0

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
.(C.10)

At order ε0 stationary solutions to (3.1) satisfy

(C.11) {L0 + N0}
[
U0

V0

]
=

[
0
0

]
,

an equality that holds by virtue of the definition of U0 and V0. At order ε we obtain

(C.12) {L0 + N0}
[
U1 + u1

V1 + v1

]
= −{L1 + N1}

[
U0

V0

]
.

The X-independent terms in this equation cancel by virtue of the definition of U1 and V1,
leaving

(C.13)

{
L0 + N0 − 2

[
1 −β
β 1

] [
U2

0 U0V0

U0V0 V 2
0

]}[
u1

v1

]
=

[
0
0

]
.

Thus

(C.14)

[
u1

v1

]
=

[
ξb
1

]
B(X),

where B(X) is an unknown real-valued function of X.
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Proceeding to order ε2, we obtain

(C.15) {L0 + N0}
[
U2 + u2

V2 + v2

]
= −{L1 + N1}

[
U1 + u1

V1 + v1

]
− {L2 + N2}

[
U0

V0

]
.

Again the X-independent terms cancel. The solvability condition for this equation is obtained
by taking the scalar product with

(C.16) Ξb =
[
−ηb 1

]
to eliminate the u2, v2 terms, leaving

(C.17) abBXX = bb
(
2V1B + B2

)
,

where

(C.18) ab = 1 + αξb + αηb − ηbξb, bb = −Υ0(1 + η2
b )

Υ2
1

.

The latter quantity is always negative. Equation (C.17) admits spatially homogeneous solu-
tions B = −2V1, or

(C.19)

[
U
V

]
=

[
U0

V0

]
− ε

[
U1

V1

]
+ . . . ,

corresponding to the other branch of uniform phase-locked states, A−
u . In addition, (C.17)

admits a branch of X-dependent localized states

(C.20) B(X) = −3Υ1

√
δ sech2

⎧⎨
⎩
(

Υ1

√
δ

2ab/bb

)1/2

X

⎫⎬
⎭

corresponding to

(C.21)

[
U
V

]
=

[
U
V

]+

− 3Υ1
√
γ − γb

[
ξb
1

]
sech2

{
(γ − γb)

1/4

(
Υ1

2ab/bb

)1/2

x

}
.

The two spatial eigenvalues of the B = 0 state in (C.17) correspond to those described
previously in (3.32), providing a relation between the eigenvalue analysis and asymptotic
analysis:

(C.22)
Υ1bb
2ab

=
|Au(γb)|2

Λ2
b

ρβ
ρ2
α

√
2γb.

It follows that the solution (C.21) exists whenever the order one spatial eigenvalues at the
saddle-node bifurcation are real, which is consistent with the assumptions made at the begin-
ning of this appendix. In addition, (C.22) yields a useful relation between the sign of Λ2

b and
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the signs of Υ1 and ab.

Appendix D. Weakly nonlinear analysis near γ = γd. In this appendix we assume that
μ < 0 and z > 0. In this case, when the bifurcation at γ0 is supercritical, the four spatial
eigenvalues of the A+

u branch are either all real or all imaginary between γ0 and γd, and
likewise between γb and γd when the bifurcation at γ0 is subcritical. At γd these eigenvalues
collide pairwise on either the real or the imaginary axis and form a complex quartet for γ > γd.
When this collision occurs on the imaginary axis, γd corresponds to a bifurcation from which
localized states may emerge in the form of orbits homoclinic to A+

u in γ > γd. To find these
states we write γ = γd + ε2δ, where ε � 1 and δ is an order one quantity. With A = U + iV
the localized states of interest can be written

(D.1)

[
U
V

]
=

[
U
V

]+

+

[
u
v

]
,

where the first term corresponds to the uniform phase-locked states and the second to the
x-dependent terms, which decay to zero as x → ±∞.

Based on the scaling defined above, the uniform phase-locked states A+
u can be approxi-

mated by the series

(D.2)

[
U
V

]+

=

[
U0

V0

]
+ ε2

[
U2

V2

]
+ . . . ,

while the x-dependent terms can be expanded as

(D.3)

[
u
v

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ ε3

[
u3

v3

]
+ . . . .

All quantities in (D.3) depend on both the short spatial scale x and the long spatial scale
X ≡ εx. The linear operator in (3.1) takes the form L = L0 + εL1 + ε2L2, where

L0 =

[
μ + γd −ν

ν μ− γd

]
+

[
1 −α
α 1

]
∂xx,(D.4)

L1 = 2

[
1 −α
α 1

]
∂Xx, L2 =

[
δ 0
0 −δ

]
+

[
1 −α
α 1

]
∂XX ,(D.5)

while the nonlinear terms take the form N = N0 + εN1 + ε2N2 + ε3N3 + . . . , where

N0 = −(U2
0 + V 2

0 )

[
1 −β
β 1

]
,(D.6)

N1 = −2(u1U0 + v1V0)

[
1 −β
β 1

]
,(D.7)

N2 = −
{[

u1 v1

] [u1

v1

]
+ 2

[
U0 V0

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
,(D.8)

N3 = −2

{[
U0 V0

] [u3

v3

]
+
[
u1 v1

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
.(D.9)
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At order ε0 stationary solutions to (3.1) satisfy

(D.10) {L0 + N0}
[
U0

V0

]
=

[
0
0

]
,

implying that

(D.11)

[
U0

V0

]
=

[
ηd
1

]
Υ0,

where

(D.12) ηd =
ν − β|A+

u (γd)|2

μ + γd − |A+
u (γd)|2

, Υ0 =
|A+

u (γd)|√
1 + η2

d

.

At order ε we obtain

(D.13) {L0 + N0}
[
u1

v1

]
= −N1

[
U0

V0

]
or

(D.14) M
[
u1

v1

]
=

[
0
0

]
,

where

(D.15) M ≡ L0 + N0 − 2

[
1 −β
β 1

] [
U2

0 U0V0

U0V0 V 2
0

]
.

The critical wavenumber kd given in (3.27) is determined by the solvability condition for this
equation. With this condition satisfied, the solution is

(D.16)

[
u1

v1

]
=

[
ξd
1

]{
Beikdx + B̄e−ikdx

}
,

where

(D.17) ξd =
ν − αk2

d − β|A+
u (γd)|2 + 2(U0V0 − βV 2

0 )

μ + γd − k2
d − |A+

u (γd)|2 − 2(U2
0 − βU0V0)

and B(X) is a complex-valued function of X.
Proceeding to order ε2, we obtain

(D.18) {L0 + N0}
[
U2 + u2

V2 + v2

]
= −{L1 + N1}

[
u1

v1

]
− {L2 + N2}

[
U0

V0

]
.

The X-independent terms can be written in the form

(D.19) M
[
U2

V2

]
= −

[
δ 0
0 −δ

] [
U0

V0

]
.
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It follows that the solution for U2, V2 takes the form

(D.20)

[
U2

V2

]
= δ

[
τd
1

]
Υ2,

where the constants τd and Υ2 are determined by solving (D.19):

(D.21)

[
τd
1

]
Υ2 = −M−1

[
1 0
0 −1

] [
U0

V0

]
.

Here M−1 refers to the inverse of M after setting the ∂xx terms in this operator to zero. We
do not give the explicit form for these constants, but they can be easily evaluated numerically
for any set of parameter values.

The remaining X-dependent terms in (D.18) are
(D.22)

M
[
u2

v2

]
= −2

[
1 −α
α 1

]
∂xX

[
u1

v1

]
+

{
2

[
1 −β
β 1

] [
u2

1 u1v1

u1v1 v2
1

]
+ (u2

1 + v2
1)

[
1 −β
β 1

]}[
U0

V0

]
.

With the Ansatz
(D.23)[

u2

v2

]
= s0

[
χ0

1

]
|B1|2 + s1

[
χ1

1

]{
iBXeikdx − iB̄Xe−ikdx

}
+ s2

[
χ2

1

]{
B2

1e
2ikdx + B̄2

1e
−2ikdx

}
the coefficients si and χi are determined by solving (D.22) at each order in enikdx (n = 0, 1, 2).
For the n = 0 terms, the x-derivatives in the M operator vanish. If we call the resulting
operator M0, the n = 0 part of the solution is given by

(D.24) s0

[
χ0

1

]
= 2M−1

0

{
2

[
1 −β
β 1

] [
ξ2
d ξd
ξd 1

]
+ (ξ2

d + 1)

[
1 −β
β 1

]}[
U0

V0

]
.

Similarly, for the n = 2 terms we define M2 by replacing ∂xx in M by −4k2
d. Then

(D.25) s2

[
χ2

1

]
= M−1

2

{
2

[
1 −β
β 1

] [
ξ2
d ξd
ξd 1

]
+ (ξ2

d + 1)

[
1 −β
β 1

]}[
U0

V0

]
.

Since the operator M1, defined by replacing ∂xx in M by −k2
d, is singular, the two components

of the n = 1 equation,

(D.26) s1M1

[
χ1

1

]
+ 2kd

[
1 −α
α 1

] [
ξd
1

]
= 0,

are linearly related, leading to the relation

(D.27) s1 = −2kd

[
1 0

] [1 −α
α 1

] [
ξd
1

]
[
1 0

]
M1

[
χ1

1

] ,
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where χ1 is arbitrary (subject to χ1 
= ξd). Without loss of generality, we choose χ1 = 0.
Finally, at order ε3 we obtain

(D.28) {L0 + N0}
[
u3

v3

]
= −{L1 + N1}

[
U2 + u2

V2 + v2

]
− {L2 + N2}

[
u1

v1

]
−N3

[
U0

V0

]
.

The solvability condition at this order is obtained by multiplying this equation by the adjoint
null eigenvector of M1 and integrating over x. This vector is given by

(D.29)
[
Ξd 1

]
e−ikdx,

where

(D.30) Ξd = − ν − αk2
d − β|A+

u (γd)|2 − 2(βU2
0 + U0V0)

μ + γd − k2
d − |A+

u (γd)|2 − 2(U2
0 − βU0V0)

.

The resulting equation can be written

(D.31) adBXX = δB − bdB|B|2,

where

(D.32) ad = −f1/f2, bd = −f3/f2,

and

f1 =
[
Ξd 1

] [1 −α
α 1

] [
ξd
1

]
− 2kds1

[
Ξd 1

] [1 −α
α 1

] [
0
1

]
,(D.33)

f2 = Υ0Υ2

[
Ξd 1

]{
−2

[
1 −β
β 1

] [
τdηd τd
ηd 1

]
− 2

[
1 −β
β 1

] [
ηdτd ηd
τd 1

]

− 2(ηdτd + 1)

[
1 −β
β 1

]}[
ξd
1

]
+
[
Ξd 1

] [1 0
0 −1

] [
ξd
1

]
,

(D.34)

f3 = −2Υ0

[
Ξd 1

]{[1 −β
β 1

]{
s0

[
χ0

1

]
+ s2

[
χ2

1

]} [
ξd 1

]
+

[
1 −β
β 1

] [
ξd
1

]{
s0

[
χ0 1

]
+ s2

[
χ2 1

]}
+
{
s0(1 + ξdχ0) + s2(1 + ξdχ2)

} [1 −β
β 1

]}[
ηd
1

]

− 3(1 + ξ2
d)
[
Ξd 1

] [1 −β
β −1

] [
ξd
1

]
.

(D.35)

The solutions to (D.31) depend on the signs of the coefficients ad and bd. Regardless of
the sign of ad, there is always a solution of the form B =

√
δ/bde

iϕ, corresponding to spatially
periodic states:

(D.36)

[
U
V

]
=

[
U
V

]+

+ 2

[
ξd
1

]√
γ − γd
bd

cos (kdx + ϕ) .
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When bd > 0 these periodic states bifurcate subcritically, toward γ > γd; when bd < 0 the
bifurcation is supercritical, toward γ < γd. Equation (D.31) also has localized solutions of the
form

(D.37)

[
U
V

]
=

[
U
V

]+

+ 2

[
ξd
1

]√
γ − γd
bd/2

sech

{√
γ − γd
ad

x

}
cos (kdx + ϕ) .

When both ad and bd are positive, these solutions bifurcate subcritically, toward γ > γd; when
these coefficients are both negative, (D.31) suggests that the corresponding solutions bifurcate
supercritically, toward γ < γd. However, based on the spatial eigenvalue analysis, we expect
localized solutions only for γ > γd, and indeed no localized solutions to (2.2) in γ < γd have
been found. Thus the localized solutions of (D.31) correspond to solutions of (2.2) only when
ad and bd are both positive.

Acknowledgments. A. Yochelis thanks Vered Rom-Kedar and the Department of Applied
Mathematics and Computer Science, Weizmann Institute of Science, where some of this work
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Tangency Bifurcations of Global Poincaré Maps∗

Clare M. Lee†, Pieter J. Collins‡, Bernd Krauskopf†, and Hinke M. Osinga†

Abstract. One tool to analyze the qualitative behavior of a periodic orbit of a vector field in R
n is to consider

the Poincaré return map to an (n − 1)-dimensional section. The image under the Poincaré map
of a point on this section that lies near the periodic orbit is obtained by following the flow of the
vector field until the next (local) intersection. It is well known that the Poincaré map defined on a
section transverse to a periodic orbit is a diffeomorphism locally near the periodic orbit. However,
in practice one often considers the Poincaré map not only locally but also on a much larger global
and typically unbounded section. Generically, there are then points where the flow is tangent to
the section, and these give rise to discontinuities of the Poincaré map. In fact, the orbits of some
points may not even return to the section, in which case the Poincaré map is not defined at all.
In this paper we study tangency bifurcations of invariant manifolds of Poincaré maps on global
sections of vector fields in R

2 and R
3. At such a bifurcation the manifold becomes tangent to the

section, which results in a qualitative change of the Poincaré map while the underlying flow itself
does not undergo a bifurcation. Using tools from singularity theory, we present normal forms of
the codimension-one tangency bifurcations in the neighborhood of the respective tangency point.
The study of these bifurcations is motivated by and illustrated with the examples of the (unforced)
Van der Pol oscillator and a system modeling a semiconductor laser with optical injection. Finally,
we present a framework for the generalization of our normal-form results to arbitrary dimension and
codimension.

Key words. Poincaré map, quadratic and cubic tangency, flowbox, normal forms, singularity theory
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1. Introduction. In 1892 Henri Poincaré introduced the idea of a return map of a vector
field—today generally referred to as a Poincaré map—while he was studying a restriction of
the three-body problem [35, 36]. His aim was to find the motion of three bodies (one having
negligible mass compared with the other two—for example, the Sun, Earth, and Moon) given
only their initial positions, velocities, and masses. His work was fundamental for both the
local and global analysis of nonlinear dynamical systems. In particular, he studied periodic
orbits and their stability and introduced the first return map to a given local section as a
new tool. In this setting the section in phase space is chosen transverse to the periodic orbit,
and one considers the map that is defined locally on the section by following the flow until it
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returns back to the section. The periodic orbit of the system corresponds to a fixed point of
this Poincaré map. Since the Poincaré map is a diffeomorphism (a smooth map with a smooth
inverse) in a neighborhood of this fixed point, the existence and stability analysis of periodic
orbits in the full phase space reduces to the study of fixed points of local diffeomorphisms.
This fact is used in the bifurcation analysis of periodic orbits in standard textbooks such as
[17, 27, 39].

Today, the Poincaré map is a much-used tool in theoretical studies and in the evaluation
of experiments alike. Generally speaking, one studies attractors and other invariant sets that
one obtains by considering only the intersection points of the flow with a prespecified section.
One way of obtaining such a representation is to plot measured quantities (for example,
position, velocity, voltage, or current) whenever a designated quantity has a particular value,
for example, when it crosses its average. Another common choice is to consider a section in the
space of the first derivative of the flow and to plot the position of successive maxima/minima
of the system; such maps can be seen, for example, in [1, 37]. In this way, one can illustrate
classic transitions, such as the period-doubling route to chaos or the break-up of an invariant
torus.

The above discussion already shows that in practice one typically chooses a suitable and
typically unbounded section—we speak of a global section in this context. A common choice
of global section is a (hyper)plane defined by one of the variables having a fixed value. The
key point is that the first return map to the global section is not only defined locally with
respect to an invariant set, which is why we refer to it as a global Poincaré map.

A special case is that of a stroboscopic map of a periodically forced system with angular
frequency ω; well-known examples (see, for example, [17, 39]) include the forced damped
pendulum and the forced Van der Pol and the forced Duffing oscillators. A periodically forced
system can be written as an autonomous vector field by considering time t as another variable,
which is, hence, periodic with period 2π/ω. The Poincaré section is then taken at t = 2π/ω
so that the Poincaré map records the variables at regular time intervals. In a mechanical
experiment, this can be achieved by stroboscopic illumination with the forcing frequency;
hence we have the name stroboscopic map; see, for example, [6, 21]. Since the section is
effectively taken in time and not in space, each orbit intersects the global section defined by
t = 2π/ω and does so transversely. This means that the stroboscopic map is a well-defined
global diffeomorphism on the entire section.

By contrast, for a vector field that is not periodically forced one cannot find a global section
on which the Poincaré map is a global diffeomorphism. Given a general autonomous vector
field and any global section Σ, there exists a nonempty set of codimension one—which we call
the tangency locus—where the vector field is tangent to Σ; that is, the flow is not transverse
to the section. Furthermore, there may be orbits that do not return to the section in forward
or backward time. These two obstructions were already known to Birkhoff [3], who considered
the problem of finding a Poincaré map in the context of Hamiltonian systems. His goal was
to find a so-called complete section that is intersected by all trajectories so that the Poincaré
map gives information about the entire dynamics. Birkhoff’s result is that the Poincaré map
is well defined, smooth, and complete if the section is such that the tangency locus is invariant
under the first return; one also speaks of a Birkhoff section [11]. In this case it is sufficient to
consider the Poincaré map on a compact region that is bounded by the tangency locus. For a
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two-degree-of-freedom Hamiltonian system one obtains an area preserving map of the plane by
means of restricting to a fixed-energy surface. However, for arbitrary Hamiltonian systems the
condition that the tangency locus is invariant under the first return is not necessarily satisfied.
To deal with this more general Hamiltonian situation, Dullin and Wittek [11] generalized
Birkhoff’s result by constructing what they call a W -section, which guarantees a weaker form
of completeness in the sense that orbits either return to the W -section in finite time or have
a limit in the W -section as time goes to infinity. Analyzing the properties of the associated
Poincaré map requires the study of geometric properties of the flow in phase space in relation
to the energy surface [4].

We consider here the properties of the Poincaré map on a global section of a general
autonomous vector field, by which we mean that it does not have any special properties such
as a Hamiltonian structure or preserved symmetries. Typically, there are regions of the section
where the Poincaré first return map can be defined locally as a diffeomorphism by considering
the kth return map to the global section for a suitable fixed k. Such regions are bounded by
the tangency locus. Namely, the kth return map is discontinuous across the tangency locus.
This fact was used in [22] to explain the emergence of an increasing number of discontinuities
of the one-dimensional map approximation associated with a chaotic attractor, such as that of
the Rössler system. However, when one allows the number of intersections k with the section
to vary across the tangency locus, then the Poincaré map can be extended as a continuous
map to an adjacent region. How the number k must be changed to ensure continuity of the
Poincaré map can be determined from the condition that the integration time be continuous;
see also [11]. This idea was used in [10] to compute one-dimensional invariant manifolds of
the global Poincaré map across the tangency locus. By continuing orbit segments (with the
associated integration time) as two-point boundary value problems it is possible to compute
one-dimensional invariant manifolds of the global Poincaré map across the tangency locus
without the need for manually changing the number k of returns to the section; see [13] for
details and examples.

The specific topic addressed in this paper is the characterization of bifurcations of a global
Poincaré map that do not correspond to bifurcations of the underlying flow. Such topological
changes of the Poincaré map can be brought about either by changing a system parameter so
that an invariant object changes in such a way that its intersection with the section is affected,
or equivalently by changing the position of the section in the flow. Indeed, one needs to take
some care to avoid drawing wrong conclusions from topological changes of phase portraits
in a given section. A concrete example is the appearance of extra branches of intersections
with a fixed section of a one-parameter family of periodic orbits. This may simply be due
to the periodic orbit changing shape in the full phase space, which does not correspond to a
bifurcation of the flow. The emergence of extra branches in a given section typically happens,
for example, when the orbit approaches a saddle-focus equilibrium [16]. Another example
is the intersection of an invariant torus with a section, which can take different forms, as is
discussed in detail in section 4.

The invariant set in the Poincaré section may be even more complicated in applications.
An example is the study by Peikert and Sadlo [32, 33] of one-dimensional invariant manifolds
in a two-dimensional section through a vortex ring associated with a river power plant. The
authors refer to “seemingly ring-shaped lobes [as] an artifact of the slice plane which does
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not follow well the curved center line of the structure” [33, sect. 5.2]. Indeed, such “lobes”
arise due to the way the section intersects a corresponding two-dimensional manifold, and
this depends on the exact position of the section. In particular, the study of changes of the
invariant set with the position of the section is important for the interpretation of experimental
measurements, such as two-dimensional sections through a vortex structure by means of a laser
sheet [14].

We consider here the bifurcations of a smooth invariant manifold of dimension � as it
interacts with a global section of a generic vector field with an n-dimensional phase space.
We call these bifurcations tangency bifurcations, because they are generated by orbits that
are tangent to the section at the bifurcation point. We analyze the tangency bifurcations
locally, which means that there are no equilibria in the section. Therefore, we may consider a
flowbox in a suitable neighborhood of the bifurcation point, which is simply a domain in phase
space that is bounded by orbit segments and transverse codimension-one in- and out-sets. We
use the flowbox theorem [31] to “straighten out” the flow by mapping it to the standard
flowbox with parallel flow. Subsequently, we apply coordinate changes to map the section to
a standard form as motivated by singularity theory; the key is to show that the coordinate
changes can be chosen to preserve the flow lines in the standard flowbox. As a result, we obtain
normal forms for the unfoldings of tangency bifurcations in terms of parameterized families
of curved sections in the standard flowbox. Specifically, we treat all tangency bifurcations of
codimension one for n ≤ 3 and then discuss how the notion of a tangency bifurcation can be
generalized for arbitrary n and �.

Singularity theory has been used to classify special classes of dynamical systems, including
impacting systems [9], piecewise-smooth systems [41], noninvertible maps (endomorphisms) of
the plane [12, 18, 26], flows on manifolds with boundary [34, 38, 40], and diffeomorphisms with
curves [5]. As is the case for any specific class of systems, singularity theory suggests normal
forms, but it needs to be adapted to the situation at hand. In the case of a tangency bifurcation
of a global Poincaré map, as studied here, this means the required coordinate transformation
needs to map the section and the manifold to suitable normal forms, while also mapping the
flow to the standard flow in the flowbox. In the absence of an invariant manifold (or when it
is comprised of a single trajectory) we can make use of work by Sotomayor and Teixeira, who
study generic flows on a manifold with a codimension-one boundary, namely, two-dimensional
flows in [40] and three-dimensional flows in [38]. Sotomayor and Teixeira work in a completely
general setting and investigate what conditions on the vector field and the section are needed
for structural stability of the interaction between the flow and the boundary. We remark that
by considering different ways of “completing” the flow on the other side of the boundary or
Poincaré section, the results of Sotomayor and Teixeira and those presented here can also be
applied to piecewise-smooth systems (where one defines a second flow as one wishes) [41] and
to reversible systems (where the other flow is induced by an involution) [42]. Because in our
setup the global section plays the role of their boundary, we can use the genericity results in
[38, 40] for the context of tangency bifurcation of a global Poincaré map.

There are a number of ways in which our work differs from that of Sotomayor and Teixeira.
First, they do not consider the flow on the “outside” of the boundary, while we are interested
in the flow on both sides of the section. More importantly, we consider bifurcations of a
“local piece” of an invariant one- or two-dimensional manifold in a local flowbox around a
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bifurcation point. This piece of manifold could be part of a periodic orbit, invariant torus,
or a stable or unstable manifold of a saddle object. While the tangency bifurcation remains
locally the same, its global manifestation depends on the type of invariant manifold one is
considering. For example, Sotomayor and Teixeira consider as separate the two cases that
a periodic orbit or a one-dimensional separatrix has a tangency with the boundary, which
we interpret as manifestations of the same interaction with the global section. Finally, two-
dimensional invariant manifolds were not considered in [38]. By contrast, we present unfoldings
of all tangency bifurcations of a two-dimensional invariant manifold with a two-dimensional
Poincaré section. To this end, we first map the invariant manifold to a horizontal plane in
the standard flowbox so that the section is deformed to a smooth surface. Our proofs then
detail how to construct suitable coordinate transformations in the standard flowbox, where
we distinguish between the direction of the flow and directions perpendicular to the flow. As
a result, we obtain a normal form of the respective tangency bifurcation, which is unfolded
by moving a smooth surface (that is, the section) up and down. We remark that, if one
disregards the special direction given by the flow, tangencies between two smooth surfaces
in R

3 (or manifolds of codimension one, more generally) can be phrased in the language of
divergent diagrams of smooth maps [29]. Here the manifold and the section are viewed as
level sets of two smooth maps from R

3 to R, and singularity theory applied to this context
yields normal forms as presented here. We stress again that the normal-form results obtained
in [29] are not immediately applicable to tangency bifurcation of Poincaré maps because one
must also show that the required coordinate changes can be chosen to respect the flow in the
flowbox. Furthermore, the fact that the invariant manifold actually consists of trajectories
is important: a tangency along a trajectory has different consequences for the Poincaré map
than a tangency in the parameter direction.

In contrast to the mentioned theoretical studies, we not only present the unfoldings of the
tangency bifurcations abstractly in a flowbox but also illustrate them with concrete examples
of vector fields arising in applications. Specifically, we use the two-dimensional unforced
Van der Pol oscillator to explain why a discontinuity arises in a kth return map and how a
quadratic tangency bifurcation manifests itself for the classic case of a periodic orbit. Tangency
bifurcations of two-dimensional invariant manifolds are illustrated with the example of a three-
dimensional vector field model of a semiconductor laser with optical injection [44]. Specifically,
we show how quadratic and cubic tangencies occur naturally in the intersection of a family of
invariant tori with a planar section. Finally, we present a geometric model that explains how
the cubic tangency as observed in a planar section for the injection laser can be transformed
into the normal form in a flowbox.

This paper is organized as follows. In section 2 we discuss the motivation behind this
paper and outline the problems that arise from globalizing a local Poincaré map; here we also
provide formal definitions. In section 3 we consider the quadratic tangency bifurcation with a
global section of a two-dimensional flow; this case is illustrated with the Van der Pol oscillator.
Section 4 then deals with quadratic tangencies of invariant manifolds with a two-dimensional
section of a three-dimensional flow; a model of a semiconductor laser with optical injection
serves as a concrete example. In section 5 we consider the case of a cubic tangency bifurcation
of a three-dimensional flow; what this bifurcation looks like in practice is again illustrated
with the example of a semiconductor laser with optical injection. Section 6 discusses the
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Figure 1. A periodic orbit Γ intersecting a local section Σloc(γ0) at the point γ0. The local Poincaré map
Ploc takes x to the next local intersection Ploc(x) with Σloc(γ0).

general case of a tangency bifurcation of an �-dimensional manifold with a global section of
an n-dimensional flow. Finally, in section 7 we draw some conclusions and discuss directions
for future research.

2. Background and motivation. Many readers will be familiar with the concept of a
Poincaré map defined on a local section transverse to a periodic orbit. Consider a vector field

(2.1) ẋ = f(x, λ), x ∈ X, λ ∈ R
m,

where X is the phase space, λ is a (vector-valued) parameter, and f : X → X is sufficiently
smooth. For the purposes of this paper X = R

n, where we mostly consider the cases n = 2 or
n = 3. The flow associated with (2.1) is denoted by Φ, so that the orbit or trajectory through
x is defined as

(2.2) O(x) = {Φt(x) | t ∈ R}.

We assume now that (2.1) has a periodic orbit Γ for some value of λ. Note that generically
Γ is part of a (λ-dependent) family, but for the moment we consider the parameter λ as
fixed. To obtain the standard definition of a local Poincaré map Ploc, one chooses an (n− 1)-
dimensional submanifold Σ that intersects Γ transversely at an intersection point γ0. The
Poincaré map is then defined in some neighborhood Σloc(γ0) of γ0; see, for example, [27, 31].
A point x ∈ Σloc(γ0) is taken by the flow Φ to the next intersection of the forward trajectory
{Φt(x) | ∀t ≥ 0} with Σloc(γ0); see also Figure 1. That is,

Ploc : Σloc(γ0) → Σ′
loc(γ0),

x �→ Ploc(x) := Φtx(x),(2.3)

where tx = min{t > 0 | Φt(x) ∈ Σ′
loc(γ0)} is the time to the next local intersection and

Σ′
loc(γ0) is a neighborhood of Σloc(γ0) such that Σloc(γ0) ⊆ Σ′

loc(γ0). Note that γ0 is a fixed
point of Ploc and that tx is close to the period of the periodic orbit Γ. Since the section Σ
is chosen transverse to Γ at γ0, it is always possible to choose Σloc(γ0) such that Ploc is a
well-defined diffeomorphism on Σloc(γ0). Locally near γ0 the dynamics of the vector field f
are equivalent to the dynamics of Ploc on Σloc(γ0) so that the local Poincaré map allows the
study of basic bifurcations of the periodic orbit Γ; see, for example, [17, 27, 39].
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In many applications, on the other hand, one is interested in more general invariant sets,
including invariant tori and chaotic attractors. Therefore, one often considers some suitably
chosen “large” and generally unbounded global section in phase space. For the purpose of this
paper, we call Σ a global section if it is the image of a smooth embedding

(2.4) F : R
n−1 → R

n,

where we assume that F (Rn−1) divides the phase space R
n into two disjoint parts, that

is to say, |F (x)| → ∞ as |x| → ∞. In other words, a global section Σ = F (Rn−1) is a
smooth manifold of dimension n− 1 that is unbounded in all directions. Specifically, Σ is the
unbounded image of the real line for n = 2 and of a two-dimensional plane for n = 3. It is
common in applications to choose Σ simply as an (n− 1)-dimensional hyperplane.

The global Poincaré map on the global section Σ is then defined as in (2.3), except that
we now consider P on the entire global section Σ, that is,

P : Σ → Σ,

x �→ P (x) := Φtx(x),(2.5)

where tx is the time to first intersection with Σ; note that P is well defined at x if 0 ≤
inf{t > 0 | Φt(x) ∈ Σ} < ∞.

As can already be inferred from Figure 1, a global section Σ typically has k ≥ 2 inter-
sections with a periodic orbit Γ. (Note that generically there is an even number of points in
Γ ∩ Σ.) In other words, the local Poincaré map Ploc defined on Σloc(γ0) coincides with the
restriction to Σloc(γ0) of the kth iterate of the global Poincaré map as defined by (2.5). Indeed,
P k is a local diffeomorphism near any of the (transverse) intersection points of Γ with Σ.

It turns out that the global Poincaré map as defined by (2.5) is a diffeomorphism on the
whole of Σ that describes the entire dynamics on R

n only under rather severe conditions (see,
for example, [3, 30]), namely, only when

1. the flow Φ of (2.1) is transverse to Σ at every point x ∈ Σ;
2. the forward orbit and the backward orbit through every point x ∈ Σ both have another

intersection with Σ; and
3. every orbit of (2.1) intersects Σ.

In the literature Σ is often referred to as a global Poincaré section when these conditions are
satisfied; see, for example, [45]. This is not to be confused with our notion of a global (i.e.,
nonlocal) section as defined in (2.4). Indeed, the above conditions are typically not satisfied
for a global section in our sense.

Theorem 2.1. For a generic vector field it is not possible to find a global Poincaré section
Σ to which all points return and that is everywhere transverse to the flow, unless the phase
space is a fibration over the circle.

Theorem 2.1 is proved in [45] in two basic steps; see also [3, 7, 11, 30]. The first step
is to show that if a global Poincaré section with the above properties exists, then the phase
space X is topologically equivalent to the suspension manifold [0, 1]×Σ/∼. Here, the quotient
is taken with respect to the equivalence relation ∼, where (0, x1) ∼ (1, x2) for x1, x2 ∈ Σ if
x2 = P (x1). The second step of the proof is to show that if Σ is a smooth manifold on which
P is a diffeomorphism, then [0, 1] × Σ/∼ can be written as a fibration over S

1.
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An immediate consequence of Theorem 2.1 is the following. Consider a generic vector
field on R

n. Then the vector field is equivalent to a periodically forced system if and only if
one can find a global section Σ = F (Rn−1) on which the Poincaré map is a diffeomorphism.
In other words, diffeomorphisms on R

n−1 correspond to periodically forced vector fields on
R
n (written in autonomous form where time t is one of the axes). Indeed, periodically forced

vector fields form an important subclass with well-known examples such as the forced damped
pendulum, the forced Van der Pol equations, and the forced Duffing oscillator [17, 39]. The
global Poincaré map in the sense discussed here is given as the stroboscopic map, that is,
as the time-2π/ω map. The fact that the stroboscopic map is a global diffeomorphism is
a particularly nice property of periodically forced vector fields. However, as was discussed
above, this property is very special.

For a general (that is, not a periodically forced) vector field, there are points where the
vector field is tangent to the global section Σ. This can already be deduced from the case of a
section through a periodic orbit Γ. If one considers two consecutive (transverse) intersection
points γ0 and γ1 of Γ with Σ, then the flow points in opposite directions (with respect to Σ)
near γ0 and γ1, respectively. By continuity of the vector field, we must have at least one point
on Σ where the vector field is tangent to the section. We define the tangency locus C as

(2.6) C := {x ∈ Σ | f(x) · �nΣ(x) = 0} ,

where �nΣ(x) is the unit normal to Σ at the point x. Note that if Σ is a hyperplane, the
normal �nΣ(x) does not depend on x. For the remainder of this paper we assume that C �= ∅.
It follows from the implicit function theorem [43] that C consists of smooth codimension-one
submanifolds of Σ, provided that 0 is a regular point of f(x) · �nΣ(x). That is, for a one-
dimensional section Σ (n = 2) the tangency locus C is generically a set of isolated points.
For a two-dimensional section Σ (n = 3) it consists of smooth curves. Furthermore, in a
two-dimensional section Σ there may be points of C where the flow has a cubic tangency
(that is, a cusp singularity) with Σ; such points are generically isolated. These genericity
statements follow from results by Sotomayor and Teixeira in [38, 40] on flows on two- and
three-dimensional manifolds with boundary.

The importance of the tangency locus C lies in the realization that any kth-return map
to Σ for any k ≥ 0, that is, the Poincaré map P as defined by (2.5) or its kth iterate, is
discontinuous across C; this was already noted by Birkhoff [3] in the context of Hamiltonian
systems. The reason for this discontinuity is that the number of intersections with the section
Σ changes due to the tangency; see also section 3.1. We remark that a kth-return map can be
extended continuously across C, namely, by changing the number of global intersections and
considering the (k ± 1)st-return map in the adjoining region. The required number of global
intersections is determined by the condition that the time tx to the next (local) intersection
depends continuously on the point x across C [10]; see also [11]. This approach of extending
a Poincaré map across C by continuation of the entire orbit segment from Σ back to Σ, which
includes the integration time tx, is especially useful when one wants to compute invariant
manifolds of global Poincaré maps [13]. Note that a thus extended Poincaré map is only
continuous across C but not smooth; see the discussion of Figure 3 in section 3.1. In other
words, the existence of a tangency locus is indeed an obstacle to finding a Poincaré map that
is a global diffeomorphism.
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We consider here tangency bifurcations of the Poincaré map P on a global section Σ,
which are characterized by the interaction of an invariant manifold M with the tangency
locus C ⊂ Σ. The first step is to define an appropriate notion of topological equivalence.

Definition 2.2. We are given two flows on two open neighborhoods U1 and U2 of R
n and

(n − 1)-dimensional smooth sections Σ1 ⊂ U1 and Σ2 ⊂ U2 with tangency loci C1 and C2,
respectively. Suppose, further, that there are �-dimensional invariant manifolds M1 ⊂ U1 and
M2 ⊂ U2. We say that the flow on U1 is Σ-M -topologically equivalent to that on U2 if there
exists a homeomorphism h : U1 → U2 such that

(E1) h maps orbits in U1 to orbits in U2 and respects the direction of time;
(E2) h maps Σ1 to Σ2 and C1 to C2; and
(E3) h maps M1 to M2.

Note that (E2) and (E3) ensure that h|Σ1 maps M1 ∩ Σ1 to M2 ∩ Σ2. For notational
convenience, we refer to Σ-M -topological equivalence simply as topological equivalence in
what follows. Similarly, we refer to the orbits of a flow on an open neighborhood U relative to
Σ,M ⊂ U simply as a phase portrait. Here we also assume that Σ divides U into two disjoint
parts; this, by our definition of a global section, is satisfied for any sufficiently small U .

Following standard ideas of bifurcation theory [17, 27], we say that a phase portrait is
structurally stable if any sufficiently close phase portrait is topologically equivalent. Here
closeness between phase portraits is given by the C1-topology of the underlying vector fields
and the C1-distance between the respective sections and invariant manifolds; compare with
[38, 40]. Consequently, a bifurcation takes place when a phase portrait is not structurally sta-
ble, and it is of codimension c ∈ N if it is structurally stable in a c-parameter family (but not in
a (c− 1)-parameter family); one also speaks of an unfolding. Here two parameterized families
of systems are topologically equivalent if the phase portraits of the two unfoldings are topo-
logically equivalent according to Definition 2.2 and the underlying family of homeomorphisms
can be chosen to depend continuously on the parameters.

Clearly bifurcations of the underlying flow in the usual sense (meaning that (E1) is vio-
lated) are also bifurcations of the Poincaré map P in the sense of Definition 2.2; these bifurca-
tions are covered by standard bifurcation theory. However, there are new types of bifurcations
in the sense of Definition 2.2, namely, those that correspond to violation of (E2) and/or (E3).
Our interest here is in a class of such bifurcations—the tangency bifurcations—which are due
to a qualitative change of M ∩ Σ. In this paper we restrict to tangency bifurcations in R

n

for n ≤ 3 of codimension one, meaning that they occur structurally stably in one-parameter
families. Tangency bifurcations do not involve equilibria in Σ so that we can consider the
phase portrait in a flowbox near the interaction of the invariant manifold with the section. A
flowbox does not contain any equilibria and is characterized by an in-set I and an out-set O
transverse to the flow, with “sides” that consist of orbit segments. This is possible because a
flow without equilibria is transient [34]; that is, each orbit leaves a compact connected man-
ifold in finite positive and negative time. According to the flowbox theorem [31], the vector
field in any given flowbox is conjugate (by means of a coordinate transformation that is as
smooth as the vector field f) to parallel flow in the standard flowbox, which we define here
for definiteness as

(2.7)

{
u̇ = 1,
v̇ = 0,
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where u ∈ [−1, 1] and v ∈ [−1, 1]n−1. It follows that the standard in-set and the standard
out-set are

(2.8) I = {u = −1} and O = {u = +1}.

The basic idea behind transforming a given flowbox to the standard flowbox is that the flow
lines are “straightened out.” In the present setting, this means that the section Σ becomes
curved. In other words, a normal form as considered here consists of a suitable family of curved
sections that interact with a fixed invariant manifold, which is determined by a prespecified
subset of the in-set I.

3. Two-dimensional flows. We begin by explaining the main concepts with a concrete
example in section 3.1, before presenting a general normal-form result in section 3.2.

3.1. The (unforced) Van der Pol oscillator. As a concrete motivating example we con-
sider the (unforced) Van der Pol oscillator [20, 39] of an RLC circuit, which is defined as the
two-dimensional vector field

(3.1)

{
ẋ = y,
ẏ = a(1 − x2)y − x,

where a = 0.25 is used throughout this paper. For this value of a, system (3.1) has an
attracting periodic orbit Γ. As the global section we choose the horizontal line

(3.2) Σ = Σs := {(x, y) ∈ R
2 | y = s}

for some constant s ∈ R. Figure 2 shows how the global section Σ (green) for s = 1 intersects
the periodic orbit Γ (purple) transversely in two points, γ0 and γ1. Recall that a transverse
intersection of Σ with Γ always leads to at least two intersection points, regardless of the
choice of Σ. Near γ0 the flow is upward through Σ, while near γ1 it points down; at the points
C the flow is tangent to Σ. Using (3.1) and (3.2), the points C at which the flow is tangent
to Σ satisfy

ẏ|y=s = 0 ⇔
(
a(1 − x2)y − x

)∣∣
y=s

= 0

so that

C = C(s) =

{ {(0, 0)} if s = 0,{(
1±

√
1+4a2s2

−2as , s
)}

if s �= 0.

As is clear from this formula, changing the section a little (that is, a sufficiently small change
of s �= 0) does not lead to a qualitative change of the tangency set C. The two tangency
points (−2 ±

√
5, 1) for s = 1 are labeled C in Figure 2. From the figure we can observe that

the first intersection with Σ of the forward orbit O+(x) of a point x below Σ (except for the
equilibrium at the origin) always lies to the left of the tangency point (−2 +

√
5, 1). In fact,

in this case O+(x) also always lies to the right of the other tangency point (−2 −
√

5, 1). By
contrast, the forward orbit of a point x above Σ intersects either to the left of (−2 −

√
5, 1)

or to the right of (−2 +
√

5, 1), which depends on whether the orbit starts to the right or to
the left of the backward orbit of the tangency point (−2 −

√
5, 1). Note that this backward

orbit divides the space into orbits that intersect Σ and orbits that miss.
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Figure 2. Phase portrait of the (unforced) Van der Pol oscillator (3.1) for a = 0.25 with a global section
Σ1 (green line) at y = 1. The periodic orbit Γ (purple) intersects Σ1 at the two points γ0 and γ1. The flow is
tangent to Σ at the points denoted by C.

Near γ0 we can define a local Poincaré map Ploc on a local section Σloc(γ0) ⊂ Σ, and
similarly we can define Ploc near γ1 on Σloc(γ1) ⊂ Σ. Since there are two transverse intersec-
tions of Γ with Σ, we have Ploc = P 2 on both Σloc(γ0) and Σloc(γ1), where P is the global
Poincaré map as defined by (2.5). Figure 3 illustrates that P 2 is indeed not a continuous
map on the whole of Σ but is discontinuous at C. To see this we consider the tangency point
c := (−2 +

√
5, 1) ∈ C. The image P 2(c + δ) of any point c + δ ∈ Σs for δ ≥ 0 lies closer to

γ1 than c + δ. (The only exception is P 2(γ1) = γ1.) Note that P 2(c) is the limit of P 2(c + δ)
as δ → 0 and it lies closer to γ1 than c. Now consider a point c− ε ∈ Σ for ε > 0 small. As is
shown in Figure 3, the image P 2(c− ε) lies closer to γ0 than c− ε. In the limit of ε → 0 the
image P 2(c− ε) converges to P 1(c) rather than to P 2(c). Hence, P 2 is discontinuous across c.

It is straightforward to see that the discontinuity of P 2 is due to a discontinuity of the
global Poincaré map P itself. Namely, we have that

lim
ε→0

P (c− ε) = c �= P (c) = lim
δ→0

P (c + δ).

Note that this involves a discontinuity of the integration time, namely, the first-return time
t(c−ε) associated with P (c − ε) goes to 0 for ε → 0, while there is a nonzero integration time
associated with the orbit segment connecting c with P (c). As can be seen from Figure 3, the
continuous extension of Ploc = P 2 from Σloc(γ1) across the point c to Σloc(γ0) is the map
P 3. In particular, for this extension the integration time back to a local neighborhood of the
section is continuous; see also [10, 13].

We now consider the interaction of the family of sections Σs with the periodic orbit Γ,
that is, with an invariant manifold of the flow. As is shown in Figure 4, a codimension-one
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Figure 3. Illustration of the discontinuity of P 2 for the Van der Pol oscillator (3.1) across a tangency
point c ∈ Σ1; compare with Figure 2.
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Figure 4. A flowbox for the Van der Pol oscillator (3.1) near the quadratic tangency of the periodic orbit
Γ with the section Σs∗ ; the three topologically different choices for Σs (green lines) are s = 1.7518, s = 2.0670,
and s = 2.3822; compare with Figure 2.

bifurcation of the Poincaré map occurs for the specific value s∗ of s where Γ has a quadratic
tangency with the section Σs∗ ; numerically we find that s∗ ≈ 2.0670. For s < s∗ there are
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two transverse intersection points of Γ with Σs, as is the case in Figures 2 and 3. For s > s∗,
on the other hand, Γ has no intersections at all with Σs so that the Poincaré map P does not
give any information on the dynamics of Γ in this case.

To analyze the situation we consider a flowbox that includes part of the periodic orbit Γ
near the tangency point with Σ; see Figure 4, where the flowbox is indicated by thick black
lines. Note that the periodic orbit Γ inside the flowbox is simply a particular orbit that is
determined by a single point of the in-set I. The fact that Γ is a periodic orbit cannot be
deduced from the flowbox alone. Rather, one needs to take into account the global map R
from O back to I, which is a contraction in this case since Γ is an attracting orbit. In Figure 4
the image R(O) of the out-set is the thick brown segment on the in-set I.

The idea is now to consider only the flow inside the flowbox of Figure 4. For s = 1.7518
the section Σs intersects Γ in the two points γ0 and γ1, as for the case s = 1 of section 3.1.
Orbits inside the flowbox that are sufficiently close to Γ intersect Σs twice, but orbits below
the tangency point C in the flowbox do not intersect Σs at all. For s = s∗ ≈ 2.0670, orbits
above Γ intersect Σs, but orbits below Γ (that is, below the point C in the flowbox) do not.
This is due to the nontransverse quadratic tangency of Γ with Σs∗ . Finally, for s = 2.3822,
the periodic orbit Γ does not intersect the section Σs so that points sufficiently close to Γ do
not intersect Σs either. The overall situation concerning the periodic orbit Γ follows when one
takes the map R from O to I into account. Namely, under repeated re-entry into the flowbox
all orbits eventually intersect Σs infinitely often for s < s∗, while all orbits eventually do not
return to Σs for s > s∗. We stress that this division is determined locally inside the flowbox
by the quadratic tangency between Γ and Σs at s∗ ≈ 2.0670.

3.2. Normal form of the quadratic tangency bifurcation. Generically, a tangency of an
orbit of a vector field is quadratic [40], and we have the following result.

Proposition 3.1. In any sufficiently small flowbox, the phase portrait near a quadratic tan-
gency of an orbit of a flow in R

2 with a global section is topologically equivalent to the phase
portrait in the standard flowbox (2.7) for n = 2 given by the section

(3.3) Σ = {(u, v) | v = 2u2}.

The proof of Proposition 3.1 can be found in [40] for the related situation of a flow on a
two-dimensional manifold with boundary. Note that singularity theory guarantees that there
is a smooth map that maps the section and the tangent orbit to the standard flowbox as
stated. It requires an extra step to show that this map can be chosen in such a way that
orbits map to orbits.

The local dynamics within the standard two-dimensional flowbox, that is, for (u, v) ∈
[−1, 1]2, can be described by giving the transfer map ρI from the in-set I to the section Σ, the
transfer map ρΣ from Σ to itself, and the transfer map ρO from Σ to the out-set O. Since not
all orbits hit Σ, the map ρI is not everywhere defined; similarly, ρΣ is not defined for points
that have no local returns to Σ. We have the following explicit formulae:

u = ρI(v) =

{
−
√

v/2 for 0 ≤ v ≤ 1,
undefined for −1 ≤ v < 0,

(3.4)

ρΣ(u) =

{
−u for −1 ≤ u ≤ 0,
undefined for 0 < u ≤ 1,
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v = ρO(u) =

{
2u2 for 0 ≤ u ≤ 1,
undefined for −1 ≤ u < 0.

Similarly, the associated transfer times are

(3.5)

τI(v) = 1 −
√

v/2 for 0 ≤ v ≤ 1,

τΣ(u) = 2u for −1 ≤ u ≤ 0,

τO(v) = 1 − 2u2 for 0 ≤ u ≤ 1.

For a general flow with quadratic tangency, (3.4) and (3.5) are normal forms that give the
leading-order components of the respective transfer maps. The singularities of the above
transfer maps expose the local dynamics within the flowbox. Notice that ρI has a quadratic
singularity at v = 0 due to the grazing of the trajectory at the minimum of the parabolic
section Σ, that is, at C.

We now consider the case that the flowbox contains a one-dimensional invariant manifold
that has a quadratic tangent with a particular section, as was the case for the Van der Pol
system in Figure 4. This quadratic tangency bifurcation is of codimension one, where we
require the standard genericity condition that the dependence on the parameter is smooth
and that the manifold crosses the section with positive speed. We have the following normal-
form result.

Proposition 3.2. In any sufficiently small flowbox, the unfolding of a quadratic tangency
of a one-dimensional invariant manifold of a flow in R

2 with a global section is topologically
equivalent to the unfolding in the standard flowbox (2.7) for n = 2 given by the one-parameter
family of sections

(3.6) Σs = {(u, v + s) | v = 2u2},

where the invariant manifold is the line

M = {(u, v) | v = 0}.

Proof. Suppose that the unfolding parameter of the quadratic tangency is η and the
bifurcation takes place at η = 0. According to Proposition 3.1, any phase portrait of the
unfolding in a flowbox near the quadratic tangency point is topologically equivalent to that
given by Σ̃ = Σ0 in the standard flowbox (2.7) for n = 2. Therefore, the invariant manifold

(which is simply a single orbit) is mapped to a straight flowline M̃ = {v = s(η)} in the
standard flowbox, where s(0) = 0; furthermore, genericity of the dependence on η implies that
ds
dη (0) �= 0 so that s(η) unfolds the bifurcation. The result follows by applying the coordinate

change (u, v) �→ (u, v − s(η)), which maps M̃ to M and Σ̃ to Σ−s(η). The thus constructed
η-family of coordinate changes is continuous by the genericity assumption on η.

Figure 5 illustrates the quadratic tangency bifurcation of Proposition 3.2 by showing the
standard flowbox (2.7) with the parabolic section given by (3.6). Figure 5(a) shows the generic
case M ∩ Σs = ∅, panel (b) is at the tangency where M ∩ Σs = C for s = 0, and panel (c) is
the generic case M ∩ Σs = {m0,m1}. Note that the in-set I (that is, the v-space) acts as the
parameter space, because the relative position of M and Σs is uniquely determined by M ∩ I
relative to the projection of C onto I; compare with Figure 4.
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Figure 5. Unfolding of a quadratic tangency of an invariant manifold M (purple) with a global section
(green) given by the family of parabolic sections Σs in the standard flowbox for s = 0.6 (a), s = 0 (b), and
s = −0.6 (c).

3.3. Global manifestations of a quadratic tangency. The example of a quadratic tan-
gency bifurcation of the Van der Pol system as discussed in section 3.1 is a specific global
manifestation of this bifurcation. Namely, the invariant manifold M of Proposition 3.2 is
actually a segment of the attracting periodic orbit Γ. This means that there is a map R from
the out-set O back to the in-set I and that this map is a contraction. Therefore, the first
return map P on Σs near a quadratic tangency of Γ is given by

(3.7) P (u) =

{
ρΣ (u) for −1 ≤ u ≤ 0,
ρI ◦R ◦ ρO(u) for 0 < u ≤ 1,

where u is the coordinate in the standard flowbox. It is now possible to determine the second
return map as

(3.8) P 2(u) =

{
ρI ◦R ◦ ρO ◦ ρΣ (u) for −1 ≤ u ≤ 0,
ρΣ ◦ ρI ◦R ◦ ρO(u) for 0 < u ≤ 1.

Note that P and P 2 have two branches, namely, one defined on the interval from I to C and
one on the interval from C to O.

Figure 6 shows P and P 2 in a flowbox of the Van der Pol system (3.1) before, at, and after
the tangency of the periodic orbit Γ that was illustrated in Figure 4. The two branches have
been computed with numerical continuation, where the beginning point was varied along Σs

toward C from the in-set and from the out-set, respectively. In all panels the endpoints of a
branch that have an image under the map are shown as gray dots. The purple dots denote
the intersection points γ0,1 of Γ ∩ Σs. Note that the slopes of all branches are less than 1 in
absolute value, because the periodic orbit Γ is attracting.

We first discuss the consequence of the quadratic tangency for the first return map P ,
which is shown in the left column of Figure 6. Before the quadratic tangency the section Σs

is above the periodic orbit Γ so that Γ ∩ Σs = ∅. As a result, the points on Σs in the interval
[C,P−1(C)) do not return to the section under P ; see panel (a1). At the quadratic tangency
for s = s∗ ≈ 2.0670 the section Σs intersects Γ tangentially in a single point, which is a fixed
point of P . Note from panel (b1) that P is continuous and both left and right differentiable;
however, these derivatives differ at the point Σs∩Γ (purple dot). After the quadratic tangency,
shown in panel (c1), the first return map P is well defined everywhere but is discontinuous
at the tangency locus C. Furthermore, P has an attracting period-two orbit, namely, the two
intersection points γ0,1 (purple dots) of Γ with Σs. Note that during this entire transition the
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Figure 6. The first return map P (left column) and second return map P 2 (right column) for the Van der Pol
oscillator (3.1) on the sections Σs before, at, and after a quadratic tangency; compare with Figure 4. Rows
(a)–(c) are for s ≈ 2.1359, s ≈ 2.0670, and s ≈ 1.7518, respectively.

left branch (from I to C) remains virtually unchanged, while the right branch (from C to O)
changes topologically owing to the changing nature of ρI ◦R ◦ ρO with s.

The second return map P 2 is simply the second iterate of P ; it is shown in the right column
of Figure 6. Before the quadratic tangency, points in the interval (P−2(C),P−1(C)] do not
have an image under P 2; see panel (a2). At the tangency, the two branches come together
in a fixed point (purple dot), at which P 2 is continuous and smooth. After the tangency
bifurcation, the map P 2 is well defined everywhere but discontinuous at C. The intersection
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Figure 7. Phase portrait of the vector field (3.9) for λ = 0.25 with the stable manifold W s(0) (blue) and
the unstable manifold Wu(0) (red) of the origin. Also shown are three different choices of horizontal global
section Σs, before, at, and after a tangency of Wu(0) with Σs, namely, for s = 0.6169, 0.7669, and 0.9169,
respectively. The black flowbox shows that this bifurcation unfolds as described by the normal form.

points γ0,1 (purple dots) of Γ with Σs are fixed points under P 2. Indeed, the restrictions of P 2

to the neighborhoods Σloc(γ0) or Σloc(γ1) give the respective local Poincaré maps Ploc. Note
that in these transitions both branches of P 2 are changing, because they both depend on the
map R that describes the flow outside the flowbox.

As we have seen, the properties of P and P 2 depend on the map R from the out-set back
to the in-set. In case of a repelling periodic orbit Γ, the map R−1 from the in-set back to
the out-set is a contraction. Therefore, the respective maps P and P 2 can be obtained from
Figure 6 by reversing the roles of in-set and out-set. Geometrically, this corresponds to a
reflection in the antidiagonal of the respective panels.

An altogether different global situation arises when the invariant manifold M inside the
flowbox is not a segment of a periodic orbit. A generic and dynamically relevant situation is
that M is a segment of a global stable or unstable manifold of an equilibrium. As a concrete
example we consider the vector field

(3.9)

{
ẋ = y,
ẏ = λy + x− x2,

which was introduced in [19] as a system with a homoclinic bifurcation. For λ = 0.25 the
phase portrait of (3.9) is as in Figure 7. The system has a saddle point at the origin with stable
manifold W s(0) (blue) and unstable manifold W u(0) (red) as shown in Figure 7. We consider
a family of horizontal sections Σs = {(x, y) | y = s} (green), which has a tangency with W u(0)
for s∗ ≈ 0.7669. When one restricts one’s attention to a suitable flowbox (boldface curves),
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then this tangency unfolds as described by the normal form in Proposition 3.2; compare with
Figure 5. However, the invariant manifold M inside the flowbox is now a segment of W u(0)
so that points of the out-section O move off to infinity. Hence, there exists no map R from
O back to I and the intersection points m0 and m1 do not correspond to fixed points of the
first return map P . In fact, the map P is defined only from I to C, where it is as shown in
the left column of Figure 6.

Note that Teixeira [40] considered the related situations that a periodic orbit or a sep-
aratrix interacts with the boundary of a two-dimensional flow. However, he treated these
two global situations as different cases. By contrast, we take the point of view that the local
bifurcation mechanism in a suitable flowbox is actually the same, while the global dynamics
is determined by the exact nature of the invariant manifold that is involved in the tangency
with the section (or boundary) inside the flowbox.

4. Quadratic tangency bifurcation in three-dimensional flows. An invariant manifold
of a three-dimensional flow can be either one- or two-dimensional. Therefore, there are more
possibilities for interactions of an invariant manifold with a two-dimensional section. As
before, we discuss interactions in the context of a family of two-dimensional sections Σs at
a regular point of the critical locus C, that is, at a generic tangency point between a three-
dimensional flow and the section. To this end, we consider the standard flowbox (2.7) for
n = 3, where we take (v1, v2) = v ∈ [−1, 1]2 as coordinates. We start with a straightforward
generalization of Proposition 3.2.

Corollary 4.1. In a sufficiently small flowbox, the unfolding of a quadratic tangency of a
one-dimensional invariant manifold of a flow in R

3 with a global section is topologically equiv-
alent to the unfolding in the standard flowbox (2.7) for n = 3 given by the one-parameter
family of sections

(4.1) Σs = {(u, v1, v2 + s) | v2 = 2u2},

where the invariant manifold is the line

M = {(u, v) | (v1, v2) = (0, 0)}.

Note that this bifurcation is of codimension one, because it involves the interaction
of a one-dimensional manifold with a one-dimensional fold curve C in R

3. In the stan-
dard flowbox the section Σs is a parabolic cylinder with the straight line C = C(s) =
{(u, v1, v2 + s) | u = 0 and v2 = 0}, along which the flow has a quadratic tangency. This rep-
resents the generic situation inside a flowbox in the absence of cusp points on C, that is, in a
sufficiently small neighborhood of a generic quadratic tangency point; see also [38, Figure 5.1].
Note further that this unfolding reduces to the case for n = 2 of Proposition 3.2 by means of
considering the two-dimensional slice for v1 = 0. Therefore, the form of the transfer map ρI
from the in-set I to the section Σ, the transfer map ρΣ from Σ to itself, and the transfer map
ρO from Σ to the out-set O are as given in (3.4).

The more interesting possibility for n = 3 is the interaction of a two-dimensional invariant
manifold M with a two-dimensional global section near a quadratic tangency of a single orbit.
In this setting we do not consider the details of the dynamics on the part of M inside the
flowbox but simply consider M as a smooth family of one-dimensional orbit segments. We
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say that there is a codimension-one quadratic tangency bifurcation between the two surfaces
M and Σ at the point x∗ = M ∩ Σ if M ∩ I has a quadratic tangency with the projection
(along flowlines) of C onto I. As a genericity condition we require that the dependence on
the parameter is smooth and that M crosses Σ with positive speed. Note that this definition
is general and does not depend on the choice of flowbox. The two cases of the quadratic
tangency bifurcation are distinguished by whether M ∩I lies in the region to which Σ projects
or not, which we refer to as the saddle case and the minimax case, respectively.

Proposition 4.2. In any sufficiently small flowbox, the unfolding of a quadratic tangency
of a two-dimensional invariant manifold of a flow in R

3 with a global section is topologically
equivalent to the unfolding in the standard flowbox (2.7) for n = 3 given by the one-parameter
family of sections

(4.2) Σs = {(u, v1, v2 + s) | v2 = 2u2 ± 2 v2
1},

where the invariant manifold is the plane

M = {(u, v1, v2) | v2 = 0}.

The plus sign in (4.2) gives the minimax case and the minus sign the saddle case of the
bifurcation.

Proof. Suppose that the unfolding parameter of the quadratic tangency is η and the
bifurcation takes place at η = 0. In light of Corollary 4.1 we may consider a manifold M̃
in the standard flowbox with Σs(η) as given by (4.1) such that the quadratic tangency for

η = 0 takes place at the origin. Then M̃ ∩ I is (locally and for sufficiently small η) given
by a function μη : v1 → v2 on the in-set I with a single minimum or maximum. Hence, the

u-independent coordinate change (u, v1, v2) �→ (u, v1, v2 −μη(v1)− s(η)) maps M̃ to the plane

{v2 = 0}. As a result, the image Σ̃s(η) under this transformation is either a paraboloid or a
saddle surface, where s(η) is the v2-value (vertical distance) of the maximum, the minimum,
or the saddle point, respectively. Therefore, for each η there exists a v2-dependent coordinate
change of v1 that leaves the origin invariant and a v2-dependent coordinate change of u (as
in the proof of Proposition 3.1) that together bring Σ̃s(η) to the normal form given by (4.2).
Again, a rescaling of time ensures that u̇ = 1. The thus constructed η-family of coordinate
changes is continuous by the genericity assumption on η.

From a singularity theory point of view, the two cases determined by the sign in (4.2) are
the well-known transitions through a minimum or maximum (minimax for short), and through
a saddle [2, 15, 46]. In particular, these are the only two generic cases, and the unfolding given
in Proposition 4.2 applies in both cases. However, there is an additional ingredient that is
important in the present context: one also needs to consider the direction of the flow on either
side of the tangency locus C.

The minimax and the saddle cases of the quadratic tangency of Proposition 4.2 are illus-
trated in Figures 8 and 9, respectively. In these figures, the left-hand columns show the curve
M ∩ I = {v2 = 0} in the in-set I with the projection of Σs (green region) that is bounded
by the projection Ĉ of the fold curve C; any orbit in the green region intersects Σ twice in
the flowbox. The middle columns show the section Σs (green) and the manifold M (pink)
in the three-dimensional flowbox; the tangency locus C is the fold curve given by u = 0 in
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Figure 8. The minimax case of the quadratic tangency bifurcation, as described by the plus sign in (4.2),
before (a), at (b), and after (c) the bifurcation. The left column shows M ∩ I = {v2 = 0} relative to the

projection curve Ĉ that bounds the projection of Σs (green region) onto the in-set I; the symbol ➁ indicates
that there are two intersections with Σ in the green region. The middle column shows the section Σs (green)
and the planar two-dimensional manifold M (pink), and the right column shows the intersection MΣ in Σs.
The tangency locus C (gray curve) separates the regions where the flow is upward (�) and downward (⊗).
Rows (a)–(c) are for s = 0.9, s = 0.0, and s = −0.9, respectively.

both cases. The right-hand columns show the corresponding intersections MΣ (purple) in the
global section Σs. The direction of the flow through Σs is indicated: the symbol � denotes
upward flow and the symbol ⊗ downward flow (with respect to the normal to the section).
Rows (a) through (c) are before, at, and after the respective bifurcations.

The minimax transition creates a topological circle MΣ; see Figure 8(c). This circle is
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Figure 9. The saddle case of the quadratic tangency bifurcation, as described by the minus sign in (4.2),
before (a), at (b), and after (c) the bifurcation. The left column shows M ∩ I = {v2 = 0} relative to the

projection curve Ĉ that bounds the projection of Σs (green region) onto the in-set I; the symbol ➁ indicates
that there are two intersections with Σ in the green region. The middle column shows the section Σs (green)
and the planar two-dimensional manifold M (pink), and the right column shows the intersection MΣ in Σs.
The tangency locus C (gray curve) separates the regions where the flow is upward (�) and downward (⊗).
Rows (a)–(c) are for s = 0.25, s = 0.0, and s = −0.25, respectively.

divided by C into two parts: points on the left half of MΣ are mapped under the flow to the
right half of MΣ; the points on MΣ ∩C intersect Σ only once inside the flowbox. By contrast,
in the saddle transition we have that MΣ �= ∅ ∀s; see Figure 9. The intersection of M with Σs

in row (a) consists of two arcs that both cross C. Points on each arc to the left of C return to
Σs on the same arc to the right of C, namely, at the same value of v1. At the moment of the
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saddle transition in row (b) the two arcs of MΣ meet on C to form a cross. In row (c) MΣ

consists of two arcs in a different way; namely, there is an arc in the region of upward flow and
one arc in the region of downward flow; points on the left arc are mapped diffeomorphically
to the right arc.

4.1. Intersection of an invariant two-torus with a plane. As for the case n = 2 in
section 3.2, the question arises as to how the minimax and the saddle transitions in a flowbox
manifest themselves for a given three-dimensional vector field. This depends again on whether
there is a map R from the two-dimensional out-set O back to the two-dimensional in-set I.
A natural setting in which such a map may occur is that the segment M inside the flowbox
is part of an invariant two-torus T of the underlying flow. In this case, the map R leaves M
invariant, meaning that M ∩ O is mapped back to M ∩ I. When the torus is attracting, R
contracts the v2-direction of the standard flowbox.

Importantly, bifurcations of the Poincaré map on a section can be brought about either
by changes to the section or by changes to the torus itself. To show this, we consider a simple
geometric example, given by the unit circle

(4.3) Γ = {(x, y, z) ∈ R
3 | x = cos θ, y = 0, z = sin θ, where 0 ≤ θ < 2π}

in the (x, z)-plane, surrounded by a tube of radius r that forms the torus

T = {(x, y, z) ∈ R
3 | x = (1 + r cosφ) cos θ, y = r sinφ,(4.4)

z = (1 + r cosφ) sin θ, where 0 ≤ θ, φ < 2π}.

We may consider T and Γ as a geometric model of an invariant torus surrounding a periodic
orbit of an unspecified vector field, as long as T does not have self-intersections, that is, for
0 < r < 1. We now consider the family of global planar sections Σs = {(x, y, z) ∈ R

3 | z = s}.
While we are not specifying an underlying flow, we make the assumption that the tangency
locus C ⊂ Σs is given by the condition x = 0; note that this is consistent with the desired
invariance of T and Γ. For specificity we further assume that the flow is upward (�) on Σs

for x < 0 and downward (⊗) for x > 0.

The situation for r = 0.5 and s = 0.5 is shown in Figure 10(a) in (x, y, z)-space, while
panel (b) shows the invariant objects in the planar section Σs. Note that for the specific
example of T as defined by (4.4) the family of intersection curves TΣ comprises part of the
family of Cassini ovals [28]. In particular, for these values of r and s the set TΣ is a lemniscate,
which means that Figure 10 shows a saddle transition of TΣ locally near C; compare with
Figure 9. This codimension-one situation can be unfolded in two different ways, namely, either
by changing the section Σ, that is, by varying s, or by varying the radius r of the torus. In
the former case, the section moves up and down through the torus T and the periodic orbit Γ.
As is shown in the accompanying animation (69972 01.gif [8.13MB]), apart from the saddle
transition at s = 0.5, one also encounters a quadratic tangency of Γ for s = 1 and a minimax
transition of T for s = 1. On the other hand, when T0.5 remains fixed and the radius r of
T is changed, then only the saddle transition is unfolded; see the accompanying animation
(69972 02.gif [3.85MB]).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_02.gif
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Figure 10. Saddle transition in the geometric example (4.3)–(4.4) of an invariant torus T (pink) surround-
ing a periodic orbit Γ (black curve) with the planar section Σ0.5 (green) when the radius of T is r = 0.5; the
intersections TΣ = T ∩ Σs are shown in purple and Γ ∩ Σs is indicated by black dots. Along C the flow is
tangent to Σ, and the symbols � and ⊗ indicate where the flow is upward and downward, respectively. The
bifurcation unfolds when either the section or the radius r is changed, as is illustrated in the accompanying
animations (69972 01.gif [8.13MB] and 69972 02.gif [3.85MB]).

4.2. Saddle transitions in a semiconductor laser system. To demonstrate how quadratic
tangencies arise in a practical example, we consider the model of a semiconductor laser with
optical injection given by the equations

(4.5)

{
Ė = K +

(
1
2 (1 + iα)n− iω

)
E,

ṅ = −2γn− (1 + 2Bn)
(
|E|2 − 1

)
,

where E = Ex + iEy is the complex electric field and n is the population inversion. The
parameters α, B, and γ characterize the material properties of the laser, ω is the detuning,
and K the injection field strength; see [44] for further details. In this paper α = 2, B = 0.015,
γ = 0.035, and ω = 0.43 are used throughout, while K is varied.

As was done in [44], we choose the fixed global section

(4.6) Σ = {(E, n) ∈ C × R | n = −0.1}.

By numerical integration of (4.5) it can be found quite easily that, for a range of the injection
strength K around 0.1139, the Poincaré map on Σ shows attracting invariant curves surround-
ing points of an unstable period-six orbit {γ0, . . . γ5}; see Figure 11. As can be seen from the
panels of this figure, the number of invariant curves, labeled TΣ, changes with K.

One might be tempted to think that the change in the number of invariant curves is due to
a bifurcation of the vector field (4.5), but this is not the case. Instead, there are several saddle
transitions involving an underlying attracting invariant torus T; see Figure 12. The torus T

has been obtained by integrating from a suitable initial condition (after omitting transients),
because the dynamics on it appears to be quasi-periodic (or of very high period); Figure 12
shows T (mauve) computed as a single orbit over 60,000 time steps of size 0.01; the repelling

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_02.gif
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Figure 11. The Poincaré map of (4.5) in the fixed section Σ defined by (4.6) has a number of attracting
invariant curves, labeled TΣ, that surround points of an unstable period-six orbit ΓΣ = {γ0, . . . γ5}. The number
of invariant curves in TΣ depends on the value of the injection strength K. Also shown is the circular tangency
locus C given by (4.7) that divides Σ into two regions with upward (�) and downward (⊗) flow. From (a)–(d)
K takes the values 0.1139, 0.11392468, 0.1139281, and 0.11395; compare with Figure 12.

periodic orbit Γ inside T is also shown; it was found as a fixed point of the sixth return map
to the section Σ. Indeed, as is shown in Figure 12, there are exactly six intersections of Γ
(black) and Σ (green).

To compare with the theory, note that the flow of (4.5) is tangent to Σ along the tangency
locus

(4.7) C =
{

(E, n) ∈ Σ | |E|2 = Δ(−0.1)
}
,

where

(4.8) Δ(n) := 1 − 2γn

1 + 2Bn
.

Hence, C is a circle in Σ that is centered at (0, 0,−0.1) with radius
√

Δ(n) ≈ 1.0035 for
the given system parameters. We conclude from (4.5) that the flow points in the positive
n-direction (�) inside C and in the negative n-direction (⊗) outside C.
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Figure 12. The sets TΣ and ΓΣ in Figure 11 of the Poincaré map of (4.5) on the section Σ defined by
(4.6) are intersections of an attracting invariant torus T and a repelling periodic orbit Γ of the flow. Also
shown is the circular tangency locus C given by (4.7) that divides Σ into two regions with upward (�) and
downward (⊗) flow. From (a)–(d) K takes the values 0.1139, 0.11392468, 0.1139281, and 0.11395.

In Figures 11 and 12 the parameter K is varied from (a) to (d) with the same values
being used in the corresponding panels of the two figures. In panel (a) the intersection TΣ

consists of six disjoint invariant circles, each surrounding an intersection point γi. Under the
first return map P on Σ each invariant circle is mapped to another invariant circle in TΣ.
Note that a circle outside C is mapped to one inside C, and vice versa. Panels (b) of Figures
11 and 12 show the first saddle transition, where the invariant circles around γ0 and γ1 join
to form a single invariant circle; locally the situation is topologically equivalent to Figures 10
and 9(b). While each component of TΣ in Figure 11(a) maps to itself under the sixth return of
P , this is no longer true after the saddle transition in Figure 11(b). After the bifurcation, as
shown in Figure 11(c), the part inside C of the large component of TΣ that surrounds γ0 and
γ1 is mapped under P to the part of the same component that lies outside C. On the other
hand, the outside part of this component is mapped under P 5 back to the inside part. Note
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that panels (c) of Figures 11 and 12 also show the next saddle transition of the two invariant
circles surrounding γ3 and γ4. Panels (d) of Figures 11 and 12 show the situation after the
second saddle transition with the set of four circles in Σ that is invariant under P ; two of the
invariant circles now surround a pair of points of ΓΣ.

As can be seen from the three-dimensional images of Figure 12, the invariant torus T

does not appear to undergo any bifurcations (meaning that it remains a normally hyperbolic
invariant manifold). The topological changes of the invariant set TΣ of the Poincaré map
shown in Figure 11 are entirely due to the fact that the torus changes its “thickness” with the
injection strength K, which leads to saddle transitions. This is exactly the mechanism that
was discussed with the simple geometric example in section 4.1 and in animation (69972 02.gif
[3.85MB]).

5. Cubic tangency bifurcation in three-dimensional flows. In this section we discuss
a different and final codimension-one tangency bifurcation of a two-dimensional invariant
manifold of a three-dimensional flow. We identify and characterize this bifurcation in a planar
section of the semiconductor laser system (4.5) in the next section. We then discuss the
geometry with a simpler geometric model in section 5.2 and finally derive the normal form in
section 5.3.

However, first we introduce a new geometric object—the extended critical locus denoted
C—to help understand the geometry of the flow. Suppose that we have as part of the setup
a one-parameter family Σs of sections such that the bifurcation occurs at x∗ ∈ Σs∗ . (If, as
in the laser system, we are starting with only a single section Σ, then we define the family
Σs in a natural way by moving it in the direction of the unit normal vector �nΣ(x), formally
Σs = {x + s�nΣ(x) | x ∈ Σ} and Σ = Σs∗ ; note that for sufficiently small s each Σs is a global
section in the sense of (2.4).) The extended critical locus C is now defined as the union of the
critical tangency loci C(s) of the sections Σs, that is,

(5.1) C =
⋃
s

C(s).

We assume here that the dependence of Σs on s is smooth so that C is a smooth codimension-
one submanifold of the phase space R

n. Therefore, C is of the same dimension as the section
Σ (i.e., it is a surface for n = 3), and C ∩ Σ = C. Generically, the extended critical locus is
transverse to Σs, and, hence, knowing properties of the flow through C gives new geometric
insight. We define the tangency locus D on C by

(5.2) D := {x ∈ C | f(x) · �nC(x) = 0} ,

where �nC(x) is the unit normal to C at the point x. As with C on Σ the tangency locus D
generically consists of codimension-one submanifolds (i.e., curves for n = 3) that divide C into
regions with opposite directions of the flow.

5.1. Cubic tangency bifurcation in the semiconductor laser system. When the param-
eter K of the semiconductor laser system equation (4.5) is increased to values beyond those
shown in Figure 11, then one encounters the codimension-one bifurcation of the invariant
torus T that is illustrated in Figures 13 and 14.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_02.gif
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Figure 13. Panel (a) shows the invariant torus T (mauve) of (4.5) at the moment of the cubic tangency
bifurcation at x∗ ≈ (0.44162, 0.90111,−0.1) for K ≈ 0.1140145; compare with Figure 14(b). Also shown are
the section Σ (green), the extended critical locus C (gray), and the respective intersection curves with T. A
segment of the orbit O(x∗) (magenta curve) is shown in panel (b) in the (θ, n)-plane and in panel (c) in the
(|E|, n)-plane (where E = |E|eiθ); notice the large difference in scales between n and θ in panel (b).

Figure 13(a) is a three-dimensional image of the surfaces T, Σ, and C at the moment of
bifurcation for K ≈ 0.1140145. The extended tangency locus C was computed by considering
the family of sections

Σs = {(E, n) ∈ C × R | n = s},

where Σ = Σs∗ for s∗ = −0.1. It follows from (4.7) and (4.8) that

(5.3) C =
{

(E, n) ∈ C × R | |E|2 = Δ(n)
}
,

which is a cone. Furthermore, we find that

(5.4) D =

{
(E, n) ∈ C | Ex = − n

2K
Δ(n), Ey =

√
Δ(n) − n2

4K2
Δ(n)2

}
,

where n is chosen such that Ey ∈ R, that is, |n| ≤ 2k/
√

Δ(n). The cone C is the gray surface
in Figure 13(a) that is divided by D (closed white curve) into two parts. The flow points from
the inside of C to the outside above D and from the outside of C to the inside below D.

At the moment of bifurcation, illustrated in Figure 13, the torus T crosses the section Σ
at the intersection point x∗ ∈ C ∩ D of C and D. Therefore, TΣ is tangent to C in Σ and
TC is tangent to C in C; see row (b) of Figure 14. Figure 13(a) shows a relevant segment of
O(x∗) (magenta curve). Notice that this orbit segment remains very close to Σ and that it is
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Figure 14. Cubic tangency bifurcation for (4.5). The three rows show the situation before, at, and after
the bifurcation. The left column shows the interaction of TΣ with C in Σ, and the right column the interaction
of TC with D in C; the subpanels show enlargements near the tangency points in Σ (green subpanel) and C

(gray subpanel) in the indicated regions. Rows (a)–(c) are for K = 0.1140105, 0.1140145, and 0.1140185,
respectively; compare with Figure 13(a).

very difficult to judge its position relative to other flow lines. Therefore, Figure 13(b) and (c)
show the orbit through x∗ in the radial and angular projections of E = |E|eiθ, that is, in the
(θ, n)-plane and in the (|E|, n)-plane, respectively. In these projections one can clearly see the
determining property of this orbit: it has a cubic tangency with the section Σ at x∗, which is
why we refer to this bifurcation as the codimension-one cubic tangency bifurcation.
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What happens when one moves through the cubic tangency bifurcation for K ≈ 0.1140145
is illustrated in Figure 14, where the green panels on the left show TΣ in Σ and the gray panels
on the left show TC in C. Note that C has been “unrolled” and is shown in the (θ, n)-plane.
Also shown are enlargements near the bifurcation point in Σ (green subpanel) and in C (gray
subpanel), respectively; here TΣ is plotted relative to the curve C, which appears as a straight
line in the green subpanels. As is shown in the left column of Figure 14 and the associated
green subpanels, the curve TΣ moves relative to the curve C in the section Σ. At the same
time we see in the right column of Figure 14 and the associated gray subpanels that TC moves
relative to the curve C = Σ ∩ C in the extended tangency locus C. In Figure 14(a) there are
two intersections between TΣ and C and two between TC and C. Points on the part of TΣ

around γ5 that lie outside C return to points on one of two separate arcs of TΣ, namely, the
large arc inside C near γ0 or the small piece between the two intersection points with C that
is shown in the enlarged area of the section. Figure 14(b) is at the moment of cubic tangency
bifurcation when the invariant manifold TΣ has a quadratic tangency with the tangency locus
C at the point x∗. At the same time TC has a quadratic tangency with C at x∗. Even though
this bifurcation of the Poincaré map does not change the invariant curve TΣ, it does make a
difference to the dynamics on the global section, because it changes the number of segments
of TΣ on either side of the tangency locus C. After the bifurcation, TΣ and TC no longer
intersect C; see Figure 14(c). This means that now the part of TΣ around γ5 that lies outside
C returns to a single arc of TΣ inside C.

It is generally quite difficult to find orbits with cubic tangencies with a section. Therefore,
the insight that a cubic tangency bifurcation takes place when a two-dimensional invariant
manifold T passes through a point in C ∩ D is very useful from a practical point of view
(even though this is only a necessary and not a sufficient condition). Namely, the set C ∩D
consists generically of isolated points that can be calculated analytically. In particular, a
cubic tangency bifurcation can occur only when C ∩ D �= ∅. One readily computes that for
|n| ≤ 2k/

√
Δ(n) the curves D and C intersect in two points, which are given by

C ∩D =

(
0.1

2K
Δ(n), ±

√
Δ(n) − 0.01

4K2
Δ(n)2, −0.1

)
(5.5)

≈
(

0.05035

K
, ±1

2

√
4.02808 − 0.01014

K2
, −0.1

)

for the fixed values α = 2, B = 0.015, γ = 0.035, and ω = 0.43 used here, and for s =
s∗ = −0.1. Indeed, for Σ−0.1 there are exactly two points in C ∩ D. At the bifurcation
for K ≈ 0.1140145 we have C ∩ D ≈ {(0.44162,±0.90111,−0.1)}, and T crosses the point
x∗ ≈ (0.44162, 0.90111,−0.1); see Figures 13(a) and 14.

We finally remark that C ≡ D is not generic in our context, but it occurs stably in
Hamiltonian vector fields. In fact, this geometric situation was identified (but not in terms
of C and D) by Birkhoff [3] as the one that allows the construction of a complete Poincaré
section. Namely, for C ≡ D the curve C ⊆ Σ is invariant under the flow and orbits are
spiraling around C.
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5.2. A helical tube with a cubic tangency bifurcation. To get geometric insight into
how a cubic tangency bifurcation can be “straightened out” to a normal form in the standard
flowbox, we now consider a concrete geometric model of a simplified curved flow. To this end,
we consider the family of sections

(5.6) Σs = {(x, y, z) ∈ R
3 | z = s}

in R
3, where we further assume that the flow is such that

(5.7) C = C(s) = {(x, y, s) ∈ Σ0 | y = 0}

so that the flow points up for y > 0 and down for y < 0. Therefore,

(5.8) C = {(x, y, z) ∈ R
3 | y = 0}.

To specify the flow further, we consider a helix Γ of radius 1 in R
3 given by

(5.9) Γ = Γ(θ) = {(x, y, z) ∈ R
3 | x = θ, y = cos θ, z = sin θ},

with period 2π as parameterized by θ ∈ R. We assume that the flow leaves Γ invariant. Notice
that Γ spirals around C and intersects Σ in infinitely many points for |s| < 1.

The next step of the construction is to consider a one-parameter family of invariant tubes
around Γ. To obtain a generic situation, the radius (around the respective points of Γ) of
the tube must vary with the angular parameter θ. We consider here a standard tube that
consists of circles of radius k r(θ) that lie in the plane spanned by the normal N(θ) and the
binormal B(θ) of Γ at x = θ. The parameter k is the “gross radius” in the sense that changing
k changes the size of the tube but not its shape, which is given by r(θ); note that k plays the
same role geometrically as the injection strength K in the laser system (4.5). We assume that
r(θ) does not have extra periodicity or symmetries. Furthermore, r(θ) is such that there are
no self-intersections or other bifurcations such as saddle transitions too near the bifurcation
point. A function r(θ) that satisfies all conditions and the resulting formula of T can be found
in Appendix A.

The helix Γ and the tube T are shown in Figure 15 for three different values of k. Also
shown are the section Σ = Σ−0.1804 = {(x, y, z) ∈ R

3 | z = −0.1804} and the extended critical
locus C. The value s = −0.1804 for the height of the section Σ was determined so that there is
a cubic tangency bifurcation for the fixed value k = 0.2; namely, it occurs at θ = 6.94193. The
intersection curves TΣ and TC in Σ and C, respectively, are shown in Figure 16. In Figures
15 and 16 the rows (a)–(c) show the situation before, at, and after the bifurcation. Figures
15 and 16 also show the critical locus D of C. Since we do not specify an underlying flow, the
curve D must also be constructed in a consistent way. In particular, D must go through the
point of cubic tangency and be consistent with the positions of TC. These requirements are
met by D as defined in Appendix A, where the flow through C is in the direction of negative
y above D and in the direction of positive y below D.

As can be seen from Figures 15 and 16, the planes Σ and C, the tangency locus D, and
the invariant objects Γ and T form a consistent geometrical model for the cubic tangency
bifurcation. By consistency we mean here that the conditions we place on the unspecified
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Figure 15. Geometrical model of a cubic tangency bifurcation, consisting of a helical orbit Γ surrounded by
a tube T of varying radius that spirals around the tangency locus C of a section Σ; also shown is the extended
critical locus C. Panels (a)–(c) are before, at, and after the bifurcation, namely, for k = 0.19, 0.2, and 0.21,
while the section is given by z = −0.1804; see also Figure 16.
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Figure 16. The geometrical model of a cubic tangency bifurcation shown in the section Σ (left column) and
in the plane C (right column). Panels (a)–(c) are before, at, and after the bifurcation, namely, for k = 0.19,
0.2, and 0.21; see also Figure 15.

flow during the geometric construction are such that they can be realized by an actual flow;
compare with Figure 14. As for the laser system in section 5.1, the bifurcation is unfolded
by changing the gross radius of the invariant manifold T, as specified by the parameter k
in (A.1). (Note that the cubic tangency bifurcation could also be unfolded by moving the
section, that is, by changing the parameter s in (5.6).) The key feature in the section Σ is
the single closed component TΣ that surrounds three points γ1, γ2, γ3 ∈ ΓΣ; see Figure 16
(left column). Before the bifurcation the closed component of TΣ has four intersections with
C; at the cubic tangency bifurcation the two innermost of them come together to a single
point; and after the bifurcation there are only two intersection points (which is the minimal
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number for a component of TΣ that surrounds three points of ΓΣ). In the plane C the object
of interest is the single closed component TC that surrounds only two points γ1, γ2 ∈ ΓC;
see Figure 16 (right column). Before the bifurcation the closed component of TC has four
intersections with Σ ∩ C (note that the situation in row (a) is close to a saddle transition),
at the cubic tangency bifurcation the two innermost of them come together to a single point,
and after the bifurcation there are only two intersection points (which is again the minimal
number for a component of TC that surrounds two points of ΓC).

5.3. Normal form of the cubic tangency bifurcation. To obtain the normal form of the
cubic tangency bifurcation in a three-dimensional flowbox we consider a small neighborhood of
the bifurcation in phase space. The idea is then to “untwist” the helical structure of the flow,
which means that the section Σ and the extended critical locus C deform to smooth surfaces.
The key realization is that, owing to the cubic tangency of the orbit involved, in the normal
form one needs to consider a section Σ that has a cusp singularity when projected along the
orbits onto the in-set I (or the out-set O). The result in the absence of an invariant manifold
was proved by Sotomayor and Teixeira [38, Figure 5.2] in the context of vector fields on a
three-dimensional manifold with a codimension-one boundary. It can be phrased as follows in
the present context.

Proposition 5.1. In any sufficiently small flowbox the phase portrait near a cubic tangency
of an orbit of a flow in R

3 with a global section is topologically equivalent to the phase portrait
in the standard flowbox (2.7) for n = 3 given by the section

(5.10) Σ = {(u, v1, v2) ∈ R
3 | v1 u− u3 + v2 = 0}.

In order to understand the geometry of the flow in the standard flowbox and to help make
the link with the previous sections, we now construct the extended tangency locus C. Since
�nΣ((0, 0, 0)) = (0, 0, 1), we embed the section Σ of (5.10) into the one-parameter family of
sections

(5.11) Σs = {(u, v1, v2 + s) ∈ R
3 | v1 u− u3 + v2 = 0}

so that Σ = Σ0. One readily finds that the tangency locus of Σs is

(5.12) C = C(s) = {(u, v1, v2 + s) ∈ Σs | v1 = 3u2, v2 = −2u3}.

The projection Ĉ of C onto the in-set I along the u-direction (the direction of the flow) has
two branches that meet at a cusp point at (v1, v2) = (0, s) ∈ I. It follows that the extended
critical locus C of the family Σs is the parabolic surface

(5.13) C = {(u, v1, v2) ∈ R
3 | v1 = 3u2}.

Furthermore, the flow is tangent to C along the tangency locus

D = {(u, v1, v2) ∈ C | u = 0, v1 = 0},

where the flow is directed into the parabolic cylinder bounded by C for u < 0 and out of the
parabolic cylinder for u > 0.
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Figure 17. Panel (a) depicts the cuspidal section Σ = Σ0 (green) of (5.11) and the extended critical locus
C inside the standard flowbox. Panel (b) shows the projection of C and Σ onto the in-set I; the symbols ➀

and ➂ indicate the regions with one and three intersections with Σ, respectively. Panel (c) shows the curve C
in Σ, and panel (d) the curves C and D. The direction of the flow is indicated by the symbols � and ⊗.

Figure 17(a) shows the section Σ = Σ0 and the extended critical locus C inside the standard
flowbox. Figures 17(b)–(d) show respective images on I, Σ, and C. The projection curve Ĉ
divides the in-set I into two regions, labeled ➀ and ➂ in Figure 17(b). Any orbit starting inside
region ➂ of I has three intersections with Σ while it “winds around” the curve C in (u, v1, v2)-
space. (Rather, in the flowbox C winds around the straight orbit segment.) Similarly, orbits
starting in region ➀ intersect Σ only once. Moreover, any orbit with v1 > 0 intersects the
parabolic surface C twice; compare with Figure 17(d). In other words, the geometry shown
in Figure 17 is indeed topologically equivalent to that near a cubic tangency as discussed in
sections 5.1 and 5.2.

We now present the normal form of the cubic tangency bifurcation. This bifurcation is
of codimension one under the genericity conditions that the invariant manifold is in general
position with respect to the section Σ at the moment of cubic tangency, the dependence on



746 C. LEE, P. COLLINS, B. KRAUSKOPF, AND H. OSINGA

the parameter is smooth, and the manifold crosses the section with positive speed.

Proposition 5.2. In any sufficiently small flowbox, the unfolding of a cubic tangency of
a two-dimensional invariant manifold of a flow in R

3 with a global section is topologically
equivalent to the unfolding in the standard flowbox (2.7) for n = 3 given by the one-parameter
family of sections defined in (5.11), where the invariant manifold is the plane

(5.14) M = {(u, v1, v2) | v1 = −v2}.

Proof. Suppose that the unfolding parameter of the quadratic tangency is η and the
bifurcation takes place for η = 0. According to Proposition 5.1, any phase portrait of the
unfolding in a flowbox near the cubic tangency point is topologically equivalent to that given
by Σ = Σ0 in the standard flowbox (2.7) for n = 3. Therefore, the invariant manifold is

mapped to a surface M̃(η). The curve M̃(η) ∩ I is (locally and for sufficiently small η) given

by a function μη : v1 → v2 on the in-set I. Since M̃(0) is in general position, we have that
dμ
dη (0) �= 0, meaning that the tangent vector to M̃(0) ∩ I at the origin (v1, v2) = (0, 0) ∈ I

has both a v1- and a v2-component. Due to continuity on η, the same is true for M̃(η) ∩ I

for sufficiently small η. Therefore, the curve M̃(η)∩ I is locally a graph over the antidiagonal
(v1,−v1) of I, and it intersects the v2-axis of I at a well-defined height μη(0) = s(η), where
s(0) = 0. The u-independent coordinate change

(v1, v2) �→ (v1, v2 − v1 − μ(v1))

maps M̃(η) to M as given by (5.14). Due to genericity of the dependence of M̃ on η, we have
that dμ

dη (0) = ds
dη �= 0, which implies that the image Σ̃(η) of Σ under this coordinate change is

a surface with a generic cusp at (u, v1, v2) = (0, 0,−s(η)). As in the proof of Proposition 4.2,
the surface Σ̃(η) can be brought to the required form (5.11) by a u-independent coordinate
change that leaves M invariant. The overall η-family of coordinate changes is continuous by
the genericity assumption on η.

The important realization is that the manifold M of the normal form in the standard
flowbox needs to be in general position relative to the cusp surface, which means that it
must have nonnegative components in both the v1- and the v2-directions. This is ensured by
the choice of the “diagonal” manifold M defined in (5.14). Note that a horizontal manifold
(given by v2 = 0) would always intersect the curve C in exactly one point, while a vertical
manifold (given by v1 = 0) would always intersect C at the cusp point. Both situations are
not generic. Furthermore, for generic M as given in the normal form by (5.14), the cubic
tangency bifurcation can alternatively be unfolded by moving the manifold M up and down.
This is exactly the mechanism leading to a cubic tangency of an invariant torus when its gross
radius changes as in sections 5.1 and 5.2.

In Figure 18 the unfolding given by Proposition 5.2 is presented in (u, v1, v2)-space, and
in Figure 19 on the in-set I, the section Σs, and the extended critical locus C; see also
the accompanying animation (69972 03.gif [21.3MB]). Before the cubic tangency bifurcation,
the invariant manifold MΣ in Σs has two intersections with the curve C. Similarly, the
intersection curve MC in C intersects C twice. At the moment of bifurcation both MΣ and
MC have quadratic tangencies with C in Σs and C, respectively. Notice that these tangencies

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_03.gif
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Figure 18. Unfolding of the cubic tangency bifurcation in normal form in the standard flowbox, presented
from two different viewpoints. Rows (a)–(c) show the invariant manifold M (purple), the section Σs (green),
and the extended critical locus C (gray) before, at, and after the bifurcation. Also shown are the tangency loci C
and D. From (a)–(c) s = −0.5, s = 0, and s = 0.5; see also Figure 19 and animation (69972 03.gif [21.3MB]).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_03.gif
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Figure 19. Unfolding of the cubic tangency bifurcation projected onto the in-set I (left column), on the
section Σs (middle column), and on the extended critical locus C (right column); compare with Figure 17. From
(a)–(c) s = −0.5, s = 0, and s = 0.5; see also Figure 18 and animation (69972 03.gif [21.3MB]).

indeed occur at the point C ∩D as noted previously. After the bifurcation, neither MΣ nor
MC intersect C. The comparison of Figure 19 with the corresponding Figure 14 of a cubic
tangency bifurcation in the semiconductor laser system (4.5) demonstrates how the unfolding
manifests itself in a concrete example.

6. Tangency bifurcations in higher dimension and of higher codimension. The unfold-
ings in the previous sections of the codimension-one tangency bifurcations of a manifold M
with a global section Σ of flows in R

2 and R
3 give only a hint of the many possibilities for

tangency bifurcations of a fixed codimension in R
n for any n. The key realization is that

there are two “sources” of codimension: the order of contact with Σ of the orbit O(x∗) of the
tangency point x∗ and possible codimension associated with tangencies of M and Σ at x∗ in
other directions. The first example of a tangency bifurcation with both types of tangencies is
the codimension-one quadratic tangency in R

3 in section 4.
Classifying and unfolding tangency bifurcations of higher codimension and for n > 3 is

beyond the scope of this paper. However, we now give a general framework for this task, which

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/69972_03.gif
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is based on a more detailed consideration of the intersection of the tangent spaces TM (x∗)
and TΣ(x∗).

Definition 6.1. Let M be an invariant manifold of dimension � of a vector field f on R
n

with a given planar (n−1)-dimensional global section Σ. Suppose that the following conditions
are satisfied:

(B1) There is a point x∗ ∈ M ∩Σ such that the orbit O(x∗) has a tangency of degree d ∈ N

with Σ at x∗, where we assume that the tangency is at least quadratic, that is, d ≥ 2.
(B2) The dimension of the orthogonal complement N of f(x∗) in TM (x∗) ∩ TΣ(x∗) is p.
(B3) The point x∗ is a critical point of codimension q of the restriction ϑ|N to N of the

local chart ϑ : TM (x∗) → R
n of the manifold M at x∗.

Then we say that M and Σ have a d-tangency with singularity dimension p and singularity
codimension q at x∗ (or d-p-q-tangency for short).

The singularity codimension q is defined only for p > 0, meaning that p = 0 if and only
if q = 0. Furthermore, by construction of N there must be a tangency (quadratic or of
higher degree) along each of the base vectors of N so that q ≥ p. From the data specified in
Definition 6.1 one can determine the overall codimension.

Proposition 6.2. The codimension c of a d-p-q-tangency of an �-dimensional invariant man-
ifold M ⊂ R

n with a global section is c = d + q − �, where p < � < n.

Proof. For M and Σ in general position, dim(Σ ∩M) = � − 1, independently of n. Fur-
thermore, by (B1) and (B3) the point x∗ is a critical point of codimension (d− 1) + q of the
restriction of the chart ϑ to f(x∗)⊕N = TM (x∗)∩TΣ(x∗). Therefore, the codimension of the
bifurcation is c = (d− 1) + q − (l − 1).

Proposition 6.2 has some interesting immediate consequences. First, it shows that we
indeed presented all codimension-one d-p-q-tangency bifurcations for n ≤ 3; namely,

1. the 2-0-0-tangency for � = 1 is the quadratic tangency of a one-dimensional manifold
in R

2 and in R
3 of Proposition 3.2 and Corollary 4.1, respectively;

2. the 2-1-1-tangency for � = 2 is the quadratic tangency of a two-dimensional manifold
in R

3 of Proposition 4.2; and
3. the 3-0-0-tangency for n = 3 and � = 2 is the cubic tangency of a two-dimensional

manifold in R
3 of Proposition 5.2.

Similarly, we can list all codimension-two tangency bifurcations for n ≤ 3, which are as follows:

1. the 3-0-0-tangency for � = 1 is the cubic tangency of a one-dimensional manifold in
R

2 and in R
3;

2. the 2-1-2-tangency for � = 2 is the quadratic tangency of a two-dimensional manifold
with a cubic tangency in the one-dimensional N -direction;

3. the 3-1-1-tangency for � = 2 is the cubic tangency of a two-dimensional manifold with
a quadratic tangency in the one-dimensional N -direction; and

4. the 4-0-0-tangency for � = 2 is a tangency of order four of an orbit on a two-dimensional
manifold.

An important new element of codimension-two tangency bifurcations is that they cannot be
unfolded solely by moving the section Σ (because Σ is of codimension one in R

n). Of the
cases above, only the unfolding for � = 1, that is, the codimension-two cubic 3-0-0-tangency,
is straightforward.

Proposition 6.3. In any sufficiently small flowbox, the unfolding of a cubic tangency of
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a one-dimensional invariant manifold of a flow in R
3 with a global section is topologically

equivalent to the unfolding in the standard flowbox (2.7) for n = 3 given by the one-parameter
family of sections (5.11) that interacts with the one-parameter family of manifolds

M = {(u, v1, v2) | v1 = λ and v2 = 0}.

This result follows from Proposition 5.1 in the same way that Proposition 3.2 follows from
Proposition 3.1, namely, by the construction of a parameter-dependent coordinate change.
Proposition 6.3 says that the unfolding of the codimension-two cubic tangency of a one-
dimensional manifold in R

3 (and, therefore, in all dimensions n ≥ 2 and including n = 2) is
given by the standard unfolding of a cusp bifurcation. Namely, the phase portrait is deter-
mined by the relative position of the point MI = (0, λ) in the in-set I relative to projection
Ĉ(s) of the fold curve; see Figure 17. Crossing one of the two branches of Ĉ(s) corresponds to
a codimension-one quadratic tangency that unfolds as given by Corollary 4.1. At the central
codimension-two point the manifold passes exactly through the cusp point in I.

Suppose now that M is actually a segment of a periodic orbit Γ, meaning that there is a
map R from the out-set O back to the in-set I that leaves M invariant. Then the number of
intersections of Γ with Σ changes by two when Γ crosses C, even if this happens at the cusp
point.

7. Conclusions and discussion. We considered the class of tangency bifurcations, which
are bifurcations that one finds generically in global Poincaré maps but that are not due to
bifurcations of the underlying vector field. Tangency bifurcations involve the interaction of
an invariant manifold with the tangency locus of the section, which is nonempty unless the
system is effectively periodically forced. Specifically, we presented a complete treatment of
codimension-one tangency bifurcations of flows in R

2 and R
3, that is, for one-dimensional and

two-dimensional global sections. We presented their normal forms in the standard flowbox
by specifying suitable families of curved smooth sections that interact with straight invari-
ant manifolds of appropriate dimension. Our approach is similar in spirit to that taken by
Sotomayor and Teixeira, who considered flows on manifolds with one- and two-dimensional
boundaries. The additional ingredients needed here are further coordinate transformations
to “straighten out” the invariant manifold but such that the flowlines in the flowbox remain
unchanged.

With the examples of the two-dimensional unforced Van der Pol oscillator and a three-
dimensional model of a semiconductor laser with optical injection, we demonstrated how the
codimension-one tangency bifurcations manifest themselves in a specific vector field. Namely,
we studied the interactions of periodic orbits and invariant tori with the tangency locus of a
given planar section. As is the case generically, the respective bifurcations of the Poincaré map
can be brought about by either changing some system parameter or moving the section. The
quadratic tangencies of one- or two-dimensional invariant manifolds with a planar section could
be associated with the respective normal forms in the flowbox in a relatively straightforward
manner. In the case of a cubic tangency, on the other hand, the operation of “straightening
out” the flow to obtain the normal form in the flowbox is quite complicated. Therefore, a
simplified geometric model at an intermediate step was constructed to help understand the
normal-form transformation geometrically.
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As we have shown for the concrete example of an attracting periodic orbit, a tangency
bifurcation may give rise to a global topological change of the corresponding Poincaré map.
Here, the properties of the map from the out-set back to the in-set become important. Sim-
ilarly, one can study the consequences of tangency bifurcations of two-dimensional Poincaré
maps in three-dimensional vector fields. However, there are more possibilities for the map
from the out-set back to the in-set, because it is now two-dimensional as well. One example
would be that the map has a repelling fixed point surrounded by an invariant curve, which
would correspond to the case that the invariant manifold inside the flowbox is part of an
invariant torus. Section 4.1 hints at bifurcations of the two-dimensional Poincaré map in the
case that the flow on the torus is rational or irrational. However, the situation may be quite
complicated if there are equilibria on the smooth torus. The classical example is the Cherry
flow [8, 23], which gives rise to discontinuity of the Poincaré map on the invariant curve; in
fact, the points where all iterates of this Poincaré map are defined form a Cantor set. A
discussion of topological changes of two-dimensional Poincaré maps is left for future work.

The unfoldings presented here were shown to fit naturally into a general framework for
the classification of tangency bifurcations of arbitrary codimension. The general idea is that
a tangency of degree d ≥ 2 of an orbit on the manifold is accompanied by other possible
tangencies of the manifold in the directions normal to this orbit. This point of view provides
a clear direction for the future study of tangency bifurcations in higher-dimensional spaces
and of higher codimension. We already listed the codimension-two tangency bifurcations of
a two-dimensional manifold in R

3, and the construction of their unfoldings is an interesting
challenge. Another important next step and the subject of our ongoing research is the study of
tangency bifurcations in R

4. This study starts with the tangency bifurcations of codimension
one, as they are encountered naturally when a single parameter of the vector field is changed,
or the section is moved. The normal forms that need to be developed involve intersections
of hypersurfaces in R

4, which is very hard to imagine and visualize. This difficulty can be
overcome by considering the corresponding surfaces in the three-dimensional in-set of the flow
box. Note that it will be a real challenge to identify and visualize tangency bifurcations in
three-dimensional sections in concrete vector fields arising from applications.

Another topic of ongoing research is the classification of different mechanisms in which
points or regions are created in the global section for which the flow never returns back to the
section. In other words, the issue is to find bifurcations that create new sets of the section
where the Poincaré map is not defined. As we already demonstrated in section 3.3, such
bifurcations may be due to interactions between the global section and stable and unstable
manifolds of equilibria and other invariant sets that do not lie in the section. Already for the
case of three-dimensional flows, the study of these bifurcations in applications requires the use
of numerical techniques for the computation of two-dimensional global invariant manifolds,
such as those in [13, 24, 25].

Appendix A. Details of the helical tube construction. A standard tube of radius k r(θ)
around the helix (5.9) is given by

(A.1) T = {Γ(θ) + k r(θ) (N(θ) cosφ + B(θ) sinφ) for θ ∈ R, 0 ≤ φ < 2π} ,

where N(θ) is the normal and B(θ) the binormal at x = θ. From (5.9) it follows that the
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tangent, normal, and binormal are

T =

(
1√
2
,−sin θ√

2
,
cos θ√

2

)
, N = (0, cos θ, sin θ) , B =

(
1√
2
,
sin θ√

2
,−cos θ√

2

)
.

Therefore, the helical tube (A.1) takes the form

T =

{
(x, y, z) ∈ R

3 | x = θ + k r(θ)
sinφ√

2
, y = cos θ + k r(θ)

(
cos θ cosφ +

sin θ sinφ√
2

)
,

z = sin θ + k r(θ)

(
sin θ cosφ− cos θ sinφ√

2

)
for θ ∈ R, 0 ≤ φ < 2π

}
.

A function r(θ) that satisfies the requirements mentioned in section 5.2 is

r (θ) =

(
sin2 θ −

(
2θ − 3π

2π

)2

− 1

2

(
4θ − 14π

7π

)2

+
4

5
exp

(
11π

4
− θ

)
+ 6

)
.

For K = 0.2 we find a cubic tangency bifurcation with the plane Σ = Σ−0.1804 at x∗ ≈
(6.94193, 0,−0.1804) ∈ C ⊂ Σ. The curve D ⊂ C can now be constructed by observing the
condition that it goes through x∗ and is in general position with respect to the components
of TC. The definition

D = D(θ) =

{
(θ, 0, z) ∈ C | z = −0.64 sin

(
16θπ2 − 111.0709π2

−0.34 (2θ − 3π)2 + 22.4π2

)
+ 0.1804

}

meets these requirements, as can be seen from Figure 16. Note that the choice of r(θ) and
D are by no means unique. The formulae presented here are indeed quite involved, but they
allow one to compute all objects of interest while being consistent with the existence of an
underlying flow.
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Poincaré sections, J. Phys. A, 29 (1996), pp. 4977–4985.

[5] C. Bonatti and M. A. Teixeira, Topological equivalence of diffeomorphisms and curves, J. Differential
Equations, 118 (1995), pp. 371–379.

[6] H. W. Broer, I. Hoveijn, M. van Noort, C. Simó, and G. Vegter, The parametrically forced
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[11] H. R. Dullin and A. Wittek, Complete Poincaré sections and tangent sets, J. Phys. A, 28 (1995), pp.
7157–7180.

[12] J. P. England, B. Krauskopf, and H. M. Osinga, Bifurcations of stable sets in noninvertible planar
maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), pp. 891–904.

[13] J. P. England, B. Krauskopf, and H. M. Osinga, Computing one-dimensional global manifolds of
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Synchronous Chaos in Coupled Map Lattices with General Connectivity Topology∗

Jonq Juang† and Yu-Hao Liang†

Abstract. The purpose of the paper is to address the synchronous chaos in coupled map lattices with general
connectivity topology. Our main results contain the following. First, the master stability functions
also hold for general connectivity topology with coupling through a nonlinear function that needs
to be exactly the individual chaotic map. Second, the synchronization curve, composed of pieces of
transverse Lyapunov exponent curves, is constructed. Third, necessary and sufficient conditions on
coupling strength for yielding the synchronous chaos of the system are given. Moreover, the coupling
strength dc giving the fastest convergence rate of the initial values toward the synchronous state
is explicitly obtained. It is also proved that such dc is independent of the choice of the individual
map. Finally, our results here can be applied to address questions of wavelength bifurcations and
size instability.

Key words. stable synchronization, Lyapunov exponents, wavelength bifurcation, coupled map lattices
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1. Introduction. A particularly interesting form of dynamical behavior occurs in networks
of coupled systems or oscillators when all of the individual systems or oscillators acquire
identical chaotic behavior. Such behavior of a network models many systems of interest in
physics, biology, and engineering. A central dynamical question is: When is such synchronous
behavior stable, especially in regard to coupling strengths in the network? Much progress in
this direction has been made in lattices of coupled chaotic systems. Indeed, many results [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] give analytical criteria for determining
the range of coupling strength to acquire locally or even globally stable synchronization.
On the other hand, to the best of our knowledge, there are no general results for global
synchronization in coupled map lattices (CMLs). There are, however, globally synchronous
results for some special cases (see, e.g., [15]). As to the study of local synchronization in CMLs,
the notion of master stability functions (MSFs) that allows one to isolate the contribution of
the network structure in terms of the eigenvalues of the coupling matrix was introduced in
[8], [16], [17], [18], [19] to determine the possible range of coupling strength. This function
then defines a region of stably synchronous state in terms of the coupling strength and the
eigenvalues of the coupling matrix. Most of the work done in finding such a region of stability
of the synchronous state is numerical. In a few certain cases, such as when the coupling matrix
is symmetric, the MSFs can be further reduced to a number of inequalities [20], [21], [22], [23]

(1.1) hmax + ln |1 + dλi| < 0, i = 2, . . . ,m.
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Here hmax is the largest Lyapunov exponent of the individual map, λi are the nonzero eigen-
values of the m × m coupling matrix, and d is the coupling strength. The Gershgorin disk
theory is then applied to obtain some sufficient conditions [23] on the coupling strength for lo-
cal synchronization. The reason for the huge gap between the theory developed in the lattices
of coupled chaotic systems and that of CMLs lies mostly in the fact that it is more natural
to have a nonlinear coupling between oscillators in the CMLs. This is because a nonlinear
coupling within suitable range of the coupling strength tends to yield an invariant region for
the corresponding CMLs while linear coupling cannot. It should be noted that there is no
such problem for the lattices of coupled chaotic systems. It should also be mentioned that all
the analytical results of the lattices of the coupled chaotic systems stated above are linearly
coupled.

The purpose of this paper is to give the best possible results for the local synchronization of
the CMLs. Indeed, we first prove that (1.1) holds true for general connectivity topology with a
limitation that the nonlinear coupling needs to be the individual chaotic map as well. Second,
the synchronization curve, composed of pieces of transverse Lyapunov exponent curves, is
derived. With the help of the synchronization curve, we give necessary and sufficient conditions
on yielding synchronization of the CMLs. Such conditions then lead to the identification
of the optimal coupling strength interval for acquiring synchronization of the CMLs. The
optimal interval is to be termed the synchronization interval of the CMLs. Moreover, the
coupling strength dc, called the center of the synchronization interval and giving the fastest
convergence rate of the initial values toward the synchronous state, can be identified. Such dc is
independent of the choice of the individual map. Like the applications, our work here can also
be used to analytically quantify how the small-world scheme improves the synchronizability
of the network [24], [25], [26], [27]. Furthermore, our results here can be applied to address
questions of wavelength bifurcations [28], [29], [30], [31], [32] and size instability [32]. For
CMLs or coupled chaotic systems, the following four scenarios are possible as the coupling
varies: (i) no synchronization; (ii) the presence of short wavelength bifurcations (SWBs);
(iii) the presence of intermediate wavelength bifurcations (IWBs); and (iv) the presence of long
wavelength bifurcations (LWBs). Our main results give the following. First, if the coupling
matrix has only real eigenvalues, then only (i) and (ii) are possible. Second, if the coupling
matrix has complex eigenvalues, then all four scenarios are possible. Third, the critical values
for which wavelength bifurcations occur as well as the exact number of oscillators capable
of sustaining stably synchronous chaos can be explicitly computed. Finally, the minimum
coupling value where all wavelength modes become de-excited enough to induce the stability
of the synchronous state is also explicitly given.

We conclude this introductory section by mentioning the organization of the paper. The
main results are contained in section 2. Three types of coupling matrices are provided in
section 3 as illustrations and applications to our main results. Some concluding remarks
about future research are addressed in section 4.

2. Main results. Consider a network of CMLs consisting of m oscillators. The equations
of the motion then read

(2.1) xi(n + 1) = f(xi(n)) + d

(
m∑
k=1

gikh(xk(n))

)
, i = 1, . . . ,m.



SYNCHRONOUS CHAOS COUPLED MAP LATTICES 757

Here f : R
l → R

l, l ≥ 1, represents the individual chaotic map, and h : R
l → R

l is an arbitrary
nonlinear function describing how each oscillator’s variables are used in the coupling. The
quantities gij are the coupling weights between the oscillators i and j. To consider the notion
of synchronization, we assume that

∑m
k=1 gik = 0 for each i, and 0 is the simple eigenvalue of

the coupling matrix G = (gij). The quantity d represents the coupling strength of the CMLs
(2.1). To have an invariant region for CMLs (2.1), one usually chooses h as f . Such nonlinear
coupling between oscillators is what makes (2.1) harder to treat analytically. In vector-matrix
form with h = f , (2.1) becomes

(2.2) x(n + 1) = F (x(n)) + d(G ⊗ I)F (x(n)),

where ⊗ denotes the Kronecker product, x(n) = (x1(n), . . . ,xm(n))T , and F (x(n)) =
(f(x1(n)), . . . ,f(xm(n)))T .

To study the stability of the synchronous state {xi = s ∀i} of CML (2.2), we consider the
variational equation of (2.2):

ξ(n + 1) = DF (s(n))ξ(n) + d(G ⊗ I)DF (s(n))ξ(n)

= [I ⊗Df(s(n)) + d (G ⊗ I) (I ⊗Df (s(n)))] ξ(n),(2.3a)

where ξ = (ξ1, . . . , ξm) and each ξi is the perturbation to the ith oscillator. Let J = P−1GP ,
where J = [0]⊕J1 ⊕ · · · ⊕Jp is the real Jordan canonical form of G. Applying the change of
variables η = (P−1 ⊗ I)ξ, we get

η(n + 1) = [(I + dJ) ⊗Df(s(n))] η(n),

or, equivalently, in block diagonal form,

ηi(n + 1) = [(I + dJi)
n ⊗Dfn(s(1))]ηi(1)

=: Ai(n)ηi(1).(2.3b)

Let σ(A) denote the spectrum of A. Then σ(Ai(n)A∗
i (n)) equals

σ([(I + dJi)
n ⊗Dfn(s(1))] [(I + dJ∗

i )n ⊗ (Dfn(s(1)))∗])

= σ([(I + dJi)
n (I + dJ∗

i )n] ⊗ [Dfn(s(1)) · (Dfn(s(1)))∗])

= σ((I + dJi)
n (I + dJ∗

i )n) · σ(Dfn(s(1)) · (Dfn(s(1)))∗)

= σ((I + dJ̄i)
n (I + dJ̄∗

i )n) · σ(Dfn(s(1)) · (Dfn(s(1)))∗),

where J̄ = [0]⊕ J̄1 ⊕ · · ·⊕ J̄p is the Jordan canonical form of G. Consequently, the Lyapunov
exponents of (2.2) are

hj + lim
n→∞

ln
√

λk,i

n
.

Here hj are the Lyapunov exponents of the individual system f , and λk,i are the eigenvalues
of (I + dJλi

)n(I + dJ∗
λi

)n, where Jλi
is a Jordan block of matrix G and λi is an eigenvalue of
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G. Let the size of matrix Jλi
be ki × ki, and let N = Jλi

− λiI. It should be noted that for
sufficiently large n,

(I + dJλi
)n = ((1 + dλi)I + dN)n = (1 + dλi)

n(I + αN)n

= (1 + dλi)
n

(
I +

ki−1∑
j=1

(
n

j

)
αjN j

)

=: (1 + dλi)
nTi,

where α = d/(1 + dλi). Clearly, the order of the magnitude of each entry of TiT
∗
i is at most

O(n2ki−2). We conclude, via the Gershgorin disk theorem, that all eigenvalues of TiT
∗
i are of

the order O(n2ki−2). Consequently, the Lyapunov exponents of (2.2) are

(2.4) hj + ln |1 + dλi|.

We summarize the above as follows.

Theorem 2.1. Let G = (gij) be the coupling matrix satisfying that all its row sums are zero
and zero is a simple eigenvalue. Then the synchronous state of CML (2.2) is (locally) stable
provided that

(2.5) hmax + ln |1 + dλi| < 0, i = 2, . . . ,m,

where hmax is the largest Lyapunov exponent of the individual map f and λi ∈ σ(G) − {0},
i = 2, . . . ,m. That is to say, if d satisfies the inequalities in (2.5), then for any initial values
of (2.2) that are sufficiently close to the synchronous state {xi = s ∀i}, we have that each of
the oscillators xi(n) tends to the same state as n goes to infinity. Otherwise, CML (2.2) will
not acquire local synchronization.

Remark. (i) The decoupling form (2.3b) of variational equation (2.3a) was first observed
and proposed by Pecora and Carroll [8]. (ii) If the identity matrix I in (2.2) is replaced by a
diagonal matrix D with some but not all diagonal elements being zero, then the corresponding
system (2.2) is called a partial-state coupling. The partial-state coupling also finds applications
in various fields. For instance, in self-pulsating laser diode equations (see, e.g., [33]), only the
photon density can be coupled with the electron density of the active region. Moreover, in
the case of coupled chaotic systems, the systems that are partial-state coupled may exhibit
different dynamic behavior. For instance, it is well known (see, e.g., [7]) that for the coupled
Lorentz systems, only if the x-component or y-component is coupled will the resulting system
achieve synchronization.

We shall assume from here on that the real parts of the eigenvalues of G are nonpositive.
To find the range of the coupling d so that (2.5) is fulfilled, we need to solve the following min
max problem:

min
d∈R

max
2≤i≤m

|1 + dλi| = min
d>0

max
2≤i≤m1

|1 + dλi|

=: min
d>0

max
2≤i≤m1

ri(d) =: min
d>0

r(d).(2.6)
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Here m1 is the number of eigenvalues lying in upper complex plane or on the real axis. The
curves ri(d) are termed the ith mode of the transverse Lyapunov exponent curves. The
equalities above are due to the facts that |1+dλi| = |1+dλ̄i|, the real parts of the eigenvalues
of G are nonpositive, and (2.5) is violated whenever d ≤ 0. Without loss of generality, we may
assume that those distinct nonzero eigenvalues are λi, i = 2, . . . ,m1, with 0 < |λ2| ≤ · · · ≤
|λm1 |. The coupling value d := dc solving the min max problem (2.6) is the optimal choice of
the coupling in the sense that it gives the fastest convergence rate of the initial values toward
the synchronous state. To understand how r(d) is formed, we need to know the ordering of
ri(d). For d > 0, direct computations yield

ri(d) =
[
|λi|2d2 + 2 Re(λi)d + 1

] 1
2

=

[
|λi|2

(
d− Re(−λi)

|λi|2

)2

+
|λi|2 − Re2(λi)

|λi|2

] 1
2

=:
[
|λi|2 (d− ci)

2 + tan2 θi

] 1
2
.(2.7a)

Moreover, ri(d) ≥ rj(d) if and only if

(2.7b) Re(λi) ≥ Re(λj) if |λi| = |λj |,

and

(2.7c) (|λi|2 − |λj |2)(d− dij) ≥ 0 if |λi| 	= |λj |,

where

(2.7d) dij =
2(Re(−λi) − Re(−λj))

|λi|2 − |λj |2
.

Let Ai = {j : 2 ≤ j ≤ m1 and |λi| = |λj |}. Then maxj∈Ai |1 + dλj | = |1 + dλk|, where k
is chosen so that Re(λk) ≥ Re(λj) ∀j ∈ Ai. This gives that within each of the index set Ai,
their corresponding quantities |1 + dλi| are well ordered for any d > 0. Consequently, to solve
(2.6), we may assume, without loss of generality, that 0 < |λ2| < · · · < |λm1 | from here on.
Using the terminology in [32], we see that the numbers 2 and m1 correspond to the longest
and shortest wavelength modes, respectively. The numbers in between 2 and m1 are to be
called intermediate wavelength modes. Since dij = dji for any i and j we consider only dij
with i > j. Our reduction process is now complete.

The following procedures are proposed to determine the “actual” node points of r(d) from
the candidate set {dij : i > j}.

(A) Set k0 = 0, and k1 = max{l | Re(λi) ≤ Re(λl) ∀i = 2 . . . ,m1}. Let k2 be the largest
index so that 0 < dk2k1 ≤ dkk1 ∀k1 < k ≤ m1.

(B) Let k3 be the largest index so that dk2k1 < dk3k2 ≤ dkk2 ∀k2 < k. The process can be
continued until kp = m1 for some p ≤ m1.

The next result shows that {ki}pi=1 is the set of “actual” node points of r(d).



760 JONQ JUANG AND YU-HAO LIANG

Theorem 2.2. Let G be given as in Theorem 2.1. Assume that the real parts of the eigen-
values of G are nonpositive. Then r(d) = rki(d) whenever dkiki−1

≤ d ≤ dki+1ki
, i = 1, . . . , p.

Here dk1,k0 = 0 and dkp+1kp = ∞.

Proof. Denote Ij = [dkjkj−1
, dkj+1kj ]. It then follows from (2.7c) that if i > j and dij > 0,

then ri(d) > rj(d) whenever d > dij and ri(d) < rj(d) whenever 0 < d < dij . We then
conclude that

(i) the ordering of ri(d) and rj(d) remains the same until both curves meet;(2.8a)

(ii) if ri(d
∗) > rj(d

∗) for some d∗ > 0 with i > j, then ri(d) > rj(d) ∀d ≥ d∗.(2.8b)

Using the first inequality in (2.7a), we have that r(d) = rk1(d) for ε1 > d ≥ 0. Here ε1 is
sufficiently small. It then follows from (2.8a), (2.8b), and procedure (A) that r(d) = rk1(d)
on I1. Upon using (2.8a), we conclude that r(d) = rk2(d) for d ∈ (dk2k1 , dk2k1 + ε2). Here
ε2 is sufficiently small. Similarly, r(d) = rk2(d) on I2. We omit the proof of the remaining
assertions of the theorem due to the similarity.

Note that not all cki given in (2.7a) could be critical points of r(d). In fact, the critical
points of r(d) may not even come from the set {cki}. We next identify the “actual” critical
points of r(d). Our next main result shows that r(d) has exactly one critical point.

Theorem 2.3. The curve r(d) has a unique critical point dc that solves the min max problem
(2.6). Moreover, the optimal range of coupling d to sustain stably synchronous chaos of (2.2)
is (dl, dr). Here dl and dr, dl < dr, are the intersection points (if any exist) of the straight line
y = e−hmax and the curve y = r(d). Consequently, CML (2.2) acquires local synchronization
if and only if d ∈ (dl, dr).

Proof. We break up the proof of the theorem into the following three steps.

Step I. We first claim that the number of cki lying in the interior
◦
Ii of Ii is at most one.

Indeed, suppose there exist cka ∈
◦
Ia and ckb ∈

◦
Ib with cka < ckb . Then the following hold

true: (i) rka(ckb) > rka(cka). (ii) rka(cka) > rkb(cka). (iii) rkb(cka) > rkb(ckb). Inequalities (i)
and (iii) hold true since cka and ckb are, respectively, the minimum points of rka(d) and rkb(d).
The fact that rka(d) lies above all other curves on Ia leads to inequality (ii). Combining these
inequalities, we have that rka(ckb) > rkb(ckb), which is in contradiction to the fact that rkb is
the maximum curve on Ikb .

Step II. We next show that if cki ∈
◦
Ii, then r(d) is decreasing on (0, cki) and increasing

on (cki ,∞). Indeed, for d ∈ Ii+1, r(d) = rki+1
(d) > rki(d) > rki(dki+1ki) = rki+1

(dki+1ki).
Using the conclusion in Step I and the fact that r2

ki
(d) is parabolic, we conclude that rki+1

(d)
must be increasing on Ii+1. On the other hand, rki−1

(d) must be decreasing on Ii−1 since
rki−1

(d) > rk(d) > rki(dkiki−1
) = rki−1

(dkiki−1
). The monotonicity of r(d) on each interval Ij ,

1 ≤ j ≤ m1, can be similarly determined.

Step III. Since r(d) is decreasing initially on I1 and increasing eventually on Ip, there must
be at least one critical point. If such points do not lie in the set of node points, then r(d) has a

unique critical point. Suppose cki /∈
◦
Ii ∀i = 1, . . . , p. Then r(d) is monotonic on each interval

Ii. Suppose r(d) first changes its monotonicity at dkl+1kl for some l. Then an argument similar
to that given in Step II shows that once r(d) becomes increasing on Il+1, it will stay increasing
the rest of the way. We have just completed the proof of the theorem.
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Remark. (i) If the straight line y = e−hmax and the curve y = r(d) do not intersect, then
CML (2.2) will not achieve synchronization for any coupling strength. Suppose dr and dl exist.
Then, as soon as d exceeds dr, a certain wavelength mode is excited, which, in turn, causes
the instability of the synchronous state. The illustration in Examples 2 and 3 shows that
the excited wavelength mode could be either the shortest wavelength mode, the intermediate
wavelength mode, or the longest wavelength mode. In any event, dr is the exact critical value
where wavelength bifurcation occurs. On the other hand, dl is the exact critical value where
all wavelength modes become de-excited enough to induce the stability of the synchronous
state. (ii) Such r(d) is called the synchronization curve of CML (2.2), and the interval (dl, dr),
if it exists, is termed the synchronization interval of CML (2.2). Clearly, dc ∈ (dl, dr) and
depends only on the connectivity topology.

Theorem 2.4. Suppose the coupling matrix G has nonpositive real eigenvalues. Denote by
{λi}m1

i=2 the distinct nonzero eigenvalues of G. Then

r(d) =

{
λ2(d), d ∈ [0, dm12] = I1,
λm1(d), d ∈ (dm12,∞) = I2,

and dc = dm12 = −2
λ2+λm1

. Consequently, depending on the quantity of hmax, either CML (2.2)

achieves no synchronization or SWB occurs as d varies. Furthermore, if dl and dr exist, then
the synchronization interval of the corresponding CMLs is

(
1−e−hmax

−λ2
, 1+e−hmax

−λm1

)
.

Proof. It is easily seen that k1 = 2 and k2 = m1 since dij = −2
λi+λj

. Thus, r(d) is as

asserted. The proof then follows from the facts that cm1 = − 1
λm1

< −2
λ2+λm1

< − 1
λ2

= c2

and dc = dm12. Solving equations y = r(d) and y = e−hmax , we have that dl and dr are as
claimed.

3. Illustrations and applications. We illustrate our theorems with the following examples.

Example 1. Let the oscillators be diffusively coupled with periodic boundary conditions.

For such G, m1 = m, −λm1 = 4 sin2 [m
2

]π

m , and −λ2 = 4 sin2 π
m .

Let f(x) = 4x(1 − x), 0 ≤ x ≤ 1. Then hmax = ln 2, and the corresponding candidates

for dl and dr are, respectively, 1
8 sin−2 π

m and 3
8 sin−2 [m

2
]π

m . However, dl ≤ dr only if m ≤ 5.
Hence, we conclude that the maximum number of oscillators to sustain synchronous chaos
is 5.

We next compare our results with those obtained in [23], [34]. Their sufficient conditions
on the coupling strength for obtaining stable synchronization are, respectively, given as follows:
1−e−hmax

m < dgij <
1+e−hmax

m and
(∑m

k=1, k 	=i |gki − gji|
)

+
∣∣1
d + gii − gji

∣∣ < 1
de

−hmax ∀i, j with
i 	= j. However, the first inequality above fails to find any suitable coupling strength provided
that G has zero off-diagonal elements. If G is given as above with m ≥ 4 and f(x) = 4x(1−x),
then the second inequality also fails to find any suitable coupling strength.

Example 2. Consider synchronization in a directed ring of 2K nearest neighbor coupled
oscillators [19] with K = 2 and m = 9. Specifically, the coupling matrix G under consideration
is a circulant matrix of the form

G = circ(−30, 13, 2, 0, . . . , 0, 5.4, 9.6).
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The spectrum of G is {−30+13e
2(j−1)π

9
i+2e

4(j−1)π
9

i+5.4e
14(j−1)π

9
i+9.6e

16(j−1)π
9

i : j = 1, . . . , 9}.
Here λ2 ≈ −11.4024 + 1.1629i, λ3 ≈ −33.0293 + 2.1855i, λ4 ≈ −45 + 5.8890i, and λ5 ≈
−45.5683 + 3.3483i. Direct computations yield that d42 ≈ 0.0348 < d52 < d32, d54 ≈ 0.0406,
and c5 < c4 < d42 < d54 < c2 (see Figure 1). Consequently,

r(d) =

⎧⎨
⎩

r2(d), d ∈ I1 = [0, d42],
r4(d), d ∈ I2 = [d42, d54],
r5(d), d ∈ I3 = [d54,∞],

the node points of r(d) are d42 and d54, and the critical point of r(d) occurs at d42. Let
fμ(x) = μx(1 − x). For μ = 4, since e−hmax = e− ln 2 = 0.5 < r(d42), the synchronization
interval does not exist. As μ varies from μ∞ ≈ 3.57 to μ = 4, scenarios (i), (ii), and (iii)
described in the introductory section can be clearly observed from the figure.

On the other hand, the maximum number of oscillators on such connectivity topology to
sustain stably synchronous chaos is 7. The claim above is done by checking the intersection
of the equations y = 1

2 and y = r(d) ∀m ≤ 8.

0 0.08 0.1
0

0.5

1

1.2

c2
c5c4

r (d)
2

r (d)
5

d42 d 54

r (d)
4

Figure 1. Graph of r(d) in Example 2. Here d42 ≈ 0.0348, d54 ≈ 0.0406, r(d42) ≈ 0.6040, r(d54) ≈ 0.8604,
c5 ≈ 0.02182, c4 ≈ 0.02185, and c2 ≈ 0.0868. The critical point of r(d) is d42.

Example 3. The following example shows that LWB is also possible. Let G be given as
follows: ⎛

⎜⎜⎜⎜⎝
−30 3 12 5 10
10 −30 3 12 5
5 10 −30 3 12
12 5 10 −30 3
3 12 5 10 −30

⎞
⎟⎟⎟⎟⎠ .

The spectrum of G is {0, −35.2639+10.7719i =: λ2, −39.7361+2.5429i =: λ3, λ̄2, λ̄3}. Then
the graph of r(d) is demonstrated in Figure 2. Consider f(x) = 4x(1 − x). Then the longest
wavelength mode becomes excited to induce instability as d is increased beyond dr.

Example 4. To illustrate the accuracy of our theorems, synchronization intervals estab-
lished in Theorem 2.4 are compared with those obtained by the computer simulation. In
particular, theoretically and numerically predicted synchronization intervals for three exam-
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Figure 2. Graph of r(d) in Example 3. Here d32 ≈ 0.0396, c2 ≈ 0.0259, c3 ≈ 0.0251, dl ≈ 0.0149, and
dr ≈ 0.0369. The critical point of r(d) is c2.

ples above are almost identical. Such comparisons are recorded in Figure 3. They are “almost”
identical. This simulation is set up so that the differences between the initial values xi are
within 10−5. Synchronization is achieved when their differences are within 10−15.

d (coupling strength)

G
(
c
o

u
p

li
n

g
m

a
tr

ix
)

Ex3,m=5

Ex2,m=9

Ex1,m=4

0.01 0.02 0.03 0.04

0 0.25 0.5 0.75 1

0.2 0.25 0.3 0.35 0.4

Figure 3. Three typical synchronization intervals for coupled logistic map with various coupling matrices
are shown. Solid (bold) lines are synchronization intervals obtained by computer simulation. Dotted (fine) lines
are synchronization intervals predicted by our theorems. All are scaled for clear visualization.

4. Conclusions. We conclude this paper by mentioning the difficulty one might face by
applying our methods to more general cases, D 	= I or h 	= f , and a possible approach to
solving them.

Our main results in this paper are based on the study of the inequalities in (2.5). However,
in the case that D 	= I or h 	= f , it seems to be a nontrivial matter to find their corresponding
inequalities such as (2.5). One possible approach is to find the lower and upper bounds of the
Lyapunov exponents of (2.2), where both bounds have expressions similar to those in (2.4).
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Abstract. We study chains of relaxation-type neural oscillators with local excitatory coupling. Phase reduc-
tions suggest that such networks typically exhibit traveling waves, but relaxation oscillators often
synchronize. We examine these behaviors using the phase response and fast threshold modulation
(FTM) theories, which respectively describe network behavior for infinitesimally weak and moderate
coupling. Surprisingly, the two different approximations yield quantitatively consistent predictions
for chains with one-way coupling. Specifically, approaching the relaxation limit, such chains can
exhibit waves with vanishing phase differences (i.e., synchrony) propagating in the coupling direc-
tion, or waves with persistent phase differences traveling against the coupling direction. These
results provide novel support for the finding that caudo-rostral coupling dominates in the lamprey
central pattern generator (CPG), and they suggest that recent models may underestimate the role
of network effects in burst generation.
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1. Introduction. Phase reduction theory, originally developed by Malkin [30, 31] and
independently rediscovered by Winfree [43] (cf. [14]), provides a method for the simplification
and analysis of networks of coupled oscillators, including those composed of spontaneously
oscillatory spiking or bursting neurons. Augmented by the averaging theorem [15] for weakly
coupled systems, it allows one to reduce N sets of M ordinary differential equations (ODEs),
each set describing an oscillator having a hyperbolic (attracting) limit cycle, to a system of N
ODEs approximating the phases of each oscillator along its limit cycle. See [18] and [19] for
more recent statements of Malkin’s theorem. Phase reduction always applies for sufficiently
weak coupling, but it often extends to stronger coupling [11].

According to this theory, chains of oscillators with local coupling generically exhibit trav-
eling waves, except for symmetrical bidirectional coupling or special types of interactions such
as coupling of neural oscillators via gap junctions [7, 22, 23]. However, the interaction of
relaxation oscillators seems to be exceptional: they phase-lock with zero phase-difference,
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(i.e., they synchronize) in cases where one would expect traveling waves [35, 36]. This syn-
chrony is robust against perturbations: while phase oscillators compensate for perturbations
by changing their phase relations, relaxation oscillators typically compensate via changes in
waveforms.

There are at least two explanations for this behavior. Phase reduction neglects the effects
of nonlinearities in coupling: it requires that orbits perturbed by coupling remain sufficiently
close to unperturbed limit cycles at all times, which holds for sufficiently weak coupling ε � 1.
Relaxation oscillators combine fast and slow dynamics (i.e., two characteristic time-scales with
ratio μ � 1), and in this case phase reduction requires extremely weak coupling: ε � μ [19].
In relevant ranges of μ, the oscillators’ interactions are typically dominated by higher order
effects that are not captured by phase theory. Fast threshold modulation (FTM) theory
[35, 36] was introduced to explain this behavior. Motivated by synaptic coupling of neural
oscillators, it applies to moderate or strong coupling: μ � ε.

Despite the apparent contrast between relaxation and phase oscillators, and the limited
applicability of phase reduction to the former, phase theory can also account for synchroniza-
tion of relaxation oscillators [19], and its predictions agree qualitatively with those of FTM
theory. The reason for this unexpected behavior is that the function H(ψ) describing the
effect of coupling between two oscillators is discontinuous at certain points with respect to
their phase difference ψ.

In this paper we apply phase reduction for weak coupling (ε � μ � 1) and a combination
of FTM and phase theory for relaxation-type oscillators (μ � ε � 1). We ask if a given
system exhibits traveling waves or synchrony and compare predictions of the two methods,
thereby shedding light on behaviors expected under variations in coupling strength ε. Both
approaches are required to obtain a global picture of the behavior of coupled chains, and we
show that their predictions are quantitatively similar in chains with one-way coupling, despite
the different mechanisms. In section 2 we analyze a pair of oscillators with one-way coupling
in the phase reduction limit and outline a generalization to unidirectionally coupled oscillator
chains, and section 3 is an analogous study of the FTM limit. In these sections we describe
an interesting property of traveling wave solutions: in the limit μ → 0 waves propagating in
the coupling direction approach synchronous dynamics, but counterpropagating waves persist
(Theorems 2.1 and 3.1). These results provide quantitative conditions for traveling waves
versus synchrony in arrays of unidirectionally coupled relaxation oscillators. The behavior of
bidirectionally coupled chains is also briefly discussed at the end of each section. In section 4
we demonstrate that most, but not all, simple oscillators exhibit the first behavior: synchrony
is more common in the relaxation limit than traveling waves, and we provide a sufficient
condition for this in Theorem 4.1. Section 5 contains illustrative examples of both behaviors.

In section 6, we apply these results to the neural central pattern generator (CPG) of the
lamprey. Recent lamprey CPG models [39, 27, 26] are double chains of relaxation-type bursters
in which the burst frequency is adjusted by neuro-modulators that tune the slow time-scale μ
so that the relaxation limit is approached as swimming speed decreases. Simulations indicate
that these models exhibit synchrony in the relaxation limit and that phase lags between
neighboring units depend strongly on swimming frequency, being small at low frequency and
larger at high frequency. In contrast, the animal exhibits quasi–frequency-independent phase
patterns. As we will show, this shortcoming could be eliminated if the model’s parameters
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were adjusted to generate traveling waves in the relaxation limit. The paper concludes with
section 7. We relegate many technical details in the proofs of Theorems 2.1 and 3.1 to a
series of appendices. Background on CPGs can be found in [8], and background on phase and
relaxation oscillator models can be found in [21, 23].

2. Relaxation oscillators in the phase limit. We consider a pair of identical relaxation
oscillators O1,O2, each with one slow variable xj and one fast one yj . The time-scale ratio
is set by the parameter 0 < μ � 1, and μ → 0 is the relaxation limit. If O1 receives weak
coupling (ε � μ) from O2 in the fast variable, the ODEs for O1 are

ẋ1 = f(x1, y1),(2.1)

ẏ1 =
1

μ
[g(x1, y1) + εh(x1, y1, x2, y2)] ,(2.2)

while those of O2 are the same, but without the coupling term h. Henceforth we assume
that the fast equation (2.2) has a cubic-shaped nullcline or slow manifold g = 0, and that
for ε = 0 a stable hyperbolic limit cycle Γ of period T exists, on which xj slowly decreases
(resp., increases) near the lower (resp., upper) branch of g = 0; see Figure 1. Henceforth, in
describing a single oscillator, we typically drop the subscripts.

In section 2.1 we summarize the results of Izhikevich [19] and prepare for section 2.2.
There we prove our first theorem, extending the leading order phase response curve (PRC)
expressions of [19] to the next order and providing explicit estimates of the width and height
of PRC peaks in terms of fractional powers of μ (Figure 5).

y

xx���

y���

y D� �

y�� �
�

y� �D
+

x D� �

f( )x,y =0
g(

)x,y =0
��D

���

Figure 1. Schematic phase portrait of a 2D relaxation oscillator with cubic-shaped nullcline (thin curve).
Arrows show directions of the vectorfield; φ denotes the phase along the limit cycle (thick curve); φ = 0, D
denote phase values at the instantaneous jumps; and x(0), y(0), y(0+), etc. denote the coordinates of the
corresponding points in phase space. Oscillators are assumed to be active on the upper branch φ ∈ (0, D) and
silent on the lower branch φ ∈ (D, 0).

2.1. Phase reduction and previous results. Like any ODE with a stable hyperbolic limit
cycle, (2.1)–(2.2) can be reduced to a phase description [18]. We define the phase φ = φ(x, y)

along Γ such that the periodic solution satisfies φ̇ = 2π/T
def
= ω, and we let x(φ), y(φ),

etc. denote coordinates of points on Γ. The system of four coupled ODEs may then be
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reduced to the phase equations

(2.3) φ̇1 = ω +
ε

μ
h̃(φ1, φ2)z(φ1) + O(ε2), φ̇2 = ω,

where h̃(φ1, φ2) = h(x1(φ1), y1(φ2), x2(φ2), y2(φ2)) denotes the coupling function evaluated on
Γ. Here the PRC z(φ) represents the sensitivity of O1 to perturbations from O2, and z(φ) > 0
(resp., z(φ) < 0) means that an excitatory signal (h > 0) received at (x(φ), y(φ)) speeds up
(resp., slows down) O1. In deriving the PRC one expands about Γ in a Taylor series, thereby
neglecting nonlinear (O(ε2)) coupling effects. See [10, 3] for recent examples of explicit PRC
computations.

After introducing the phase difference ψ = φ1 − φ2, (2.3) can be averaged over the period
T and subtracted to yield

(2.4) ψ̇ =
ε

2πμ

∫ 2π

0
h̃(ϕ + ψ,ϕ)z(ϕ + ψ) dϕ + O(ε2)

def
= H(ψ) + O(ε2).

Zeros of H correspond to phase differences at which the oscillators phase-lock (ψ = const),
and stable phase-locking occurs if H(ψ) = 0 and dH(ψ)/dψ < 0. For details, see [18, 17].

While in general PRCs must be computed numerically, in [19, section 2] analytical for-

mulae were derived for (2.1)–(2.2) in the limit μ → 0, as follows. Let z∗(φ)
def
= z(φ)/μ;

subscripts x and y denote partial derivatives, φ(1) = 0 and φ(2) = D denote phase values
at the jumps, y(φ(j)) = y(0), y(D) denote the value of y immediately before a jump, and
y(φ(j)+) = y(0+), y(D+) denotes its value immediately after it (Figure 1). If φ �= φ(j),
j ∈ {1, 2}, then

(2.5) z∗(φ) = − ωfy(x(φ), y(φ))

f(x(φ), y(φ))gy(x(φ), y(φ))
,

and near the jumps φ = φ(j),

(2.6) z∗(φ) =
δ(φ− φ(j))ω2

gx(x(φ(j)), y(φ(j)))

[
1

f(x(φ(j)), y(φ(j)))
− 1

f(x(φ(j)), y(φ(j)+))

]
.

Equation (2.5) follows from linearization in the neighborhood of the slow parts of Γ on the
upper and lower branches of the g = 0 nullcline, and it may be derived from the adjoint
formulation of the PRC [18], as in [19, (2.9)]. Equation (2.6) is found by considering the
jumps from y(0) to y(0+) and y(D) to y(D+) (Figure 1; cf. [19, (2.4)]). The delta functions
at φ(j) play a central role in explaining the behavior of coupled relaxation oscillators; see
Figure 2.

To formulate our results, we supplement (2.5)–(2.6) with the following conditions:
(i) The coupling term h ≡ 1 while O2 is near the upper branch of its g = 0 nullcline

(for μ → 0 this implies φ ∈ (0, D)), and h ≡ 0 near the lower branch. During jumps,
0 ≤ h ≤ 1.

(ii) ∂f(x, y)/∂y > 0 at arbitrary points (x(φ), y(φ)) along the limit cycle.
(iii) The duty cycle D/(2π) ≤ 0.5 (time spent on the upper (active) branch is not more

than that spent on the lower branch).
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Figure 2. Schematic PRC for a relaxation oscillator in the limit μ → 0 as derived in [19]. The function
has singularities and delta functions (thick dashed lines) at φ = 0, D. The sign of the delta functions is always
as shown. The sign of the continuous parts is as shown if condition (ii) holds.

Condition (i) simplifies the notion that oscillators have active (e.g., bursting) and silent
(e.g., refractory) states; it has been used by other authors (e.g., [35, 36, 19]). Condition (ii)
requires that f(x, y) is strictly monotonic in y, which is true for most oscillator models, and
it implies that the sign of z∗ is as shown in Figure 2, due to the following facts:

(1) On the limit cycle of Figure 1, f(x(0), y(0)) < 0, f(x(0), y(0+)) > 0, and gx(x(0), y(0))
< 0, so (2.6) implies that the peak in z∗ at φ = 0 is positive. Similarly, the peak at
φ = D is negative.

(2) Attractivity of the upper and lower branches of the g = 0 nullcline implies that gy < 0;
f > 0 on the upper branches and f < 0 on the lower branches, and fy > 0, by
condition (ii). Thus (2.5) gives positive and negative PRC values during the active
and silent parts of the limit cycle, respectively.

Under condition (i), (2.4) simplifies to

(2.7) H(ψ) =
ε

2π

∫ D+ψ

ψ
z∗(φ) dφ;

the resulting function H(ψ) is shown in Figure 3, in which its key properties are also summa-
rized. In particular, H is discontinuous: when φ(i) enters or leaves the interval of integration
[ψ,D + ψ] in (2.7), the delta functions in (2.6) introduce step changes. If the decreasing step
at ψ = 0 passes through 0, then H(ψ) has a root at 0, corresponding to synchronization,
which is robust against perturbations such as adding a constant to H. This fact was advanced
in [19] to explain why weakly coupled relaxation oscillators tend to synchronize.

Note that the properties of H(ψ) shown in Figure 3 require condition (iii); for D > π, H
may have arbitrarily many roots or possibly none at all. Condition (iii) holds for the majority
of important relaxation oscillators, and it appears elsewhere in the literature [24]. We also
remark that, since limφ→φ(i) gy = 0 and gy � (φ(i) − φ)1/2, the rescaled PRC z∗(φ) in (2.5)

has integrable singularities at φ = φ(j).
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Figure 3. Schematic coupling function H(ψ) for a relaxation oscillator with weak one-way coupling in the
limit ε � μ → 0, as derived in [19]. If conditions (i)–(iii) hold, the qualitative form of H and the directions of
the steps are as shown.

2.2. Phase-locking and synchrony. While the discontinuity of H at ψ = 0 often yields
synchronization, this is not the only possibility: if sign(H(0+)) = sign(H(0−)), the oscillators
do not synchronize, although phase-locking can occur at ψ �= 0 if H has nonzero roots. This
latter case corresponds to traveling waves in a chain (see section 2.3). Here we state a result
that shows that phase-locked solutions with ψ = Δ(μ) ≤ 0 behave differently from those with
Δ(μ) > 0, thereby distinguishing the two behaviors.

Theorem 2.1. Let Hμ(ψ) denote the averaged coupling function at a given value of μ, and
let (x, y) = (ξ, υ(ξ)) denote the equation of the active branch of the slow manifold. Assume
that the phase-shift Δ(μ) satisfies dHμ(ψ)/dψ|Δ(μ) < 0 = Hμ(Δ(μ)).

(a) If conditions (i)–(iii) hold and

−
∫ x(D)

x(0)

fy(ξ, υ(ξ))

f2(ξ, υ(ξ))gy(ξ, υ(ξ))
dξ

+
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0,(2.8)

then 0 < limμ→0 Δ(μ) < π; i.e., O1 leads O2.
(b) If conditions (i)–(iii) hold and (2.8) is false, then Δ(μ) � −μ2/3 for small μ and

limμ→0 Δ(μ) = 0; i.e., the oscillators synchronize.
Proof. We extend the results of [19] to the case 0 < μ � 1. The limit cycle consists of

three parts, known in singular perturbed and boundary layer theory as the outer, inner, and
intermediate limits [2]; see Figure 4.

1. Evolution along slow manifolds: These episodes occupy time O(1), and the PRCs are
well approximated by (2.5); thus z∗(φ) = O(1).

2. Transition from slow motion to jumps at the knees of the g = 0 nullcline: These take
time O(μ2/3) [2], and, as shown below, the phase response converges to (2.6) in the
relaxation limit; thus z∗(φ) = O(μ−2/3).

3. Fast jumps of duration O(μ) between slow manifolds: Here z∗(φ) = O(1), as in case 1.
These statements follow from the arguments of [19], summarized in section 2.1, with the

crucial additional fact, shown in Appendix A, that the delta function in (2.6) derives from
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Figure 4. Characteristic segments of the limit cycle of a relaxation oscillator: Slow motion along nullclines,
fast jumps, and transition. Coupling h is assumed constant (≡ 0 or 1) near the slow nullclines, shown shaded.

perturbations during transition and not during the fast jump. Intuitively, perturbations can
advance the jump as solutions approach the fold, but perturbations in the fast variable have
little effect during the jump (z � O(μ), i.e., z∗ � O(1)), due to the O(μ−1) speed of the
dynamics. The resulting PRC is shown in Figure 5.

z
(

�

�

O
(�


�


�
)

O(�2/3)

O(

fast part
A B

C

slow parttransition

�

���

���

���

���

2/3)

O
(�


�


�
) �

�

Figure 5. A: PRCs for relaxation oscillators with 0 �= μ � 1. Grey denotes the active part of the period
h ≡ 1, white the silent part h ≡ 0, and striped, far from the nullclines, h not defined by condition (i). For
synchrony, H(0) is the integral of z∗ over the grey interval. B: For small ψ > 0, H(ψ) is the integral over a
domain shifted rightward compared to the case ψ = 0. C: For small ψ < 0, the integration domain is shifted
leftward and includes the peaks of z∗.

If the two oscillators are in synchrony (ψ = 0), O1 receives a coupling signal during both
the slow and transitional parts near the upper nullcline according to condition (i); there is
no input during slow and transition parts near the lower nullcline. Condition (i) does not
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determine h during the fast jumps, since the state is far from both nullclines. However, the
integral of z∗ during these episodes is only O(μ) (∼ the jump duration), so its contribution to
H vanishes as μ → 0; cf. (2.7). Thus, if μ is sufficiently close to 0, Hμ(0) is well approximated
by the integral of z∗ over the slow and transition parts on the upper branch, and using (2.5)–
(2.7), we obtain

Hμ(0) =
εω2

2π

[∫ D

0

−fy(x(φ), y(φ))

ωf(x(φ), y(φ))gy(x(φ), y(φ))
dφ

+
1

gx(x(D), y(D))

(
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

)]
+ O(μ);(2.9)

see also Figure 5(A).
Due to (2.1) and (2.3), we have dφ = dx · ω/f ; hence (2.9) is equal to the left-hand

side of (2.8) modulo the O(μ) term and the εω2/2π factor. Thus, case (a) of Theorem 2.1
corresponds to limμ→0 Hμ(0) > 0. If ψ = 0 at t = 0, ψ increases according to (2.4), and
the limits of integration in (2.7) must be moved rightward to locate a zero of H(ψ), as in
Figure 5(B). At that point the limits do not intersect the peaks of the PRC, implying that
H has finite slope just above ψ = 0. The conclusion of part (a) follows from this fact.

On the other hand, if H(0) < 0, the domain of integration must be shifted to the left and
will intersect the PRC’s peaks; see Figure 5(C). A negative peak of width O(μ2/3) and slope
O(μ−2/3), which shrinks to a vertical step in the relaxation limit of Figure 2, lies just below
ψ = 0. Δ(μ) cannot lie elsewhere than at this steep part, since conditions (i)–(iii) imply that
at all other points H(ψ) is either negative or increasing; see Figure 3.

We remark that if only condition (i) holds, we still have limμ→0 Δ(μ) �= 0 in case (a). In
case (b), conditions (i)–(ii) without (iii) imply the existence of the synchronous solution but
do not imply its uniqueness. Condition (i) without (ii)–(iii) means that the oscillators often
but not always synchronize.

2.3. Oscillator chains in the phase reduction limit. The behavior of coupled pairs of
phase oscillators generalizes to that of chains. Here we review basic results based on [22, 25]
and outline some consequences of Theorem 2.1.

Consider a chain of n identical oscillators. For one-way nearest-neighbor coupling and if
H(ψ) crosses 0, phase differences between adjacent oscillators are equal to those between a
coupled pair, being determined by the stable zeros of H. For two-way coupling (H1(ψ) and
H2(ψ)) in a long chain (n >> 1), one direction is typically dominant and phase relations
are unaffected by connections in the other, except near boundaries. In special cases (e.g.,
H1 ≈ H2) neither direction dominates and phase differences may be nonuniform. If the cou-
pling is translation-symmetric and close but not necessarily adjacent oscillators are coupled,
then the chain mimics the behavior of a reduced network with nearest-neighbor connections.

Thus, our analysis of a pair of units also explains the behavior of a wide class of chains.
Case (a) of Theorem 2.1 (0 < limμ→0 Δ(μ) < π) means that the unit that receives coupling is
advanced in phase compared to the other. Analogously, a chain exhibits traveling waves prop-
agating against the coupling direction (against the dominant direction for two-way coupling),
and, according to the theorem, such traveling waves persist in the relaxation limit μ → 0.
In contrast, case (b) corresponds to a phase lag of the unit receiving coupling that vanishes
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in the relaxation limit. The corresponding phenomenon in chains is a traveling wave that
propagates in the (dominant) coupling direction and approaches synchrony in the relaxation
limit.

3. Relaxation oscillators in the FTM limit. We again consider the system (2.1)–(2.2),
but now under the assumption μ � ε � 1. FTM theory describes the interaction of relaxation
oscillators that exhibit sufficiently fast jumps simultaneously (μ � ε). It neglects interactions
during the periods of slow dynamics, so most FTM results have been qualitative in nature.
Here we augment these results by combining FTM with phase reduction theory, assuming
ε � 1 so that the latter applies except near jumps. We retain the notation of section 2 with
phase φ along the unperturbed limit cycle Γ and (x(φ), y(φ)) denoting points in the phase
plane.

3.1. FTM theory. FTM theory and the synchronization of relaxation oscillators are de-
scribed in detail in [35] via the example of a mutually coupled pair. (Chains and other networks
are considered in [36].) Here we perform a similar analysis of a pair with one-way coupling.

Since ε is large compared to μ, we consider an unperturbed limit cycle (h ≡ 0) and a
separate, perturbed limit cycle for h ≡ 1; see Figure 6(A). Since O2 receives no coupling
signal it follows the former. Input to O1 is either 1 or 0, depending on the state of O2, so
O1 intermittently switches between the two cycles. Jumps are assumed to be instantaneous.
(In phase reduction, one considers only the unperturbed limit cycle, but “jumps” are not
instantaneous.)
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Figure 6. A: Unperturbed (solid) and perturbed (dashed) nullclines. Πi and τi represent Poincaré sections
and times required to pass certain trajectories, respectively, as used in Appendix B. B: An example of FTM
interaction: O2 (solid) slightly leads O1 (dashed); when O2 jumps up, O1 switches to the perturbed nullcline,
leading to a synchronous jump.

To illustrate FTM interaction, assume that the oscillators are almost synchronized and
moving on the silent branch with O1 slightly lagging behind O2. When O2 reaches the knee
and jumps, it sends O1 to the perturbed limit cycle, thereby causing a synchronous jump, after
which O1 takes the lead. See Figure 6(B). Similarly, synchronous jumps occur if O1 slightly
leads O2 prior to jumping down. This typically results in rapid and robust synchronization.
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The example shows that oscillators with FTM interaction can compensate for deviations from
perfect synchrony by keeping fast jumps synchronous and modulating their locations. How-
ever, while FTM interactions at jumps act to synchronize the units, accumulating interactions
during slow phases may shift them apart. The relative strength of the two effects determines
whether synchronization occurs.

The fact that the phase equation (2.3) is not applicable near jumps is illustrated by
the following example. Consider two impulsive perturbations, each of strength and duration
O(ε), delivered when O1 is on the orbit segment of length ετ1 in Figure 6(A). Either one
alone immediately moves the state to the upper branch, causing an O(ε) phase change, large
compared to its size of O(ε2) (strength×duration). However, if the impulses act successively,
the second has an effect of only O(ε2). The implicit assumption of phase reduction theory,
that successive perturbations are additive, is violated.

3.2. Phase-locking and synchrony. Examples like those above show that the notion of
phase difference is unclear, so we introduce the following definitions to categorize different
types of T -periodic interactions of pairs of oscillators under FTM:

(a) Oscillator Oj leads Oi if Oi is silent when Oj jumps up and Oi is active when Oj

jumps down.
(b) The oscillators alternate if when either jumps up or down, the other is silent, or,

alternatively, if when either jumps up or down, the other is active. Only the first case
is possible under condition (iii).

(c) The oscillators synchronize if the time intervals that Oi spends in its active state are
a subset of those spent by Oj in its active state or vice versa. This includes the case
when jumps up and/or down are synchronous.

We can now state an analogue of Theorem 2.1.

Theorem 3.1. Assume that two oscillators in the FTM limit (ε → 0, μ/ε → 0) each have
stable T -periodic solutions. Then

(a) if conditions (i)–(iii) and inequality (2.8) hold, O1 leads O2; and
(b) if conditions (i)–(iii) hold but inequality (2.8) does not, the oscillators synchronize.

Proof. The lengthy proof is given in Appendix B. It relies primarily on defining a function
HFTM , analogous to H of section 2, which predicts the relative dynamics, and showing that
HFTM has the same shape in the limit ε → 0, μ/ε → 0 as H does in the limit μ → 0,
ε/μ → 0.

In case (b) of Theorem 3.1 synchrony implies either that the jump in O2 initiates an
immediate jump in O1 or that one of the oscillators jumps up earlier and jumps down later
than the other. If there are synchronous jumps, it is intuitively clear that for small but nonzero
μ this results in a small lag of the driven oscillator. Thus cases (b) of Theorems 2.1 and 3.1 are
closely related. In contrast, if there is synchrony as defined above but no synchronous jumps,
relations between the two theorems are less clear. However, in Appendix C we illustrate that
the latter scenario is nongeneric for ε → 0.

There are some differences between the phase and FTM limits. For phase oscillators,
Δ � μ2/3, as shown in Theorem 2.1(b). In the FTM case the O(μ) duration of fast jumps
implies that Δ � μ. We illustrate this by a numerical example in section 5.
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3.3. Oscillator chains in the FTM case. As in phase response theory, the behavior of
a unidirectionally coupled pair has implications for chains with one-way, nearest-neighbor
coupling; i.e., in cases (a) and (b), chains typically exhibit traveling waves against and in
the coupling direction, respectively, and in the relaxation limit synchrony results in case (b)
but not in case (a). We suspect that more diffuse localized couplings can be reduced to the
nearest-neighbor case, although we are unaware of specific studies of this type.

The behavior of chains FTM-coupled in both directions is less transparent than in case
of phase-coupling. Oscillator pairs and arrays with symmetrical bidirectional FTM-coupling
typically exhibit synchrony, and in contrast to phase-interaction, this is robust against per-
turbations of the coupling symmetry [35, 36]. These results indicate that asymmetrically
coupled arrays (significantly stronger in one direction than in the other) are probably more
likely to synchronize than those with unidirectional connections. Quantitative conditions for
synchrony versus traveling waves for two-way coupling appear to be unknown. As we show
in section 4, traveling wave behavior is much rarer than synchrony in one-way arrays. The
above facts suggest that it is even rarer when connections in both directions are present.

4. Why do most oscillators synchronize? It was shown in sections 2 and 3 that oscillators
can, but need not, synchronize in the relaxation limit μ → 0. As described in this section,
we examined several simple two-dimensional relaxation oscillator models of neural oscillators
and found that all exhibited synchrony. This suggests that inequality (2.8) of Theorem 2.1
is false for many examples. The following theorem provides a sufficient condition for this
and hence for synchronization. Two oscillators satisfying conditions (i)–(iii) above and (iv)
and (v) below always synchronize in the relaxation limit by Theorems 2.1 and 3.1.

Theorem 4.1. Suppose that (2.1)–(2.2) satisfy condition (ii), and additionally, at all points
(x, y) on the “active” branch of the slow manifold g = 0, the following conditions hold.

• Condition (iv): fx(x, y) ≤ 0.
• Condition (v): gx(x, y) ≤ gx(x(D), y(D)).

Then inequality (2.8) is false.
Proof (by contradiction). The integral in (2.8) (or (2.9)) is evaluated along g = 0, on which

an infinitesimal displacement (dξ, dυ) satisfies

(4.1) gx(ξ, υ) dξ + gy(ξ, υ) dυ = 0 or dξ = −gy(ξ, υ) dυ

gx(ξ, υ)
.

We use (4.1) to change the variable of integration in (2.8) from ξ to υ, replacing (ξ, υ(ξ)) by
(ξ(υ), υ), where ξ(υ) denotes the inverse of υ(ξ). Since gx < 0 on the active nullcline, due
to gx(x(D), y(D)) < 0 and condition (v), this inverse is well defined in the case of interest.
Inequality (2.8) becomes

−
∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(ξ(υ), υ)
dυ

+
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0.(4.2)

To show that (4.2) is false we first replace gx(x, y) in the integrand by the constant term
gx(x(D), y(D)), using the facts that gx(x, y) ≤ gx(x(D), y(D)) < 0 and fy < 0 (condition (ii)),
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which together imply that

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(ξ(υ), υ)
dυ ≤

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)gx(x(D), y(D))
dυ.

We then multiply the resulting expression by the strictly positive quantity −gx(x(D), y(D))
to deduce that, if (4.2) holds, then also

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)
dυ − 1

f(x(D), y(D))
+

1

f(x(D), y(D+))
> 0,

which in turn implies that

(4.3)

∫ y(0+)

y(D)

fy(ξ(υ), υ)

f2(ξ(υ), υ)
dυ − 1

f(x(D), y(D))
> 0,

where we use 1/f(x(D), y(D+)) < 0, since f < 0 on the “silent” branch of the slow manifold.

Next, using the chain rule and appealing to condition (iv) and the fact that ξ(υ) is a
decreasing function, we have

(4.4)
df(ξ(υ), υ)

dυ
= fy + fx

dξ(υ)

dυ
≥ fy.

Equation (4.4) allows us to replace the partial derivative in the integrand of (4.3) by the total
derivative and further to express it as an exact differential,

(4.5)

∫ y(0+)

y(D)

df(ξ(υ), υ)/dy

f2(ξ(υ), υ)
dυ = −f−1(xa(υ), υ)

∣∣y(0+)

y(D)
,

where xa(υ) denotes points on the active branch and we use the fact that (f−1)′ = −f ′/f2.
Our inequality now reads

(4.6) −f−1(xa(υ), υ)
∣∣y(0+)

y(D)
− 1

f(x(D), y(D))
=

−1

f(x(0), y(0+))
> 0.

But this is false, since f(x, y) > 0 on the active branch, providing our contradiction.

Theorem 4.1 applies to many oscillator models with unidirectional coupling that satisfies
condition (i). We analyzed the van der Pol oscillator [37] and neuron models of FitzHugh–
Nagumo [12, 33], Hindmarsh–Rose [16], Morris–Lecar [32], and Rinzel [34], as well as a two-
dimensional spike-rate description of the bursting half-center in the lamprey from [42, p. 209],
obtaining the results summarized in Table 1. We also checked inequality (2.8) (in some
cases numerically) and found that it was false in every case, in four of which Theorem 4.1
applies. This suggests that it is not easy to find relaxation oscillators that do not synchronize.
Nonetheless, in the next section we provide an example of this apparently rare behavior.
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Table 1
Evaluation of the applicability of conditions (ii)–(v) and Theorem 4.1 for some simple oscillators. The *

means yes for low values of input current, and no for high values.

Model ODE (ii) (iii) (iv) (v) Thm. 4.1 Thm. 2.1
applies? predicts

synchrony?

van der Pol yes yes yes yes yes yes

FitzHugh–Nagumo yes * yes yes * yes

Hindmarsh–Rose yes yes yes yes yes yes

Morris–Lecar yes yes yes yes yes yes

Rinzel yes yes yes no no yes

lamprey halfcenter yes yes yes no no yes

5. A numerical example. To demonstrate the above results, we now analyze a pair of
van der Pol oscillators in Lienard variables [28, Chap. XI], [29], with one-way excitatory
coupling. At the end of the section simulation results of chains are also shown. The uncoupled
units include a parameter p that can be varied to produce two characteristic behaviors. p = 0
corresponds to the classical van der Pol oscillator. Oscillator 1 is described by

ẋ1 = f(x1, y1) = y1,(5.1)

μẏ1 = g(x1, y1) + εh(y2)

=
(
y1 − y3

1/3 − x1

)
·
(
1 + (p · x1)

4
)

+ ε

{
1 if y2 > 0
0 if y2 ≤ 0

}
,(5.2)

and the equations of oscillator 2 are the same but lack the coupling term ε{. . .}. The coupling
obeys condition (i) and the uncoupled oscillators satisfy conditions (ii), (iii), and (iv) since
fy ≡ 1, the duty cycle is exactly 1/2 due to the symmetry of the vectorfield, and fx ≡ 0. For
p = 0, they also satisfy (v), because gx ≡ −1. Thus they synchronize in the relaxation limit
μ → 0 with extremely weak coupling (by Theorems 2.1 and 4.1) as well as with moderate
coupling (by Theorems 3.1 and 4.1).

If p �= 0, the S-shaped fast nullclines of (5.2) remain the same, but g(x, y) becomes steeper
as |xj | increases so that condition (v) does not hold and Theorem 4.1 cannot be applied.
Numerical evaluations show that inequality (2.8) fails for p < pcr ≈ 2.36 but holds for p ≥ pcr.
In the latter case, Theorems 2.1 and 3.1 predict persistent phase-shifts as μ → 0.

The oscillator pair was simulated with ε = 0.5 and various values of μ and p. In every case,
the system converged to a stable periodic orbit with period T equal to that of an uncoupled
unit. The jth increasing zero-crossing of y1(t) and y2(t) (i.e., times tij when yi(tij) = 0,
ẏitij > 0) were detected and the phase-shift Δ was determined according to

(5.3) Δ = lim
j→∞

t2j − t1j
T

.

For weakly coupled relaxation oscillators (ε, μ → 0), the respective meanings of π > Δ > 0,
Δ = 0, and −π < Δ < 0 are that the driven oscillator leads, is synchronous with, and
lags behind the driver. Here ε is not very small, so Δ ≈ 0, but �= 0 might also correspond
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Figure 7. Dependence of phase-shift between the coupled pair of oscillators Δ on μ. From bottom to top,
p = 0, 0.5, 1, . . . , 5. For small p, the shift is negative (the driven oscillator lags) and vanishes at the relaxation
limit μ → 0; for large p the shift is positive and persists in the relaxation limit. Note that p = 2 is small in this
regard, although it shows different behavior from the p < 2 cases for larger μ (fifth curve from the bottom).

to synchrony (cf. the definition of synchrony in section 3.2). Nevertheless Δ is still a good
indicator of the phase difference.

Figure 7 illustrates the dependence of Δ on μ for different values of p, showing that Δ(μ)
curves below 0, for small μ converge to 0 as μ → 0. Curves above 0, however, converge to a
strictly positive limit. This corresponds to one of our main findings: if the driven oscillator
leads the driver, the phase difference persists in the relaxation limit, but if the driver leads,
the difference vanishes.
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Figure 8. A: Phase-shift Δ as function of p for μ = 10−3, ε = 0.5 (squares), and a fitted quadratic
curve Δ̄(p) (solid line). B: Dependence of Δ on μ for p = 0 plotted on logarithmic scales for ε = 1 and at
ε = 0.1 (squares). Linear regression in the range μ = 10−4 . . . 10−3 reveals ln(−Δ) ≈ 0.98 ln(μ) + 0.04 and
ln(−Δ) ≈ 0.90 ln(μ) + 0.67, respectively (solid lines).

Figure 8(A) shows the numerically derived function Δ(p) for μ = 10−3 and ε = 0.5. A
quadratic fit for Δ > 0 yields Δ̄(p) = −1.646p2 + 8.382p− 10.572, whose root at p̄cr ≈ 2.301
lies within 3% of pcr ≈ 2.36 predicted by inequality (2.8). The difference is primarily due to
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Figure 9. Dynamics of a chain of 10 oscillators at p = 0 (left) and 3 (right). Each oscillator i is driven by
its neighbor i−1; t denotes time normalized by the period of an uncoupled unit. Δ denotes the phase difference
between units i and 1. Other parameter values: ε = 0.5, μ = 2 · 10−3.

the relatively strong coupling.

We also determine numerically how Δ scales with μ for small p to examine limμ→0 Δ = 0.
The predictions of sections 2.2 and 3.2 are Δ � μ2/3 for phase-oscillator interactions and
Δ � μ1 for FTM interactions. According to simulations with p = 0, the exponent is approxi-
mately 0.97 in the range μ = 10−4 . . . 10−3 if ε = 1 and 0.90 if ε = 0.1 (Figure 8(B)). These
results reflect the fact that our parameter values are appropriate for FTM (μ << ε << 1);
but they also show that the exponent decreases as ε decreases, moving toward the phase-
approximation value, which holds for ε << μ << 1.

We close this section by illustrating the two types of behavior for chains. The two panels of
Figure 9 show the spatio-temporal dynamics of phase-shifts along a chain of 10 unidirectionally
coupled units. For p = 0 (left panel), the network rapidly synchronizes, while for p = 3 uniform
phase-shifts develop on a longer time-scale. The final states agree with the predictions of
Theorem 2.1. (The reason for the radically different decay times of transients is explained
in [35].)

6. Applications to the lamprey CPG. The central pattern generator (CPG) of the lam-
prey has been a focus of research for over thirty years. Fictive swimming experiments [9] show
that the CPG without muscles or afferent (feedback) inputs produces rhythms similar to real
swimming: traveling waves of activation (motoneuron bursts) propagate from head to tail on
both sides in antiphase. The wavelength remains approximately constant and equal to body
length over a considerable speed range.

The components of the CPG and their interconnectivities have been partially deter-
mined [5], and a reduced network with three classes of neurons, representing one or a few
segments of the animals’ CPG, has been proposed; see Figure 10(A). Each segment has
bilateral symmetry, with mutual inhibition between hemisegments. The entire CPG is mod-
eled as a chain of such units [21, 23], intersegmental connections being of the same type
as intrasegmental ones, but with strengths decreasing rapidly with distance. For simplicity
here we assume only nearest-neighbor connections, but our results can be extended to more
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Figure 10. A: Simplified structure of a segmental unit of the lamprey CPG first proposed by [6]. E, L,
and C represent small groups of excitatory, crossed inhibitory, and lateral inhibitory neurons, respectively, and
arrows and circles denote excitatory and inhibitory synapses. Bilaterally symmetric halves of the network are
coupled by inhibition. The dashed self-excitatory connection occurs in some but not all models. B: A simplified
network with E cells alone approximates the dynamics of cell-based rhythm generation (cf. [38]); two segmental
units are shown.

widespread connections, provided that they are short relative to the size of the full network.

Several models have implemented the network architecture of Figure 10(A), and two dif-
ferent pattern-generating mechanisms have been proposed [13]: rhythms being generated by
network connections, or by small groups of bursting cells. Simple network-based models [4, 40]
were able to reproduce the constant wavelength-swimming speed behavior, albeit over a lim-
ited frequency range. The cell-based mechanism inspired a series of detailed model studies
[26, 39, 27] which encompass a wider frequency range, but with frequency-dependent wave-
lengths (small at low frequencies, large at high frequencies).

The core of the cell-based networks is a double chain of relaxation-type oscillators (Fig-
ure 10(B); see also [38]), each representing a small group of intrinsic bursters. The fast and
the slow variables represent average activity (firing rate) and spike-rate adaptation due to
slow calcium currents, respectively. In these models, swimming frequency is adjusted through
serotonin concentration determining the speed of the slow dynamics, i.e., μ. (Other, less
important, parameters also change with frequency, but we ignore these effects.) Thus, when
swimming speed decreases, the speeds of the slow and the fast dynamics separate, approach-
ing a relaxation limit. The tendency of chains of relaxation oscillators to synchronize offers
a straightforward explanation for the wavelength-frequency behavior of these networks, and,
as we now show, the results of sections 2–4 yield more precise predictions on cell-based CPG
models.

The double chains of Figure 10 differ from the single chains studied in sections 2.3 and 3.3,
but their behavior can be predicted in a similar manner by considering a pair of segments
comprising four oscillators, as in Figure 10(B). Specifically, we assume condition (i) above,
that the hemisegments remain out of phase, and we denote the strengths of intersegmen-
tal excitatory and inhibitory connections by εe and εi, respectively. Phase response theory
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then yields the averaged coupling function Hμ pair governing intersegmental phase differences
(cf. (2.4)) at given values of μ by superposing the contributions of the excitatory and inhibitory

connections. In the relaxation limit limμ→0 Hμ pair
def
= H0 pair we obtain

(6.1) lim
μ→0

Hμ pair
def
= H0 pair(ψ) =

1

2π

[
εe

∫ D+ψ

ψ
z∗(φ) dφ− εi

∫ D+ψ+π

ψ+π
z∗(φ) dφ

]
.

Equation (6.1) is the analogue of (2.7) with a second term −εi
∫
. . . due to inhibition between

the segments. Its consequence is a somewhat weaker and (in part (a)) more technical analogue
of Theorem 2.1.

Theorem 6.1. Let (x, y) = (ξ, υ(ξ)) and (x, y) = (ξ, ζ(ξ)), respectively, denote points on the
active and silent branches of the ẏ = 0 nullcline. Assume that Δ(μ) satisfies dHμ pair(ψ)/dψ|Δ(μ)

< 0 = Hμ pair(Δ(μ)).
(a) If conditions (i)–(iii) hold, and

−εe

∫ x(D)

x(0)

fy(ξ, υ(ξ))

f2(ξ, υ(ξ))gy(ξ, υ(ξ))
dξ

+ εi

∫ x(π+D)

x(π)

fy(ξ, ζ(ξ))

f2(ξ, ζ(ξ))gy(ξ, ζ(ξ))
dξ(6.2)

+ εe
1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
> 0,

then for a coupling function of the form H0 pair(φ) = Ξ(φ)+c (where Ξ is an arbitrary
2π periodic function and c is an arbitrary constant), there exists δ > 0 independent of
c such that if |Δ(0)| < δ, then Δ(0) > 0.

(b) If conditions (i)–(iii) hold, Δ is unique modulo 2π, and inequality (6.2) is false, then
Δ(μ) � −μ2/3 for small μ, and Δ(0) = 0; i.e., the driven segment lags the driver and
the segments synchronize in the relaxation limit.

Proof (sketch). The proof of Theorem 6.1 is similar to that of Theorem 2.1, so we outline
only the main points and differences between them.

Referring to (6.1) and the proof of Theorem 2.1, and noting that (6.2) has no “boundary”
term due to inhibitory connections εi, since for duty cycle D/(2π) < 0.5 and φij ≈ 0 the
driven oscillator jumps when the inhibitory driver is inactive, we see that the left-hand side
of inequality (6.2) is equal to H0 pair(0). Hence, cases (a) and (b) of the theorem respectively
correspond to H0 pair(0) > 0 and ≤ 0. The first term εe

∫
. . . in (6.1) has a jump at φ = 0,

at the top of which it is positive, and this term is continuous on the left side of the jump
provided that −D < φ < 0 (see the proof of Theorem 2.1). The second term −εi

∫
. . . is

positive and continuous in φ if |φ| < (π − D) because z∗ is negative and integrable in the
interval D < φ < 2π; cf. Figure 3. Hence, H0 pair(φ) itself has a jump at 0, is positive at the
top of the jump (H0 pair(0

−) > 0), and is continuous in the interval (−min{D,π −D}, 0).
In case (b), at the bottom of the jump H0 pair(0

+) is negative as in Theorem 2.1, so
it has a stable root at 0, and because of uniqueness, Δ(0) = 0. For μ small but positive,
Δ(μ) � −μ2/3 for the same reason as in Theorem 2.1. In case (a) at the bottom of the jump
H0 pair(0

+) is already positive, and thus H0 pair(0
−) > s > 0, where s denotes the magnitude
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of the jump, which is independent of the constant c in the definition of H0 pair. On the
negative side of 0, there is an interval in which H0 pair(φ) is continuous (see above). Thus by
definition there exists δ (again independent of c) such that for arbitrary 0 < 0 − φ < δ, we
have |H0 pair(0

−) −H0 pair(φ)| < s, yielding H0 pair(φ) > 0. Thus if |Δ(0)| < δ, Δ(0) must be
positive.

The implication of part (a) is that if |Δ(0)| << 1, then Δ(0) > 0; the driven segment leads
the driver. Hence the statement in part (a) is similar to, and more specific than, part (a)
of Theorem 2.1. Theorem 6.1 has two restrictions in addition to those of Theorem 2.1—
the uniqueness of Δ in part (b) and its closeness to zero in part (a)—but neither affects
its applicability to lamprey CPGs. Uniqueness means that the CPG has a unique stable
traveling wave solution in agreement with the observation that the lamprey exhibits a single
robust pattern of motion. It is also reasonable that |Δ(0)| << 1 since the lamprey’s notocord
has O(100) segments, so intersegmental phase differences must be O(0.01× 2π) if wavelength
is to equal body length.

Phase response theory does not always apply to the lamprey CPG, because intersegmental
coupling is not necessarily weak, so FTM interactions may be more appropriate. Much as
Theorem 2.1 has an analogous statement in Theorem 3.1, an analogue of Theorem 6.1 holds
under the assumption of FTM interactions. Here we give an informative but inexact version,
without proof.

Theorem 6.2. Assume that two pairs of oscillators in the FTM limit (εe,i → 0, μ/εe,i → 0)
each have stable T -periodic solutions. Let ΔFTM denote the time difference between activation
of the ipsilateral driven and driver oscillators (positive if the driven activates first). Then,

(a) if conditions (i)–(iii) and inequality (6.2) hold and |ΔFTM | << 1, then the driven
oscillators lead the drivers; and

(b) if conditions (i)–(iii) hold but inequality (6.2) fails and the network has only one stable
T -periodic solution, then the oscillators synchronize (away from the relaxation limit,
the driven segment lags the driver).

Provided that the CPG has unidirectional intersegmental coupling, the consequences of
Theorems 6.1–6.2 for the lamprey are as follows.

1. If inequality (6.2) fails, neighboring segments display a negative phase difference that
vanishes in the relaxation limit. A chain will therefore exhibit waves that propagate in the
direction of the intersegmental coupling, with wavelength approaching zero in the relaxation
limit. Hence, in such models the wavelength is usually an increasing function of μ, instead of
a constant with frequency. This behavior was seen in previous numerical simulations.

2. If inequality (6.2) holds, segments have positive phase differences that persist in the
relaxation limit and traveling waves will propagate against the coupling direction, with ap-
proximately constant wavelength as μ is varied. Hence, intersegmental connections must be
directed from tail to head to obtain head-to-tail traveling waves.

Our first important finding is that, if (6.2) holds, a double chain of oscillators can combine
the advantages of previous cell- and network-based CPG models, namely, wide frequency-
range and constant wavelengths. Theorem 4.1 implies that single chains rarely satisfy the
analogous inequality (2.8), but the presence of an additional positive term εi

∫
. . . in (6.2),

due to cross-inhibitory connections, provides more flexibility. On the other hand, as shown
in section 3.3, the bidirectional coupling in the real network promotes synchrony under the
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assumption of FTM interactions. Hence finding “well-behaved” models is difficult, but prob-
ably not hopeless, since the high number of ad hoc parameters in such models allows wide
freedom for improvement. The failure of such an attempt would suggest that the cell-based
mechanism is an oversimplification and that more sophisticated models, perhaps combining
both rhythm-generating mechanisms, are required.

It is also worth noting that caudo-rostral (tail-to-head) coupling is required to produce
waves that travel from head to tail. This confirms previous studies [41, 20] that used com-
pletely different arguments to show that ascending is stronger than descending coupling in
the lamprey notocord.

7. Conclusions. This paper concerns coupled sets of planar relaxation oscillators. We
focus on pairs of oscillators with unidirectional coupling but draw conclusions for two-way
coupling and linear chains of oscillators. Our main theorems, Theorems 2.1 and 3.1, provide
sufficient conditions for persistent phase lags and for synchrony in the limits of weak coupling
and of large time-scale separation, using phase response theory and FTM theory, respectively.
The key step involves estimation of an inequality (2.8) arising from the averaged coupling
function.

Theorem 4.1 provides a sufficient condition for synchrony, and in section 4 we show that
several models of bursting neurons satisfy this condition, which we conjecture to be the typ-
ical case. However, counterexamples can be found, as demonstrated in section 5. Finally,
in section 6 we extend these results to the double chains featured in models of CPGs for
swimming in lamprey, providing analogues of Theorems 2.1 and 3.1 in Theorems 6.1 and 6.2.
These results partially explain why cell-based models of relaxation type approach synchrony
as swimming speed decreases, violating the experimental observation of near-constant phase
lags over a wide speed range, but they also offer hope that parameterizations that permit the
observed behavior may be found.

More generally, the results in this paper reveal interesting relations between phase response
and FTM theory, which apply in the distinctly different limits of weak coupling (1 � μ �
ε → 0) and strong time-scale separation (1 � ε � μ → 0). In particular, we construct
a composed Poincaré return map in the latter relaxation limit that is the analogue of the
averaged coupling function in the former limit. This map is used to demonstrate that the
tendency of unidirectionally coupled pairs or arrays of oscillators to synchronize is unaffected
by extreme changes of the ratio ε/μ despite evident differences between the resultant coupling
mechanisms. However, we also find that the rates of convergence to synchrony scale differently
as perfect time-scale separation (μ → 0) is approached. In case of FTM interaction, our study
raises further questions regarding the behavior of bidirectionally but asymmetrically coupled
arrays as well as that of arrays with multiple (non–nearest-neighbor) coupling. A similar
approach to the present one may be helpful in studying synchronization properties of such
networks.

Appendix A. Theorem 2.1: The PRC at jumps. Here we locally approximate the PRC
near jumps, showing that relaxation oscillators have large phase response values during tran-
sition, shortly before (but not during) jumps. This fact is central in the proof of Theorem 2.1.

We assume small but nonzero μ, in which case the stable limit cycle Γ of the ODEs (2.1)–
(2.2) is close to but not exactly the same as that shown in Figure 1. Since notation like x(φ)
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Figure 11. A: An orbit in the neighborhood of a downward jump. B: The PRC near the jump.

has been used to denote coordinates on Γ as μ → 0, we now use different notation ξ and η for
the slow and the fast variables, respectively. We define time t and phase φ such that t = 0
and φ = D when ξ = x(D); see Figure 11(A).

Leading order terms in the PRC near jumps at nondegenerate (quadratic) turning points
are determined by the local approximation

ẋ ≈ f(x(D), y(D)),(A.1)

μẏ ≈ gx(x(D), y(D)) [x− x(D)] +
gyy(x(D), y(D))

2
[y − y(D)]2 .(A.2)

These ODEs have an explicit solution in terms of Airy functions and their derivatives [1],
denoted below by Ai, Bi, Ai′, and Bi′:

ξ(t) = x(D) + ft,(A.3)

η(ξ) = y(D) + μ1/3

(
4fgx
g2
yy

)1/3 Ai′(ζ) + a ·Bi′(ζ)

Ai(ζ) + a ·Bi(ζ)
,(A.4)

where a is an arbitrary constant, the arguments (x(D), y(D)) have been suppressed (i.e.,
f = f(x(D), y(D)), etc.), and ζ is a rescaled version of ξ,

(A.5) ζ = −μ−2/3

(
gxgyy
2f2

)1/3

(ξ − x(D)).

The parameter a is determined by the asymptotic boundary condition that for ξ → −∞
the orbit follows the upper branch of the g = 0 nullcline, implying that η(ξ) > y(D); see
Figure 11(A). We note that ξ → −∞ corresponds to ζ → ∞ by (A.5), the limiting values of
Ai(ζ), Ai′(ζ), Bi(ζ), and Bi′(ζ) are +0, −0, +∞, and +∞, respectively, and, from the nullcline
geometry, f > 0 > gx. Using these facts in (A.4), limξ→−∞ η(ξ) > y(D) implies that a = 0.
The orbit gradually leaves the nullcline and η goes to minus infinity at ζ = A ≈ −2.3381,
which is a zero of the function Ai. The term μ1/3 in (A.4) implies that, for small μ, η remains
close to zero for most values of ζ and suddenly grows just before ζ reaches its critical value.
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By definition, the PRC represents the (linear) advancing or retarding effect of a small,
instantaneous perturbation Δη in the fast variable. Such a perturbation results in a switch to
another trajectory with a ≈ Δη · da/dη. The η-coordinate of the perturbed trajectory goes to
infinity at ζ = ζend(a). We assume that ζend(a) corresponds, via (A.5), to the rescaled slow
coordinate ξend when the jump is finished and slow motion begins on the lower branch of the
nullcline; as already noted, ζend(0) = A. The perturbation changes this by

(A.6) Δξend = Δη
da

dη

dζend
da

dξ

dζ
+ O(Δη2).

To compute the effect of the perturbation, note that during the jump the slow
variable evolves according to ξ̇ ≈ f(x(D), y(D)), so that the jump duration increases by
Δξend/f(x(D), y(D)). After the jump, the orbit reverses direction in ξ: ξ̇ ≈ f(x(D), y(D+)) <
0. Thus positive Δξ has a further retarding effect of duration Δξend/f(x(D), y(D+)). The
sum of these two terms represents the “time-response” to the perturbation, and a final scaling
factor dφ/dt = ω yields the local PRC

Δφ = −Δη
da

dη

dζend
da

dξ

dζ
ω
[
f−1(x(D), y(D)) − f−1(x(D), y(D+))

]
+ O(Δμ2),(A.7)

where the minus sign implies that positive values correspond to shortening of the period.
We compute the components of the product in (A.7) one by one. First, dξ/dζ comes

directly from (A.5):

(A.8)
dξ

dζ
= −μ2/3

(
2f2

gxgyy

)1/3

.

We find da/dη = (dη/da)−1 using (A.4):

da

dη
=

[(
4μfgx
g2
yy

)1/3 Bi′(ζ)(Ai(ζ) + aBi(ζ)) −Bi(ζ)(Ai′(ζ) + aBi′(ζ))

(Ai(ζ) + aBi(ζ))2

∣∣∣∣
a=0

]−1

=

[(
4μfgx
g2
yy

)1/3 Bi′(ζ)Ai(ζ) −Bi(ζ)Ai′(ζ)

Ai(ζ)2

]−1

.(A.9)

The term Bi′(ζ)Ai(ζ)−Bi(ζ)Ai′(ζ) is constant. The fact that its derivative is 0 follows from
the definition of Airy functions: v Ai(v) = Ai′′(v), v Bi(v) = Bi′′(v). This straightforward
calculation is omitted. Hence we may replace ζ by the constant A ≈ −2.3381 defined above
and use Ai(A) = 0 to obtain

(A.10)
da

dη
= −

[(
4μfgx
g2
yy

)1/3 Bi(A)Ai′(A)

Ai(ζ)2

]−1

.

Finally, we determine dζend/da. ζend(a) denotes the location of the singularity in (A.4): it is
the solution of

(A.11) Ai(ζ) + aBi(ζ) = 0.
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Thus we have

dζend
da

=

[
da

dζend

]−1

=

[
−d [Ai(ζ)/Bi(ζ)]

dζ

∣∣∣∣
ζ=A

]−1

=
Bi2(A)

Ai(A)Bi′(A) −Ai′(A)Bi(A)
= −Bi(A)

Ai′(A)
.(A.12)

Substituting (A.3), (A.5), (A.8), (A.10), and (A.12) into (A.7), we obtain the PRC in
terms of t:

Δφ

Δη
≈

[
μf(x(D), y(D))gyy(x(D), y(D))

2g2
x(x(D), y(D))

]1/3

Ai′−2(A)

×Ai2

(
−μ−2/3

(
gx(x(D), y(D))gyy(x(D), y(D))f(x(D), y(D))

2

)1/3

t

)

× ω

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
.(A.13)

Finally, replacing t by φ = φ0+ωt, we obtain the approximate PRC z(φ) during the transition
and jump. Note that in spite of its apparent complexity, the formula (A.13) contains only
constants and a scaled Ai2 function, so that we may write

(A.14) z∗(φ) =
z(φ)

μ
≈ Bμ−2/3 Ai2

(
Cμ−2/3(φ− φ0)

)
,

where B,C are O(1) constants. See also Figure 11(B).
This formula demonstrates that large PRC values occur during transition, while the oscil-

lator state is near the upper nullcline. (These correspond to the delta function in the relaxation
limit; see (2.6).) The analogous result for the upward jump can be derived in the same way. In
that case, the large values occur during transition at the lower nullcline. We remark, without
explicit computations, that the integral of this approximation of the phase-response function
from −∞ to the end of the jump is equal to the coefficient of the delta function in (2.6).

Appendix B. Proof of Theorem 3.1. The proof is divided into five parts. In the first,
notation and concepts are introduced; these include four mappings Hi representing the inter-
actions of the oscillators during the four segments of their limit cycles (slow motions on the
upper and lower nullcline branches, and jumps). In the second part we analyze the functions
Hi. These results are used in the third part to demonstrate that the only possible forms of
T -periodic interactions are synchrony or O1 leading O2. The fourth part contains the proof
that if O1 leads, then inequality (2.8) holds, and in the last part we show the converse in the
case of synchrony.

B.1. Notation. Let t
(1)
j , . . . , t

(5)
j denote the times at which the state of Oj successively

crosses the Poincaré sections Π1,Π2, . . . ,Π5 = Π1 defined in Figure 6(A). We shall construct
a return map

(B.1) εHFTM (t
(1)
2 − t

(1)
1 ) =

[
t
(5)
2 − t

(5)
1

]
−

[
t
(1)
2 − t

(1)
1

]
,
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which describes the time-shift during one cycle due to coupling, normalized by the coupling
strength ε. Phase-locked solutions correspond to zeros of HFTM , and their stability requires
0 ≤ ε dHFTM (t)/dt ≤ 2. Thus, HFTM is a similar predictor of dynamics to the coupling
function H(ψ) in the phase limit, although the stability condition differs. We assemble the
maps Hi, i = 1, 2, 3, 4,

(B.2) εHi(t
(i)
2 − t

(i)
1 ) =

[
t
(i+1)
2 − t

(i+1)
1

]
−

[
t
(i)
2 − t

(i)
1

]
,

the composition of which defines

HFTM (t) = H1(t) + H2(t + εH1(t))

+ H3(t + εH2(t + εH1(t)))

+ H4(t + εH3(t + εH2(t + εH1(t)))).(B.3)

In Figure 6(A), we introduce notation for the times required to travel along certain trajectories
in the phase space. We use these to express the functions Hi for small ε in the next subsection.
The notation reflects the scaling of these lengths; e.g., εΔτ2 in Figure 6(A) is O(ε) because it
represents the effect of a perturbation of strength O(ε) and duration O(1).

B.2. The functions Hi. We shall use condition (iii), which implies that τ4 > τ2 if ε is
sufficiently small. We also note that the functions Hi are invariant under translation by the
period of the unperturbed limit cycle: T = ε(τ1 + τ ′1) + τ2 + τ4.

To construct H1(t) we exploit the nature of FTM interactions. For ετ ′1 ≤ t ≤ τ4, O1

receives no input between Π1 and Π2, so it travels on its unperturbed limit cycle, yielding
H1(t) ≡ 0. At t = 0, H1(0) = εΔτ ′1. If −ετ1 − τ2 ≤ t ≤ −ετ1, O1 follows the perturbed limit
cycle, so H1(t) ≡ (τ1 + τ ′1). For −ετ1 ≤ t ≤ 0, O1 switches to the perturbed limit cycle from
the curve of length ετ1, as shown in Figure 6(B). On the intervals (−ετ1, 0) and (0, ετ ′1), H1(t)
is approximately linear (for ε � 1). See Figure 12(A). The mapping H3(t) is generated in
much the same way (Figure 12(C)).

To approximate H2(t) we use condition (ii), which implies that orbits move faster on
the upper branch of the perturbed nullcline than on the unperturbed one: Δτ2 is positive.
Thus for t = 0, O1 receives input along the upper nullcline and arrives at Π3 before O2, so
H2(0) = Δτ2. The same argument holds if t is slightly negative, but if t is further decreased,
the coupling signal turns off before O1 reaches Π3, until at t = −τ2 O1 reaches Π3 entirely on
the unperturbed limit cycle. Thus H2(t) ≡ 0 for t < −τ2, and it increases monotonically for
−τ2 < t. See Figure 12(B).

O1 receives input while traveling between Π2 and Π3, if t ∈ (0, ετ ′1), so H2(t) ≡ Δτ2 in
this interval. If, however, t is increased further, O1 has no input when crossing Π2, and it
first follows the unperturbed nullcline and jumps to the perturbed one if t ∈ (ετ ′1, ετ

′
1 + τ2);

the bigger t is, the later this jump occurs. Thus H2 decreases in this interval. If t > ετ ′1 + τ2,
again H2(t) ≡ 0.

Similar arguments lead to H4(t) (Figure 12(D)). H4(t) ≡ 0 for t ∈ (−ετ1, 0), because
O1 travels on the unperturbed nullcline. Because of condition (ii), traveling on the per-
turbed nullcline is always slower; thus H4(t) is nonpositive. It is monotonically decreasing
in (0, τ2 + ετ ′1), at which point O1 starts on the perturbed limit cycle but switches along the
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Figure 12. The maps Hi. A: O2 active/silent implies that O2 is active/silent when O1 jumps up; syn-
chronous jump means that the upward jump of O2 initiates an immediate jump in O1. B: O2 active/silent ap-
plies for the time interval in which O1 travels from Π2 to Π3; O2 switches on/off means that O2 is silent/active
when O1 crosses Π2 but switches on/off before O1 reaches Π3. Analogous notation is used in C and D.

way. The bigger t is, the longer it travels before switching to the unperturbed nullcline. H4

has another, increasing part, corresponding to traveling on the unperturbed nullcline initially
and switching to the perturbed one at some point (the bigger t, the later this happens), and a
fourth region, marked “negative” in Figure 12(D), corresponding to starting and arriving on
the unperturbed nullcline and spending an interval of length τ2 + ετ ′1 on the other nullcline in
between.

B.3. Possible forms of T -periodic dynamics. Here we show that on any stable T -periodic
solution of the coupled oscillator pair, either O1 and O2 are in synchrony or O1 leads O2. We
thereby exclude alternating dynamics or leading by O2.

First assume that the oscillators alternate, so that, while O2 is active, O1 moves between
Π3 and Π4. Thus, t + εH3(t + εH2(t + εH1(t))) ∈ (τ2 + O(ε), τ4 + O(ε)): the interval marked
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negative in Figure 12(D). This implies that

(B.4) t ∈ (τ2 + O(ε), τ4 + O(ε)),

and while (B.4) holds, we can deduce the following.

1. From (B.4) and the fact that O2 is silent when O1 jumps up, H1(t) ≡ 0 for sufficiently
small ε.

2. Because O2 is silent when O1 is on its upper nullcline, H2(t + εH1(t)) ≡ 0.
3. Because O2 is silent when O1 jumps down, H3(t + εH2(t + εH1(t))) ≡ 0.
4. From (B.4), H4(t + εH3(t + εH2(t + εH1(t)))) < 0.

Thus, HFTM < 0 by (B.3). Since T -periodic solutions require HFTM (t) = 0, this is a contra-
diction.

Assume now that O2 leads O1. In this case, the following hold:

1. O2 is active when O1 jumps up, corresponding to the H1(t) = const > 0 part of H1.
2. O2 turns off before O1 reaches Π3, corresponding to the increasing part of H2.
3. O2 is silent when O1 is between Π3 and Π4, implying that H3(t+εH2(t+εH1(t))) ≡ 0.
4. O2 turns on before O1 reaches Π1, corresponding to the increasing part of H4.

In the interval of t that satisfies these requirements, all four functions are constant or in-
creasing, implying that HFTM (t) itself is constant or increasing and hence that T -periodic
solutions, if any exist, are unstable, from section B.1. This is again a contradiction.

Thus, we have proven that the only possible stable T -periodic solutions are synchrony or
leading of O1. In the next two subsections, we show that, if ε is sufficiently small, inequality
(2.8) determines which case occurs.

B.4. If O1 leads, then inequality (2.8) holds. Assume now that HFTM (t) = 0 and O1

leads. In this case O2 is silent when O1 is between Π1 and Π2, so that H1(t) < εΔτ ′1;
see Figure 12(A). Similarly, O2 is active when O1 lies between Π3 and Π4, implying that
H3(t + εH2(t + εH1(t))) < −(τ3 + τ ′3) + εΔτ ′3; see Figure 12(C). Combining these with the
global inequalities H2 ≤ Δτ2 and H4 ≤ 0, (B.3) yields

(B.5) 0 = HFTM (t) < εΔτ ′1 − (τ3 + τ ′3) + εΔτ ′3 + Δτ2.

The O(ε) terms vanish as ε → 0; limiting values of the O(1) terms are found below.

For ε � 1 (weak coupling) εΔτ2 is equal to the (appropriately scaled) linear phase-response
to continuous ε perturbation during slow motion on the upper branch (0 < φ < D); i.e., as
shown in section 2,

(B.6) lim
ε→0

Δτ2 =

∫ x(D)

x(0)

fy(χ, ya(χ))

f2(χ, ya(χ))gy(χ, ya(χ))
dχ.

We obtain (τ3 + τ ′3) in the ε → 0 limit by approximating the ODEs defining O1 at the
upper right knee [x(D), y(D)] by (A.1)–(A.2), derived in Appendix A. Substituting h = 1
and solving

(B.7) g(x, y) + ε · 1 = 0 and gy(x, y) = 0
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shows that the perturbation εh shifts the knee to the right by ε/gx(x(D), y(D)). Thus,

ετ3 ≈ − ε

f(x(D), y(D))gx(x(D), y(D))
,(B.8)

and ετ ′3 ≈ ε

f(x(D), y(D+))gx(x(D), y(D))
,(B.9)

yielding

(B.10) τ3 + τ ′3 ≈ 1

gx(x(D), y(D))

[
1

f(x(D), y(D))
− 1

f(x(D), y(D+))

]
.

Substituting (B.6) and (B.10) into (B.5), we find that (2.8) holds in the ε → 0 limit.
Note that (B.10) represents the effect of FTM interactions but that it also agrees with

predictions of phase reduction theory; cf. (2.6). This is the main reason that condition (2.6)
holds in both the phase and the FTM limits.

B.5. Inequality (2.8) is false in case of synchrony. First we substitute the inequalities
H1 ≥ 0 and H3 ≥ −(τ3 + τ ′3) (cf. Figures 12(A,C)) into (B.3) to obtain

(B.11) 0 = HFTM (t) ≥ H2(t + εH1(t)) − (τ3 + τ ′3) + H4(t + εH3(t + εH2(t + εH1(t)))).

H2(t + H1(t)) is estimated by noting that, in case of synchrony, at least one of the following
holds:

1. Upward jumps are synchronous.
2. Downward jumps are synchronous.
3. O1 jumps up earlier and jumps down later than O2.
4. O2 jumps up earlier and jumps down later than O1.

The first case yields |t| ≤ ετ1; cf. Figure 12(A). Since |H1| ≤ τ1+τ ′1, we also have |t+εH1(t)| ≤
ε(τ1 + 2τ ′1); i.e., for arbitrary δ1 > 0, sufficiently small ε guarantees |t + εH1(t)| ≤ δ1. In
the limit ε → 0, H2 is determined exactly by phase theory. Moreover, H2 is continuous
because it describes interactions that occur only during slow dynamics and not during jumps.
Appealing to continuity, we see that for arbitrary δ2 > 0, we may pick δ1 sufficiently small
that |H2(v) −H2(0)| ≤ δ2 for all |v| ≤ δ1. Thus, for ε sufficiently small, we conclude that

(B.12) H2(t + εH1(t)) ≥ Δτ2 − δ2.

Analogous arguments can be applied in the other three cases, and one can show in the
same way that for sufficiently small ε, |H4(t + εH3(t + εH2(t + εH1(t)))) −H4(0)| ≤ δ2 also
holds, implying that

(B.13) H4(t + εH3(t + εH2(t + εH1(t)))) ≥ −δ2.

Substituting inequalities (B.12)–(B.13) into (B.11), we obtain

(B.14) 0 = HFTM (t) ≥ Δτ2 − (τ3 + τ ′3) − 2δ2,

which holds for arbitrarily small δ2 and so yields

(B.15) 0 ≥ Δτ2 − (τ3 + τ ′3).

Finally, using (B.6) and (B.10) in (B.15), we conclude that (2.8) cannot hold.
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t

H t
FTM

( )

O( )�

O 1( )

O 1( )

O( )�

O( )�

O( )�

upward jumps synchronous

downward jumps

synchronous

Figure 13. An example of the composed map HFTM . The proof of Theorem 3.1 relies on the fact that
for ε → 0, the shape of HFTM is similar to that of H in Figure 3. HFTM has one or two steep, decreasing
steps (two are shown here), inherited from H1 and H3. If there are two, they are separated by a plateau of
width O(ε). A root of HFTM in either steep part means that at least one jump is synchronous; a root in the
plateau corresponds to synchronous activity in which neither jump is synchronous (cf. section 3.2). The latter
is atypical in the limit ε → 0, as shown in Appendix C.

Appendix C. Synchrony under weak coupling. The mappings H2 and H4 introduced
in Appendix B have finite steepness, but H1 and H3 have O(ε−1)-steep decreasing steps,
corresponding to synchronous jumps of the two oscillators. The exact shape of the mapping
HFTM is model-specific, but in all cases it will also have one or two inherent steep parts due
to (B.3), as shown in the example of Figure 13. According to the definition of section 3.2, the
T -periodic orbits of the two oscillators are synchronous if one or both jumps coincide, or if
one oscillator jumps up earlier but jumps down later than the other. These cases respectively
correspond to two steep segments of HFTM and the small plateau between them (if such a
plateau exists). The width and height of the plateau is O(ε), and it vanishes in the limit
ε → 0. Thus, synchronous activity typically means that either upward or downward jumps
are synchronous.
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Neimark–Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps∗
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Abstract. The multipliers of a fixed point of a piecewise-smooth, continuous map may change discontinuously
as the fixed point crosses a discontinuity under smooth variation of parameters. We study the
case when the multipliers “jump” from inside to outside the unit circle, and we assume the map is
two-dimensional and piecewise-affine. The resulting dynamics is sometimes similar to the Neimark–
Sacker bifurcation of a smooth map in which an attracting periodic or quasiperiodic orbit is created
as the fixed point loses stability. However, the bifurcation is often much more complex, with multiple
(chaotic) attractors, saddles, and repellors created or destroyed.

Key words. piecewise-smooth systems, resonance tongues, border-collision bifurcations
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1. Introduction. A dynamical system F : M → M is piecewise-smooth if it is everywhere
smooth (i.e., Ck for some k ∈ N) except on some codimension-one boundaries, called switching
manifolds, that divide M into countably many regions. Such systems provide useful models for
physical situations involving nonsmooth behavior such as impacts or rapid switching. Indeed,
they are used in a wide variety of fields such as vibro-impacting systems and systems with
friction [34, 5, 20, 25], circuitry including relay control systems [37, 4, 33], economics [27, 19],
biology, and physiology [29, 17].

The theory of bifurcations in smooth dynamical systems is extensive and well grounded [18,
35]. However, the majority of this theory does not apply to piecewise-smooth systems. This
paper is concerned with piecewise-smooth, continuous maps that are everywhere continuous
but have a discontinuous Jacobian on the switching manifolds. As a fixed point of such a
map crosses a switching manifold as a system parameter is varied, its associated multipliers
may change discontinuously. The “jump” in multipliers may alter the stability of the fixed
point. The resulting bifurcation is now called a border-collision bifurcation, a term coined
by Nusse and Yorke [23] but originally called a C-bifurcation by Feigin whose work can be
found in [9]. We study the two-dimensional case when complex multipliers jump from inside
to outside the unit circle at the bifurcation. We show that this bifurcation exhibits diverse
dynamical behavior, some of which is akin to that of a Neimark–Sacker bifurcation in a smooth
map, some of which is like that of other border-collision bifurcations, and some of which are
phenomena that to our knowledge have not been described previously.
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Piecewise-smooth maps have two major applications. They appear as models of physical
systems with both discrete and nonsmooth behavior, such as switching circuits and eco-
nomics; second, they appear mathematically as Poincaré maps of piecewise-smooth flows with
oscillatory behavior—see, for instance, work on grazing bifurcations and sliding bifurcations
[8, 37, 16, 2]. They also provide a normal form for the so-called corner-collision bifurcation [7].
It is therefore of great interest to understand border-collision bifurcations in such maps.

To investigate local behavior near a border-collision bifurcation, it is first important
to study the piecewise-linear approximation of the map at the bifurcation. The resulting
piecewise-affine, continuous map provides a local approximation to a piecewise-smooth map
near a differentiable point on a switching manifold. We can choose coordinates z ∈ R

n such
that the local switching manifold becomes the plane z1 = 0 and the piecewise-affine map takes
the form

(1) z′ =

{
A1z + μc, z1 ≤ 0,
A2z + μc, z1 ≥ 0,

where A1 and A2 are real-valued n × n matrices and c ∈ R
n. In order for the map to be

continuous, all columns of the two matrices Ai must be equal except for the first. It is assumed
the fixed point crosses the switching manifold nontangentially, and thus z∗ = μ(I − Ai)

−1c
has z∗1 = 0 only when μ = 0.

The work of Feigin [9] has provided an invaluable framework for the existence of fixed
points and periodic solutions on either side of border-collision bifurcations for (1). Let σ+

i

[σ−
i ] denote the number of real multipliers of Ai greater than 1 [less than −1] for i = 1, 2 (Ai

may also have complex-valued multipliers). Feigin showed that

1. assuming A1 and A2 do not have a multiplier 1, then if σ+
1 + σ+

2 is even, (1) has a
unique fixed point ∀ μ ∈ R continuously crossing the switching manifold at the origin
when μ = 0, and if σ+

1 + σ+
2 is odd, two fixed points exist for one sign of μ, colliding

and annihilating at the origin when μ = 0; and
2. assuming A1 and A2 do not have a multiplier −1, then if σ−

1 +σ−
2 is odd, a period two

cycle exists for one sign of μ colliding with the fixed point at the origin when μ = 0,
and if σ−

1 + σ−
2 is even, the map (1) exhibits no 2-cycles.

The dynamics of one-dimensional, piecewise-affine, continuous maps with a single switch-
ing manifold are well understood [3, 8]. For example, it has been proved that in this case
multiple attractors cannot coexist and every aperiodic attractor is chaotic [8].

For the two-dimensional case, we let z = (x, y) and choose coordinates so that the locally
smooth switching manifold corresponds to the y-axis. Following [23], the local map may be
generically transformed by an affine change of coordinates to the canonical form (x′, y′) =
Fμ(x, y; τL, τR, δL, δR), where Fμ is defined by

[
x′

y′

]
=

⎧⎪⎪⎨
⎪⎪⎩

AL

[
x
y

]
+ μ

[
1
0

]
, x ≤ 0,

AR

[
x
y

]
+ μ

[
1
0

]
, x ≥ 0,

(2)
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where

AL =

[
τL 1
−δL 0

]
, AR =

[
τR 1
−δR 0

]
.(3)

Again, the second columns of the two matrices are equal since the map is assumed continuous.
The parameters of the normal form are simply the traces, τL,R and determinants, δL,R, of the
matrices AL,R.

The normal form (2) has several simple properties that we will use below.
• The map Fμ is a homeomorphism of R

2 if and only if δLδR > 0.
• If δL, δR > 0, the inverse is simply related to the original map by

(4) F−1
μ (x, y; τL, τR, δL, δR) = F−μ

(
y, x;

τR
δR

,
τL
δL

,
1

δR
,

1

δL

)
.

Thus the dynamical properties of F for positive μ are the same as those of F−1 for
negative μ for a different combination of parameter values.

• The map has the scaling symmetry

(5) Fλμ(λx, λy; τL, τR, δL, δR) = λFμ(x, y; τL, τR, δL, δR) ∀ λ > 0.

Consequently, if I is an invariant set under Fμ, then λI is an invariant set for Fλμ,
(λ > 0). Therefore, every bounded invariant set collapses onto the origin as μ → 0,
and it is sufficient to consider only μ ∈ {1, 0,−1}.

The canonical form (2) can have complex dynamics including multiple strange or quasi-
periodic attractors, and the spectrum of its possible behaviors have not been completely
classified. Partial classifications have been presented for the dissipative case, |δL|, |δR| < 1 [2],
and for the case that the multipliers of the fixed point near the border-collision bifurcation
remain real-valued [9].

In this paper, we will study the case in which the map has complex eigenvalues, in par-
ticular, when AL corresponds to an attracting focus and AR to a repelling focus. This is the
case where one might expect an analogue of the Neimark–Sacker bifurcation to occur when a
fixed point crosses the switching manifold.

In section 2 we describe basic properties of the canonical form map, (6), that we investi-
gate. Periodic solutions are described by symbolic dynamics in section 2.1. Here we construct
a linear system (10) to solve for periodic solutions and deduce their stability. We consider
border-collision bifurcations of periodic solutions and then in section 2.2 define rotation num-
bers for general orbits.

Basic dynamics of the map (6) are described in section 3. We give a comparison to the
smooth Neimark–Sacker bifurcation and show the effect of nonlinear terms. In section 3.1,
via geometrical arguments, we prove the existence of an attracting set for some limiting cases
and show that this set persists for nearby parameter values.

Particularly for the case of complex multipliers, it is of interest to compute regions in
parameter space within which periodic solutions of a particular rotation number exist and
are attracting. As with the case of circle maps, such regions are called resonance tongues
(or Arnold tongues). In contrast to smooth systems, resonance tongues in piecewise-smooth
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systems exhibit a distinctive lens-chain structure. This was first observed for a one-dimensional
piecewise-linear circle map [36] and has been observed for the canonical form (2) in [38] and
for other two-dimensional piecewise-linear maps [32, 15]. We will discuss these structures in
detail in sections 3.2–3.5.

Complicated and unusual dynamics are described in section 4. In section 4.1 we provide an
example where the fixed point is a saddle on the switching manifold and no invariant circle is
created at the bifurcation. Multiple attractors are discussed in section 4.2; see also section 4.6
for additional complications.

The loss of stability of a periodic solution via an associated multiplier attaining the value
−1 is detailed in section 4.3, and the loss of stability via a complex conjugate pair of associated
multipliers crossing the unit circle is discussed in section 4.5. Period-doubled solutions appear
far from basic periodic solutions due to the absence of quadratic and higher order terms in the
canonical form. In a codimension-two situation we observe resonance tongues with reducible
rotation numbers emanating from codimension-two points. Resonance tongues with reducible
rotation numbers are discussed in section 4.4. These resonance tongues do not seem to form
lens-chains. Conclusions are presented in section 5.

2. A two-dimensional map. In this paper we will study the map (2) when multipli-
ers associated with the fixed point are complex-valued and jump from inside to outside the
unit circle at the border-collision bifurcation. Thus we assume that AL and AR, (3), have
eigenvalues rLe±2πiωL and 1

sR
e±2πiωR , respectively, where rL, sR ∈ (0, 1) and without loss of

generality ωL, ωR ∈ (0, 1
2). Note that this corresponds to the case that 0 < δL = r2

L < 1 and
1 < δR = 1/s2

R so that the map (2) is an orientation preserving homeomorphism. With these
new parameters, the normal form becomes

(6)

[
x′

y′

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
2rL cos(2πωL) 1

−r2
L 0

] [
x
y

]
+ μ

[
1
0

]
, x ≤ 0,[

2
sR

cos(2πωR) 1

− 1
s2R

0

] [
x
y

]
+ μ

[
1
0

]
, x ≥ 0.

We will denote this map (x′, y′) = fμ(x, y; rL, sR, ωL, ωR).

We may compute the existence of fixed points and 2-cycles by applying Feigin’s analysis.
Both AL and AR have no real-valued eigenvalues; hence, in the form (1), σ+

1 = σ+
2 = σ−

1 =
σ−

2 = 0, and thus (6) has a unique fixed point ∀ μ ∈ R, and the map has no period-two orbits
for any values of the parameters. Explicitly, the fixed point is

(7)

[
x∗

y∗

]
=

⎧⎪⎪⎨
⎪⎪⎩

μ

r2
L − 2rL cos(2πωL) + 1

[
1

−r2
L

]
, μ ≤ 0,

μ

s2
R − 2sR cos(2πωR) + 1

[
s2
R

−1

]
, μ ≥ 0.

The fixed point moves from the left-half plane (LHP) when μ < 0, where it is a stable focus,
to the origin at μ = 0, and then to the right-half plane (RHP) when μ > 0, where it is an
unstable focus.
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Since (6) is a homeomorphism, its inverse is given by the symmetry (4). Explicitly, we
have

(8) f−1
μ (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 −s2

R

1 2sR cos(2πωR)

] [
x
y

]
− μ

[
0
1

]
, y ≤ 0,[

0 − 1
r2L

1 2
rL

cos(2πωL)

] [
x
y

]
− μ

[
0
1

]
, y ≥ 0.

2.1. Periodic solutions. Each orbit of (6) can be coded by a symbol sequence that gives
its itinerary relative to the switching manifold. We will denote an orbit of (6) by a sequence
z(t) = (x(t), y(t)), where z(t+1) = fμ(z(t)). The symbol sequence for an orbit is a sequence
S = {St ∈ {L,R} : t ∈ Z}, where

(9) St =

{
L, x(t) ≤ 0,

R, x(t) ≥ 0.

Note that we allow the selection of either L or R when x(t) = 0; however, since the map is
continuous on the switching manifold, this ambiguity will not cause difficulties.

A period-n orbit, {z(0), z(1), . . . , z(n−1)}, with x(i) �= 0 for each i, is defined by symbol
sequence of length n that is unique up to a cyclic permutation. Given a periodic symbol
sequence, the orbit is determined by the linear system

z(1) = AS0z
(0) + b,

z(2) = AS1z
(1) + b,

...

z(0) = ASn−1z
(n−1) + b,

where b = (μ, 0)T. Elimination of the points z(1), . . . , z(n−1) gives

(10) (I −MS)z(0) = PSb,

where

MS = ASn−1 . . . AS0 ,(11)

PS = I + ASn−1 + ASn−1ASn−2 + · · · + ASn−1 . . . AS1 .(12)

We will call (10) the n-cycle solution system. If (I −MS) is nonsingular for a given period-n
symbol sequence S, (10) has the unique solution

(13) z(0) = (I −MS)−1PSb.

If, in addition, the consistency conditions (9) are satisfied, the period-n orbit exists and is
said to be admissible; otherwise, it is virtual (terminology widely used in piecewise-smooth
system theory [8]).
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Stability of an admissible orbit that has no points on the switching manifold is easily
determined. In this case, there exists a neighborhood of z(0) within which all points follow the
symbol sequence S for at least n iterates. Moreover if w(0) is an element of this neighborhood,
then

(14) w(n) = MSw
(0) + PSb.

Note that z(0) is the unique fixed point of this linear system; thus the stability of the n-cycle
is determined by MS . For instance, the n-cycle is stable if and only if both multipliers of MS
lie inside the unit circle. For this reason we call MS the stability matrix of S.

Suppose now that an admissible n-cycle has one point on the switching manifold, say, z(0);
that is, x(0) = 0 and x(i) �= 0 ∀ i �= 0. Then there is a neighborhood of z(0) such that all points
in this neighborhood located on one side of the switching manifold (say, the LHP) follow the
symbol sequence S for n steps, whereas all points in the neighborhood on the other side follow
the symbol sequence S∗ for n steps, where S∗ differs from S only in the first component. Thus
for any w(0) in the neighborhood, we have

(15) w(n) =

{
MSw(0) + PSb, w

(0)
1 ≤ 0,

MS∗w(0) + PS∗b, w
(0)
1 ≥ 0.

Note that PS∗ = PS and MS∗ differs from MS in only the first column; thus (15) is a piecewise-
affine continuous map of the form (1). Hence, using Feigin’s results, the problem of the
existence of n-cycles and 2n-cycles near the bifurcation is reduced to counting the number of
real multipliers of MS and MS∗ greater than 1 and less than −1.

We call PS the border-collision matrix of S in view of the following lemma.
Lemma 1. Suppose (I − MS) is nonsingular and μ �= 0. Then the point z(0) = (I −

MS)−1PS(μ, 0)T lies on the switching manifold if and only if PS is singular.
Proof. We introduce the map

(16)

[
x′

y′

]
=

⎧⎪⎪⎨
⎪⎪⎩

AL

[
x
y

]
+ b, x ≤ 0,

AR

[
x
y

]
+ b, x ≥ 0,

which is equivalent to (6) when b = (b1, b2)
T = (μ, 0)T. This map displays the same dynamics

when b = (sign(b1 +b2), 0)T since the shift transformation (x, y) �→ (x, y)+(0,−b2) transforms
b = (b1, b2)

T to (b1 + b2, 0)T, and a positive scaling (preserving the sign of x) transforms b to
(sign(b1 + b2), 0)T. Thus for any b ∈ B = {(b1, b2)T | μ(b1 + b2) > 0}, b1 + b2 has the same
sign as μ, and thus (16) exhibits the same dynamical structure as (6). In particular, if the
periodic orbit with symbol sequence S for (6) has the point z(0) on the switching manifold,
then the corresponding point for the map (16), (I −MS)−1PSb, will also lie on the switching
manifold. Thus if z(0) lies on the switching manifold, then (I −MS)−1PSB is a subset of the
switching manifold. But B is a two-dimensional set; therefore, PS is singular.

Let

(17) K = {(k,−k)T | k ∈ R}.
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Note that ∀b ∈ K, the above shift transformation transforms b to the origin; hence in this
case (16) has a unique fixed point z∗, which lies on the switching manifold. Clearly this point
is a solution to the n-cycle solution system of S; thus z∗ = (I − MS)−1PSb. Now suppose
that PS is singular. If b ∈ null(PS) ∩ K, PSb = 0, and hence z∗ = 0. But for the origin to
be a fixed point of (16) we must have b = 0. Thus null(PS) ∩ K = {0}. It follows that PS
maps K onto PSR

2. Thus ∃b ∈ K such that PSb = PS(μ, 0)T. The map (16) with this b has
z∗ = (I −MS)−1PSb on the switching manifold. Thus z(0) for (6) also lies on the switching
manifold.

The next lemma is useful for describing dynamics near where MS has an eigenvalue 1.
Lemma 2. Suppose PS is nonsingular and μ �= 0. Then the n-cycle solution system (10)

has a solution if and only if (I −MS) is nonsingular.
Proof. Clearly if (I − MS) is nonsingular, (10) has the unique solution (13). Suppose

(I −MS) is singular. Following the argument in Lemma 1, for any b ∈ K, (17), the map (16)
has a unique fixed point z∗ and (I −MS)z∗ = PSb. Thus PSK ⊂ rng(I −MS), the range of
(I−MS), but PS is nonsingular; thus we must have PSK = rng(I−MS). Finally, (μ, 0)T /∈ K;
therefore, (10) has no solution.

The above lemmas and discussion can easily be extended to higher dimensional piecewise-
affine maps.

2.2. Rotation numbers. The rotation number (or winding number) of an orbit of a map
is a characterization of the average increase in angle per iteration. It is most easily defined
for maps on circles or annuli. The rotation number for a map on R

2 can be defined relative
to a fixed point, z∗, if one exists, because removing z∗ from the plane leaves an annulus. An
alternative, intrinsic definition is called the “self-rotation number” [10]. The first definition is
dependent upon the choice of z∗, but since (6) has a unique fixed point for any combination
of parameter values, it is natural to define the rotation number about this point.

Since orbits of (6) rotate in a clockwise direction about z∗, we define the angle φ :
R

2 \ {z∗} → (−π, π] as

φ(z) = polar angle of (x− x∗) − i(y − y∗)

= atan2(y∗ − y, x− x∗),(18)

where atan2 is the two argument arctangent. To compute the rotation number we simply
average the changes in φ over the iterations of the map. Let Δφ : R

2 \ {z∗} → [0, 2π) be

(19) Δφ(z) = φ(f(z)) − φ(z) mod 2π;

then the rotation number of an orbit is

(20) ρ(z(0)) = lim
n→∞

1

2πn

n−1∑
i=0

Δφ(z(i))

if this limit exists. It can be shown [30] that, for any point in R
2 \ {z∗} the limit (20) exists

even if the orbit is unbounded and that

(21) 0 < ρ(z) <
1

2
.
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Clearly if z(0) belongs to a period-n orbit, the rotation number is rational: ρ = m/n. If
(6) has an invariant circle, then since fμ is a homeomorphism, so is its restriction to the circle.
Since any invariant circle bounds an invariant disk, the Brouwer fixed point theorem implies
that the disk must contain a fixed point, which must be z∗, since the fixed point of (6) is
unique. This is consistent with (21), which implies that the rotation number of the circle is
nonzero. The usual definition for the rotation number on a circle [18, 6] coincides with (20).
Furthermore, all points on the invariant circle have the same rotation number [18, 6].

3. Resonance tongues and basic dynamics. Recall that a Neimark–Sacker bifurcation in
a sufficiently smooth map generically occurs when an attracting fixed point has a complex pair
of multipliers, say, λ(μ) = r(μ)e2πiω(μ) and λ̄(μ), that cross the unit circle, at, say, μ = 0 [18].
If the map satisfies a nondegeneracy assumption and λn(0) �= 1 for n = 1, 2, 3, or 4, then an
invariant circle is created or destroyed as μ crosses zero. The circle emerges from the fixed
point with a size O(|μ| 12 ). The criticality of the bifurcation is determined by cubic terms in the
normal form; when it is supercritical the invariant circle is stable and exists when |λ(μ)| > 1,
and when it is subcritical the opposite is true. For small μ, dynamical behavior on the circle
is determined by the rotation number ω(μ). If ω(μ) = m

n with gcd(m,n) = 1 and n > 4,
the motion is called weakly resonant or mode locked and there generically exist two or more
period-n orbits on the invariant circle. When n ≤ 4, the dynamics is strongly resonant and an
invariant circle need not exist [18]. When ω(μ) is irrational, all orbits on the circle are dense
and quasiperiodic.

−1 0 1

−4

−2

0

2

4
A sR = 0.95

μ

x

−1 0 1

−4

−2

0

2

4
B sR = 0.85

μ

x

Figure 1. Bifurcation diagrams of (6) when ωL = ωR = 0.16, rL = 0.9. In panel A, sR = 0.95; in
panel B, sR = 0.85. Blue (red) lines denote stable (unstable) solutions. Solid lines correspond to the fixed
point, and dashed lines correspond to the maximum and minimum values of a periodic solution. Phase portraits
corresponding to panel A are shown in Figure 2.

The behavior of the piecewise-smooth map (6) can be much more complicated when μ
crosses zero. However, for some parameter values, its behavior is similar to the classical
Neimark–Sacker bifurcation; two example bifurcation diagrams for (6) are shown in Figure 1.
For panel A of the figure, when μ < 0, the stable fixed point is a global attractor; see Figure 2,
panel A. When μ > 0, the fixed point is unstable and is encircled by a stable invariant circle
with rotation number ρ ≈ 0.1601 whose basin appears to be the entire phase space except
for the fixed point (see Figure 2, panel B). Consequently, this bifurcation is analogous to a
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Figure 2. Phase portraits of (6) with the same parameter values as those in Figure 1, panel A. In both
panels one orbit is shown and the first few iterates are connected to illustrate the direction of motion. The fixed
point is indicated by an asterisk.

supercritical Neimark–Sacker bifurcation. An important difference is that, unlike in smooth
systems, the size of the invariant circle grows linearly with respect to μ. This is a simple
consequence of the scaling symmetry (5) and is common in other bifurcations in piecewise-
smooth systems [20, 8]—for example, the discontinuous Andronov–Hopf bifurcation [31].

By contrast, the bifurcation in panel B of Figure 1 is analogous to a subcritical Neimark–
Sacker bifurcation. When μ < 0, there is an unstable invariant circle whose radius shrinks
linearly to zero as μ → 0−. Points inside the circle are attracted to the stable fixed point,
whereas the forward orbits of points outside the circle are unbounded. When μ > 0, the orbit
of every initial condition, except for the unstable fixed point, is unbounded.

A fundamental question regarding the map (6) is: What governs the criticality of the
Neimark–Sacker-like bifurcation? As will be shown later, the answer is not simple. For
instance, there may exist no invariant circles for any value of μ (see section 4.1), or both
supercritical and subcritical behavior may be observed together (see section 4.6).

Numerical simulations suggest that (6) does not exhibit strong resonance. We have not
observed significantly different dynamical phenomena when ωL = ωR = 1/3 or 1/4 in (6).

The addition of nonlinear terms to (6) does not affect structurally stable dynamics (e.g.,
when the created orbits are hyperbolic) for sufficiently small values of μ. For instance, bifur-
cation diagrams are shown in Figure 3 for the map

(22)

[
x′

y′

]
= fμ(x, y) −

[
x2

0

]
.

In panel A of Figure 3, the parameter values of panel A of Figure 1 are used. For small μ > 0,
we find an attracting invariant circle which grows in amplitude approximately linearly with
respect to μ. For larger values of μ, the nonlinear map develops a stable 6-cycle.

In panel B, parameters are chosen such that the piecewise-affine map, (6), has a stable 3-
cycle for μ > 0. For small μ > 0, the nonlinear map exhibits the same 3-cycle, which initially
grows at the same linear rate as for the piecewise-affine map. However, as μ is increased,
the 3-cycle undergoes a period-doubling cascade. The cascade is comprised of usual smooth
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Figure 3. Bifurcation diagrams of the nonlinear map, (22), computed numerically by plotting forward orbits
after transients have decayed. In panel A the parameter values are the same as those in Figure 1, panel A; in
panel B, ωL = ωR = 0.4, rL = 0.2, and sR = 0.7. In panel B, the corresponding bifurcation diagram of (6) is
superimposed (shown as dashed lines).
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Rω

.5

0

Lω

Theorem 4
Theorem 3

Lr
1Theorem 5

Figure 4. Schematic summary of the results of section 3.1. Regions in parameter space are shaded blue
where it is known that there exists an asymptotically stable invariant set and red where no attractor exists. The
regions are labeled by their corresponding theorems in section 3.1.

period-doubling bifurcations, where the attracting set is bounded away from the switching
manifold.

The rest of this section describes the dynamics of (6) when μ = 1 under variation of the
remaining four parameters.

3.1. Limiting parameter values. Here we prove the existence or absence of an attractor
for some limiting values of the parameters. This is summarized in Figure 4. There are
two limiting domains in this figure, small rL and small ωL, for which we prove there exists
an asymptotically stable invariant set in Theorems 3 and 4. The third limit in Figure 4
corresponds to ωR = 0 for which we prove in Theorem 5 almost all orbits are unbounded.
Numerical results for regions in the figure where the theorems do not apply are given in the
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remaining subsections. Throughout this section we let f = f1 denote the map (6), with μ = 1.
Theorem 3. Consider (6) with μ = 1 and assume 0 < sR < 1, 0 < ωL, ωR < 1/2 as usual.

Then there is an ε > 0 such that whenever 0 ≤ rL < ε, the map has an asymptotically stable
invariant set.

Proof. First suppose rL = 0. Since μ = 1, the unique fixed point of (6) lies in the RHP.
The fixed point is an unstable focus; thus any point in the RHP other than the fixed point
maps into the LHP in finitely many steps. Moreover, if z = (x, y) is the first point in the
LHP, then it is easy to see that y < 0. The image of this point is f(z) = (y + 1, 0), with
an x component less than one. If this image is still in the LHP, then the second iterate
f2(z) = (1, 0) ∈ RHP. Consequently, any point in the LHP maps into the RHP in at most
two steps.

Thus the forward orbit of every point other than the fixed point intersects the segment
I = {(x, 0) | x ∈ [0, 1]}. Since I is compact, there is an N ∈ N such every point in I maps
back into I in at most N steps. Hence

Ω =
N⋃
i=0

f i(I)

is a compact, bounded, forward invariant set of f . Note that z∗ /∈ Ω. Let Σ be any compact
neighborhood of Ω, Ω ⊂ int(Σ), that does not contain the fixed point. Since Σ is compact,

every point in Σ maps to I; thus there is an N̂ ∈ N such that f N̂ (Σ) ⊂ Ω, i.e., Σ is a trapping

set for f N̂ .
When rL is small, a similar construction must hold: since (6) depends continuously on rL,

there is an ε > 0 such that whenever 0 ≤ rL < ε, Σ is still a trapping set for f N̂ . Let

(23) Λ =

∞⋂
i=0

f i(Σ).

Then Λ is an attracting set for (6); it is necessarily asymptotically stable and invariant.
The attracting set (23) may not be an “attractor” as it need not be minimal or chain-

transitive [24, 28]. Indeed, we will see in section 3.2 that f can have multiple attractors.
Theorem 4. Consider (6) with μ = 1 and 0 < rL, sR < 1, 0 < ωR < 1/2 as usual. Then

there is an ε > 0 such that whenever 0 ≤ ωL < ε, the map has an asymptotically stable
invariant set.

Proof. When ωL = 0, the left half of (6) becomes

z′ = ALz +

[
1
0

]
, AL =

[
2rL 1
−r2

L 0

]
.

This affine map has a unique (virtual) fixed point z∗L = 1
(1−rL)2

(1,−r2
L)T in the RHP; see

panel A of Figure 5. AL has a repeated eigenvalue rL and a single eigenvector (1,−rL)T.
The one-dimensional invariant manifold ErL of the virtual fixed point intersects the y-axis at
rL

1−rL
> 0. Observe that ErL separates orbits of the left-half map (i.e., if z is below (above)

ErL , then so is z′). Let Ξ = {(x, y) | x, y ≥ 0, y ≤ rL( 1
1−rL

− x)}; see Figure 5, panel A.
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Figure 5. Partitions of phase space when μ = 1, applied in Theorems 4 and 5. In panel A, ωL = 0; in
panel B, ωR = 0.

Consider the forward orbit of any z ∈ Ξ under the full map (6). Since the map in the RHP
corresponds to an unstable focus, z maps to a point ẑ in the LHP in finitely many steps, and
since for any x > 0, y′ = − 1

s2R
x < 0, ẑ lies below the x-axis. Every point in the LHP below

ErL maps into the RHP below ErL in finitely many steps. Since for any x < 0, y′ = −r2
Lx > 0,

the first iterate in the RHP will lie above the x-axis and thus in Ξ. Since Ξ is compact, there
is an N ∈ N such that ∀ z ∈ Ξ, fn(z) ∈ Ξ for some n ≤ N . Hence,

Ω =
N⋃
i=0

f i(Ξ)

is a compact, bounded, forward invariant set for f .
Following the argument in Theorem 3, this implies that for 0 ≤ ωL < ε there is an

attracting set Λ, (23) for f , where Σ is a neighborhood of Ω.
Theorem 5. Consider (6) with μ = 1 and the limiting case ωR = 0. Assume that the

remainder of the parameter values satisfy 0 < rL, sR < 1, 0 < ωL < 1/2 as usual. Then the
forward orbit of any point other than the fixed point is unbounded.

Proof. When ωR = 0, the right half of (6) becomes

z′ = ARz +

[
1
0

]
, AR =

[
2
sR

1

− 1
s2R

0

]
.

This affine map has a unique fixed point z∗ = − 1
(1−sR)2

(s2
R,−1)T in the RHP. AR has a

repeated eigenvalue 1
sR

and a single eigenvector (sR,−1)T whose associated one-dimensional

invariant manifold Σ intersects the y-axis at − 1
1−sR

< 0. Let Υ be the line parallel to Σ which
passes through the origin. We use Υ to partition phase space into three regions, as shown
in panel B of Figure 5. Region III, the set {(x, y) | x ≥ 0, x > −sRy}, is forward invariant
for (6) because for any z in region III, z′ = ( 2

sR
x + y + 1,− 1

s2R
x)T; that is,

x′ =
2

sR
x + y + 1 >

2

sR
x− 1

sR
x + 1 ⇒ x′ >

1

sR
x > 0.
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Using x = −s2
Ry

′, we see that x′ > −sRy
′, and hence z′ is in region III. Since the map in

the LHP corresponds to a virtual stable focus, and since for any x < 0, y′ = −r2
Lx > 0, every

point in region II is mapped into region III in finitely many iterations. Thus the forward orbit
of any point either starts in the RHP and remains there or enters region III via the LHP in
finitely many steps and remains in region III. In any case, the tail of the forward orbit is
contained in the RHP, and since dynamics in the RHP are governed by an unstable linear
map, the forward orbit of every point except z∗ is unbounded.

The limiting case, sR = 1, has been described previously in [32, 26, 13]; we will discuss it
further in section 3.3.

3.2. Resonance tongues when μ = 1. Figures 6, 7, and 8 show numerically computed
regions of existence of stable periodic orbits with periods shown in the color bar at the bottom
of Figure 6. As is commonly observed in piecewise smooth systems, these “resonance tongues”
usually have the form of a chain of lens-shaped regions [37, 27]. The rotation number of each
lens-chain is fixed, and, as we will discuss below, within a given chain, the symbol sequence
changes from lens to lens. The tongues emanate from sR = 1, and their sizes are ordered by
the Farey sequence, as indicated along the top of Figure 6. In some places tongues overlap
corresponding to the coexistence of multiple stable periodic solutions.

The figures are computed on a grid of 1024 frequency values and 128 values of sR. For
each set of parameters, we numerically check the admissibility conditions (9) and the stability
conditions (that the multipliers of the stability matrix (11) lie inside the unit circle) for
periodic orbits up to period 30 with certain symbol sequences described below. If no stable
n-cycle was found, we compute N iterates along the forward orbit of the point z = (M, 0) for
N up to 104. If maxni=0 |x(i)| appeared to grow steadily as n → N , this orbit is declared to
be unbounded, and the corresponding point is shaded white. Otherwise the point is shaded
black and presumably corresponds to bounded motion with a period larger than 30. Because
the orbits for small ω appear to range over a large domain, we used M = 1012.

In some cases, multiple attracting periodic solutions may exist, and our algorithm simply
assigns a color based on the first periodic orbit that it finds; see section 4.2.

In Figure 6, notice that when ωR = 0, there are no stable solutions for any value of sR
as foreseen by Theorem 5. Similarly, when ωL = 0 (as seen in the lower two diagrams when
ωR = −φ), there is a stable solution for all values of sR in accordance with Theorem 4. In
Figure 8, notice that the diagram corresponding to the smaller value of rL has stable orbits
over a larger range of parameter space, as would be expected from Theorem 3.

3.3. Dynamics near sR = 1. We first describe the dynamics for the case sR = 1, cor-
responding to the top edge of the figures. When μ = 1, the fixed point z∗, (7), lies in the
RHP and is a center. Points sufficiently near z∗ rotate around it with rotation number ωR on
invariant ellipses contained in the RHP. The largest of this family of nested ellipses has one
point on the switching manifold. The boundary of the region in phase space within which this
rigid rotation occurs has a geometry dependent upon the rationality of ωR [32]. When ωR is
irrational, the boundary is the largest ellipse. When ωR = m/n is rational, the boundary is
an invariant n-sided polygon P. In this case there are points in the region bounded by the
largest ellipse and P. These points simply belong to m/n-cycles contained in the RHP.

Numerically we have observed that the boundary attracts nearby points outside the region,
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Figure 6. Resonance tongues for μ = 1, rL = 0.2, ωL = ωR +φ for four different values of φ. Each colored
region corresponds to the existence of a stable periodic orbit with period shown in the color bar at the bottom.
White regions correspond to unbounded orbits and black regions to orbits with period larger than 30.
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Figure 7. Resonance tongues of (6) for μ = 1. In panel A, rL = 0.3, ωL = 0.09; in panel B, rL = 0.16,
ωL = 0.38. In panel B, the overlapping of the 1/3, 1/4, and 2/7 tongues is emphasized. The color scheme is
the same as that in Figure 6.
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Figure 8. Resonance tongues of (6) for equal polar angles, i.e., ωL = ωR, when μ = 1. In panel A,
rL = 0.6; in panel B, rL = 0.2. The color scheme is the same as that in Figure 6.

prompting the following conjecture.

Conjecture 1. Consider (6) with μ = 1 and assume that 0 < rL < 1, 0 < ωL, ωR < 1/2
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as usual. Then there is an ε > 0 such that whenever 1 − ε < sR ≤ 1, the map has an
asymptotically stable invariant set.

Note that other attractors may exist when sR = 1. For example, in panel A of Figure 7,
the period-three cycle exists ∀ωR > 1

3 when sR = 1. For these values there will also be an
invariant polygon or ellipse with rotation number ωR.
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Figure 9. Phase portraits of (6) when μ = 1, ωL = ωR = 3/7, rL = 0.9, and sR = 1 in panel A and
sR = 0.995 in panel B. The fixed point z∗ is indicated by an asterisk. In panel A, we show the invariant
heptagon P and two of the uncountably many invariant ellipses near the center z∗, each consisting of infinitely
many 3/7-cycles. In panel B, the right-half map is no longer area preserving; P appears to become an invariant
circle attracting from both sides. The stable (saddle) 3/7-cycle is indicated by triangles (circles).

When ωR = m/n is rational, the bounding polygon P has one side on the switching
manifold; see Figure 9. Denote the vertices of P by {z(i) | i = 0, . . . , n− 1}, so that each z(i)

maps to z(i+1). Suppose that z(0) = (0, y(0)) and z(d) = (0, y(d)) are the two points on the
switching manifold and without loss of generality that y(0) < y(d). Since the rotation number is
m/n, z(1) is the mth vertex clockwise from z(0); thus z(i) is the (im mod n)th vertex clockwise
from z(0). Since z(d) is adjacent to z(0), dm mod n = 1. In other words, d is the multiplicative
inverse of m modulo n, which—as is well known—exists if and only if m/n is an irreducible
fraction [14]. For example, when m/n = 3/7, d = 5 since 5 × 3 mod 7 = 15 mod 7 = 1; see
Figure 9. Alternatively d may be computed via the Farey tree. If m1/n1 and m2/n2 are the
Farey neighbors of m/n (m1 +m2 = m and n1 + n2 = n), then mni mod n = ±1 for i = 1, 2;
thus d is either n1 or n2.

The n-cycle {z(i)} may be thought of as having a symbol sequence S, where S0 = Sd = L
and the remaining (n − 2) elements equal R. Each of the conditions x(0) = 0 and x(d) = 0
defines a codimension-one manifold in parameter space that forms a boundary for the lens
that emanates from sR = 1. Within the lens there exist both stable and saddle orbits with
rotation number m/n. These orbits collide and annihilate on the boundaries in a border-
collision bifurcation. The stable orbits have symbol sequence S, whereas the saddle orbits
have one point in the LHP and (n − 1) points in the RHP. An example of a phase portrait
showing these two orbits and the invariant circle formed from the unstable manifolds of the
saddle is shown in panel B of Figure 9.
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3.4. Resonance tongue boundaries. More generally, the codimension-one boundaries of
resonance tongues correspond to either a border-collision bifurcation or a loss of stability. In
the first case, one point on the attracting n-cycle collides with the switching manifold. The
resulting border-collision bifurcation may be classified by Feigin’s analysis, as discussed in
section 2.1. Typically we find that the stable n-cycle annihilates with a saddle-type n-cycle
that coexists within the lens, but this is not always the case (see section 4.4). A second possible
codimension-one boundary corresponds to the loss of stability of the attracting cycle when
one or more multipliers of its stability matrix MS leaves the unit circle. In codimension-one
situations this can happen in exactly three ways: a real multiplier may pass through 1 or −1
or a complex conjugate multiplier pair may cross the unit circle.

0.16 0.2 0.24
0.2

0.6

1

R L

R

ω  = ω

s

Figure 10. The 2/5-resonance tongue of (6) with μ = 1, rL = 0.2, as seen in Figure 8, panel B. Shown
are schematic phase portraits of the stable 2/5-cycle in relation to the switching manifold.

As an example, Figure 10 illustrates the lens-chain for the 2/5 orbit and also shows phase
portraits of the stable cycle in the two lenses and on their boundaries. In the upper lens, two
points of the stable 2/5-cycle lie in the LHP; in the lower lens three points lie in the LHP. The
left and right boundaries correspond to border-collision bifurcations along which the stable
cycle collides and annihilates with a saddle cycle. Along the bottom boundary a multiplier
associated with the stable cycle passes through 1.

Interestingly, this last bifurcation does not resemble a saddle-node bifurcation in a smooth
system. If the stability matrix MS has a multiplier λ∗ = 1, then I − MS is singular. By
Lemma 2, the system (10) has no solution provided that the border-collision matrix PS (12) is
nonsingular. In this case, as λ∗ → 1−, the n-cycle becomes unbounded. Of course, this is a
somewhat artificial consequence of the lack of nonlinear terms in (6). Note that the saddle
cycle exists on both sides of the λ∗ = 1 bifurcation curve.

If Conjecture 1 holds, the bounding invariant polygon P for sR = 1 is an attracting
invariant set, and so it persists as such a set, typically as an invariant circle for sR < 1. There
are many ways in which an invariant circle of planar, piecewise-affine continuous maps can
break up [32, 39]. For instance, the stable and unstable manifolds of the saddle cycle may
transversely intersect, replacing the invariant circle with a homoclinic tangle [32, 38, 39]. The
invariant circle consisting of a stable and saddle cycle and the unstable invariant manifolds
of the saddle may disappear upon collision and annihilation of the cycles in a border-collision
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bifurcation. Also, a loss of stability of the stable cycle may lead to the destruction of the
invariant circle [32, 21]. These mechanisms are similar to those that occur in smooth maps [1].

The symbol sequence of an m/n periodic orbit {z(i) | i = 0, . . . , n − 1} that lies on
an invariant circle may be determined by the same process as when sR = 1. Assume the
invariant circle intersects the switching manifold twice and that the m/n-cycle has l points in
the LHP and (n− l) points in the RHP. If z(0) is the first point in the cycle along the invariant
circle to the left of its lower intersection with the switching manifold, then the points in the
LHP are z(0), z(d), z(2d mod n), . . . , z((l−1)d mod n), where dm mod n = 1 as before. Therefore,
S0 = Sd = · · · = S(l−1)d mod n = L and Si = R otherwise.

Stable n-cycles associated with the topmost lens in a tongue are comprised of two points
in the LHP and (n − 2) points in the RHP. Numerically we have observed that other lenses
correspond to stable n-cycles with one more point in the LHP than the connected lens above.
The saddle n-cycle has one fewer point in the LHP and one more point in the RHP than its
stable counterpart.

Figure 8 shows resonance tongues when ωL = ωR for two different fixed values of rL.
Lens-chains emanate from sR = 1 and may extend to sR = rL. If n is odd, we have observed
that the bottom-most lens corresponds to stable n-cycles with n+1

2 points in the LHP and
the boundary of this lens intersects sR = rL at one point. Alternatively, if n is even, the
bottom-most lens corresponds to stable n-cycles with n

2 points in the LHP and there are
possibly two intersection points of the boundary of this lens with sR = rL. The boundary
curve connecting these two points bends above sR = rL as in Figure 10 and corresponds to the
associated stability matrix having a multiplier 1. We were unable to find any stable solutions
when sR < rL, prompting the following conjecture.

Conjecture 2. Suppose μ = 1, 0 < ωL = ωR < 1/2, and 0 < sR < rL < 1. Then (6) has
no stable solutions.

3.5. Shrinking points. As in [36], we call points where resonance tongues have zero width
shrinking points. Since this corresponds to the intersection of two border-collision-bifurcations,
there is a period-n orbit, {z(i)}, that has two points on the switching manifold. As a result
of the piecewise-affine structure of the map, line segments connecting z(i) and z(i+d) map to
one another and hence form an invariant n-gon comprised of uncountably many m/n-cycles;
see Figure 11 for an example. If S is the symbol sequence of these cycles, then (I −MS) is
singular at the shrinking point. Note that Lemma 2 does not apply here since PS is singular;
the n-cycle solution system (10) has uncountably many solutions.

Denote the two vertices of the n-gon on the switching manifold by w1 = (0, y1) and
w2 = (0, y2) and assume without loss of generality that y1 < y2. Since these points are on
a periodic orbit, fs(w1) = w2 for some s. For example, in Figure 11, s = 5. The polygon
persists as an attracting invariant set as parameters are continuously varied, though it will
no longer necessarily contain only periodic orbits. When the polygon persists as an invariant
circle, the points of intersection of the invariant circle with the switching manifold, w1 and
w2, also vary continuously. Moreover, it is a codimension-one phenomenon for w1 to map
into w2 in s iterations. Thus there exists a curve in two-dimensional parameter space along
which fs(w1) = w2. We call such a curve a shrinking point curve. These curves also exist
for one-dimensional piecewise-linear circle maps, and in [36], the authors were able to obtain
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Figure 11. A phase portrait of (6) for parameter values (rL = 0.6, sR ≈ 0.7583, ωL = ωR ≈ 0.2841)
corresponding to a shrinking point on the 2/7-resonance tongue. The invariant circle is a heptagon that consists
entirely of 2/7-cycles. As when sR = 1, the vertices map to one another as do the sides. The stable fixed point
is indicated by an asterisk. The dotted lines connect the vertices with their images.
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Figure 12. A magnification of panel A of Figure 8. The white curves are shrinking point curves for s = −6,
−2, 1, and 5. The gray curve corresponds to stable solutions for which the rotation number is 1

2+γ
≈ 0.2764,

where γ is the golden ratio.

analytical expressions.

Shrinking point curves can be computed numerically by first finding an approximate in-
variant circle by the algorithm described in [12] and then estimating the points w1 and w2 by
interpolation. We then vary the parameters to minimize |fs(w1) − w2| for some fixed s; an
example is shown in Figure 12.

For instance, when s = 5, we obtain a curve that extends from the top of the 1/4-resonance
region to the bottom of the 3/10-resonance region, as shown in Figure 12. This curve intersects
the 2/7-resonance region at which point the associated 2/7-polygon appears as in Figure 11.
As seen in this figure, w1 maps into w2 upon five iterations of (6). At this point w2 maps into
w1 in two iterations; hence the shrinking point curve for which s = −2 also crosses this point.
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Similarly the curves for s = 1 and s = −6 intersect at the upper shrinking point of the 2/7
lens-chain.

In addition to invariant circles with rational rotation numbers, we can approximately find
irrational circles by following a sequence of rational lens-chains whose rotation numbers limit
on a given irrational number. For example, in Figure 12, the gray one-dimensional curve
corresponds to the existence of an invariant circle whose rotation number is computed to be

1
2+γ , where γ is the golden ratio, within an error of 10−10. Note that this curve is sandwiched
between resonance tongues whose rotation numbers correspond to the Farey sequence

1

3
,
1

4
,
2

7
,

3

11
,

5

18
,

8

29
→ 1

2 + γ
≈ 0.2764.

Resonance tongues associated with the first six rotation numbers in this sequence are
shown in Figure 12.
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Figure 13. Panel A shows a magnification of panel A of Figure 7 (rL = 0.3, ωL = 0.09, and μ = 1). The
white curve is the shrinking point curve with s = −2; the dashed black curves correspond to first homoclinic
tangencies. Phase portraits for parameter values indicated by crosses are shown in Figure 14. Panel B shows
numerically calculated Lyapunov exponents over the same parameter range. Black (white) areas correspond to
negative (positive) Lyapunov exponents. Gray areas correspond to numerically computed Lyapunov exponents
with a magnitude less than 0.0005.

To distinguish between regular and chaotic orbits, we numerically computed Lyapunov
exponents for initial conditions on a 512×512 grid in parameter space; see Figure 13. To create
panel B, for each choice of parameter values, we iterated a randomly chosen initial condition
for 104 steps after removing transients. When there are multiple attractors, the value we
compute for the Lyapunov exponent depends upon which basin of attraction the initial random
point is located. For example, the black and white area centered at (ωR, sR) = (0.294, 0.43)
corresponds to the coexistence of a stable 1/4-cycle and a chaotic attractor born in a flip
bifurcation of a 2/9-cycle.

If there exists an attracting invariant circle with an irrational rotation number, the map
restricted to the circle is semiconjugate to rigid rotation [6]. Thus, in this case, orbits on
the circle are quasiperiodic and have zero Lyapunov exponent. For this reason the upper-left
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half of Figure 13, panel B, contains many data points for which the numerically computed
Lyapunov exponent has a value within 0.0005 of zero. These grey curves also seem to fall
between the lens-chains corresponding to rational rotation numbers, which is consistent with
their rotation number being irrational.

The line that runs diagonally through Figure 13 is the s = −2 shrinking point curve. To
the left of this curve, there appear to be no chaotic solutions, or at least they are very much
less common. Figure 14 shows stable and unstable invariant manifolds of the saddle 2/9-cycle
on either side of the shrinking point curve. In panel A the associated eigenvalues of both
the stable and saddle 2/9-cycles are positive and the unstable manifolds form an attracting
invariant circle. In panel B the associated eigenvalues of the stable 2/9-cycle are negative and
the unstable manifolds spiral into the stable 2/9-cycle. We have observed a similar situation
near the shrinking point curve for all lens-chains shown in Figure 13, panel A; thus we believe
Figure 14 illustrates a typical scenario.
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Figure 14. Stable (blue) and unstable (red) invariant manifolds of a saddle 2/9-cycle of (6) when rL = 0.3,
ωL = 0.09, and μ = 1. In panel A, ωR = 0.274 and sR = 0.55. In panel B, ωR = 0.285 and sR = 0.44. Triangles
(circles) denote stable (saddle) 2/9-cycles.

Variation of the parameters of panel B toward a border-collision bifurcation leads to a
collision of the stable and unstable manifolds of the saddle cycle. Beyond curves of first
tangency (shown in Figure 13) the invariant circle no longer exists. The stable and unstable
manifolds intersect transversely forming a homoclinic tangle.

4. More complex phenomena. Despite its simple appearance, the map (6) exhibits an
extremely rich array of behavior beyond that described in section 3. Via an example, in
section 4.1 we examine the border-collision bifurcation when no invariant circle is created. In
section 4.2 we look at multiple attractors. As mentioned in section 3.4, there are three paths
by which stable periodic orbits generically lose stability. The first is via an associated real-
valued multiplier crossing 1, as detailed in section 3.4. In section 4.3 we detail the case when
the crossing occurs at −1. We observe non–lens-chain structures, and these are expounded
in section 4.4. The third scenario, that of a complex conjugate pair of multipliers crossing
the unit circle, is looked at in section 4.5. Section 4.6 introduces more exotic border-collision
bifurcations occurring at μ = 0.
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4.1. Saddle fixed points for μ = 0. The white regions in Figure 8 correspond to pa-
rameter values where no attractor exists when μ = 1. Here we describe the corresponding
border-collision bifurcation that occurs at μ = 0. We find that no invariant circle is created;
thus the bifurcation bears little relation to a Neimark–Sacker bifurcation in a smooth system.
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Figure 15. Stable (blue) and unstable (red) manifolds of a period-3 saddle (indicated by circles) for (6)
when ωL = ωR = 0.38, rL = 0.4, sR = 0.5 for μ = −1, 0, 1. The fixed point is indicated with an asterisk.

As an example, in Figure 15 we show phase portraits for μ = −1, 0, 1. When μ = −1,
the unique fixed point of (6) lies in the LHP and is stable. However, its basin of attraction is
not the entire plane: there is a period-three saddle with the symbol sequence LLR. The one-
dimensional piecewise-linear stable manifolds of this orbit (the blue curves) form the boundary
of the basin of attraction for the fixed point. Orbits of points in the interior of the complement
of this region are unbounded. When μ = 1, the opposite situation occurs: the fixed point lies
in the RHP and is a repellor. The unstable manifolds (red curves) of a period-three orbit with
symbol sequence RRL form the boundary for the basin of repulsion of the fixed point.

The LLR orbit that exists when μ < 0 is destroyed at μ = 0; however, its unstable manifolds
persist as an invariant set of piecewise-linear curves contained in the basin of repulsion; these
are the black curves in panel C of Figure 15. These manifolds extend to infinity and connect
to the fixed point. Similarly, the stable manifolds of the RRL 3-cycle become an invariant set
of piecewise-linear curves in the basin of attraction of the fixed point when μ = 1.

When μ = 0, the two period-three orbits collide with the fixed point at the origin. The
stable manifolds of the RRL orbit and the unstable manifolds of the LLR orbit become stable
and unstable manifolds of the origin, which is now a saddle with six hyperbolic sectors.

We believe the above dynamical behavior is generic. When ωL = ωR and the origin is
of saddle type for μ = 0, we expect n stable invariant rays and n unstable invariant rays to
emanate from the origin, as we have observed above for n = 3. In general, when ωL �= ωR,
more complications may arise.

4.2. Multiple attractors. The overlapping of resonance tongues corresponds to the coex-
istence of multiple stable periodic cycles. Multiple attractors in piecewise-smooth maps have
been described previously; see, for instance, [38, 32, 11, 22, 21]. An overlap is shown, for
example, in panel B of Figure 7 near ωR = 0.27 and sR = 0.5. Two examples of the phase
space for this situation are shown in Figure 16. For example, for the parameters of panel A,
there exist simultaneous stable period-three and period-four cycles. For this case there are
also saddle period-three and period-four cycles, and the stable manifold of the latter saddle
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Figure 16. Attractors and their basins of attraction for (6) μ = 1 and (rL, sR, ωL, ωR) = (0.45, 0.55, 0.2, 0.4)
in panel A and (0.16, 0.52, 0.38, 0.265) in panel B. Stable (saddle) periodic orbits are indicated by triangles
(circles) and shaded red for period 3, blue for period 4, and yellow for period 7. Panel C is a magnification of
panel B; here stable (unstable) invariant manifolds are colored blue (red).

forms the boundary between the basins of attraction of the two stable orbits.

The coexistence of three attractors is illustrated in panel B of Figure 16; these correspond
to the mutual intersection of the 1/3, 1/4, and 2/7 resonance tongues as seen in Figure 7,
panel B. The one-dimensional stable manifold of the period-three saddle forms the boundary
of the basin of attraction of the stable 3-cycle. However, the boundary between the remaining
two basins is more complicated. The stable manifolds of the period-four and period-seven
saddles transversely intersect the unstable manifolds of all three saddles forming a collection
of homoclinic and heteroclinic orbits. The stable manifolds of the period-four and period-seven
saddles appear to accumulate and form a fractal boundary between the two basins. We note
that we have been able to find up to six coexisting attractors for the map (6) (specifically when
(μ, rL, sR, ωL, ωR) = (1, 0.68, 0.8, 0.38, 0.27) there exist attractors with symbolic sequences
LRLL(RLL)k for k = 7, . . . , 12); we believe that arbitrarily many distinct stable solutions can
coexist.

4.3. Flip bifurcations of periodic solutions. An attracting periodic orbit of (6) can lose
stability by a period-doubling or flip bifurcation. Suppose that an n-cycle with symbol se-
quence S has a stability matrix MS , with one multiplier inside the unit circle and one multiplier
near −1; call it λPD. As described in section 2.1, if no points of the n-cycle lie on the switching
manifold, there is a neighborhood of its initial condition with the same symbol sequence for the

first n iterates; recall (14). Let v
(0)
PD denote the eigenvector of MS at z(0) associated with λPD.

Since v
(0)
PD corresponds to the dynamically slow direction of the periodic orbit, orbits of (6)

that start sufficiently close to the periodic orbit approach the image vectors v
(i)
PD associated

with λPD for each z(i). This is illustrated in Figure 17.

When λPD = −1, points on the slow eigenvectors that are sufficiently close to the period-n
orbit return to themselves after 2n iterations; therefore, there exists a segment of 2n-cycles
with a symbol sequence equal to the concatenation of S with itself, which we will denote SPD.

This family of 2n-cycles has a “first” point of intersection with the switching manifold. Let
qδ = z(0) + δvPD; then for λPD = −1 the orbits of qδ have the symbol sequence SPD providing
δ ∈ [0, δmax] for some δmax > 0. Moreover, a single point on the 2n-cycle will generically touch
the switching manifold at δmax. Without loss of generality, we can assume that a permutation
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Figure 17. Schematic showing an n-cycle and its associated slow eigenvectors in a neighborhood of the
n-cycle.
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Figure 18. Schematics of bifurcation diagrams about a flip bifurcation of (6). The solid (dotted) line
corresponds to a stable (unstable) n-cycle. The thin line corresponds to a 2n-cycle of unknown stability.

of the orbit is selected so that the point that hits the switching manifold first is qδmax . Thus,
when λPD = −1, there is a period-2n orbit with symbol sequence SPD that has its first point
on the switching manifold.

Since the first symbol is ambiguous, we can also declare that this orbit has a switching
manifold with its first symbol flipped; call this sequence SPD∗ . This orbit is an admissible
solution of the system (10) with sequence SPD∗ .

The x-component of this solution will typically change and will have the correct sign,
corresponding to SPD∗ for only one sign of λPD + 1: this will correspond to an admissible,
isolated period-2n orbit. This 2n-cycle will coexist with either the stable n-cycle, as sketched
in panel A, or the unstable n-cycle, as sketched in panel B of Figure 18. We have not been
able to derive a general result regarding the stability of the period-doubled cycle; however, it
appears most often to be unstable (see section 4.4 for a stable example).

For the case that the doubled cycle is unstable and exists for λPD < −1, we have observed
that it is typically embedded in a complicated attractor. In some cases, this attractor coincides
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with the doubled cycle when it is created and grows in size as λPD+1 decreases; see panel A of
Figure 19. Alternatively, the attractor can be large and contain the n-cycle when it is created;
see panel B of Figure 19. In both cases the Lyapunov exponent for the attractor appears to be
positive (γL ≈ 0.0747 in panel A and γL ≈ 0.0129 in panel B), suggesting that the attractor
is chaotic. As the parameters are varied further, the multiple-piece attractor may undergo
merging [21].
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Figure 19. Phase portraits of (6) when λPD ≈ −1.01, μ = 1. In panel A, n = 3; in panel B, n = 10. An
unstable fixed point is indicated by an asterisk. A saddle n-cycle is indicated by circles. In panel A, a saddle 2n-
cycle is indicated by crosses. In both panels, a complicated attractor is indicated by dots. The parameter values
are (rL, sR, ωL, ωR) = (0.18202, 0.6, 0.09, 0.38) in panel A and (rL, sR, ωL, ωR) = (0.0193, 0.964, 0.38, 0.41) in
panel B.

So far we have assumed that a single point, qδmax , on the period-2n orbit with λPD = −1
hits the switching manifold. By varying another parameter, it is possible to have two such

points on the switching manifold, say, q
(i)
δmax

and q
(j)
δmax

, when λPD = −1; this corresponds to a
codimension-two bifurcation.

In this case there will be two curves that cross at the codimension-two point; these cor-
respond to the vanishing of the x-components of each qδmax individually. These two curves
divide the neighborhood of the codimension-two point into four quadrants. In one quadrant
there will be no admissible period-2n orbit, and in two quadrants exactly one of the two new
orbits will be admissible; one will have a symbol sequence with the ith symbol in PD flipped
and the other with the jth symbol flipped. In the final quadrant, a new period-2n switching
manifold will be admissible—that corresponding to flipping both the ith and jth symbols.

In Figure 20 we show two examples where the doubly flipped period-2n orbits are stable. In
these cases the primary orbits, 1/3 and 2/5, respectively, are seen to lose stability with λPD =
−1, and there is a narrow tongue corresponding to stable orbits with rotation numbers 2/6
and 4/10, respectively, that emanates from a codimension-two point on the period-doubling
curve. Interestingly, there also exist additional resonance tongues in the neighborhood of this
codimension-two point. These appear in sequences with rotation numbers 2k/6k for k up to 7
in panel A and rotation numbers 4k/10k for k up to 3 in panel B. We have been unable
to locate resonance tongues corresponding to larger values of k. In panel A the doubled
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Figure 20. Magnifications of panels A and B of Figure 7 near codimension-two flip bifurcations of (6). For
panel A, the original orbit has rotation number 1/3 and symbol sequence LLR, and for panel B it has rotation
number 2/5 and symbol sequence LRLRR. The shaded regions correspond to the existence of a stable orbit with
the rotation numbers shown.

orbits have symbol sequences (LLR)2k−1RRR; note that only the first three tongues in the
sequence appear to emanate from the codimension-two point. In panel B the doubled orbits
have symbol sequences (LRLRR)2k−1RRRRR, and only the first two tongues emanate from the
codimension-two point.

4.4. Reducible rotation numbers. The rotation number of an n-cycle of the map (6) is a
fraction m/n, where m is the number of times the orbit revolves around the fixed point in n
steps. In this section we discuss the case in which m/n is a reducible fraction and describe new
codimension-one bifurcations that do not seem to exist for the irreducible case. Furthermore,
we will see that resonance regions associated with reducible rotation numbers do not appear
to exhibit the familiar lens-chain structure.

An example with reducible rotation numbers is shown in Figure 21. Here there are three
separate, adjoining resonance tongues. The tongue (abe) corresponds to parameters for which
there exists a stable 3/9-cycle with symbol sequence LRLLRRRRL. The right-hand boundary
of this region, (a-e), corresponds to a flip bifurcation. To the right of this boundary the 3/9-
cycle exists but is not attracting. Throughout this tongue there also exists a saddle 3/9-cycle
that collides and annihilates with the stable cycle in a usual border-collision bifurcation on
the boundary (a-b).

The boundary (b-e) also corresponds to a border-collision bifurcation; however, here the
3/9-cycle persists above the boundary. Above this boundary the 3/9-cycle has symbol sequence
RRLLRRRRL and is stable to the right of the boundary (d-i), which corresponds to a flip
bifurcation. Along (b-d) a 6/18-cycle is created that exists above the boundary and is stable
to the right of (c-g), which also corresponds to a flip bifurcation. This period-doubled cycle
has a symbol sequence that is the concatenation of the symbol sequences of the two stable
3/9-cycles. Finally, the boundaries (g-h) and (f-i) correspond to border-collision bifurcations
beyond which saddles of the same rotation number continue to exist.

Of all the border-collision boundaries that we have so far discussed, the boundary (d-e) is
the only one for which stable n-cycles exist on both sides of the bifurcation. Also, of all the
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Figure 21. Resonance tongues of (6) for μ = 1, rL = 0.475, ωL = 0.09. The bottom and upper right
tongues correspond to a stable 3/9-cycle. The upper left tongue corresponds to a stable 6/18-cycle.

codimension-one flip bifurcation boundaries so far discussed, the boundary (d-h) is the only
one along which the period-doubled solution is stable. We have observed scenarios similar to
Figure 21 for different rotation numbers. We conclude that periodic solutions for which the
rotation number is a reducible fraction appear to exhibit a wider variety of codimension-one
bifurcations than those with a rotation number that is irreducible. In particular, we do not
see the familiar lens-chain structure.

4.5. Neimark–Sacker bifurcations of periodic solutions. Just as the fixed point can
undergo a Neimark–Sacker bifurcation, so can a periodic orbit. When this bifurcation does not
coincide with a border collision, the stability matrix MS will have a pair of complex eigenvalues
on the unit circle so that det(MS) = 1. By (11) this corresponds to rlL = sn−l

R , where l is the
number of L’s in S. As an example, this bifurcation occurs for the period-three orbit LLR, when
(μ, rL, sR, ωL) = (1, 0.5, 0.25, 0.25) and any ωR ∈ (ω̂, 1

2), where ω̂ = 1
2π cos−1(19

32) ≈ 0.3512. If

the complex multiplier pair of an m/n orbit crosses the unit circle at e
2πi p

q for an irreducible
fraction p/q, there will exist uncountably many period-qn orbits with rotation numbers qm/qn
at the bifurcation. Generically one of these cycles has two points on the switching manifold. In
a similar manner as for the codimension-two flip bifurcation described in section 4.3, a qm/qn-
resonance tongue emanates from this codimension-two Neimark–Sacker point in parameter
space. However, we have not found an example with (6) for which the qn-cycle is stable.

4.6. Further complications. We have mostly considered the case μ > 0 for the map (6).
However, using the symmetry property (4), each stable (unstable) solution for μ > 0 corre-
sponds to an unstable (stable) solution of the same period and rotation number for μ < 0
if the R and L parameters are exchanged. For some choices of parameter values, nontrivial
periodic orbits can be observed for both signs of μ. For example, in panel A of Figure 22,
we see an unstable 4-cycle for μ < 0 and a stable 3-cycle for μ > 0. Alternatively, a stable
n-cycle can coexist with the stable fixed point. For example, in panel B of Figure 22, a stable
5-cycle coexists with the stable fixed point for μ < 0, and a stable period-six orbit is created
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Figure 22. Bifurcation diagrams of (6) for (rL, sR, ωL, ωR) = (0.2, 0.7, 0.49, 0.12) in panel A and
(0.25, 0.18, 0.25, 0.38) in panel B. Blue (red) lines denote stable (unstable) solutions, solid lines correspond
to the fixed point, and dashed lines correspond to periodic orbits.

for μ > 0.

Recall also from section 4.2 that multiple attractors may coexist. Similarly stable and
unstable solutions with different periods may coexist, and various combinations of these phe-
nomena may occur. The bifurcation at μ = 0 may be extremely complex.

5. Conclusion. In this paper we have studied border-collision bifurcations of fixed points
in planar, piecewise-smooth, continuous maps for the case that the multipliers are complex
and “jump” from inside to outside the unit circle.

We investigated a piecewise-linear approximation (6), which we believe preserves local
dynamics under the addition of nonlinear terms, except at higher codimension points such
as at the boundaries of resonance tongues. For example, at shrinking points nonlinear terms
may dramatically affect dynamics. The map (6) is a homeomorphism with a single fixed point
that is stable for μ < 0 and unstable for μ > 0. We have found a large variety of periodic,
quasiperiodic, and chaotic attractors for this system. Typically these attractors are created
at the bifurcation, exist for one sign of μ, and grow in size linearly with respect to μ. These
features are commonly observed in piecewise-smooth systems [8, 20] but are not typical in
smooth systems. We have seen that, unlike the one-dimensional case, [8], multiple attractors
may coexist in our two-dimensional map. Also, attractors may coexist with repellors; the
bifurcation at μ = 0 may be very complicated.

For some parameter values the border-collision bifurcation is analogous to that of a
Neimark–Sacker bifurcation in a smooth map: an invariant circle is created that may be
stable or unstable. As the parameters of the map are varied, the invariant circle may be
destroyed. Though we investigated some of the ways in which this may occur, we have not
given a complete classification.

Periodic orbits are classified by their symbol sequence S and rotation number m/n. Sta-
ble m/n-cycles exist in parameter regions (resonance tongues) that are bounded by curves
of border-collision bifurcations or loss of stability. When m/n is an irreducible fraction, the
resonance tongue has the form of a chain of lenses (also seen by [37, 27]); each lens corre-
sponds to cycles with a particular symbol sequence. When m/n is reducible, lenses of the
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associated resonance tongue may connect along intervals rather than at points. We observe a
wider variety of border-collision bifurcations at boundaries of tongues with reducible rotation
numbers.

There are many directions by which our investigations may be extended. For example, if
we do not require that the multipliers of the fixed point are complex, just that they both jump
from inside the unit circle to outside, we expect more complications to arise. In particular,
for this case the map need not be a homeomorphism. We would like to extend our results
here to higher dimensional maps; however, a center-manifold analysis cannot be applied to
this bifurcation problem in the usual manner, and we are unaware of a theory of dimension
reduction in piecewise-smooth systems.

Acknowledgment. We would like to thank Holger Dullin for many helpful discussions.
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Abstract. We study global synchronization of coupled chaotic systems with random intermittent coupling.
We use stochastic Lyapunov stability theory and partial averaging techniques to show that global
synchronization is possible if the switching period is sufficiently small and if the oscillators glob-
ally synchronize under a time-averaged coupling. We study mean square and almost sure global
synchronization, and we determine quantitative bounds for the exponential rate of decay of the
synchronization error. We focus on master-slave synchronization, where two dynamical systems are
coupled via a directed feedback that randomly switches among a finite set of given constant functions
at a prescribed time rate. We apply the proposed approach to the synchronization of Chua circuits.
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1. Introduction. Chaos synchronization is a topic of great interest, due to its observation
in a huge variety of phenomena of different natures. In many biological systems, synchro-
nization plays an important role in self-organization of organisms’ groups [11]. Examples of
synchronization include communication among fireflies [10, 37], locomotion of animals [14],
molecular and cellular activity [26], and cardiac stimulation [23, 29, 46]. The study of neural
activity [48, 58, 68] and brain disorders [3, 57] is a correlated issue as well. Other exam-
ples of synchronization can be found in ecological systems [6], meteorology [18], chemistry
[26, 39], gas-liquid bubbling dynamics [61, 66], and optics [59, 67]. Many reviews on chaos
synchronization are currently available; see, for example, [2, 7, 13, 25, 47, 52, 54].

In the literature, different paradigms have been proposed to enforce synchronization of
two or more coupled chaotic oscillators. We mention, among the others, peer-to-peer coupling
[4, 24, 56, 60, 64], back-stepping [8], generalized synchronization [71, 72], phase synchroniza-
tion [7], and master-slave synchronization [12, 22, 28, 33, 34, 43, 49, 50, 51, 65, 72, 73]. In this
work, we focus on master-slave synchronization. In this case, one system acts as a “master”
by driving the other system that behaves consequently as a “slave.”

Most of the research efforts on chaos synchronization focus on time-invariant coupling
[2, 7, 13, 25, 47, 52, 54]. Nevertheless, experimental and numerical evidence on master-
slave synchronization shows that synchronization can also be achieved using time-varying
intermittent feedback coupling [22, 33, 72, 73]. In [22], experimental results on synchronization
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of two periodically coupled chaotic circuits are presented. In [33, 72], the slave system is driven
by a sequence of samples of the master’s state. In [73], the signal transmission from the master
to the slave system is adaptively controlled. That is, the driving signal is transmitted only
when it is expected to reduce the synchronization error.

In this work, we establish sufficient conditions for global exponential synchronization of
coupled chaotic systems with random intermittent coupling. We associate to the stochastic
system a partially averaged system describing synchronization under time-constant coupling.
We transform the synchronization problem into a nonlinear stochastic stability problem by
describing the system’s dynamics through the synchronization error. We present a general
framework for assessing global exponential stability of switched stochastic systems from global
exponential stability of their time-averaged counterparts. Under certain regularity conditions,
we show that global exponential synchronization of intermittently coupled oscillators is pos-
sible if the oscillators exponentially synchronize under a time-constant average coupling and
if the coupling is switching sufficiently quickly. In addition, we provide a rigorous estimate
for the slowest fast-switching rate that guarantees global synchronization. We particular-
ize our findings to linearly coupled oscillators, where intermittent coupling is made possible
through a switching linear state feedback. The switching feedback gain changes randomly
over time while assuming values among a finite set of constant values. For this configuration,
global exponential synchronization of the partially averaged system can be studied using well-
established and manageable techniques based on Lyapunov stability theory and Gerschgorin’s
theorem, such as those presented in [34].

Synchronization of oscillator networks under intermittent fast-switching coupling is also
studied in [4, 56, 64] in case of peer-to-peer synchronization. In [56, 64], only local asymptotic
synchronization results based on linearized dynamics are presented, while this work and [4]
focus on global synchronization by retaining the nonlinear nature of the coupled systems.
In [4], a new type of small-world network of cells with chaotic oscillators is investigated.
Cells are coupled through a time-varying network that consists of a fixed, so-called pristine
network and intermittent links between any pair of cells that are used to describe small-world
dynamical effects. As shown by the authors, intermittent links facilitate synchronization of the
oscillator network by reducing the synchronization threshold. Time-varying interconnections
are considered as binary independent identically distributed random variables. That is, they
do not influence each other, they have the same probability to be present, and when they
are on, they share the same strength. In addition, time-varying interconnections are allowed
to change only simultaneously and at equally spaced instants of time, thereby fixing the
switching rate of the time-varying network to a constant value. The authors determine rigorous
bounds for the strength of the intermittent coupling and the switching rate to guarantee global
asymptotic synchronization of the oscillator network for almost all the switching sequences,
that is, global asymptotic almost sure synchronization. The claims are proved by showing that,
under some general hypotheses, there exists an autonomous quadratic Lyapunov function
for the synchronization error dynamics that asymptotically goes to zero for almost all the
switching sequences. The autonomous quadratic Lyapunov function is constructed from a
thorough analysis of the synchronization problem over the time-averaged network topology
based on the connection graph stability method [5].

In this paper, we extend the mathematical tools presented in [4] to global exponential
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synchronization of coupled oscillators. Beyond analyzing almost sure synchronization, we
also focus on mean square synchronization. That is, we derive conditions for the second
moment of the error dynamics to converge to zero. Mean square and almost sure convergence
of stochastic processes are in general not equivalent [30, 69]. For example, if a stochastic
process takes on increasingly large values with decreasing probability and the rate of increase
is sufficiently fast, then it may converge almost surely while its moments diverge; see, for
example, [42]. Derived results on mean square synchronization can be potentially useful
in assessing the effects of perturbations and unmodeled dynamics on synchronizability of
oscillator networks; see, for example, the approaches outlined in [17, 70]. We provide rigorous
bounds for the exponential rate of decay of the synchronization error dynamics. In particular,
we analyze the exponential rate of convergence to zero of the error second moment and of the
probability of the error norm to be larger than a threshold value. Estimating these convergence
rates can be potentially useful in assessing the coupling performance and in optimizing the
design of time-varying coupling strategies. In addition, unlike [4], we consider time-varying
interconnections that can in principle assume a variety of values and change at a nonconstant
but bounded switching rate. One of the main contributions of our work is Theorem 2.4,
which extends recent results on Lyapunov stability theory [1] and averaging methods [27, 53]
for deterministic dynamical systems to stochastic systems. Theorem 2.4 applies to a large
class of nonautonomous candidate Lyapunov functions, including the autonomous quadratic
candidate Lyapunov functions considered in [4]. In addition, it yields general conditions for
exponential stability of stochastic nonautonomous nonlinear systems that include as a special
case the results in [4].

The system studied in this paper finds many practical applications. For example, in
communication and signal processing, chaotic behavior can be used for message encryption
and secure communication [16, 19, 20, 32, 35, 45]. Higher communication efficiency can be
potentially achieved through sporadic transmission of the driving signal. This is particularly
useful when the available resources are shared and the amount of information that can be
transmitted is limited.

We organize the paper as follows. In section 2, we present our general results on stability
of nonlinear stochastic systems. In section 3, we apply these results to the master-slave syn-
chronization problem. As a sample case, in section 4 we consider the case of two stochastically
coupled Chua circuits. Section 5 is left for conclusions.

2. Global exponential stability through fast-switching. We consider the integral equa-
tion in R

n

(2.1) x(t) = x(σk) +

∫ t

σk

f(x(ξ), ξ,Ω)dξ,

where t ∈ [σk, σk+1), σk = kε, ε > 0, k ∈ Z
+, and n is a positive integer. The function f is

defined in R
n × R

+ × Θ and is piecewise continuous with respect to t. Here, Ω is a discrete
random variable taking values in the finite set Θ = {ω1, . . . , ωN}, with N a positive integer.
We assume that the origin is an equilibrium of every sample system; that is, f(0, t, ω) = 0
for every t ∈ R

+ and every ω ∈ Θ. We further assume that for every ω ∈ Θ the function
fω(•, •) = f(•, •, ω) is globally Lipschitz in R

+, with Lipschitz constant Lω,ε. In addition, we
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require that Lω,ε ≤ L, where L is a constant independent of ω and ε. We note that (2.1)
describes a Markovian nonlinear nonhomogeneous jump system; see, for example, [15]. We
study the solutions of (2.1) for t ≥ t0 ∈ R

+ and initial conditions x(t0) = x0.

In what follows, we use E[•] to indicate expectation, we denote probability with P{•}, and
we use “a.s.” for abbreviating “almost sure” or “with probability one”; see, for example, [30].
We refer to ‖ • ‖ as the Euclidean norm in R

n or the corresponding induced norm in R
n×n.

We use the superscript T for matrix transposition. For brevity, we refer to the stability of the
origin as the system stability.

In this section, we establish sufficient conditions for global stability of the stochastic system
(2.1). To this aim, we recall the definitions of global mean square exponential stability (see,
for example, [21, 44]) and global almost sure exponential stability (see, for example, [44]).
As stated in section 1, mean square stability and almost sure stability are in general not
equivalent. The relationship between these concepts in stochastic observer design has been
studied in [69], whereas a comparison between them in the analysis of asynchronous systems
with Poisson transitions can be found in [42].

Definition 2.1. The system (2.1) is globally mean square exponentially stable if there exist
α ≥ 0 and β > 0 such that for any x0 ∈ R

n and t0 ∈ R
+

E [‖x(t)‖2] ≤ α‖x0‖2e−β(t−t0)

∀t ≥ t0.

Definition 2.2. The system (2.1) is globally almost surely exponentially stable if there exist
a constant ζ ≥ 0 and a positive bounded random variable 	 such that for any x0 ∈ R

n and
t0 ∈ R

+

‖x(t)‖ ≤ 	e−ζ(t−t0)

a.s. ∀t ≥ t0.

From classical Lyapunov stability theory, it is well known that a deterministic dynamical
system is uniformly asymptotically stable if there exists a positive definite decrescent candidate
Lyapunov function whose time derivative along the solutions of the system is strictly negative
definite; see, for example, [36]. In [1], this condition is relaxed, and it is shown that if the
candidate Lyapunov function decreases when evaluated at a discrete sequence of time instants,
the system is uniformly asymptotically stable. In this case, the time derivative of the Lyapunov
function can assume positive and negative values. The following theorem extends the results
of [1] from the deterministic to the stochastic case and serves as a preliminary result to
establish our main claim, that is, Theorem 2.4.

Theorem 2.3. Consider the system (2.1), and suppose that there exists a function V :
R
n × R

+ → R such that ∀(x, t) ∈ R
n × R

+

(2.2) λmin‖x‖2 ≤ V (x, t) ≤ λmax‖x‖2

with λmin and λmax positive nonzero real constants. Assume also that there exists ν, with
0 < ν ≤ 1, such that

(2.3) E [V (x(σk+1), σk+1)|x(σk)] − V (x(σk), σk) ≤ −νV (x(σk), σk)
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for every k ∈ Z
+. Then, (2.1) is globally mean square exponentially stable and globally almost

surely exponentially stable.
Proof. See Appendix A.
Remark 1. In the literature, different definitions of almost sure exponential stability for

stochastic differential equations of the kind of (2.1) have been proposed; see, for example,
[44, 40]. In this work we use the definition of [44], which, loosely speaking, enforces the
exponential stability of almost all the sample systems in the deterministic sense. On the
other hand, the exponential stability notion introduced in [40] implies that the probability that
‖x(t)‖ is greater than or equal to a given quantity decreases with an exponential decay. A
detailed discussion on the differences among used stability notions for stochastic systems can
be found in [38]. For completeness, in Appendix A we also show that under the hypotheses of
Theorem 2.3, (2.1) is globally almost surely exponentially stable in the sense of [40].

We associate to (2.1) the partially averaged system

(2.4) ẋ(t) = f(x(t), t) = E[f(x(t), t,Ω)].

Equation (2.4) represents a deterministic nonautonomous nonlinear system. We notice that
the origin is an equilibrium of the partially averaged system; that is, f(0, t) = 0 for every
t ∈ R

+. If (2.4) is globally exponentially stable, by the converse theorem of Lyapunov (see
[36, Theorem 3.12]) we know that there exists a function V that is bounded by quadratic forms
of x and whose time derivative is strictly negative definite along the system trajectories; see,
for example, (2.5) and (2.6) below. In the following theorem, we show that if V satisfies
further regularity conditions and the switching period is sufficiently small, the original system
(2.1) is globally mean square exponentially stable and globally almost surely exponentially
stable.

Theorem 2.4. Consider the system (2.1) and the associated partially averaged system (2.4),
and suppose that there exists a function V (x, t) which satisfies the following conditions:

1. There exist positive real numbers λmin and λmax such that for every (x, t) ∈ R
n × R

+

(2.5) λmin‖x‖2 ≤ V (x, t) ≤ λmax‖x‖2.

2. There exists w > 0 such that for every (x, t) ∈ R
n × R

+

(2.6)
∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) ≤ −w‖x‖2.

3. ∀t ∈ R
+, ∂V

∂x (0, t) = 0 and ∂V
∂x is globally Lipschitz with Lipschitz constant Cv. More-

over, for every t ∈ R
+, ∂2V

∂x∂t(0, t) = 0 and ∂2V
∂x∂t is globally Lipschitz with Lipschitz

constant Cvt.
There exists an ε∗ > 0 such that ∀ε < ε∗ system (2.1) is globally mean square exponentially
stable and globally almost surely exponentially stable. The function V (x, t) is called a Lyapunov
function.

Proof. The derivative of V along the solution of (2.1) is

(2.7) V̇ (x(t), t) =
∂V

∂t
(x(t), t) +

∂V

∂x
(x(t), t)f(x(t), t,Ω).
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For every nonnegative integer k, we define

(2.8) ΔV (σk+1, σk) = E[V (x(σk+1), σk+1)|x(σk)] − V (x(σk), σk).

From (2.1), (2.7), and (2.8) we have

ΔV (σk+1, σk) = E

[∫ σk+1

σk

V̇ (x(t), t)dt

]

= E

[∫ σk+1

σk

∂V

∂t
(x(t), t) +

∂V

∂x
(x(t), t)f(x(t), t,Ω)dt

]

= E

[∫ σk+1

σk

∂V

∂x
(x(t), t)f(x(t), t,Ω) − ∂V

∂x
(x(σk), t)f(x(σk), t,Ω)dt

]

+ E

[∫ σk+1

σk

∂V

∂t
(x(t), t) − ∂V

∂t
(x(σk), t)dt

]

+ E

[∫ σk+1

σk

∂V

∂t
(x(σk), t) +

∂V

∂x
(x(σk), t)f(x(σk), t,Ω)dt

]
.(2.9)

We seek an upper bound for the absolute values of the three terms in the summation
above. We start our analysis by considering the first and second terms. Using the Lipschitz
conditions on fω and on the first and second derivatives of V and following the argument of
[53, parts II and III of the proof of Theorem 2] for each realization ω of Ω, we have∣∣∣∣

∫ σk+1

σk

∂V

∂x
(x(t), t)f(x(t), t, ω)

− ∂V

∂x
(x(σk), t)f(x(σk), t, ω)dt

∣∣∣∣ ≤ 2L2
ω,εCve

2εLω,εε2‖x(σk)‖2,

∣∣∣∣
∫ σk+1

σk

∂V

∂t
(x(t), t) − ∂V

∂t
(x(σk), t)dt

∣∣∣∣ ≤ Lω,εCvte
2εLω,εε2‖x(σk)‖2.

Since
∑N

i=1 P{Ω = ωi} = 1 and Lω,ε ≤ L for each ω and ε, the absolute value of the first term
of the summation (2.9) is less than or equal to

2L2Cve
2εLε2‖x(σk)‖2.

In addition, the absolute value of the second term is less than or equal to

LCvte
2εLε2‖x(σk)‖2.

Now, we consider the third term on the right side of (2.9):

E

[∫ σk+1

σk

∂V

∂t
(x(σk), t) +

∂V

∂x
(x(σk), t)f(x(σk), t,Ω)dt

]

= E

[∫ σk+1

σk

∂V

∂t
(x(σk), t) +

∂V

∂x
(x(σk), t)f(x(σk), t)dt

]

+ E

[∫ σk+1

σk

∂V

∂x
(x(σk), t){f(x(σk), t,Ω) − f(x(σk), t)}dt

]
.
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By hypothesis, (2.6) provides a bound for the integrand in the first term in the summation
above, while the second term is equal to zero. Using the above computed bounds in (2.9), we
find

(2.10) ΔV (σk+1, σk) ≤ [g(ε) − wε]‖x(σk)‖2,

where the function g(ε) is defined by

(2.11) g(ε) = (2L2Cve
2εL + LCvte

2εL)ε2.

Noticing that g(0) = 0 and g′(0) = 0, we have that there exists ε∗ > 0 such that

(2.12) ΔV (σk+1, σk) ≤ −w‖x(σk)‖2,

where w = [wε − g(ε)] > 0 for every ε < ε∗. In conclusion, if the switching period ε is suffi-
ciently small, (2.5), (2.8), and (2.12) imply that the hypotheses of Theorem 2.3 are satisfied.
Thus the claim follows.

Remark 2. We assumed that ε is a fixed period of time. This hypothesis can be relaxed. In
fact, Theorem 2.4 can be generalized considering not equally spaced switching instants. If the
maximum time distance between two adjacent switching events is εmax, (A.9) in Theorem 2.3
still holds with γ = eLεmax, while Theorem 2.4 holds with εmax ≤ ε∗.

Remark 3. Theorem 2.4 applies to a large class of candidate Lyapunov functions, including
autonomous quadratic functions of the type V (x, t) = xTPx, where P is a symmetric positive
definite constant matrix. Autonomous quadratic candidate Lyapunov functions are considered
in [4]. In this case, conditions 1 and 3 of Theorem 2.4 are automatically satisfied. In fact,
(2.5) holds for λmin = min{λ(P )} and λmax = max{λ(P )}, since P is a constant matrix
(here, λ(•) indicates the spectrum of the matrix). Furthermore, condition 3 of Theorem 2.4
is satisfied with Cv = 2‖P‖ and Cvt = 0. The claims of Theorem 2.4 imply as a special case
the global almost sure asymptotic stability results proved in [4] for the class of small-world
networks considered therein.

3. Master-slave synchronization.

3.1. Problem statement. We consider the master system

(3.1) ẋ(t) = Ax(t) + g(x(t)) + u(t),

where x(t) ∈ R
n is the state vector, u(t) ∈ R

n is the input vector, A ∈ R
n×n is a constant

matrix, g is a nonlinear function, n is a positive integer, and t ∈ R
+ indicates the time variable.

We construct a slave system for (3.1):

(3.2) ˙̃x(t) = Ax̃(t) + g(x̃(t)) + u(t) + K(t)(x(t) − x̃(t)).

System (3.2) is unidirectionally coupled to the master system (3.1) through the feedback gain
matrix function K(t). We consider the case where K(t) is a piecewise constant signal that, in
every time interval [σk, σk+1), with σk = kε, ε > 0, and k ∈ Z

+, equals the random variable Kk.
We assume that the random variables Kk are independent and identically distributed discrete
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random variables that take values in the finite set {K1,K2, . . . ,KN}, with N a positive integer.
We refer to K as the common random variable describing the full set of random variables
{Kk}∞k=0. Following [34], we assume that

g(x) − g(x̃) = Mx,x̃(x− x̃)

for some bounded matrix Mx,x̃, whose elements depend on x and x̃. As discussed in [34], this
condition applies to a large variety of chaotic systems. We note that assuming the matrix
Mx,x̃ is bounded does not imply that the oscillators’ states are bounded.

We express the system of equations (3.1) and (3.2) in terms of the error function e = x− x̃:

ė(t) = Ae(t) + g(x(t)) − g(x̃(t)) −K(t)e(t)

= (A−K(t))e(t) + Mx(t),x(t)−e(t)e(t).(3.3)

The stochastic nonautonomous nonlinear system in (3.3) can be written in the form (2.1),
where f is defined by

(3.4) f(e, t,K) = (A− K + Mx(t),x(t)−e)e.

We say that the two oscillators in (3.1) and (3.2) globally mean square synchronize if the
error system in (3.3) is globally mean square exponentially stable; see Definition 2.1. Similarly,
we say that the two oscillators in (3.1) and (3.2) globally almost surely synchronize if the error
system in (3.3) is globally almost surely exponentially stable; see Definition 2.2.

We note that, for i = 1, . . . , N , the function fi = f(•, •,Ki) is globally Lipschitz in R
+

with Lipschitz constant Li = ‖A‖ + m + ‖Ki‖, where ‖M‖ ≤ m. In addition, the Lipschitz
constants Li are bounded by L = ‖A‖ + m + max1≤i≤N{‖Ki‖}. We further notice that
f(0, t,Ki) = 0 ∀t ∈ R

+.

3.2. Global stochastic synchronization. In this section, we combine the general find-
ings of section 2 on stochastic stability of nonlinear systems with available results on syn-
chronizability of deterministic master-slave systems to provide sufficient conditions for global
synchronization of the master-slave system described by (3.1) and (3.2) under fast-switching
conditions. In particular, we make use of the results of [34], where a criterion for assessing
global exponential stability of (3.3) is given in the case of constant feedback gain.

We associate to the system (3.3) the partially averaged system

(3.5) ė(t) = (A + Mx(t),x(t)−e(t))e(t) −Ke(t),

where K = E[K(t)] =
∑N

i=1 piKi is the time-averaged constant feedback gain. Here, pi
indicates the probability of K(t) assuming value Ki, that is, pi = P{K = Ki}.

Global exponential stability of (3.5), that is, global exponential synchronization of the
master-slave system under constant feedback coupling K, can be enforced using the results
of [34]. For clarity, we restate here the main theorem of [34] adapted to the present notation.

Theorem 3.1. The system (3.5) is globally exponentially stable if the feedback gain matrix
K is chosen such that

li(ξ, t) ≤ −w < 0, i = 1, 2, . . . , n,
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for every ξ ∈ R
n and t ∈ R

+, where the li(ξ, t)’s are the eigenvalues of the matrix

Q(ξ, t) = (A−K + Mx(t),x(t)−ξ)
TP + P (A−K + Mx(t),x(t)−ξ)

and P is a positive definite symmetric constant matrix. A Lyapunov function for (3.5) can be
constructed as

(3.6) V (e) = eTPe

with

(3.7) V̇ (e(t)) = eT (t)Q(e(t), t)e(t) ≤ −w‖e(t)‖2.

The Lyapunov function (3.6) constructed for the partially averaged system can be used to
assess the stability of the stochastic system. In fact, (3.7) is equivalent to (2.6), and conditions
1 and 3 of Theorem 2.4 are automatically satisfied as observed in Remark 3. Equation (2.12),
specified for the case at hand, reads

(3.8) 2L2Cve
2Lεε2 − wε = 0,

and it yields the sought value of ε∗. By applying Theorem 2.4, we claim that the system (3.3)
is globally mean square exponentially stable and globally almost surely exponentially stable
∀ε < ε∗. We summarize the above arguments in the following corollary.

Corollary 3.2. Consider the system (3.3) and the corresponding partially averaged system
(3.5). If the feedback gain matrix K(t) is chosen such that

(3.9) li(ξ, t) ≤ −w < 0, i = 1, 2, . . . , n,

for every ξ ∈ R
n and t ∈ R

+, where the li(ξ, t)’s are the eigenvalues of the matrix

(3.10) Q(ξ, t) = (A−K + Mx(t),x(t)−ξ)
TP + P (A−K + Mx(t),x(t)−ξ)

and P is a positive definite symmetric constant matrix, then there exists an ε∗ > 0 such that
∀ε < ε∗ the system (3.3) is globally mean square exponentially stable and globally almost surely
exponentially stable. The time duration ε∗ is the nonzero solution of (3.8).

Remark 4. The conditions of Corollary 3.2 do not generally constrain the structure of the
feedback gain matrices {K1, . . . ,KN}. In the special case where the feedback gains {K1, . . . ,
KN} and the probabilities {p1, . . . , pN} lead to a diagonal time-averaged feedback gain matrix
K and the matrix P is diagonal, inequalities (3.9) may be directly enforced using Gerschgorin’s
theorem, as illustrated in [34].

Remark 5. The type of intermittent coupling considered in this paper has been also analyzed
in the framework of consensus theory [31, 55]. However, in consensus theory, the individual
systems’ dynamics is linear, while in the present case the coupled systems are strongly non-
linear.
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4. Case study: Synchronization of two chaotic Chua circuits. As an example, we apply
our results to synchronization of Chua circuits; see, for example, [62]. A Chua circuit system
is described by

(4.1)

⎧⎨
⎩

ẋ1 = a(x2 − x1 − h(x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −bx2,

where a > 0, b > 0, and the nonlinear function h has the form

(4.2) h(x1) = m1x1 +
1

2
(m0 −m1){|x1 + 1| − |x1 − 1|}

with m0 < 0 and m1 < 0. We define

(4.3) h(x1) − h(x̃1) = wx1,x̃1
(x1 − x̃1),

where wx1,x̃1
depends on x1 and x̃1 and is bounded by m0 ≤ wx1,x̃1

≤ m1; see, for example,
[34].

We consider the case where K(t) is a diagonal matrix. Following (3.2), the slave system
of (4.1) is constructed as follows:

(4.4)

⎧⎨
⎩

˙̃x1 = a(x̃2 − x̃1 − h(x̃1)) + k1(t)(x1 − x̃1),
˙̃x2 = x̃1 − x̃2 + x̃3 + k2(t)(x2 − x̃2),
˙̃x3 = −bx2 + k3(t)(x3 − x̃3).

Combining (4.1) and (4.4), we obtain (3.3) with

A =

⎡
⎣ −a a 0

1 −1 1
0 −b 0

⎤
⎦ , K(t) =

⎡
⎣ k1(t) 0 0

0 k2(t) 0
0 0 k3(t)

⎤
⎦ , g(x) =

⎡
⎣ −ah(x)

0
0

⎤
⎦ .

We observe that g(x) − g(x̃) = Mx,x−ee with

(4.5) Mx,x−e =

⎡
⎣ −awx1,x1−e1 0 0

0 0 0
0 0 0

⎤
⎦

and ‖M‖ ≤ a|m0|.
We associate to the system (3.3) the partially averaged system

(4.6) ė = Ae + Mx,x−ee−Ke,

where

(4.7) K =

⎡
⎣ k1 0 0

0 k2 0

0 0 k3

⎤
⎦ .
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By choosing P = I and by setting

k1 ≥ 1

2
(1 − a− 2am0 + w),

k2 ≥ 1

2
(a− 1 + |1 − b| + w),(4.8)

k3 ≥ 1

2
(|1 − b| + w),

the partially averaged system is globally exponentially stable [34]. This follows directly
from Gerschgorin’s theorem, as anticipated in Remark 4. We also have Cv = 2, and L =
‖A‖+ a|m0|+ max1≤i≤N{‖Ki‖}. Equation (3.8) gives the value of ε∗ that ensures the global
mean square exponential stability and the global almost sure exponential stability of the
stochastic system ∀ε < ε∗.

Here, we present a few numerical results that illustrate how two stochastically coupled
Chua circuits synchronize for a sufficiently fast switching rate. We select a = 9.78, b = 14.97,
m0 = −1.31, and m1 = −0.75 in order to have chaotic behavior of the system [34]. We let
K(t) switch randomly between the two constant matrices K1 and K2, where K1 is the zero
matrix and

(4.9) K2 =

⎡
⎣ 20 0 0

0 27.5 0
0 0 20

⎤
⎦ .

For these parameters we have ‖A‖ = 18.89, max1≤i≤N{‖Ki‖} = ‖K2‖ = 27.5, and L = 59.20.
Selecting p1 = 0.6 and p2 = 0.4, w can be chosen from (4.8) to be equal to 0.5. From (3.8) we
have that for ε ≤ ε∗ = 3.56×10−5 the system synchronizes globally mean square exponentially
and globally almost surely exponentially. Figure 1 depicts the trajectories of the master and
slave systems on the x1-x2 and x1-x3 planes for ε = 10−5. This figure shows that the two
systems synchronize even if the initial conditions are significantly different.

5. Conclusions. In this paper, we presented a general criterion for global synchronization
of randomly coupled chaotic oscillators. We focus on the case of two oscillators in master-slave
configuration. The two systems are coupled through a stochastic unidirectional feedback that
is realized through a switching function that switches randomly among a finite set of constant
values. Using tools based on Lyapunov stability and partial averaging we showed that, under
suitable regularity conditions, the synchronization characteristics of the partially averaged
system are inherited by the stochastic system. Our findings are illustrated through numerical
simulations on Chua circuits. The proposed approach can be applied to global synchronization
of complex networks and seems particularly promising for analyzing pinning-controllability
(see, for example, [63]) with intermittent control.

The main claim on stochastic stability of this work, Theorem 2.4, applies to a large class
of stochastic nonautonomous nonlinear systems and Lyapunov functions. In particular, it can
be applied to autonomous quadratic Lyapunov functions, such as those studied in [4]. In
addition, our main claim yields strong conditions on global exponential stability that include,
as a special case, the asymptotic stability results derived in [4].
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Figure 1. Trajectories of the master and slave systems in the x1-x2 and x1-x3 planes.
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Appendix A. Proof of Theorem 2.3.
Proof. We start by proving the global mean square exponential stability. Consider ar-

bitrary initial time t0 ∈ R
+ and initial condition x0 ∈ R

n. We define the index k̂ so that
t0 ∈ [σk̂−1, σk̂). Specifying (2.3) at the k̂th and (k̂ + 1)th switching instants, we have

E[V (x(σk̂+1), σk̂+1)|x(σk̂)] ≤ (1 − ν)V (x(σk̂), σk̂),(A.1)

E[V (x(σk̂+2), σk̂+2)|x(σk̂+1)] ≤ (1 − ν)V (x(σk̂+1), σk̂+1).(A.2)

By taking the conditional expected value of (A.2) we obtain

(A.3) E[E[V (x(σk̂+2), σk̂+2)|x(σk̂+1)]|x(σk̂)] ≤ (1 − ν)E[V (x(σk̂+1), σk̂+1)|x(σk̂)].

Using the smoothing lemma (see, for example, Lemma 1.1 on page 474 in [30]) and inequality
(A.1) in (A.3), we find

E[V (x(σk̂+2), σk̂+2)|x(σk̂)] ≤ (1 − ν)2V (x(σk̂), σk̂).

We explicitly note that the hypotheses of the smoothing lemma are verified since (2.1) defines
a Markov process.

Iterating the argument above for any positive integer n > k̂, we obtain

(A.4) E[V (x(σn), σn)|x(σk̂)] ≤ (1 − ν)n−k̂V (x(σk̂), σk̂).

By using the bounds in (2.2), (A.4) gives

(A.5) E[‖x(σn)‖2|x(σk̂)] ≤ λmax/λmin(1 − ν)n−k̂‖x(σk̂)‖
2.

Inequality (A.5) can be used to derive an upper bound for the unconditioned expected value
that is needed to assess the global mean square exponential stability according to Defini-
tion 2.1. Since k̂ defines a given instant of time and x0 is a prescribed initial condition, x(σk̂)
is a finite-state random variable taking values in {x1(σk̂), . . . , xN (σk̂)}, where N is the car-
dinality of the event set Θ. From the definition of conditional expectation (see, for example,
[9]), we have

(A.6) E[‖x(σn)‖2] =

N∑
i=1

E[‖x(σn)‖2|xi(σk̂)]P{xi(σk̂)},

where P{xi(σk̂)} is the probability that xi(σk̂) is the realization of the random variable x(σk̂).
Hence, using inequality (A.5), equation (A.6) yields

(A.7) E[‖x(σn)‖2] ≤
N∑
i=1

λmax

λmin
(1 − ν)n−k̂‖xi(σk̂)‖

2P{xi(σk̂)}.

In order to assess the global mean square exponential stability, we need to analyze the
system dynamics inside every switching interval. Given a generic switching interval [σk, σk+1)
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and an instant t ∈ [σk, σk+1), using the triangle inequality ∀t ≥ t in [σk, σk+1), equation (2.1)
yields

(A.8) ‖x(t)‖ ≤ ‖x(t)‖ +

∫ t

t
‖f(x(ξ), ξ,Ω)‖dξ.

Since the functions fω are globally Lipschitz in R
+ and all the corresponding Lipschitz con-

stants are bounded by a constant L, (A.8) yields

‖x(t)‖ ≤ ‖x(t)‖ +

∫ t

t
L‖x(ξ)‖dξ.

Using the Gronwall–Bellman inequality (see, for example, [36]), we have

(A.9) ‖x(t)‖ ≤ γ‖x(t)‖

with γ = eLε. Therefore, using (A.9) in (A.7), we find that ∀t ∈ [σn, σn+1)

(A.10) E[‖x(t)‖2] ≤ γ2E[‖x(σn)‖2] ≤ γ2
N∑
i=1

λmax

λmin
(1 − ν)n−k̂‖xi(σk̂)‖

2P{xi(σk̂)}.

Inequality (A.9) can also be used to find an upper bound for ‖x(σk̂)‖ in terms of the initial

conditions. In fact, since t0 ∈ [σk̂−1, σk̂) for the definition of k̂, from (A.9) we obtain

(A.11) ‖x(σk̂)‖ ≤ γ‖x(t0)‖.

Finally, using (A.11) to bound the right side of (A.10), we obtain

E[‖x(t)‖2] ≤ γ4
N∑
i=1

λmax

λmin
(1 − ν)n−k̂‖x(t0)‖2P{xi(σk̂)}

≤ γ4λmax

λmin
(1 − ν)n−k̂‖x(t0)‖2

≤ α‖x(t0)‖2e−β(t−t0),(A.12)

where we defined

(A.13) α = γ4(1 − ν)−2λmax/λmin, β = − ln(1 − ν)/ε.

Therefore, according to Definition 2.1, the system (2.1) is globally mean square exponentially
stable.

In the second part of the proof, we establish the global almost sure exponential stability.
Following [44], we let χ be a positive real number such that χ ≤ β, where β is defined in
(A.13). From the Markov inequality (see, for example, [30, Theorem 1.1, p. 120]), we have

(A.14) P

{
sup

t∈[σn−1,σn)
‖x(t)‖2 > e−(β−χ)(σn−1−t0)

}
≤ e(β−χ)(σn−1−t0)E

[
sup

t∈[σn−1,σn)
‖x(t)‖2

]
.
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Using (A.12) in (A.14), we find

(A.15) P

{
sup

t∈[σn−1,σn)
‖x(t)‖2 > e−(β−χ)(σn−1−t0)

}
≤ α‖x(t0)‖2e−χ(σn−1−t0).

By taking the infinite summation with respect to n of both sides of (A.15) and by noticing
that e−χε is less than one, we find

(A.16)

∞∑
n=k̂

P

{
sup

t∈[σn−1,σn)
‖x(t)‖2 > e−(β−χ)(σn−1−t0)

}
< ∞.

Thus, by directly applying the Borel–Cantelli lemma (see, for example, [41, Lemma 1, p. 192]),
we obtain that

(A.17) sup
σn>k≥σn−1

‖x(t)‖ ≤ e−1/2(β−χ)(σn−1−t0)

holds a.s. for all but finitely many n. Hence, for any sample system, there exists a positive
integer n0 such that (A.17) holds a.s. for any n > n0. Therefore, for any n > n0 and
t ∈ [σn−1, σn), the following inequality holds a.s.:

(A.18) ‖x(t)‖ ≤ e−1/2(β−χ)(σn−1−t0) ≤ e1/2(β−χ)εe−1/2(β−χ)(t−t0).

By repetitively applying the Gronwall–Bellman inequality in (A.9) and by using (A.18), we
finally find that ∀t ≥ t0 the following inequality holds a.s.:

(A.19) ‖x(t)‖ ≤ γn0−k̂+1e1/2(β−χ)ε‖x(t0)‖e−1/2(β−χ)(t−t0),

which proves the global almost sure exponential stability of (2.1) according to Definition 2.2.
For completeness, we also show that (2.1) is globally almost surely exponentially stable

in the sense of [40]. We notice that, since (2.3) holds and V (x(σk), σk) is a positive quantity,
the sequence of V (x(σk), σk) is a supermartingale; see, for example, Definition 2.4 in [30].
Therefore, we can apply the supermartingale inequality (see, for example, [41, Proposition 1,
p. 31]) and obtain that for every η > 0

(A.20) P

{
sup

∞>k≥n
V (x(σk), σk) ≥ η

}
≤

E[V (x(σn), σn)|x(σk̂)]

η
.

Substituting (A.4) into (A.20) and using condition (2.5), we find

(A.21) P

{
sup

∞>k≥n
‖x(σk)‖2 ≥ η

λmin

}
≤ λmax

η
(1 − ν)n−k̂‖x(σk̂)‖

2.

Using (A.9) in (A.21), we obtain the following inequality for the continuous time process x(t):

(A.22) P

{
sup

∞>(t−t0)≥T
‖x(t)‖2 ≥ η

λmin

}
≤ γ2λmax

η
(1 − ν)n−k̂‖x(t0)‖2,
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where T is an arbitrary time duration and the index n satisfies n = k̂ + 	T/ε
, where 	•

refers to the integer division. By defining the positive quantity μ = γ

√
η/λmin and expressing

the left-hand side of (A.22) in terms of the supremum of ‖x(t)‖, we obtain

(A.23) P

{
sup

∞>(t−t0)≥T
‖x(t)‖ ≥ μ

}
≤ λmaxγ

4

λminμ2
(1 − ν)n−k̂‖x(t0)‖2.

Replacing the constants α and β defined in (A.13) into (A.23), we finally derive the following
bound on the exponential rate of decay of the probability that ‖x(t)‖ is larger than μ:

(A.24) P

{
sup

∞>(t−t0)≥T
‖x(t)‖ ≥ μ

}
≤ α

μ2
‖x(t0)‖2e−βT .
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A Computer-Assisted Proof of Σ3-Chaos in the Forced Damped Pendulum
Equation∗
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Abstract. The present paper is devoted to studying Hubbard’s pendulum equation

ẍ + 10−1ẋ + sin(x) = cos(t).

Using rigorous/interval methods of computation, the main assertion of Hubbard on chaos properties
of the induced dynamics is raised from the level of experimentally observed facts to the level of a
theorem completely proved. A special family of solutions is shown to be chaotic in the sense that,
on consecutive time intervals (2kπ, 2(k + 1)π) (k ∈ Z), individual members of the family can freely
“choose” between the following possibilities: the pendulum crosses the bottom position exactly once
clockwise or does not cross the bottom position at all or crosses the bottom position exactly once
counterclockwise. The proof follows the topological index/degree approach by Mischaikow, Mrozek,
and Zgliczynski. The new feature of this paper is a definition of the transition graph for which the
periodic orbit lemma—the key technical result of the approach mentioned above—turns out to be a
consequence of Brouwer’s fixed point theorem. The role of wholly automatic versus “trial-and-error
with human overheads” computer procedures in detecting chaos is also discussed.

Key words. forced damped pendulum, Σ3-chaos, computer-assisted proof, transition graph, interval arithmetic
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1. Introduction and the main results. The complexity of the solutions to the forced
damped pendulum equation

m�ẍ + bẋ + mg sin(x) = A cos(ωt)

and of related systems is one of the most frequently studied problems in dynamics. For certain
values of the parameters, small perturbation theory can be applied to prove chaotic behavior.

However, a purely theoretical approach can hardly lead to a proof for chaos if small
perturbation methods break down such as in the case where

(1.1) ẍ + 10−1ẋ + sin(x) = cos(t)
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(i.e., for parameters m� = mg = A = ω = 1 and b = 10−1) investigated by Hubbard [24].
Based on numerical experiments and the accompanying abstract considerations mimicking
Smale’s geometric horseshoe construction, Hubbard [24] made the existence of Σ3-chaos—
both on Poincaré sections of the 2π-solution mapping and also in more natural terms of the
dynamics—quite plausible. His main result can be stated as follows.

Theorem H (Hubbard [24]). Suppose we are given a bi-infinite sequence {εk}k∈Z ∈ {−1; 0;
1}Z, arbitrarily chosen. Then the pendulum governed by (1.1) has at least one motion that
corresponds to the bi-infinite sequence {εk}k∈Z in the sense that, during the time interval
(2kπ, 2(k + 1)π), the pendulum bob

• crosses the bottom position exactly once clockwise if and only if εk = −1,
• does not cross the bottom position at all if and only if εk = 0, or
• crosses the bottom position exactly once counterclockwise if and only if εk = 1

and does not point downward at the time instants t = 2kπ, k ∈ Z.
The first aim of this paper is to interpret Hubbard’s observation within the Mischaikow–

Mrozek framework of computer-assisted proofs for horseshoe-type chaos. We use the word
“observation” because, as is written on page 755 of [24], “no statement is proved anywhere.”
Hubbard arranges numerical evidence according to the framework of symbolic dynamics. We
complete his work by filling in the gaps via refinements of some of his theoretical arguments
(in particular, by introducing the small quadrangles L�,M�, R�, � ∈ Z) and performing the
necessary rigorous interval arithmetic computations. We will show that Theorem H is a
consequence of a technical result based on Figure 10 in Hubbard [24], which shows images
and preimages of three large quadrangles, the convex hulls of the smaller sets L� ∪M� ∪ R�,
� = −1, 0, 1. In short, the observation is turned into a theorem.

Theorem 1.1. There exist compact pairwise disjoint quadrangles

L0,M0, R0 ⊂
{
(x, ẋ) ∈ R2

∣∣ 0 < x < 2π
}

with the following properties. Given a bi-infinite sequence {εk}k∈Z ∈ {−1; 0; 1}Z, there exists
a solution x = x({εk}k∈Z) : R → R to (1.1) such that

(1.2) (x(2kπ), ẋ(2kπ)) ∈

⎧⎨
⎩

Lσk
if εk = −1,

Mσk
if εk = 0,

Rσk
if εk = 1,

where σk+1 = σk + εk, k ∈ Z with σ0 = 0, and

(1.3) L� = L0 + (2�π, 0), M� = M0 + (2�π, 0), R� = R0 + (2�π, 0), � ∈ Z.

Quadrangles L0, M0, and R0 are shown in Figure 2. Property (1.2) means that the
horizontal 2�π-translates L�,M�, R� of the carefully chosen quadrangles L0,M0, R0 are visited
by trajectories of the Poincaré mapping

Π : R
2 → R

2, (x(0), ẋ(0)) → (x(2π), ẋ(2π))

in the given order prescribed by the bi-infinite sequence {εk}k∈Z. The underlying circle of
abstract topological results on transition graphs and iterates of continuous mappings are the
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key parts of the landmark paper by Mischaikow and Mrozek [30] and of the great number
of contributions that followed. The essence of the Mischaikow–Mrozek approach is to prove
the existence of an abundance of combinatorially different periodic orbits and then, by using
the density of periodic orbits in the shift dynamics, to pass to the existence of horseshoe-type
chaos. The main technical tool is represented by what we call Lemma 2.1 in section 2 below.
Lemma 2.1 relates to transition graphs and periodic orbits in two dimensions and constitutes
the main step in proving Theorem 1.1.

The second aim of this paper is to provide an elementary proof of a higher-dimensional
generalization of Lemma 2.1. Higher-dimensional versions of Lemma 2.1 were given by Gidea
and Zgliczynski [21] and Pireddu and Zanolin [37]. The underlying definitions of the transition
graphs in [21] and [37] (the latter being motivated by [25]) are different. However, both proofs
are based on Brouwer degree arguments. Here we will give a third definition of the transition
graph in higher dimensions—the two-dimensional case having been settled by Papini and
Zanolin [34]—where a simple application of Brouwer’s fixed point theorem suffices. This
implies, in particular, that in some of the earliest computer-assisted proofs for horseshoe-type
chaos [30], [52], [53], [54], Conley index and/or Brouwer degree arguments can be replaced by
applications of Brouwer’s fixed point theorem. See also Remark 1.

The computer-assisted parts of the proofs of Theorems 1.1 and H were performed in the
LINUX and Cygwin environments, on a typical modern PC. We used the PROFIL/BIAS [27]
programming environment which supports interval arithmetics and the Validated Numerical
ODE (VNODE) package by Nedialkov [32], [33]. Our basic references for rigorous/interval
computation and set-valued numerics are [1] and [13], respectively.

The computer program used for the proof can be downloaded from the Web page http://
www.inf.u-szeged.hu/∼banhelyi/FDP together with a short introduction and screenshots of
the installation procedure.

This paper is organized as follows. Section 2 begins with a definition of the transition
graph in two dimensions, goes on to state Lemma 2.1, and ends with a proof of Theorem 1.1.
Theorem H and a higher-dimensional generalization of Lemma 2.1 are proved in sections 4
and 5, respectively. Connections to a four-dimensional neural networks model are investigated
in section 6. Section 3 is devoted to a discussion of the role of the computer in chaos detection.

The results on symbolic dynamics and various forms of the pendulum equation can be
found in a variety of papers. Two early results in this direction concern the standard pendulum
equation with damping and variable length (but without an external forcing term) ẍ + bẋ +
(1 + c sin(μt)) sin(x) = 0. They were obtained by applying Melnikov’s approach [48] and a
computer-assisted version of the shooting method [23], respectively. The concept of a chaotic
oscillation for the case b = 0 was defined in [17]. For the singularly perturbed van der Pol
equation εẍ + ϕ(x)ẋ + εx = p(t), where ϕ and p are piecewise constant, the existence of
embedded symbolic dynamics was proved by Levi [28] in 1981. He used Newhouse’s abstract
results on homoclinic bifurcations.

From the enormous (and still mathematically sound) literature on chaos in electrical cir-
cuits, we refer the reader to the computer-assisted proofs of Galias [18] for chaos in Chua’s
circuit as well as to the computer-assisted proof of Yang and Li [47] for chaos in Josephson
junctions.

Chaos results for the time-periodic nonlinear Hill equation ẍ+ q(t)g(x) = 0 were obtained

http://www.inf.u-szeged.hu/~banhelyi/FDP
http://www.inf.u-szeged.hu/~banhelyi/FDP
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by topological and variational methods. The slightly more general time-periodic equations
ẍ+bẋ+q(t)g(x) = 0 and ẍ+∂W (t, x)/∂x = h(t) were investigated in [7] and [6], respectively.
For details, generalizations, and more references, see the survey by Papini and Zanolin [35].
Note that Hubbard’s pendulum equation (1.1) is not included in their discussions of theoretical
and computational results, however.

2. Transition graph and chaos associated. For j ∈ Z, define

Qj =
{
(x1, x2) ∈ R

2
∣∣ 3j + 1 ≤ x1 ≤ 3j + 2, 0 ≤ x2 ≤ 1

}
,

λj =
{
x ∈ Qj

∣∣ x1 = 3j + 1
}
, ρj =

{
x ∈ Qj

∣∣ x1 = 3j + 2
}
,

Ej =
{
(x1, x2) ∈ R

2
∣∣ 3j + 1 ≤ x1 ≤ 3j + 2, |2x2 − 1| > 1

}
.

Let X = ∪j∈Z Qj ⊂ R
2, and consider a continuous mapping ϕ : X → R

2 with coordinate
functions ϕ1, ϕ2. The transition graph G(ϕ) of ϕ is defined as a directed graph with vertex
set V(G) = Z. For j, j̃ ∈ V(G), the pair (j, j̃) belongs to the edge set E(G) of G(ϕ) if

(2.1) ϕ(Qj) ⊂ R
2 \ cl(Ej̃)

and one of the following conditions holds true:

(2.2) ϕ1(x) < 3j̃ + 1 for x ∈ λj and ϕ1(x) > 3j̃ + 2 for x ∈ ρj

or

(2.3) ϕ1(x) > 3j̃ + 2 for x ∈ λj and ϕ1(x) < 3j̃ + 1 for x ∈ ρj .

Sets Qj , λj , ρj , Ej (j = 0, 1, 2) as well as relation (0, 2) ∈ E(G) are shown in Figure 1.
We write V = V(G) = Z and E = E(G) in the following. For N ∈ N, the directed graph
C = C(j0, j1, . . . , jN ) is a directed (N + 1)-circle in G(ϕ) if V(C) = {j0, j1, . . . , jN} ⊂ Z

and, with the convention jN+1 = j0, E(C) = {(jk, jk+1)}Nk=0 ⊂ E. The directed graph
P = P({jk | k ∈ Z}) is a directed bi-infinite path in G(ϕ) if V(P) = {jk | k ∈ Z} ⊂ Z and
E(P) = {(jk, jk+1)}k∈Z ⊂ E. The definition of directed finite and infinite paths (i.e., paths
having a root vertex) in G(ϕ) follows a similar pattern and will not be included here.

Lemma 2.1. Let C = C(j0, j1, . . . , jN ) be a directed circle in the transition graph G(ϕ).
Then there is a finite sequence of points {qk}Nk=0 ⊂ X such that, with the convention qN+1 =
q0,

qk+1 = ϕ(qk) and qk ∈ Qjk , k = 0, 1, . . . , N.

Actually, Lemma 2.1 comes from the paper by Mischaikow and Mrozek [30]. As stated
above, it is a version of the main result in Zgliczynski [52]. The formulation and the proof of
a higher-dimensional generalization of Lemma 2.1 will be postponed until section 5.

Corollary 2.2. Let P = P({jk}k∈Z) be a directed bi-infinite path in the transition graph
G(ϕ). Assume that either

(A) every directed infinite path in P has infinitely many different vertices
or

(B) G (as a directed graph) is connected.
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Q0 Q1 Q2

λ0 λ1 λ2ρ0 ρ1 ρ2

3 6 9

1

E0 E1 E2

ϕ(λ0)
ϕ(ρ0)

ϕ(Q0)

x1

x2

Figure 1. Notation used to define the transition graph in two dimensions.

Then there is a bi-infinite sequence of points {qk}k∈Z ⊂ X with the property that

qk+1 = ϕ(qk) and qk ∈ Qjk , k ∈ Z.

Proof. Case (A). Choose a positive integer � = L and consider the finite path with
consecutive vertices (j−L, j−L+1, . . . , jL) ∈ Z

2L+1. Next, choose an integer M > L such that
jM �= jk for k = −L, . . . , L. Redefining ϕ on QjM , we may assume that (jM , j−L) ∈ E.
Thus the extended finite sequence (j−L, . . . , jL, jL+1, . . . , jM ) ∈ VL+1+M forms the set of
consecutive vertices of a directed circle in G(ϕ). Applying Lemma 2.1, we conclude there
must exist a finite sequence of points {qLk }|k|≤L ⊂ X such that

qLk+1 = ϕ(qLk ) for k = −L, . . . , L− 1 and qLk ∈ Qjk for k = −L, . . . , L.

Repeating the previous considerations for � = L+1, L+2, . . . , a standard Bolzano–Weierstrass
subsequence argument in the limiting process � → ∞ leads to the desired result.

Case (B). The connectedness of G is equivalent to the property that every directed fi-
nite path in P is contained in a directed circle of G(ϕ). Consequently, with some minor
modifications, the argument we applied in proving case (A) can be repeated here.

Corollary 2.2 asserts the existence of a ϕ-trajectory which visits the Qj ’s in the prescribed
order: a directed bi-infinite path of type (A) or (B) of the transition graph is shadowed by a
ϕ-trajectory. Directed (N+1)-circles in G(ϕ) are shadowed by (N+1)-periodic ϕ-trajectories.
This is the essence of Lemma 2.1.

Remark 1. If N = 0, then Lemma 2.1 simplifies to the Colorado fixed point theorem
in [3]. If the vertical coordinate is missing, then Lemma 2.1 simplifies to a well-known result
in one-dimensional dynamics (see, for example, Lemma III.1.4 in [40]) whose proof is based
solely on the intermediate value theorem. The proof of a higher-dimensional generalization
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of Lemma 2.1 in section 5 mimics the standard derivation of the Miranda theorem from
Brouwer’s fixed point theorem [36]. Note that the Miranda theorem is nothing else but the
higher-dimensional counterpart of the intermediate value theorem. It is known to be equivalent
to Brouwer’s fixed point theorem and to many other important results in topology [51]. Its
history can be traced back to Poincaré and Bohl. Not long ago, the Miranda theorem appeared
as a root test in numerical analysis and interval computation [16], [15], [42] as well as in chaos
theory for two-dimensional mappings [34], [4]. The “rectangular nature” of the Miranda
theorem fits in beautifully with the rectangles used to define the transition graph as well as
the rectangles used in rigorous/interval computation.

Remark 2. Observe that Lemma 2.1 remains valid if the right-hand side of inclusion (2.1)
is weakened to R

2 \ Ej̃ and the strict inequalities in (2.2) and (2.3) are replaced by their
nonstrict counterparts. (In fact, for � = 1, 2, . . . , it is elementary to construct a modified map
ϕ� : X → R

2 satisfying |ϕ�−ϕ| < 1/� for which Lemma 2.1 (as stated above) applies. Allowing
� → ∞, the existence of the desired ϕ-periodic trajectory follows from the Bolzano–Weierstrass
argument.) The reason for stating Lemma 2.1 in the form presented above is to make the result
stable with respect to small perturbations. Actually, if the conditions of Lemma 2.1 are met,
and a continuous mapping ϕ̃ : ∪j∈Z Qj → R

2 satisfies max
{
|ϕ(q) − ϕ̃(q)|

∣∣ q ∈ ∪N
k=0 Qjk

}
≤ η

with η sufficiently small, then the (N +1)-tuple (j0, j1, . . . , jN ) ∈ Z
N+1 forms a directed circle

in G(ϕ̃) as well. As we shall see below, it is exactly this robustness property of the transition
graph which makes Lemma 2.1 so suitable in computer-assisted proofs for horseshoe-type
chaos. Stability in small perturbations in turn ensures stability in numerical approximations,
including those with rounding errors.

Now we shall return to (1.1), which was studied by Hubbard [24].
In what follows we will demonstrate how Corollary 2.2 applies and how it leads to a

complete proof of Theorem 1.1. The strategy is to find a bi-infinite sequence of pairwise
disjoint compact sets {Kj}j∈Z in the Poincaré plane {(x, ẋ) ∈ R

2} such that, up to a coordinate
transformation h, Corollary 2.2 applies to the associated Poincaré mapping Π : (x(0), ẋ(0)) →
(x(2π), ẋ(2π)) of (1.1). We need a homeomorphism h of the Poincaré plane onto the standard
plane {(x1, x2) ∈ R

2} such that, for

ϕ = hΠh−1|X : X → R
2 with Qj = h(Kj), j ∈ Z,

Corollary 2.2 directly applies. Here, of course, X = ∪j∈Z Qj , and hΠh−1|X means the re-
striction of hΠh−1 to X. Since Π is 2π-periodic in the x variable and the number of different
εk’s is three, the bi-infinite sequence {Kj}j∈Z is sought as a collection of the horizontal 2�π-
translates of the three specially chosen quadrangles L0,M0, R0 (compare the notation in (1.3)
and see Figure 2) with

K3� = L0 + (2�π, 0), K3�+1 = M0 + (2�π, 0), K3�+2 = R0 + (2�π, 0), � ∈ Z.

Given a bi-infinite sequence {εk}k∈Z ∈ {−1; 0; 1}Z, it is essential that the directed bi-infinite
path P = P({jk}k∈Z) with jk = 3σk + 1 + εk (where—as defined in Theorem 1.1—σ0 = 0
and σk+1 = σk + εk for k ∈ Z) be a subgraph of G(ϕ). Applying Corollary 2.2, trajectories
satisfying (1.2) correspond to the directed bi-infinite path P = P({jk}k∈Z) and vice versa.

Proof of Theorem 1.1. The successful realization of the strategy outlined above depends
on the careful choice of the quadrangles L0,M0, R0 and of the coordinate transformation
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h. Noting the horizontal 2π-translation invariance property of the collection {Kj}j∈Z, the
continuous mapping ϕ = hΠh−1|X is prescribed to be 9-periodic with respect to the x1

variable. This can be guaranteed by requiring that the coordinate functions of homeomorphism
h : {(x, ẋ) ∈ R

2} → {(x1, x2) ∈ R
2} satisfy

(2.4) h1(x + 2π, ẋ) = 9 + h1(x, ẋ) and h2(x + 2π, ẋ) = h2(x, ẋ).

The existence of quadrangles L0,M0, R0 that lead to a transition graph suitably complex de-
pends on the inner structure of the Poincaré mapping.

Following Hubbard [24], define quadrangles K0 = L0, K1 = M0, K2 = R0 as

Kj = conv{V Kj

ul , V
Kj
ur , V

Kj

ll , V
Kj

lr }, j = 0, 1, 2,

which are the closed convex hulls of their respective upper left, upper right, lower left, and
lower right vertices. (The letters L, M , and R stand for left, middle, and right, respectively.)
The coordinates of these vertices are

V L0
ul = (1.000, −0.985), V L0

ur = (1.970, −0.208),

V L0
ll = (1.226, −1.350), V L0

lr = (2.226, −0.516),

V M0
ul = (2.436, 0.166), V M0

ur = (2.481, 0.201),

V M0
ll = (2.758, −0.123), V M0

lr = (2.796, −0.092),

V R0
ul = (3.197, 0.775), V R0

ur = (3.800, 1.258),

V R0
ll = (3.398, 0.389), V R0

lr = (4.412, 1.202).

See Figure 2. For details on how the individual vertices were found, see the third paragraph
of section 3 below.

Now consider the broken line in Figure 2, namely,

L1 = {the vertical half-line below W 1
1 } ∪ [W 1

1 ,W
2
1 ] ∪ {the vertical half-line above W 2

1 },

where
W 1

1 = (w1
1, w

1
2) = V L0

lr + (0.2, 0), W 2
1 = (w2

1, w
2
2) = (7.5, 2),

and [W 1
1 ,W

2
1 ] stands for the closed line segment between W 1

1 and W 2
1 . The open strip between

L1 and the translated broken line L0 = L1+(−2π, 0) shall be denoted by S0. Now with “conv”
standing for the closed convex hull of the points in braces, define

D0 = {the vertical half-line below V L0
lr } ∪ L0 ∪ conv{V L0

ur , V M0
ul , V M0

ll , V L0
lr }

∪M0 ∪ conv{V M0
ur , V R0

ul , V R0
ll , V M0

lr } ∪R0 ∪ {the vertical half-line above V R0
ul }.

The open strips between D0 and L0 (resp., L1) will be denoted by OL
0 (resp., OR

0 ). The union
of the right-hand side boundary of the strip OL

0 and the left-hand side boundary of the strip
OR

0 will be denoted by B0. Finally, we let

E0 = B0 \ {(V L0
ul , V L0

ll ) ∪ (V R0
ur , V R0

lr )},
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(a) The entire region considered
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0
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1
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V L0
ll

V R0
ur V R0

lr

V R0
ul

V R0
llV M0

ul

W 1
1

W 2
0 W 2

1

L0 L1

1

2π

(b) Focusing just on the middle three quadrangles

Figure 2. Notation used in proving Theorem 1.1.

where, for example, (V L0
ul , V L0

ll ) stands for the open line segment connecting V L0
ul and V L0

ll .

(The closed line segment connecting V L0
ul and V L0

ll , for example, will be denoted by [V L0
ul , V L0

ll ].
Note that E0 is the union of ten closed line segments and two closed half-lines. See Figure 2
again.)

The crucial properties responsible for the edge structure of the transition graph are

Π(R−1), Π(M0), Π(L1) ⊂ S0 \ E0,(2.5)

Π([V
R−1

ul , V
R−1

ll ]), Π([V M0
ul , V M0

ll ]), Π([V L1
ur , V L1

lr ]) ⊂ OL
0 ,(2.6)

Π([V R−1
ur , V

R−1

lr ]), Π([V M0
ur , V M0

lr ]), Π([V L1
ul , V L1

ll ]) ⊂ OR
0 .(2.7)

See Figure 3, which shows the sets Π(L0) (a translated copy of Π(L1)), Π(M0), and Π(R0)
(a translated copy of Π(R−1)). The subset relations (2.5), (2.6), and (2.7) will be checked by
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ẋ
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1

2πM0

L0

R0

M−1

L−1

R−1

M1

L1

R1

Π(M0)Π(L0) Π(R0)

Figure 3. Images of the specially chosen quadrangles under Π.

computer. Note that the sets S0 \ E0, OL
0 , and OR

0 are open and all nine sets Π(R−1), . . . ,
Π([V L1

ul , V L1
ll ]) on the respective left-hand sides are compact. Hence inclusions (2.5), (2.6), and

(2.7) remain valid if the entire construction is repeated with the sets D0, B0, and E0 slightly
thicker, that is, if D0, B0, and E0 are replaced by their closed neighborhoods D, B, and E ,
suitably chosen.

Next we will start constructing a homeomorphism h subject to condition (2.4). We also
require that Qj = h(Kj) with

(3j + 1, 1) = h(V
Kj

ul ), (3j + 2, 1) = h(V
Kj
ur ), j = 0, 1, 2,

(3j + 1, 0) = h(V
Kj

ll ), (3j + 2, 0) = h(V
Kj

lr ), j = 0, 1, 2

(i.e., the corresponding vertices are mapped to each other), and

(2.8) cl(E0 ∪ E1 ∪ E2) ⊂ h(E),
{
(x1, x2) ∈ R

2
∣∣ x1 = 0

}
= h(L0).

Due to the piecewise linear boundaries of the sets involved, the construction of h is elementary.
We have a fair amount of freedom in choosing h. Advanced results of two-dimensional topology
are not needed for this. Note that, by translation symmetry, the broken line L1 is mapped
onto the line of the equation x1 = 9.

Recall that X = ∪j∈Z Qj . Then property (2.5) and the inclusion in (2.8) imply that

ϕ(X) ⊂ R
2 \ cl (∪j∈Z Ej) .

Using (2.6), (2.7), we conclude that the transition graph of ϕ is as follows. The vertex set of
G(ϕ) is obviously V = Z, and G(ϕ) is 3-periodic in the sense that (j, j̃) ∈ E if and only if
(j + 3, j̃ + 3) ∈ E. The edges starting from the vertex subset {0, 1, 2} are like those shown in
Figure 4(a):

(0,−3); (0,−2); (0,−1); (1, 0); (1, 1); (1, 2); (2, 3); (2, 4); (2, 5).
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L0 M0 R0L−1 M−1 R−1 L1 M1 R1

Π

Π

Π

(a) A segment of the 3-periodic transition graph G(ϕ)

Q0 Q1 Q2Q−3 Q−2 Q−1 Q3 Q4 Q5

(b) Σ3-chaos in the quotient dynamics of Π

Figure 4. Combinatorial complexity in Hubbard’s forced damped pendulum equation.

Thus we arrive at the schematic phase portrait of the Poincaré mapping depicted in Fig-
ure 4(b).

Given a bi-infinite sequence {εk}k∈Z ∈ {−1; 0; 1}Z, a quick analysis of the transition
graph G(ϕ) = G(hΠh−1|X) shows that the directed bi-infinite path P = P({jk}k∈Z) with
jk = 3σk + 1 + εk (where—as defined in Theorem 1.1—σ0 = 0 and σk+1 = σk + εk for k ∈ Z)
is a subgraph of G(ϕ). Trajectories satisfying (1.2) correspond to the directed bi-infinite path
P = P({jk | k ∈ Z}) and vice versa.

This provides all the necessary points for proving Theorem 1.1. Apply Corollary 2.2, and
then we are done.

The derivation of Theorem 1.1 follows the main argument in the Mischaikow–Mrozek
framework for computer-assisted proofs. (Note that the invertibility of Π was not exploited,
but it will be needed for the backward invariance of the set Λ in Corollary 2.3 below.) For
the geometric background and details on the role of the computer, see section 3.

It is not hard to reformulate Theorem 1.1 in the language of symbolic dynamics [49], [40].
In fact, recall that Qj = h(Kj), and let Θ ⊂ X be the closure of all periodic points of ϕ that
shadow the directed circles of G(ϕ). The set Θ is backward and forward invariant under ϕ.
For x ∈ Θ, the formula

(c(x))k = jk whenever ϕk(x) ∈ Qjk and k ∈ Z

defines a continuous itinerary mapping c : Θ → Z
Z. The inverse of a homeomorphism h lifts

everything to the Poincaré plane. Clearly Λ = h−1(Θ) is backward and forward invariant
under the Poincaré mapping Π, and, for λ = (x, ẋ) ∈ Λ with d(λ) = c(h(λ)),

(d(λ))k = jk whenever Πk(λ) ∈ Kjk , k ∈ Z.
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Letting S denote the shift operator on Z
Z, we may conclude that

c(ϕ(x)) = Sc(x) for each x ∈ Θ and d(Π(λ)) = Sd(x) for each λ ∈ Λ.

The entire construction is based on the horizontal 2π-translation symmetry of Π. The
respective quotient maps are continuous and satisfy

d̄(Π̄(λ̄)) = S̄d̄(λ̄) for each λ̄ ∈ Λ̄.

The quotient transition graph G(ϕ̄) is the complete directed graph on three vertices and thus
the modulo 3 itinerary map d̄ : Λ̄ → {0, 1, 2}Z is onto. In particular, note that

(d̄(λ̄))k = 1 + εk for λ̄ ∈ Λ̄ = Λ ∩
{
(x, ẋ) ∈ R2

∣∣ 0 < x < 2π
}
, k ∈ Z.

The quotient results can be expressed in compact form as a corollary.
Corollary 2.3 (a continuation of Theorem 1.1). The modulo 2π Poincaré mapping Π̄ on Λ̄

is semiconjugate to the shift operator S̄ on Σ3, the space of three symbols.
In fact, as suggested by Hubbard [24], d̄ is plausibly one-to-one, and thus Π̄|Λ̄ and S̄ are

conjugate. See Figure 3 again and compare it with Figures 4(a) and 4(b).

3. Chaos detection by computer. What the computer is used for in the Mischaikow–
Mrozek framework of computer-assisted proofs for chaos is to check certain subset relations
(like (2.5), (2.6), (2.7)) and, above all, to find the subset relations to be checked—in essence,
to find a collection of “rectangular” subsets of the phase space like L0,M0, R0 such that the
associated transition graph has at least two different, but intersecting, circles. The hard part
is to find the subset relations to be checked. If small perturbation arguments do not help,
one cannot get by without a computer. The checking part is much easier and sometimes, in
exceptional cases, like the equation ẍ + x = sin(

√
2t) + 2−1(|5x + 1| − |5x − 1|) [38], it can

be done by hand. Still, the proof in [38] is computer-assisted. The successful collection of
“rectangular” subsets is the result of trial-and-error computer experimentation with human
overheads.

It is natural to ask to what extent the task of finding the successful subset relations can
be left to the computer. The required subset relations determine a constrained satisfaction
problem [10], and techniques of global optimization [39] apply. If we want to look for three
quadrangles, the search domain of the optimization procedure is a subset of a 24-dimensional
parameter space (eight dimensions for each quadrangle based on the coordinate pairs of the
four vertices; the search for a successful collection of the “forbidden sets” L0, L1, and E0

requires the introduction of some additional parameters). And the smaller the search domain,
the better. However, a “small” search domain corresponds to a “good” initial guess which
can only be obtained from some a priori known theoretical or numerical results on the details
of the dynamics. Typical candidates for members of a successful collection are quadrangles
situated on the unstable manifold of a transversal homoclinic saddle.

In an interesting paper devoted to Hénon mapping with the classical parameters a = 1.4
and b = 0.3, Galias [19] describes the configuration of 29 polygons which leads to the rigorous
entropy estimate h(H) > 0.430 . . . , which is quite close to the generally accepted value of
h(H) = 0.465 . . . . All 29 polygons are narrow quadrangles—or quadrangles with some vertices
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“chopped off”—situated along the unstable manifold of the homoclinic saddle. They were
found by hand, based on an earlier search for periodic points of low periods. The well-known
and highly automatized GAIO package [12], [13] is used to construct 247 GAIO polygons in a
forthcoming paper by Day, Frongillo, and Trevino [11] proving the slightly better estimate of
h(H) > 0.4318 . . . . (If a global search is performed just on finding 29 or 247 segments of the
unstable manifold, one needs 58 or 494 parameters, respectively. The second number is far too
much for optimization methods currently available for this type of problem.) Nevertheless, it
remains an open question whether a bootstrap application of global optimization procedures,
keeping the number of parameters under 10, say, at each step of the gradual improvements
along the consecutive local searches, can achieve a better estimate. We feel that it is not
inappropriate here to call to the attention of the reader a forthcoming paper [5] of ours,
where, within a 17-dimensional parameter space, the full power of the optimization method [4]
is exploited. The main result is that Hk, the kth iterate of Hénon’s mapping with the classical
parameters a = 1.4 and b = 0.3, has an embedded copy of the Σ2 dynamics if and only if
k = 2, k = 4, or k ≥ 6. This is guaranteed by Smale’s abstract theory of transversal homoclinic
saddles only for k ≥ k0 sufficiently large. (Incidentally, all existence proofs (like [31], [14], [20])
for a transversal homoclinic saddle in the dynamics of H are, to the best of our knowledge, in
some way or other, computer-assisted.)

In proving Theorem 1.1, the vertices of quadrangles L0,M0, R0 (as well as of the “forbidden
sets” L0,L1, E0) were chosen in the way shown in Hubbard [24]. Though the coordinates of
the individual vertices were not explicitly given by him, it was straightforward to adjust them
based on Figure 10 of his paper. This adjustment was made by hand. According to our
estimates, our method [10] would have required several months of CPU time. Actually, what
Hubbard works with are just three large quadrangles, the convex hulls of which we define as
the sets L�∪M�∪R�, � = −1, 0, 1, and the “forbidden sets” are not mentioned by him at all. At
first sight, it is quite plausible that the twelve vertices V L0

ul , . . . , V R0
lr lie on the circumference of

Hubbard’s large quadrangle. However, we could not find such an arrangement. This indicates
the differences between nonrigorous and rigorous computation. Just like the Hénon mapping
H, the Poincaré mapping Π of Hubbard’s pendulum equation (1.1) also has a homoclinic
saddle. This saddle point is

P = (2.634 . . . , 0.026 . . .) with eigenvalues μ1 = 321.836 . . . and μ2 = 0.001 . . .

(all our computations being rigorous). Of course P represents an unstable 2π-periodic so-
lution which has bifurcated from the upward/top equilibrium position x = π, ẋ = 0 of the
damped unforced pendulum. Equation (1.1) has a second, asymptotically stable, 2π-periodic
solution which corresponds to the sink Q = (4.236 . . . , 0.392 . . .) of the Poincaré mapping
with eigenvalues μ1,2 = −0.725 · · · ± i 0.129 . . . and which has bifurcated from the bottom
equilibrium position x = 0, ẋ = 0 of the damped unforced pendulum. Computer-assisted
reasoning shows there are no further 2π-periodic solutions. Note that P is contained in M0,
and its unstable manifold intersects the carefully chosen quadrangles in the rather strange
order of R−1,M−1, L−1, L0,M0, R0, L1,M1, R1.

Unstable and stable manifolds of P intersect each other outside P . Apparently, this is
a transversal intersection. But we did not verify transversality by rigorous computation.
The reason is that transversality by itself, though guaranteeing the existence of a topological
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(a) A typical detail in the computer-assisted part of
proving Theorem 1.1

x

ẋ

R0

L1

2π
1

(b) A typical detail in the computer-assisted part of
proving Theorem H

Figure 5. Checking inclusions by interval computation.

horseshoe, contains less information about the dynamics than a transition graph with carefully
chosen “rectangular” subsets. The next logical step forward should be, rather, the verification
of the Conley–Moser invariant cone field conditions [49] leading (if it is really the case) to
transversality as well as to the conjugacy between Π̄|Λ̄ and S̄. Unfortunately, the verification
of inclusions (2.5), (2.6), (2.7) takes almost an hour on a typical modern PC. See Figure 5(a).
Because of this, we think that there is little hope of checking the invariant cone field conditions
in a reasonable amount of time. Nevertheless, the semiconjugacy of Π̄|Λ̄ to S̄ established in
Corollary 2.3 is not much worse than the conjugacy we expected. Semiconjugacy to S̄ means
that the dynamics is at least as complex as the full shift on the space of three symbols, while
conjugacy would mean that the dynamics of Π̄|Λ̄ is just as complex as the one belonging to S̄.
What can be shown is that m(Λ̄), the Lebesgue measure of Λ̄, is zero. (This is clear because
Π̄(C̄) ⊂ C̄ for C̄ =

{
(x, ẋ) ∈ R

2
∣∣ 0 ≤ x < 2π, |ẋ| ≤ 12

}
, Λ̄ ⊂ ∩∞

k=0 Π̄k(C̄), and Π̄ contracts

areas by a factor of e−π/5, due to damping and the Liouville theorem [24].) Questions on
additional chaos properties in Hubbard’s pendulum equation (1.1)—like the Wada property
experimentally observed by Hubbard [24] or fine ergodic properties like the existence of a
unique Sinai–Ruelle–Bowen (SRB) measure (found for the Lorenz equation by Tucker [46])
and mixing (found for the Lorenz equation by Luzzato, Melbourne, and Paccaut [29])—remain
open.

In conclusion, we note that the existence of a transition graph with two different but
intersecting circles is implicit in a paper by Stoffer and Palmer [44] on shadowing. In essence,
they prove that the existence of two hyperbolic periodic orbits which come sufficiently near
each other without remaining too close for a long time (e.g., those whose minimal periods are
highly nonresonant) implies the existence of an embedded horseshoe. This corresponds to the
Levinson phenomenon which motivated Smale to construct the geometric horseshoe [43], [28].
For a comparison between the shadowing and the topological approach in computer-assisted
proofs for chaos, see the recent paper by Coomes, Kocak, and Palmer [9].

4. Chaos in natural terms of the dynamics. The one-to-one correspondence between
a set of the solutions to Hubbard’s pendulum equation (1.1) and the set of all bi-infinite
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sequences on three symbols manifests itself in natural terms of the dynamics.
Focusing on the pendulum, the quadrangles L0,M0, R0 remain hidden, even to the most

observant viewer. What can be easily seen are high speeds or low speeds, the number of consec-
utive clockwise or counterclockwise returns, changes in the direction of swing and/or rotation,
and movements across the upper and/or lower vertical positions. When systematizing a range
of dynamical behavior, the mind has a tendency to consider the consecutive occurrences of
alternative, easily discernible events like a heads-or-tails sequence in coin-tossing.

Theorems H and 1.1 should be interpreted from this point of view. Any possible order
of the mutually exclusive alternatives can occur. Both observations describe the same com-
binatorial aspect of Σ3-chaos—the existence of “coin-tossing” (coins with three sides) label
sequences [26] for itineraries. However, the alternatives in Theorem 1.1 are hard to observe
whereas the alternatives in Theorem H are quite transparent. There exist uncountably many
solutions of Hubbard’s pendulum equation which can be distinguished from each other based
on their combinatorially different qualitative behavior. This is what we might call combina-
torial chaos in natural terms of the dynamics. Previous examples include symbolic dynamics
in terms of consecutive return times in Alekseev’s three-body system [2], [24]; consecutive
maxima and minima in the Lorenz systems [22]; the number of sign changes in consecutive
time intervals of equal length [7], [45]; and multibumps in bursting oscillations [41]. Their
natural place is in the vicinity of bifurcating homoclinic/heteroclinic orbit connections.

Proof of Theorem H. In order to prove Theorem H, we need to examine what the solution
map (x(0), ẋ(0)) → (x(t), ẋ(t)) does between the Poincaré sections at t0 = 0 and t1 = 2π.

First, consider the collection of motions of the forced damped pendulum with initial po-
sition (x(0), ẋ(0)) ∈ R0 and final position (x(2π), ẋ(2π)) ∈ L1 ∪ M1 ∪ R1. It is not hard to
check by rigorous/interval computation that 0 < x(t) < 4π, whenever 0 ≤ t ≤ 2π, and{

(x(t), ẋ(t)) ∈ R
2
∣∣ 0 ≤ t ≤ 2π

}
∩
{
(x, ẋ) ∈ R

2
∣∣ x = 2π and ẋ ≤ 0

}
= ∅.

Applying the intermediate value theorem, it follows that x(t∗) = 2π for some t∗ ∈ (0, 2π),
x(t) ∈ (0, 2π) for t ∈ [0, t∗), and x(t) ∈ (2π, 4π) for t ∈ (t∗, 2π]. In other words, during the
time interval (0, 2π), the pendulum bob crosses the bottom position exactly once counter-
clockwise and does not point downward at the time instants t0 = 0 and t1 = 2π. This holds
true for motions of the pendulum with initial position (x(0), ẋ(0)) ∈ R0 and final position
(x(2π), ẋ(2π)) ∈ L1∪M1∪R1 (but not for all motions with initial position (x(0), ẋ(0)) ∈ R0).
This holds true especially for all σ0 = 0, ε0 = 1 (and, a fortiori, σ1 = 1, ε1 ∈ {−1, 0, 1})
motions of the pendulum described by Theorem 1.1. Parts of the necessary computations in
subcase σ0 = 0, ε0 = 1, σ1 = 1, ε1 = −1 are shown in Figure 5(b).

The remaining cases σ0 = 0, ε0 = 0 and σ0 = 0, ε0 = −1 were settled in a similar way.
The total CPU time requested was under two minutes on a typical modern PC.

The connection between symbolic dynamics and oscillation patterns in (1.1) is worth
further investigation. We would like to know whether symbolic dynamics appears regarding
crossing the bottom and the top equilibrium positions.

5. Lemma 2.1 in a higher dimension. A simple proof. Let m,n be fixed nonnegative
integers, and let V ⊂ Z be a finite or countably infinite indexing set. Next, let the boundary
and interior of a compact set S in a Euclidean space R

k be denoted by ∂S and int(S),
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(vj , sj)

η0

ϕ(vj , sj)

Uj

Uj̃

Figure 6. Condition (5.2) for fixed (vj , sj) ∈ {uj ∈ Uj | d(uj , ∂Uj) ≤ η0} × Sj.

respectively. The closed neighborhood of radius R > 0 of a point p and a set S in R
k will be

denoted by Bk[p,R] and Bk[S,R], respectively. The norm and scalar product in R
k shall be

denoted by ‖ · ‖ and 〈·, ·〉.
Now consider the collection of rectangular sets of the form

Qj =
{
x = (u, s) ∈ R

m × R
n
∣∣ u ∈ Uj , s ∈ Sj

}
, j ∈ V,

where {Uj}j∈V and {Sj}j∈V are compact topological balls in R
m and in R

n, respectively.
Note that Sj is a retract of R

n. Let rj : R
n → Sj be a retraction, where j ∈ V.

Next, let X = ∪j∈V Qj ⊂ R
m ×R

n and consider a continuous mapping ϕ : X → R
m ×R

n

with coordinate functions ϕu, ϕs. Afterward, suppose that Qj ∩ Qk = ∅ for j �= k and that{
j ∈ V

∣∣ Qj ∩
{
(u, s) ∈ R

m × R
n
∣∣ ‖u‖ + ‖s‖ < R

}
�= ∅

}
is finite for any R > 0.

The transition graph G(ϕ) of ϕ is defined as a directed graph with vertex set V. For
j, j̃ ∈ V, the pair (j, j̃) belongs to the edge set E of G(ϕ) if

(5.1) ϕ(Qj) ⊂ R
m × R

n \ Uj̃ × (Rn \ Sj̃)

and, for some positive constants η0 = η0(j, j̃) and κ0 = κ0(j, j̃), one of the following two
conditions holds true:

vj + κ(uj̃ − ϕu(vj , sj)) ∈ Uj whenever(5.2)

vj ∈ Uj , d(vj , ∂Uj) ≤ η0, sj ∈ Sj , uj̃ ∈ Uj̃ , and 0 ≤ κ ≤ κ0,

or

vj − κ(uj̃ − ϕu(vj , sj)) ∈ Uj whenever(5.3)

vj ∈ Uj , d(vj , ∂Uj) ≤ η0, sj ∈ Sj , uj̃ ∈ Uj̃ , and 0 ≤ κ ≤ κ0.
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The definition of the transition graph in section 2 is more restrictive. If m = n = 1, then
condition (5.1) is equivalent to ϕ(Qj) ⊂ R

2 \ Ej̃ , a weakening of condition (2.1) discussed in
Remark 2. Similarly, with η0 = 1 − ϑ0 and κ0 suitably chosen (it is enough to make both
ϑ0 > 0 and κ0 = κ0(ϑ0) > 0 sufficiently small), conditions (5.2) and (5.3) are implied by
conditions (2.2) and (2.3), respectively.

With the notion of the transition graph redefined in R
m × R

n, m,n ≥ 1, the wording of
Lemma 2.1 in a higher dimension coincides with that of the original Lemma 2.1 verbatim.
Now we turn to the proof of this generalization. Conditions (5.2) and (5.3) will be clarified
and analyzed later.

Proof of Lemma 2.1 in R
m × R

n. The strategy is to rewrite the system of equations

xk+1 = ϕ(xk) and xk ∈ Qjk , k = 0, 1, . . . , N,

as a fixed point equation (x0, x1, . . . , xN ) = F(x0, x1, . . . , xN ) in the product space
∏N

k=0 Qjk ⊂
(Rm×R

n)N+1 and to check that all conditions of Brouwer’s fixed point theorem are satisfied.

Choose a positive constant

κ∗ ≤ min
k=0,1,...,N

κ0(jk, jk+1) such that κ∗C∗ ≤ min
k=0,1,...,N

η0(jk, jk+1),

where

C∗ = max
k=0,1,...,N

max
{
‖uk+1 − ϕu(xk)‖

∣∣ uk+1 ∈ Ujk+1
, xk ∈ Qjk

}
.

For (x0, x1, . . . , xN ) ∈
∏N

k=0 Qjk , coordinatewise we set

(F(x0, x1, . . . , xN ))k = (uk + εkκ
∗(uk+1 − ϕu(xk)), rjk(ϕs(xk−1))) ∈ R

m × R
n.

Here εk depends on the pair (j, j̃) = (jk, jk+1) taking εk = 1 if condition (5.2) applies and
εk = −1 if condition (5.3) applies, where k = 0, 1, . . . , N .

Since xN+1 = x0, x−1 = xN by convention, we shift the index values in the R
n-coordinate

and see that the fixed point equation (x0, x1, . . . , xN ) = F(x0, x1, . . . , xN ) in
∏N

k=0 Qjk is
equivalent to the system of equations

(5.4) uk+1 = ϕu(xk) and sk+1 = rjk+1
(ϕs(xk)), k = 0, 1, . . . , N.

In view of condition (5.1), the first identity in (5.4) implies that ϕs(xk) ∈ Sjk+1
. Hence

rjk+1
(ϕs(xk)) = ϕs(xk), and system (5.4) simplifies to

uk+1 = ϕu(xk) and sk+1 = ϕs(xk), i.e., xk+1 = ϕ(xk), k = 0, 1, . . . , N.

It is clear that
∏N

k=0 Qjk is a compact topological ball in (Rm×R
n)N+1 and F :

∏N
k=0 Qjk

→ (Rm × R
n)N+1 is a continuous function. Here all that remains is for us to prove that

(F(x0, x1, . . . , xN ))k ∈ Qjk whenever (x0, x1, . . . , xN ) ∈
N∏
k=0

Qjk ,
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(uj , sj) Δ ϕ(uj , sj)

Uj

Uj̃

Figure 7. Condition (5.6) for fixed (uj , sj) ∈ ∂Uj × Sj.

k = 0, 1, . . . , N . Since rjk(ϕs(xk−1)) ∈ Sjk , we can go to the R
m-coordinate and just check

that

(5.5) uk + εkκ
∗(uk+1 − ϕu(xk)) ∈ Ujk if xk = (uk, sk) ∈ Qjk and uk+1 ∈ Ujk+1

.

If uk ∈ Ujk with d(uk, ∂Ujk) ≤ η0(jk, jk+1), then—depending on the value of εk—(5.5) re-
duces to (5.2) or (5.3) with κ = κ∗. On the other hand, if uk ∈ Ujk with d(uk, ∂Ujk) >
η0(jk, jk+1), then (5.5) follows from the inequality κ∗‖uk+1 − ϕu(xk)‖ ≤ κ∗C∗ ≤ η0(jk, jk+1),
k = 0, 1, . . . , N .

From a geometric point of view, both condition (5.2) and the alternative condition (5.3)
imply that Uj̃ is “surrounded by” ϕu(∂Uj × Sj). In the special case, Uj = Uj̃ = Bm[0, 1] and

Sj = Bm[0, 1] (compact unit balls in the respective Euclidean spaces), so condition (5.2) is a
consequence of the inequality

〈ϕu(u, s) − ũ, u〉 > 0 whenever u, ũ ∈ R
m, s ∈ R

n, ‖u‖ = 1, ‖ũ‖, ‖s‖ ≤ 1,

which resembles certain geometric conditions in various versions of Brouwer’s fixed point
theorem [51].

The remaining part of this section will be devoted to a technical analysis of conditions (5.2)
and (5.3). By a symmetry argument, this analysis reduces to investigating (5.2). Condition
(5.2) will be replaced by the slightly stronger condition (5.6), which is stable with respect
to small perturbations of ϕu, including numerical approximations with rounding errors. A
second advantage of (5.6) over (5.2) is that condition (5.6) can be readily checked. To see this,
compare Figure 7 with Figure 6. Overall, condition (5.6) is better suited to computer-assisted
proofs than (5.2). The section ends with the somewhat more convenient and transparent
condition (5.8), where uniformity with respect to λ is not required.

Proposition 5.1. Condition (5.2) is a consequence of a simpler requirement. It is that there



860 B. BÁNHELYI, T. CSENDES, B. GARAY, AND L. HATVANI

exist positive constants λ0 = λ0(j, j̃) and Δ = Δ(j, j̃) such that

uj + λ(wj̃ − ϕu(uj , sj)) ∈ Uj whenever(5.6)

uj ∈ ∂Uj , sj ∈ Sj , wj̃ ∈ Bm[Uj̃ ,Δ], and 0 ≤ λ ≤ λ0.

Proof. We omit indices j, j̃ in the following and write U = Uj , S = Sj , and W = Uj̃ .
Now suppose that condition (5.6) is satisfied but (5.2) is not. Then there are sequences

{v�} ⊂ U , {s�} ⊂ S, {w�} ⊂ W , {κ�} ⊂ R
+, which have the following properties:

(5.7) p� = v� + κ�(w� − ϕu(v�, s�)) /∈ U for � = 1, 2, . . .

and both v� → ∂U and κ� → 0 as � → ∞.
Since v� ∈ U and p� /∈ U , there exists a κ∗� ∈ [0, κ�) such that

z� = v� + κ∗� (w� − ϕu(v�, s�)) ∈ ∂U for � = 1, 2, . . . .

With the construction, 0 < κ� − κ∗� ≤ λ0, and (by using the uniform continuity of mapping
ϕu on the compact set U × S) ‖ϕu(z�, s�) − ϕu(v�, s�)‖ ≤ Δ for � large enough. In view of
condition (5.6), we conclude that

p� = z� + (κ� − κ∗� )[(w� + ϕu(z�, s�) − ϕu(v�, s�)) − ϕu(z�, s�)] ∈ U

for large enough �, which contradicts (5.7).
Proposition 5.2. Actually, condition (5.6) is a consequence of a simpler requirement. It is

that there exists a positive constant δ = δ(j, j̃) such that

uj + μ(wj̃ − ϕu(uj , sj)) ∈ int(Uj) whenever(5.8)

uj ∈ ∂Uj , sj ∈ Sj , wj̃ ∈ Bm[Uj̃ , δ], and 0 < μ ≤ μ0 with some μ0 = μ0(uj , sj , wj̃).

Proof. As before, we write U = Uj , S = Sj , and W = Uj̃ .
Fix u∗ ∈ ∂U , s∗ ∈ S, and w∗ ∈ W . By compactness, it is sufficient to demonstrate the

existence of two positive constants τ = τ(u∗, s∗, w∗) and λ∗ = λ∗(u∗, s∗, w∗) such that, given
u ∈ ∂U , s ∈ S, and w ∈ Bm[W, δ] with ‖u−u∗‖ ≤ τ , ‖s−s∗‖ ≤ τ , ‖w−w∗‖ ≤ τ , the following
holds true:

u + λ(w − ϕu(u, s)) ∈ U whenever 0 ≤ λ ≤ λ∗.

By continuity, there is a σ ∈ (0, δ) such that, for arbitrary w ∈ Bm[w∗, σ] and q ∈
U ∩ Bm[u∗, σ],

(5.9) w̃ − ϕu(q, s
∗) = w − ϕu(u

∗, s∗) for some w̃ ∈ Bm[w∗, δ].

In view of condition (5.8) with (u∗, s∗, w∗) = (uj , sj , wj̃), we may assume that

u∗ + α∗
+(w∗ − ϕu(u

∗, s∗)) ∈ int(U) ∩ ∂Bm[u∗, σ] for some α∗
+ > 0.

As a corollary, a simple geometric argument implies the existence of a constant η ∈ (0, σ) such
that, for arbitrary p ∈ Bm[u∗, η] and w ∈ Bm[w∗, η],

p + α+(w − ϕu(u
∗, s∗)) ∈ int(U) ∩ ∂Bm[u∗, σ] for some α+ = α+(p, w) > 0,
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p q

η σ

τ

w∗

u∗

W

w

ϕu(u∗, s∗)

Lp,w ∩ Uint(U)

Figure 8. Illustration of the proof of Proposition 5.2.

where α+ is unique, the function (p, w) → α+(p, w) is continuous, and α+(u∗, w∗) = α∗
+. For

future use, we note that

α∗ = inf
{
α+(p, w)

∣∣ p ∈ Bm[u∗, η], w ∈ Bm[w∗, η]
}
> 0

by compactness. Now consider the straight line segment

Lp,w =
{
p + λ(w − ϕu(u

∗, s∗))
∣∣ λ ≥ 0

}
∩ Bm[u∗, σ],

and assume that q = p+γ0(w−ϕu(u
∗, s∗)) ∈ ∂U ∩Lp,w for some γ0 < α+. Applying property

(5.9), condition (5.8) (with (q, s∗, w̃) = (uj , sj , wj̃)) implies that

p + γ(w − ϕu(u
∗, s∗)) = q + (γ − γ0)(w̃ − ϕu(q, s

∗)) ∈ int(U)

for γ > γ0, where |γ−γ0| is small. By an elementary connectedness argument in one dimension,
we infer that Lp,w ∩ U is a compact interval with an endpoint on ∂Bm[u∗, σ]. See Figure 8.

Similarly, observe that there exists a constant τ ∈ (0, η) such that, for arbitrary w ∈
Bm[w∗, τ ], u ∈ U ∩ Bm[u∗, τ ], and s ∈ S ∩ Bn[s∗, τ ],

(5.10) ŵ − ϕu(u
∗, s∗) = w − ϕu(u, s) for some ŵ ∈ Bm[w∗, η].

If, in particular, u ∈ ∂U ∩ Bm[u∗, τ ], s ∈ S ∩ Bn[s∗, τ ], and w ∈ Bm[w∗, τ ], then by property
(5.10) {

u + λ(w − ϕu(u, s))
∣∣ λ ≥ 0

}
∩ Bm[u∗, σ] = Lu,ŵ

for some ŵ ∈ Bm[w∗, η]. Since u ∈ ∂U ⊂ U and Lu,ŵ ∩ U is a compact interval with an
endpoint on ∂Bm[u∗, σ], we conclude that Lu,ŵ ⊂ U . Hence u + λ(w − ϕu(u, s)) ∈ U for
0 ≤ λ ≤ α+(u, ŵ), and thus λ∗ = λ∗(u∗, s∗, w∗) can be chosen for α∗ > 0.
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We do not know whether int(Uj) in (5.8) can actually be replaced by Uj . On the other
hand, simple examples confirm that Proposition 5.1 does not hold true for Δ = 0.

6. Lemma 2.1 and a recent four-dimensional example of Yang and Li [50]. As we
mentioned earlier, conditions (5.2) and (5.3) can be readily checked for m = 1, but they are
more complicated for m > 1. Regardless of the value of the positive integer n, condition
(5.1) remains rather simple. It follows that for small, multidimensional perturbations of one-
dimensional mappings which “contract” in the new directions, the m = 1, n ≥ 1 case of
Lemma 2.1 can be applied without difficulty. For example, Lemma 2.1 can be applied for the
family of mappings investigated in [54] and simplifies the proofs therein.

As for the m > 1 case, it is reasonable to suppose that a twofold application of Lemma 2.1
leads to a rigorous proof of the existence of chaotic behavior in a recent four-dimensional
neural network example of Yang and Li [50]. Our conjecture is supported by analyzing the
figures in that paper.

We will now consider the autonomous system of ordinary differential equations [50]

ẋ1 = −x1 + 2.10f(x1) + 2.50f(x2),

ẋ2 = −x2 − 2.60f(x1) + 1.00f(x2) + 3.00f(x3),

ẋ3 = −x3 − 2.80f(x2) + 0.50f(x3) − 1.10f(x4),

ẋ4 = −100x4 + 100f(x3) + 160f(x4),(6.1)

which models a cellular neural network of Chua–Roska type [8] with f(xi) = 2−1(|xi + 1| −
|xi − 1|), xi ∈ R, i = 1, 2, 3, 4. A horseshoe in an appropriate Poincaré mapping Π was found
by Yang and Li [50] numerically, via nonrigorous computation. Their paper does not say how
the 14 coefficients/weights on the right-hand side of the above system of ordinary differential
equations were chosen. The nice Figure 4 in [50] suggests that the successful Poincaré section
was chosen by a trial-and-error process with human overheads.

Now we would like to show that, with the underlying sets properly chosen, the transition
graph G(Π) is the complete directed graph on two vertices. The argument will be based on
the case m = 2, n = 1 of the higher-dimensional generalization of Lemma 2.1 and, of course,
on the geometric information contained in [50].

Simplified and schematic variants of Figures 7, 5, and 8 of [50] are presented here as
Figures 9, 10, and 11, respectively. The two vertical prisms with quadrilateral bases in [50]
correspond to our cylinders CU = U × S and CW = W × S, while the vertical edges of the
prisms correspond to the points A� and B�, � = 1, 2, 3, 4, respectively. The prisms are strongly
contracted in the vertical direction. As for the two horizontal directions within, mapping Π is
a modest expansion. Applied to our situation, the crucial observation in [50] is that vertical
segments on the jacket of CU and of CW (i.e., segments of the form {A}×S and {B}×S with
A ∈ ∂U and B ∈ ∂W ) are mapped onto “almost vertical” curves on ∂Π(CU ) and on ∂Π(CW ),
respectively. This explains why Π(CU ) and Π(CW ) can be regarded as cylinders and implies
that condition (5.6) or its alternative counterpart (i.e., there exist positive constants λ0 and
Δ such that

uj − λ(wj̃ − ϕu(uj , sj)) ∈ Uj whenever(6.2)

uj ∈ ∂Uj , sj ∈ Sj , wj̃ ∈ Bm[Uj̃ ,Δ], and 0 ≤ λ ≤ λ0)



CHAOS IN THE FORCED DAMPED PENDULUM 863
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Π(U × S)
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Figure 9. The front view of the four cylinders CU = U × S, CW = W × S, Π(CU ), and Π(CW ).
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Figure 10. The upper view of the cylinders CU = U × S, Π(CU ), and CW = W × S.

has to be checked only for a single s = s∗ ∈ S. There is no loss of generality in assuming
that S = [−1, 1] ⊂ R and s∗ = 0. For brevity, we write A′

� = Πu(A�, 0) and B′
� = Πu(B�, 0),

� = 1, 2, 3, 4. The relative position of the four cylinders and the 2×8 special points in Figures
9, 10, and 11 are exactly like the computer pictures in [50].

In what follows we will show that Lemma 2.1 applies in this situation. We do this by
examining if and how, with Uj = U,W and Uj̃ = U,W , the alternative pair of conditions (5.6)
and (6.2) is satisfied. The final result will be that, with vertex set V(G) = {CU , CW }, the
edge set of the transition graph G(Π) is E(G) = {(CU , CU ), (CU , CW ), (CW , CU ), (CW , CW )}.

For a fixed � ∈ {1, 2, 3, 4}, the angular sector at A� in Figure 10 describes the two cones

{A� + λ(u−A′
�) ∈ R

2 | u ∈ B2[U,Δ] and 0 ≤ λ ≤ λ0}

and

{A� + λ(w −A′
�) ∈ R

2 | w ∈ B2[W,Δ] and 0 ≤ λ ≤ λ0}.
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4

U W

Π(W × S)

Figure 11. The upper view of the cylinders CW = W × S, Π(CW ), and CU = U × S.

(For the sake of simplicity, these two cones have been drawn in Figure 10 as a single angular
sector with vertex A� for every �. And, like all of figures in this section, the small positive
constants Δ and λ0 remain unspecified.) Based on the direction of these angular sectors,
it seems plausible that condition (6.2) is satisfied for ϕ = Π, Sj = [−1, 1], Uj = U , and
Uj̃ = U,W . Regarding the proof of Lemma 2.1, Proposition 5.1 implies that condition (5.5)
is satisfied for ϕ = Π, Sjk = [−1, 1], Ujk = U , εk = −1, and Ujk+1

= U,W .
Similarly, for � = 1, 2, 3, 4, the angular sector at B� in Figure 11 describes the two cones

(or the union of the two cones)

{B� + λ(u−B′
�) ∈ R

2 | u ∈ B2[U,Δ] and 0 ≤ λ ≤ λ0}

and
{B� + λ(w −B′

�) ∈ R
2 | w ∈ B2[W,Δ] and 0 ≤ λ ≤ λ0}.

Unfortunately, neither condition (5.6) nor (6.2) is satisfied, and, if left unchanged, the proof
of Lemma 2.1 breaks down in the present situation. However, the direction of the four angular
sectors in Figure 11 suggests a simple way out.

Together with a combinatorial modification, the proof of Lemma 2.1 still holds true. The
R
m = R

2 coordinate

uk + εkκ
∗(uk+1 − ϕu(xk)) = uk + εkκ

∗(uk+1 − Πu(xk)) ∈ R
2

of (F(x0, x1, . . . , xN ))k, k = 0, 1, . . . , N , is to be replaced by

(u1
k + ε1

kκ
∗(u1

k+1 − Π1
u(xk)), u

2
k + ε2

kκ
∗(u2

k+1 − Π2
u(xk))) ∈ R × R,

where superscript 1 (resp., 2) stands for the first (= horizontal) (resp., second (= vertical))
coordinate in Figures 10 and 11, and

ε1
k = ε2

k = −1 if Ujk = U and Ujk+1
= U,W,
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and

ε1
k = 1, ε2

k = −1 if Ujk = W and Ujk+1
= U,W.

No other changes are needed for the proof. After this refinement of the choice of parameter
εk, condition (5.5) will be satisfied again.

We feel justified in concluding that, eventually, the argument outlined above leads to a
rigorous proof for the existence of embedded Σ2 dynamics in (6.1). At present, several details
are missing. It is not enough to check the alternative conditions for two times four points
in a simplified and schematic situation. The relation between the original dynamics creating
Figures 7, 5, and 8 of [50] and its simplified representation in Figures 9, 10, and 11 has to be
analyzed rigorously. This task is parallel to the one we performed in section 2 for Hubbard’s
forced damped pendulum equation (1.1).

Acknowledgment. The authors are grateful for the suggestions and comments of the
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preparation, 2008.

[6] E. Bosetto and E. Serra, A variational approach to chaotic dynamics in periodically forced nonlinear
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Abstract. We present a method for computing bit-error ratios in soliton-based lightwave systems. The method
uses soliton perturbation theory and calculus of variations to find approximate versions of the most
probable paths through sample space leading to errors, combined with importance-sampled Monte
Carlo simulations of the full set of equations around these approximate paths to compute the actual
error rates. As a specific example, the method is applied to a differential phase-shift-keyed lightwave
system. For this example the method not only computes the bit-error ratio but also predicts the set
of failure modes leading to large pulse distortions, thus illuminating the specific manner in which
errors occur.
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1. Introduction. In-line optical amplification and nonlinear propagation are two of the
primary features of modern long-distance lightwave communication systems. Optical ampli-
fication adds spontaneous emission noise to the signal [1], and nonlinearities present in the
system can distort the combined signal plus noise during propagation [2], causing the output
statistics to differ significantly from Gaussian random variables. Because the ultimate perfor-
mance of such communication systems is often limited by noise, it is desirable to be able to
predict how often errors occur. This is a challenging task, both because of the complicated
interaction between signal and noise and because system designers typically require that errors
be rare events, e.g., a bit-error ratio of 1 error per 109 bits or more.

Monte Carlo methods are one standard way to compute error probabilities, but doing so
for such rare events is, of course, beyond the capability of standard methods. Recently, how-
ever, the application of both importance-sampled Monte Carlo [3, 4, 5, 6] and multicanonical
Monte Carlo methods [7, 8, 9, 10, 11, 12] has demonstrated that it is possible to successfully
overcome the limitations of standard Monte Carlo simulations for studying rare events in
lightwave communication systems. Other methods are possible, of course [13, 14], and the
development of new techniques is a subject of current active research. A common theme of
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such methods is the biasing of the noise used in the simulations so that samples from the
region(s) of state space where the sought-after rare events (i.e., errors) occur arise much more
frequently than they would normally. Once one accounts for the biasing, one can efficiently
compute probability distribution functions (pdfs) that are accurate far down into the tails.
Multicanonical Monte Carlo employs an iterative numerical procedure to determine the bias-
ing toward the desired regions of state space, while importance-sampled Monte Carlo relies
on physical or mathematical insight to accomplish this task.

A challenge associated with implementing importance sampling is in choosing a biasing
distribution that is close to optimal, i.e., a biasing that efficiently samples from the regions
of state space where the events of interest are most likely to occur [15]. Previously we have
presented numerical results demonstrating that this can be done to simulate noise-induced
transmission impairments in phase-modulated communication systems [16]. The purpose
of this paper is to describe in detail the methods used to produce such numerical simula-
tions, specifically, how the structure of the nonlinear Schrödinger (NLS) equation and results
from approximate methods (in this case, soliton perturbation theory) can be used to guide
importance-sampled Monte Carlo simulations of rare events in phase-modulated lightwave
communications systems. Essentially, the search for an efficient biasing distribution breaks
down into two optimization problems: At an individual amplifier, what is the most likely noise
realization that will lead to a specified parameter change? And, over the entire transmission
length, what combination of parameter changes at each amplifier is most likely to lead to large
signal distortions and, ultimately, errors? The resolution of these questions not only allows
the error rate to be computed but also provides insight into how errors arise.

This paper is organized as follows: in section 2 we present the NLS equation and re-
view soliton perturbation theory. We also give an overview of some modulation formats, in
particular, the manner in which information is encoded onto a uniform sequence of optical
pulses. In section 3 we discuss some background concerning importance-sampled Monte Carlo
simulations and present the solution to the optimal biasing problem at one amplifier. In sec-
tion 3.2 we describe the full optimal biasing problem for a specific modulation format known
as differential phase-shift keying (DPSK). The biasing problem is formulated here using a
continuous approximation of the governing evolution equations and is thus an extension of
previous versions which employed discrete approximations [3, 4]. This new version of the
biasing problem allows more complicated problems to be treated, since they can be solved via
calculus of variations. The resulting boundary value problem yields multiple solutions which
we describe in detail and which we interpret as possible error modes. In section 5 we dis-
cuss the implementation of the importance-sampled Monte Carlo method for the differential
phase-shift-keyed problem and present the results of simulations.

2. Formulation. A basic schematic of the differential phase-shift-keyed transmission sys-
tem to be analyzed and simulated is included in Figure 1. In general terms, the system
consists of a long length of fiber with a transmitter at the beginning and a receiver at the
end [17]. The components of the transmitter are a laser acting as a source of pulses and a
Mach–Zehnder modulator to encode data upon them. This data stream is then launched into
the optical fiber. Because the signal experiences loss as it propagates, a gain element is usually
inserted every few tens of kilometers to compensate for the loss [17]. Thus, the combination
of propagation with loss followed by gain typically must be repeated a number of times to
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Figure 1. Basic schematic of a differential phase-shift-keyed transmission system. For a specific description
of the elements, please see the text.

achieve the desired total optical transmission distance. A final set of components filters out
noise and recovers the signal; here the elements of the receiver are an optical band-pass filter,
a Mach–Zehnder delay interferometer, an electrical low-pass filter, and an electrical sampler.

2.1. Model of a soliton-based lightwave system. The longest part of the system is the
optical fiber with periodic amplification. We will model this propagation using the NLS
equation with periodically added noise [2]:

(2.1)
∂u

∂z
=

i

2

∂2u

∂t2
+ i|u|2u +

Namp∑
k=1

nk(t)δ(z − kza).

Here u represents the optical signal’s electromagnetic field envelope, z and t are dimensionless
distance and retarded time, Namp is the total number of amplifiers, and za is the dimensionless
distance between them. As is customary in the optics literature, z is considered to be the
propagation variable, and the “initial condition” (i.e., input signal) is the time-varying electric
field envelope profile defined at the beginning of the fiber span, z = 0. The model also includes
white Gaussian noise added by each amplifier,

〈ni(t)〉 = 0,(2.2)

〈ni(t)n
∗
j (t

′)〉 = σ2δijδ(t− t′).

This accounts for the effect of photons which are spontaneously emitted at each amplifier
and which subsequently experience gain along with the signal (hence the name amplified
spontaneous emission (ASE) noise [1]). Here ∗ represents the complex conjugate, and σ2 is
the noise variance; physically, σ2 = (G−1)2ηspTwγ/DG lnG, where G is the amplifier (power)
gain, ηsp is the amplifier’s spontaneous emission factor, Tw is the pulse width, and γ and D
are the fiber’s nonlinear and dispersion coefficients [2]. The assumption of delta-correlated
noise is not physically realistic because as written it contains infinite power, so this should
be interpreted merely as a shorthand for the case where the noise spectrum has a bandwidth
much larger than that of the signal [1]. Note that in (2.1) we have already averaged out the
deterministic power fluctuations caused by loss and amplification [18] in order to more easily
focus on the detrimental effects of ASE noise.

In the absence of noise, (2.1) has the well-known soliton solution given by [19]

(2.3) u(t, z) = A sech(A[t− T ]) exp(iΩ[t− T ] + iϕ).



MOST PROBABLE ERRORS IN NONLINEAR LIGHTWAVE SYSTEMS 871

Here A, T , Ω, and ϕ are, respectively, the amplitude, position, frequency, and phase of
the pulse. In the absence of noise A and Ω are constant and T and ϕ evolve according to
dT/dz = Ω and dϕ/dz = (A2 + Ω2)/2. Note that the parameters in this solution arise from
the invariances of the NLS equation [20], and so if a perturbation such as noise alters one or
more of these parameters, the solution with changed parameters is a perfectly valid solution
of the NLS equation. Thus, it is precisely because of these invariances that noise-induced
perturbations can build into large deviations over long propagation distances.

2.2. Differential phase-shift keying (DPSK). A modulation format is the method by
which information is encoded on an otherwise periodic optical signal. On-off keying (OOK),
i.e., sending a single pulse of light to represent a logical “1” and none for a logical “0,” is
one traditional encoding format used in lightwave communication systems. An alternative
method is phase-shift keying, where information is encoded on the optical signal’s phase while
the amplitude remains constant [21, 22, 23]. Differential phase-shift keying is a slight variant of
this, in which information is encoded on the phase difference between two adjacent pulses. We
will consider a binary differential phase-shift-keyed system where the transmitter consists of a
source that produces an identical sequence of pulses followed by a modulator that encodes no
phase difference between pulses to represent a logical “1” and a π phase difference to represent
a logical “0.” (The reverse could also be used, of course.)

At the receiver in a differential phase-shift-keyed system, the signal is detected, and adja-
cent bit slots1 are compared to determine if the received signal represents a “1” or a “0.” This
step must also be modeled, because we are ultimately interested in calculating the probability
of an error, i.e., the probability that a “1” was sent and a “0” was detected, or vice-versa. From
an engineering perspective, it is difficult to directly measure the absolute phase of a pulse;
it is substantially easier to interfere two adjacent pulses and calculate the resulting optical
intensity as a voltage. In practice one does this with a device comprised of a Mach–Zehnder
delay interferometer followed by a balanced detector, as shown in Figure 1.

A Mach–Zehnder delay interferometer splits the signal into two copies and delays one
relative to the other by one bit period, Tb. The two optical signals are then both constructively
and destructively interfered. This process is repeated for each pair of received optical pulses.
The balanced detector produces a voltage by subtracting the intensity of the destructively
interfered signal from the intensity of the constructively interfered signal. Therefore, if at the
end of transmission u(t) is the optical field envelope and u(t − Tb) is the version delayed by
Tb, then the voltage after interference and balanced detection (but before electrical filtering)
is given by

(2.4) V (t) = |u(t) + u(t− Tb)|2 − |u(t) − u(t− Tb)|2.

With this encoding format, the threshold voltage is at V = 0 and a positive voltage at the
output of the detector in the center of a bit slot represents a “1,” while a negative voltage
represents a “0.” Note that the zero voltage threshold corresponds to a phase difference of
π/2 between the two pulses, independent of their amplitudes.

Figure 2 is a schematic outline of the detection process for a back-to-back signal, i.e.,
when detection immediately follows encoding without transmission. The top two plots are

1A bit slot is one of the finite-width temporal windows into which an optical signal is divided.
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Figure 2. In order from top to bottom: (The modulus of) the original and delayed optical signals (green),
the constructively and destructively interfered electrical signals, and the output voltage V (blue), all in arbitrary
units. The detection process is described in the text. On this plot, V = 0, and the signal is assumed to be
periodic; the detection threshold (dashed red) is also included.

the optical signal and the optical signal delayed one bit slot within the Mach–Zehnder delay
interferometer. The next two plots are the output from the Mach–Zehnder delay interferom-
eter, i.e., the electrical power of the two constructively and destructively interfered signals,
respectively. The bottom plot is their difference and the detector’s output voltage. The volt-
age threshold is also included on this plot; within each bit slot, a detected voltage above
threshold is considered to be a “1,” while each voltage below threshold is considered a “0.” It
is assumed that the detector samples the output voltage at the center of a given bit slot. This
process is the same when transmission over a significant distance occurs between encoding
and detection, although the received optical signal is then distorted by propagation and ASE
noise. In practice (and in the simulations described in section 5) the signal is additionally
filtered optically before the Mach–Zehnder delay interferometer and electrically just after; this
is done to remove as much of the noise as possible. In what follows, the goal is to compute
the pdf of the output voltage V and the resulting bit-error rate.

2.3. Soliton perturbation theory and noise-induced parameter changes. Consider a
soliton solution, us, of the form given in (2.3), and a perturbation to it, δu. If we linearize
the NLS equation about us, then the eigenmodes and generalized eigenmodes of the linear
operator, L, relate perturbations in the solution to changes in the soliton parameters [2, 24, 25].
Here we consider such a decomposition at the kth amplifier where the perturbation in the
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underlying soliton solution, us(t, kza), is comprised of noise, i.e., δu(t, kza) = nk(t). We then
have [2, 24, 25]

(2.5) nk(t) = δAkfA + δΩkfΩ + δTkfT + δϕkfϕ + R(t, kza),

where fK is the mode (or generalized mode) of L corresponding to the parameter K ∈
{A,Ω, T, ϕ}, δKk is the change in that parameter, and R(t, kza) is the remainder of the
perturbation, which manifests itself as dispersive radiation [2, 19, 24, 25]. In order to iso-
late the noise-induced change to a single parameter at the kth amplifier, one takes the inner
product of (2.5) with the adjoint mode associated with the parameter of interest.2 Thus, a
noise-induced parameter change at the kth amplifier has the form

(2.6) δKk = Re

∫
nk(t)f

∗
K
dt,

where ∗ denotes the complex conjugate, and f
K

is the adjoint or generalized adjoint mode of
the linearized operator associated with parameter K ∈ {A,Ω, T, ϕ} [2, 3, 4, 24, 25].

We are interested in the instances when noise-induced parameter changes during propa-
gation lead to significant distortion of the received signal. Although noise-induced parameter
changes at each amplifier are small, several of these changes can combine to produce large devi-
ations at the output. Combining the relation in (2.6) for the noise-induced parameter changes
at each amplifier with how they vary between amplifiers in the absence of perturbations, we
can write equations describing their evolution along the transmission line [2],

Ak = Ak−1 + δAk,(2.7a)

Tk = Tk−1 + zaΩk−1 + δTk,(2.7b)

Ωk = Ωk−1 + δΩk,(2.7c)

ϕk = ϕk−1 +
za
2

(A2
k−1 + Ω2

k−1) + δϕk,(2.7d)

where again za represents the distance between amplifiers. From the soliton solution given
in (2.3), one can see that the additional changes to the phase and position arise because the
rates at which they advance in the absence of perturbations depend upon the amplitude and
frequency. In this notation ϕ is the phase of a pulse at the pulse center and δϕk represents
direct phase perturbations at the kth amplifier. Note that Ak is the amplitude just after the
kth amplifier and δAk is the noise-induced amplitude change, which will depend on the soliton
parameters from the previous amplifier (the (k − 1)st, or the initial parameters if k = 1).

It is also useful to write the output voltage given by (2.4) in terms of the soliton parameters
at the output. At the center of the bit slot, t = 0, and in the absence of position shifts (T = 0)
and added noise, this voltage is

(2.8) V = Ao
1A

o
2 cos(ϕo

1 − ϕo
2),

where Ao
1, A

o
2, ϕ

o
1, and ϕo

2 are the amplitudes and phases of two adjacent pulses of the output
signal, i.e., evaluated at z = zfinal.

2Here we use the inner product 〈v, w〉 = Re
∫
v∗w dt.
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3. Importance sampling. Recall that our objective is to find the probability of rare events
in a nonlinear differential phase-shift-keyed lightwave system by direct simulation. To calculate
the probability of an outcome, y, in a desired region, R, one needs to compute the integral

(3.1) P = Pr(y ∈ R) =

∫
I(y(x))p(x) dx,

where I is an indicator function that is 1 when y is in R and 0 otherwise, and p is the pdf of
the random variables X upon which the system’s output depends. One can approximate this
integral with a Monte Carlo quadrature given by

(3.2) P̂ =
1

N

N∑
k=1

I(y(Xk)),

where Xk are random samples drawn from the distribution p(x). Unfortunately, if P is very
small (say, P < 10−7), then standard Monte Carlo simulations require an unreasonably large
number of samples to capture even a single event in this region, let alone a sufficient quantity
to accurately approximate the integral.

To overcome this shortfall of Monte Carlo estimation we will utilize a variance reduction
technique known as importance sampling [5, 26]. The main idea of importance sampling is
to perform Monte Carlo quadrature by sampling from an alternative probability distribution,
p∗(x), that concentrates samples in the region of interest, R, much more efficiently than the
original distribution p(x). However, if we draw random variables from p∗(x), then we need
to correct our statistics using the likelihood ratio, L(x) = p(x)/p∗(x), in order to obtain an
unbiased result. Thus, (3.1) and (3.2) become

(3.3) P = Pr(y ∈ R) =

∫
I(y(x))L(x)p∗(x) dx

and

(3.4) P̂ ∗ =
1

N

N∑
k=1

I(y(X∗
k))L(X∗

k),

respectively, where the samples X∗
k are drawn from the distribution p∗(x). Equations (3.1)

and (3.3) are equivalent, but (3.4) will better estimate the probability P if the distribution
p∗(x) is chosen wisely. The challenge of effectively implementing importance-sampled Monte
Carlo is to find a useful biasing distribution p∗(x), i.e., one that can efficiently generate
samples in R [15].

We wish to bias the noise in Monte Carlo simulations of this nonlinear lightwave system
so that desired rare events occur more frequently than would normally be the case. If one
corrects biased simulations with the likelihood ratio, the results are as if unbiased simulations
had been run. In this manner we can accurately simulate rare events and compute pdfs of
some quantity of interest far down into the tails. The difficulty, however, is that the number of
random variables needed to simulate such systems is necessarily very large—in the tens or even
hundreds of thousands. Because the dimensionality of the random state space is quite large,
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it can be quite difficult to locate the specific regions that are most likely to produce errors.
To bypass this problem, we use low-dimensional approximations of the system dynamics to
determine the most probable manner in which perturbations can produce large deviations,
and then we use this information to bias the noise and guide full importance-sampled Monte
Carlo simulations of the full system. We will accomplish this by dividing the problem into
two subproblems: the optimal biasing at a single amplifier and the optimal biasing across all
amplifiers.

3.1. Optimal biasing at a single amplifier. First, we briefly summarize the method of
biasing the ASE noise by changing the mean of individual Gaussian random variables associ-
ated with the noise added at the amplifiers as suggested by Moore, Biondini, and Kath [3],
and as discussed in detail in [4]. The first step is to determine how to optimally bias a pulse
at a single amplifier in order to achieve a desired parameter change.

The semianalytical approach is based upon some mathematical and physical insight. Stud-
ies exploring the growth of noise-induced phase jitter indicate that the variance in a pulse’s
phase is driven both directly and also by amplitude jitter that couples through self-phase
modulation [27, 28]. (Determining the mean and variance alone, of course, is not sufficient
information to calculate error probabilities when the distributions are non-Gaussian.) Both
types of noise-induced fluctuations arise because solutions of the NLS equation cannot resist
changes in the directions associated with the soliton parameters, as they arise from invariances
of the equation [20]: any solution with different parameters is itself a perfectly valid solution.
Thus, large phase and amplitude variations can build up from smaller ones, and these lead to
significant deviations in the detected output voltage.

In what follows, we will neglect perturbations to the pulse’s position (or timing) and
frequency because we will consider the case of a system with small dispersion. In this limit,
amplitude and phase fluctuations dominate. The first step in the analysis, then, is to determine
the optimal biasing that produces the sought-after phase and amplitude changes at a single
amplifier. When we perform the simulations we will use a discretized version of the NLS
equation and the noise driving it, but to simplify the notation here we will describe the
procedure using continuous functions of time. Following (2.1), at an amplifier a perturbation
Δu = nk(t) is produced in the propagating signal by the noise. In the simulations, however,
instead of using the unbiased noise nk(t) ≡ X(t), we will use a random variable of the form
X∗(t) = X(t) + b(t), where b(t) is the biasing. The goal, again, is to choose the biasing b(t)
to make errors occur much more frequently than would be the case otherwise, and then to
correct the estimate of these events’ probabilities using the likelihood ratio.

The problem of finding the optimal biasing b(t) has the same form for each of the four
soliton parameters, so we will present it for the general parameter K, where K ∈ {A, T,Ω, ϕ}.
Recall that a parameter change, ΔK, due to a perturbation is the projection of the perturba-
tion onto the adjoint or generalized adjoint mode of the linearized NLS equation associated
with that parameter. In addition, maximizing the probability of achieving a desired outcome
in the case of Gaussian noise is equivalent to maximizing the log-likelihood, i.e., minimizing
the negative of the exponent. Thus, we want to minimize

(3.5)

∫ ∞

−∞
〈|X(t) + bK(t)|2〉 dt = σ2 +

∫ ∞

−∞
|bK(t)|2 dt,
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subject to the constraint of achieving (on average) a desired parameter change ΔK, i.e.,

ΔK = Re

∫ ∞

−∞
〈u∗K(t)(X(t) + bK(t))〉 dt(3.6)

= Re

∫ ∞

−∞
u∗K(t)bK(t) dt = constant.

To solve this optimization problem, we reformulate it as a Lagrange multiplier problem:

(3.7) F [bK(t), b∗K(t)] =

∫ ∞

−∞
|bK(t)|2 dt + λ

[
ΔK − Re

∫ ∞

−∞
u∗KbK(t) dt

]
.

To minimize F we take its functional derivative with respect to bK and find the stationary
point, δF/δbK = 0. We see that F is minimized when

(3.8) bK(t) = λuK(t),

which gives

(3.9) λ =
ΔK∫ ∞

−∞
|uK(t)|2 dt

.

Thus, combining (3.8) and (3.9), we have the optimal functions to bias the soliton amplitude
and phase,

bA(t) =
ΔA∫ ∞

−∞
|uA|2 dt

uA(t),(3.10a)

bϕ(t) =
Δϕ∫ ∞

−∞
|uϕ|2 dt

uϕ(t).(3.10b)

Note that the latter equation is valid if Ω = 0.

3.2. Optimal biasing across all amplifiers. The next question to address is how the
changes across all of the amplifiers along the full transmission line should be arranged in
order to best achieve a targeted output voltage. Is it more probable for large perturbations
to occur at just a few amplifiers or for them to occur in a more distributed manner?

To answer this question, we will assume that the biasing function at each amplifier is a
linear combination of the optimal biasing functions determined in the previous section and
let the coefficients vary from amplifier to amplifier. Note that these adjoint eigenmodes are
functions of time, but they also depend explicitly upon the parameters (A, T,Ω, ϕ) of the
underlying soliton at each amplifier. The desired optimal biasing over all amplifiers then has
the form

(3.11) Bn = αnuA + βnuϕ,
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where 1 ≤ n ≤ Namp. The goal then reduces to determining the optimal values of αn and βn
at each amplifier along the transmission line.

Recall that the output voltage depends on the amplitudes and phases of two adjacent
pulses. If we label two such adjacent pulses (1) and (2), we have, at the center of the bit slot,

(3.12) V = A(1)A(2) cos(ϕ(1) − ϕ(2)).

As a result, we must expand the biasing to include the adjoint modes associated with the
amplitudes and phases of both adjacent pulses, i.e.,

(3.13) Bn = α(1)
n u

(1)
A + β(1)

n u(1)
ϕ + α(2)

n u
(2)
A + β(2)

n u(2)
ϕ .

To simplify the optimization problem, we will assume that, during propagation, terms la-
beled (1) do not overlap in time with terms labeled (2), which means that all inner products

of u
(1)
K and u

(2)
K are zero; i.e., 〈u(1)

K , u
(2)
K 〉 = Re

∫∞
−∞ u

∗(1)
K u

(2)
K dt = 0 for K ∈ {A,ϕ}.

The goal, then, is the same as before: to choose the appropriate combination of biasing
functions such that the probability of a desired rare event at the end of transmission is maxi-
mized, subject to the constraint that the biasing will achieve a desired output voltage. Again,
because the noise is Gaussian, this is equivalent to minimizing the overall norm of the biasing
functions; i.e., we wish to minimize

(3.14)

Namp∑
n=1

‖Bn‖2 =

Namp∑
n=1

(α(1)
n )2‖u(1)

A ‖2 + (β(1)
n )2‖u(1)

ϕ ‖2 + (α(2)
n )2‖u(2)

A ‖2 + (β(2)
n )2‖u(2)

ϕ ‖2

subject to

(3.15) A
(1)
Namp

A
(2)
Namp

cos(ϕ
(1)
Namp

− ϕ
(2)
Namp

) = V o.

In reality, (3.15) will not exactly represent the voltage at the output due to pulse distortions
that occur during propagation and because of filtering, which has not been included in the
analysis. It will be highly correlated with the output voltage, however, and thus sufficient to
guide the biasing of the full simulations.

In this problem we have an additional constraint that the soliton parameters, A and ϕ,
vary from amplifier to amplifier as dictated by soliton perturbation theory. For example, the
amplitude at a particular amplifier is the value at the previous amplifier plus the noise-induced
amplitude change. The phase at an amplifier, however, is the value at the previous amplifier
plus the noise-induced phase change plus the amplitude-induced phase change that has accu-
mulated between amplifiers. In addition, the adjoint eigenmodes at each amplifier depend on
the soliton parameters, since the norms of the amplitude and phase adjoint eigenmodes are
given by

‖uA‖2 =

∫ ∞

−∞
|uA|2 dt = 2A,(3.16a)

‖uϕ‖2 =

∫ ∞

−∞
|uϕ|2 dt =

π2 + 12

18A
.(3.16b)
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Thus, the goal is to minimize

(3.17)

Namp∑
n=1

2A(1)
n (α(1)

n )2 +
π2 + 12

18A
(1)
n

(β(1)
n )2 + 2A(2)

n (α(2)
n )2 +

π2 + 12

18A
(2)
n

(β(2)
n )2

subject to

V o = Ao
1A

o
2 cos(ϕo

1 − ϕo
2),(3.18a)

A(k)
n = A

(k)
n−1 + 〈u(k)

An−1
, Bn〉,(3.18b)

ϕ(k)
n = ϕ

(k)
n−1 +

1

2
(A

(k)
n−1)

2za + 〈u(k)
ϕn−1

, Bn〉, k = 1, 2.(3.18c)

Here, An and ϕn represent the values of the amplitude and phase, respectively, just after the

nth amplifier. The o symbol denotes evaluation at z = zL, i.e., Ao
k = A

(k)
Namp

. The last terms

on the right-hand sides of (3.18b) and (3.18c) represent the biased noise Bn added at the
nth amplifier projected onto the amplitude and phase modes; recall that they depend on the
parameter values before the amplifier, i.e., those from just after the (n−1)st amplifier (or the
initial parameter values if at the first amplifier).

It is not clear how to solve the discrete constrained minimization problem given by (3.17)
and (3.18) even approximately, as was done previously in less complicated situations [3, 4].
We therefore follow an alternative approach in which the discrete problem is approximated
by a continuous version. Equations (3.18b) and (3.18c) can be rewritten, for example, as

A
(k)
n −A

(k)
n−1

za
=

2α
(k)
n

za
A

(k)
n−1,(3.19a)

ϕ
(k)
n − ϕ

(k)
n−1

za
=

1

2
(A

(k)
n−1)

2 +
β

(k)
n

za

π2 + 12

18A
(k)
n−1

,(3.19b)

which shows that their continuous approximations should be

dAk

dz
=

2αk

za
Ak,(3.20a)

dϕk

dz
=

1

2
A2

k +
βk
za

π2 + 12

18Ak
, k = 1, 2.(3.20b)

The continuous version of the problem therefore reduces to minimizing a functional with
differential equation constraints, which can be solved using calculus of variations [29]. In
Lagrange multiplier form the problem is

F =

∫ zL

0

2∑
j=1

[
2Ajα

2
j +

π2 + 12

18Aj
β2
j + λA

j (z)

(
dAj

dz
− 2αj

za
Aj

)
(3.21)

+ λϕ
j (z)

(
dϕj

dz
− 1

2
A2

j −
π2 + 12

18zaAj
βj

)]
dz + λV o(Ao

1A
o
2 cos(ϕo

1 − ϕo
2) − V o).
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Each λ above is a Lagrange multiplier and is labeled to refer to its corresponding constraint
(all four evolution equations—two equations for each pulse—from soliton perturbation theory
and the targeted output voltage). Where za remains in this approximation, it is a finite
parameter.

To find the most likely soliton parameter paths that lead to large voltage distortions, we
thus obtain a boundary value problem given by the Euler–Lagrange equations associated with
the functional F ,

d2A1

dz2
− 1

2A1

(
dA1

dz

)2

− π2 + 12

18

β2

A1
+ 2gβA2

1 = 0,(3.22a)

d2A2

dz2
− 1

2A2

(
dA2

dz

)2

− π2 + 12

18

β2

A2
− 2gβA2

2 = 0,(3.22b)

A1(0) = 1,(3.22c)

A2(0) = 1,(3.22d)

sin(ϕ)
dA1

dz
(1) + 2β cos(ϕ) = 0,(3.22e)

sin(ϕ)
dA2

dz
(1) + 2β cos(ϕ) = 0,(3.22f)

g

2

∫ 1

0

(
A2

1 −A2
2

)
dz +

π2 + 12

18za
β

∫ 1

0

(
1

A1
+

1

A2

)
dz = ϕ,(3.22g)

A1(1)A2(1) cosϕ = V o.(3.22h)

Here, we have eliminated the Lagrange multipliers from the equations, as well as α1 and
α2. Because the functional depends upon the phases only through the phase difference ϕ ≡
ϕo

1 − ϕo
2, the resulting Euler equations also involve only this difference. In turn, this leads to

β1 = −β2 ≡ β. In the above, we have rescaled z → zL z for numerical convenience so that
the distance varies from z = 0 to z = 1. We have also rescaled A → A0 A, where A0 is the
initial amplitude of the pulse, so that in the rescaled equations the initial amplitude is unity.
It is then natural to rescale β → A0β/zL and introduce g = A2

0zL as an effective nonlinear
parameter. In the remainder of this paper, when we discuss the phase we will refer to the
relative phase, i.e., the phase difference between adjacent pulses, unless explicitly mentioned
otherwise. Note that (3.22g) is merely the integrated form of the evolution equation for this
phase difference. In the above we have assumed that the initial phase difference between the
pulses is zero; i.e., we have assumed that a “1” was initially encoded. For simplicity, we will
focus on this particular case in what follows. The case of a “0,” i.e., two pulses with an initial
π phase difference, is almost identical.

Thus, the continuous optimization problem has been reduced to a coupled boundary value
problem describing the “optimal” evolution of the amplitude and phase parameters, i.e., a
problem whose solution gives the most probable paths leading to a specified output voltage.
It should be reemphasized that the paths obtained from the solution of this problem will not
be directly used to approximate the probability of the sought-after output voltage. Instead,
they will be used to guide simulations of the full NLS equation; i.e., they will be used to
bias the noise in such a way to induce parameter fluctuations lying close to these paths. The
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biasing, of course, is accounted for by updating the likelihood ratio. The approximations
made in calculating these optimal paths are thus not detrimental because the randomness
associated with the importance-sampled Monte Carlo simulations allows for a search of state
space around these paths. Another view of this is that the low-dimensional description of the
problem given by soliton perturbation theory is merely used to determine the most significant
regions of state space. Then, full importance-sampled Monte Carlo simulations of the NLS
equation are used to sample the rare events of interest and directly calculate the probability
of occurrence of the sought-after rare events.

Before continuing, it is useful to consider some general features of (3.22). If β = 0, one
can see that evolution equations for the two amplitudes are the same. Thus, the output phase
is zero, ϕ = 0, and the boundary conditions are satisfied. In this case, one can solve the
equations exactly and obtain

(3.23) A1 = A2 = A(z) = (1 − cz)2.

The constant c is related to the targeted output voltage by c = 1 − 4
√
V . This solution

identifies one most probable manner in which large voltage changes can be achieved. In this
way, however, errors are not obtained since a change of sign of the voltage must occur for this
to happen. This suggests that another optimal pulse distortion mode exists—one that can
achieve negative output voltages.

Predictions based upon the growth of the phase variance indicate that large phase fluctu-
ations at the output do occur. If these phase fluctuations are large enough, the cosine term in
the formula for the output voltage will change sign, leading to an error. There are additional
mathematical indications that another error mode should exist. If one uses perturbation the-
ory to solve (3.22) for small β, one obtains a consistency result of the form ϕ ≈ m sin(ϕ),
where m is a constant depending upon g and V o. If m > 1, this problem has a bifurcation to
solutions with either positive or negative output phase.

4. Pulse distortion modes. We therefore look numerically for solutions where ϕ is nonzero
and specifically for solutions with an output phase that is at least π/2 so that a change of sign
of output voltage occurs. To find them, we let β parameterize the family of solutions and use
the numerical continuation and bifurcation package AUTO [30] incorporated into XPP [31]
to solve (3.22).

The first solution to be obtained numerically is the one described by (3.23) that produces
correlated amplitude fluctuations. For this mode, large changes in the output voltage are most
likely to occur when, on average, the amplitudes of two adjacent pulses decrease together.
Again, there is no phase difference between the two pulses at output produced by this mode.
Figure 3 shows typical amplitude and phase solution paths for this correlated pulse distortion
mode.

In addition, the numerical solution of the equations with AUTO also reveals a bifurcation
to anticorrelated amplitude and phase changes; this bifurcation occurs as the output voltage
is reduced. In this case, on average, one pulse’s amplitude increases, which advances its phase
through self-phase modulation, while the adjacent pulse’s amplitude decreases, retarding its
phase. Consequently, this distortion mode can result in a nonzero output phase difference.
This anticorrelated pulse distortion mode can lead to negative targeted output voltages and
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Figure 3. Typical mean path that amplitudes of adjacent pulse and their phase difference are most likely to
take on average to reach a desired output voltage when pulse variations are correlated. For this mode it is most
likely that the amplitudes of two adjacent pulses decrease (or increase) together resulting in no phase change.
The horizontal axis represents the fraction of total transmission distance.

thus produce errors. Figure 4 shows typical solution paths for the this particular distortion
mode; the other solution is symmetric under the interchange of A1 and A2 and a change of
sign of ϕ.

In the descriptions of the pulse distortion modes above we have not yet addressed the issue
of which of the two modes is more probable. We will see shortly that correlated fluctuations are
most probable when the voltage is large, i.e., near its initial value. Anticorrelated fluctuations,
on the other hand, become more probable as the voltage decreases, and especially when
the voltage is near zero, i.e., near the threshold at which an error occurs. There is also a
transition region of voltage values where these two distortion modes are of approximately
equal importance, and the location and width of this region varies, to a certain extent, from
problem to problem depending on the physical system parameters. Specifically, when changes
to the physical parameters alter the effective nonlinear coefficient, g, then the location of the
bifurcation point on the solution curve associated with (3.23) from which the second solution
appears will vary.

To measure the importance of a pulse distortion mode for a given output voltage we will
calculate a quantity that we refer to as the biasing strength. The biasing strength, denoted as
S, is merely a measure of the size of the minimum functional which was used to obtain the
optimal biasing across all amplifiers. Recall that this functional is essentially the sum over all
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Figure 4. Typical mean path that amplitudes of adjacent pulses and their phase difference are most likely to
take, on average, to reach a desired output voltage in the case of anticorrelated noise-induced perturbations. In
this case, we can see that one pulse’s amplitude tends to increase while the neighboring pulse’s amplitude tends
to decrease. The opposite phase changes produced by these amplitude changes, plus equal and opposite direct
noise-induced phase changes, lead to a large output phase difference. The horizontal axis represents fraction of
total transmission distance.

amplifiers of the norms of the biasing applied to the mean ASE noise,

(4.1) S =

Namp∑
n=1

‖Bn‖2,

so that it is a measure of the total amount of noise. Recall that the ASE noise is modeled
as white zero-mean Gaussian noise. Thus, when we bias the mean of the ASE noise at each
amplifier using Bn, the probability of a resulting outcome is proportional to the negative
exponential of the biasing strength, S; i.e., S is essentially the negative of the log-likelihood
associated with the Gaussian noise. Thus, smaller biasing strengths correspond to more likely
events.

In Figure 5 we have plotted a bifurcation diagram summarizing the optimal biasing solu-
tions of (3.22), with S included. The precise details of these curves are expected to depend
somewhat upon the nonlinearity coefficient, g. Here they are plotted for g = 2.076, which is the
effective nonlinearity of the physical system discussed later in this paper. The curve labeled
“correlated” corresponds to the correlated pulse distortion mode and represents solutions sim-
ilar to Figure 3. The curve labeled “anticorrelated” corresponds to the anticorrelated pulse
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Figure 5. General representation of the solution curves of the optimal biasing equations for g = 2.076.
The axes represent output phase, output voltage, and biasing strength, S. The error threshold (V = 0) is also
highlighted for reference. As anticipated, the curve of correlated solutions has positive output voltage and cannot
reach threshold. The anticorrelated solution curve passes through threshold, so anticorrelated amplitude changes
are the mechanism most likely to produce errors in this differential phase-shift-keyed lightwave system. Near
the bifurcation point (in the lower left-hand corner), the distortions due to each mode have approximately equal
importance.

distortion mode and represents solutions similar to those in Figure 4. These solution curves
predict that only the anticorrelated distortion mode can achieve voltages beyond threshold,
i.e., output voltages that correspond to errors.

5. Biasing for the soliton-based differential phase-shift-keyed system. Now that we
know how to optimally bias the noise at each amplifier, we will use this biasing to guide
importance-sampled Monte Carlo simulations. As previously stated, the goal of these simu-
lations is to accurately determine the probability of noise-induced output voltage distortions
and errors when errors are extremely rare events. The reason we do full simulations is that
the optimal biasing functions and optimal parameter paths that we have calculated are only
approximate. By doing full nonlinear simulations, any errors due to linear approximations
are avoided. The approximations need not be perfect, of course, because they are used only
to guide the full simulations, and thus the full importance-sampled Monte Carlo simulations
can still correctly determine the probabilities associated with the rare events.

The outline of the process used to perform one trial of an importance-sampled Monte
Carlo simulation of the differential phase-shift-keyed lightwave system is as follows (please
note that computational details of these steps are carefully explained in section 6.2):

1. Generate the initial differential phase-shift-keyed signal.
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2. Propagate the signal numerically to the next amplifier.
3. Extract the soliton parameters for one pair of adjacent pulses from the noisy signal.
4. Compute the adjoint eigenmodes of the NLS equation linearized about the solitons

determined in the previous step using the appropriate analytic formulas [2].
5. Generate zero-mean Gaussian white noise with variance prescribed by (2.2).
6. Bias the mean of the random variables with an optimal linear combination of adjoint

eigenmodes determined by the solution of (3.22).
7. Update the likelihood ratio. (Each amplifier’s noise is independent, and hence the

overall likelihood ratio is the product of the individual likelihood ratios.)
8. Repeat steps 2–7 until the end of transmission line is reached.
9. Apply any desired optical filter, detect the signal, convert it to a voltage with a

balanced Mach–Zehnder delay interferometer, and apply the electrical filter.
10. Update the desired statistics of the output voltage signal.

A typical simulation has several biasing directions, i.e., targeted output voltages, per
biasing mode (correlated or anticorrelated targeted amplitude changes). Several thousand
trials are performed for each direction and the results are combined using multiple importance
sampling [5, 26, 32]. In this manner the pdf of the output voltage can be computed well down
into the tails. To validate results from the importance-sampled Monte Carlo simulations, we
can compare them, at least for not-too-small probabilities, to results from standard Monte
Carlo simulations. We also keep track of the coefficient of variation, the sample mean divided
by the sample standard deviation, for each bin [5]. Good agreement between the biased and
unbiased simulations, and a coefficient of variation that decreases smoothly like 1/

√
N with

the number of trials N , are indications that the results from the importance-sampled Monte
Carlo simulations are accurate.

For importance-sampled Monte Carlo simulations to be implemented properly, all impor-
tant biasing directions should be included. For example, if one were to bias to target only
anticorrelated variations, the simulation would not converge properly for larger probabilities—
the pdf would not “visually” converge (would not be smooth and/or the tails might drop off
rapidly), the pdf might not agree properly with the unbiased simulations (in the region where
unbiased simulations are valid), and/or the coefficient of variation would contain large fluc-
tuations. These large fluctuations would occur in voltage regions where correlated variations
are the more likely events, because they would still occur occasionally even though the less
likely anticorrelated events had been targeted, and when they did occur they would dominate
the probability distribution.

Important biasing directions must not be overlooked. For example, for the anticorrelated
biasing directions, one must consider both the amplitude of pulse (1) increasing with the
amplitude of pulse (2) decreasing and the amplitude of pulse (2) increasing with the amplitude
of pulse (1) decreasing as distinct biasing directions even if they target the same output voltage.
Both cases, of course, will produce the same output phase difference on average. If only one
of the cases were considered for each targeted voltage, however, the simulation would miss
half of the most probable events.

As an example of how the random sampling around the biasing paths works, Figure 6 shows
random paths of amplitude and phase from approximately 30 samples where the noise has been
biased to follow an anticorrelated path to produce a low voltage. This figure demonstrates
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Figure 6. Simulation showing the random paths (jagged, thin lines) from approximately 30 biased samples
near a typical anticorrelated optimal biasing direction (smooth, bold curves). The amplitude parameters are
plotted in the top figure (green for A1, blue for A2), while the phase difference is plotted in the bottom figure.
The horizontal axis represents the normalized transmission distance.

that the importance-sampled Monte Carlo scheme outlined above successfully biases noise
to induce larger-than-normal amplitude and phase fluctuations in the manner predicted by
soliton perturbation theory. It also demonstrates how the randomness of biased Monte Carlo
simulations enables a search of state space near the predicted optimal path. In this manner,
even if the predicted optimal path is not exact, the random nature of the simulation enables
the most probable path through state space to a desired rare event to be properly sampled.

6. Simulation of an example differential phase-shift-keyed system.

6.1. System parameters. As a test of the method, we simulate a 10 Gbit/s soliton-based
differential phase-shift-keyed transmission system, which means that each pulse lies within a
100 ps bit slot. This bit rate has been of interest for communication applications [22, 23].
Here we assume a fiber loss of 0.21 dB/km, a nonlinear coefficient of 1.7 (W-km)−1, an average
dispersion of 0.15 ps2/km, and 30 ps full-width half-max (FWHM) pulses. The FWHM is
the time interval over which the instantaneous power is larger than 1/2 of its maximum. A
related parameter, the pulse width, Tw, is used to nondimensionalize time. This scaling factor
varies from pulse shape to pulse shape, but for hyperbolic secant pulses, Tw = TFWHM/1.76.

We assume further that the amplifiers are spaced every 80 km, and we use a spontaneous
emission factor ηsp = 1.25. The total transmission distance is 4,000 km, and the average power
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is 0.1 mW (the pulse peak power is 0.3 mW). This choice of parameters results in a system
with an optical signal to noise ratio of 14.5 dB (using a .2 nm filter). It is worth reiterating
at this point that we have averaged over deterministic power fluctuations as described in
section 2.1 after (2.2). At the end of transmission the signal is filtered using a 50 GHz
optical bandpass filter, detected using a balanced Mach–Zehnder delay interferometer, and
then filtered electrically by a Bessel filter with a bandwidth that is 80% of the bit rate.

6.2. Numerical parameters and implementation. In the split-step numerical simulations
the pseudorandom bit pattern “01110100” (or a cyclic permutation) is used, encoded using a
π phase change between adjacent pulses to represent a “0” and no phase change for a “1.”
This 8-bit pattern contains all possible 3-bit combinations. Spatial evolution steps are taken
to be 1/5th of the amplifier spacing. Time is discretized by dividing each bit slot by 64. Thus,
64 Fourier modes describe each pulse, and N = 512 Fourier modes describe the time-periodic
8-bit sequence.

To simulate the noise, nk(t), we generate independently and identically distributed unit
Gaussian random variables, Xi, i = 1, . . . , 2N , and then scale them by an appropriate standard
deviation. Random variables must be added to both the real and imaginary parts of the field
at each time point (or to each frequency component), resulting in the factor of two above. The
variance of the numerical noise is set to be equal to the variance of the ASE noise determined
by physical parameters, σ2 (see (2.2) and [4]). Because the noise nk(t) is delta-correlated, we
must have

(6.1)

∫
〈nk(t)n

∗
k(t

′)〉 dt = σ2.

We wish to find a scaling factor, a, which when applied to standard Gaussians makes them
satisfy the equivalent relationship in the discrete case, namely,

(6.2)
∑
i

〈aXi aXj〉Δt ≈ a2〈X2
j 〉Δt = σ2/2.

(The factor of 1/2 here is because nk(t) contains both real and imaginary parts, each con-
tributing half of the total.) Thus, we see that the numerical standard deviation a should be
σ/

√
2Δt.

The optical bandpass filter is implemented by taking the product of the output signal
and a Gaussian (again, 50 GHz) in the frequency domain and then transforming the filtered
optical signal back to the time domain. For the electrical filter, we use a 5th order Bessel filter
(which is a causal approximation of a perfect time delay) and apply the filter in the frequency
domain of the optical intensity. The mean delay associated with the filter is removed before
detection. Note that these filters are incorporated into the simulation because such filters are
typically used in practice to eliminate as much noise as possible from the output signal.

To bias the noise at each amplifier, one must “extract” the underlying soliton from a
noisy pulse. This underlying pulse is the soliton about which the NLS equation is linearized
at each amplifier. Recall that a soliton solution of the NLS equation is determined by four
parameters: amplitude, timing, frequency, and phase. In order to find the underlying soliton,
one must determine at least approximate values for these parameters. Given a pulse, one
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can approximate the soliton parameters by using moment integrals [4], which arise from the
invariances of the NLS equation’s Lagrangian. For example, given part of a signal u(t, zk) that
represents one bit slot, one can calculate an approximate soliton amplitude with the equation

(6.3) A(zk) =
1

2

∫
|u|2 dt.

Similar moment integrals can be used to find the other parameters (for the phase, no exact local
definition is available, but ad hoc versions can be created). For a very noisy pulse, however,
it is possible that the moment integral given by (6.3) will overestimate the amplitude. One
can improve parameter estimates by filtering the high frequency components of the pulse to
remove some of the noise before calculating the moment integrals [4].

Recall that the parameters are used to construct the underlying soliton and associated
linearized modes. These modes are used to bias the noise added to the signal, and more
precise biasing leads to faster statistical convergence of the importance-sampled Monte Carlo
simulations. To this end iterative improvement to the soliton parameter estimates can also be
obtained. Once initial approximations for the soliton parameters have been found, one can
compute the residual δu = u(t, z) − us(t, z). Next, one can project the residual δu onto the
adjoint eigenmodes of the NLS equation linearized about the approximate soliton. If these
projections are not close to zero (as compared to some tolerance), then the underlying soliton
has not been estimated properly. To remedy this, one can update the parameter estimates by
the projected amounts and repeat the process until sufficient accuracy is achieved.

For the simulations presented here, 340,000 biased Monte Carlo trials were performed.
More precisely, we targeted 17 different output voltages so that the entire voltage range of
interest is covered; for each of these 17 “biasing directions” 20,000 trials were used, and
the results were combined with multiple importance sampling [5, 26, 32]. The simulation
cycles through the eight possible pulse pairs from the bit pattern given above. That is, for
each importance-sampled Monte Carlo trial, an individual pair of pulses was targeted (i.e.,
the noise was biased for that pair and not for the other six pulses). The resulting voltage
(associated with each particular pulse pair biased for a given trial) is sampled at the center
of the corresponding bit slot, and the pdf of the output voltage is computed by dividing the
output voltage range into 80 bins. Two pdfs are computed per simulation—one conditioned
on a “0” having been sent initially and another conditioned on a “1” having been sent initially.

6.3. Simulation results. In Figure 7 we plot the probability density functions computed
from the importance-sampled Monte Carlo simulation of the soliton differential phase-shift-
keyed lightwave system with the physical parameters described previously. Also plotted are
the results from an unbiased Monte Carlo simulation that used 107 trials. Two overall pdfs
are plotted—one conditioned on a “1” having been sent initially and another conditioned
on a “0” having been sent. Note the importance-sampled results lie on top of the unbiased
simulations in the region where the latter give results, but go down more than 10 orders of
magnitude farther in probability. The simulation clearly shows that importance sampling
outperforms standard Monte Carlo simulations by many orders of magnitude. In the figure
we also plot the individual contributions to the combined pdf from the trials that targeted
the correlated distortion mode and the trials that targeted the anticorrelated distortion mode.
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Figure 7. Top: Black curves represent probability distribution functions (pdfs) for output voltage, con-
ditioned on either a “1” (solid) or a “0” (dashed) being sent initially. The lower curves indicate individual
contributions to the total probability from each of the two predicted distortion modes discussed previously and
the one-pulse distortion mode—(a) correlated amplitude variations; (b) anticorrelated phase and amplitude
variations; (c) single pulse variations. The contributions from each of these modes are combined to compute
the overall pdfs (black curves). Bottom: The coefficient of variation for the importance sampling simulation.
(The C.V., or relative variance, is the ratio of the sample standard deviation divided to the mean; the smaller
the relative variance, the more accurate the estimate is likely to be.)

In some regions the overall pdfs come primarily from one of the two modes, and so one of
the individual curves overlaps the overall pdf in these regions. In particular, the pdfs at
large voltages, |V | > 1.5, are comprised only of the contributions from correlated amplitude
variations, i.e., the curves labeled (a). Similarly, the pdfs near and past the threshold at
zero voltage are comprised solely of the contribution from anticorrelated amplitude and phase
variations, i.e., curves labeled (b); thus, for these system parameters this distortion mode
solely determines the bit-error ratio.

For this particular simulation we also biased the noise in an additional direction not
predicted by the biasing theory for a pair of pulses; the contribution from these trials is
represented by curve (c). The impetus for including this additional biasing direction, which
targets changes in the output voltage due to variations in a single pulse, rather than a pair of
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pulses, was to speed up convergence of the simulation and reduce the size of the coefficient of
variation. Including this additional biasing direction did not significantly change the resulting
pdf but did lower the total number of trials needed to achieve a desired (small) coefficient
of variation at moderately small probabilities. In this case, the optimal biasing problem is
equivalent to (3.14) and (3.15), except that the amplitude of one of the pulses is constant.
As a result, the boundary value problem that one must solve to optimize the biasing problem
is equivalent to (3.22) when one eliminates the equations governing the evolution of A2 and
its boundary conditions and replaces the A2 in the other instances with A2 = 1. This single
pulse biasing mode exhibits solutions similar to the anticorrelated distortion mode, in that
the voltage distortion is most likely to occur if the pulse’s amplitude decreases, causing a
phase retardation. There is no equivalent to the correlated distortion mode in the singe-pulse
case, however. The result of the single-pulse biasing shows a contribution to the overall pdf
that is smaller than that from the other two modes. This explains why this solution did not
show up when solving the pair-pulse biasing problem (3.22); it is not a local extremum of the
function given by (3.21). Nevertheless, the contribution to the overall pdf from this mode is
a noticeable fraction of the total, which is why including it speeds up the convergence of the
simulations.

To further illustrate the character of the large variation modes that were included in the
simulation, Figure 8 shows specific simulation trials for each. These amplitude, phase, and
voltage profiles were recorded when a particular voltage threshold was crossed (a different
threshold was used for each type of distortion). The amplitude and phase curves are shown
after optical filtering, while the voltage curve is shown after electrical filtering. Modes (a),
(b), and (c) are examples of the result of correlated, anticorrelated, and single-pulse ampli-
tude and phase variations, respectively, corresponding to Figure 7. In each case it is clear
that the actual pulse fluctuations show deviations from the optimal biasing paths; e.g., the
amplitude profiles shown in mode (a) are neither identical nor smooth; it is only the mean
biasing that is described properly using soliton perturbation theory. It is also worth noting
that although one particular voltage bit slot has been targeted, the fluctuations also produce
significant deviations in nearby bit slots. Thus, each fluctuation produces a particular pattern
of correlated deviations in the voltage signal.

For these system parameters, the individual pdfs for the one and zero voltage rails cross
in Figure 7 at a value just below 10−8. The probability of an error is the average of the
probability that a “0” was sent and a “1” was detected and the probability that a “1” was
sent and a “0” was detected. Integrating the area under the parts of the pdfs that lie beyond
the zero voltage point (the decision threshold) and multiplying by 1/2 (the probability of a “1”
or a “0” being sent) gives a total bit-error ratio of (4.9± .4)× 10−10 for these parameters. To
calculate the variance in this multiple importance-sampled simulation, we used the method of
Biondini, Kath, and Menyuk [5].

As a comparison, we have performed another set of Monte Carlo simulations where a
noiseless signal is propagated and a comparable amount of white Gaussian noise is then
added at the end of the transmission line. This is a standard approximation valid when the
noise does not interact with the signal during propagation, but only at the detector [33]. In
this simulation, the amount of white Gaussian noise added at the end of the transmission
line was adjusted so that the optical signal to noise ratio at the end was the same as for the
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Figure 8. Single-trial examples of each of the error modes. Modes (a), (b), and (c) correspond to correlated,
anticorrelated, and single-pulse amplitude and phase variations, respectively. The dashed lines correspond to
the voltage of the undistorted signal. Note that a different sequence of pulses was targeted in case (a) than in
(b) and (c). In each case, reductions or increases in amplitude and phase are indicated. The optical pulses that
combine to produce the specific targeted voltage bit slot are also indicated.
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Figure 9. Comparison between full importance-sampled Monte Carlo simulations (black curves, as in
Figure 7) and another set of unbiased Monte Carlo simulations where a noiseless signal is propagated and then
a comparable amount of noise is added at the end of the transmission line just before detection (+ signs; see
text for more details). Black ×’s are pdfs from unbiased Monte Carlo simulations of the full nonlinear system,
as in Figure 7. The results show that neglecting the interaction between signal and noise during propagation
can significantly underestimate the bit-error ratio.

full simulations. The result is shown by the + signs in Figure 9; the main simulation results
from Figure 7 are also included for comparison purposes. For this comparison simulation,
109 unbiased Monte Carlo trials were used (more trials are possible in this case; since only one
nonlinear propagation is necessary, it is a much simpler simulation). Although this number of
trials is insufficient to actually estimate a bit-error ratio, it is clear that the pdfs conditioned
on either a “1” or a “0” being sent will cross at a probability that falls significantly below
the value seen in the full importance-sampled simulations. This demonstrates that estimates
which neglect the interaction between signal and noise during propagation (including those
based upon assuming Gaussian statistics for the received “1”s and “0”s [34]) can significantly
underestimate the actual bit-error ratio.

7. Discussion. We have presented a method for computing errors in soliton-based light-
wave systems. The method uses soliton perturbation theory and calculus of variations to
find approximate versions of the most probable paths through sample space leading to errors,
followed by importance-sampled Monte Carlo simulations of the full set of equations around
these approximate paths to compute the actual error rates. A specific example differential
phase-shift-keyed lightwave system was simulated, and the system’s bit-error ratio was com-
puted. The method predicts the most probable ways in which large pulse distortions occur,
thus providing an explanation as to the specific manner in which errors occur.

One of the main difficulties associated with simulating such systems is the large dimen-
sionality of the state space. Recall that 512 Fourier modes were used for the simulations of
the example system in section 6, meaning that 1,024 independent Gaussian random variables
are added at each amplifier. With a total distance of 4,000 km, and an amplifier spacing of
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80 km, this gives 50 amplifiers, and thus a total of 51,200 Gaussian random variables. This is
just an example, of course, and it is possible that even more variables might be used in other
cases. Ultimately we are searching for regions in a very large-dimensional state space that
produce large deviations in a single output quantity, the voltage, and furthermore, we want
to determine which of these regions are the most probable.

The large dimensionality of the state space associated with such problems can make finding
the regions most likely to contribute to errors difficult. The only sure way of doing so, of course,
is by an exhaustive search of state space, something that is clearly beyond the capability of
existing computational methods and hardware. In the present case, we have employed low-
dimensional approximations of the system dynamics and analytical methods to guide the
simulations to the locations of such regions. In this we regard the mathematical structure
imposed by the equations describing the system as constraints which limit the regions of state
space in which errors may occur.

By contrast, when iterative methods such as the multicanonical Monte Carlo method
are used, a performance measure is monitored (such as the voltage at the center of the bit
slot), and each set of simulations is analyzed in order to determine directions in state space
for further exploration. To do this no analytical approximations are needed, of course, and
so in one sense such iterative methods are more straightforward. For such methods to work,
however, the regions of state space that produce one set of voltage values should be contiguous
with regions that produce values with slightly smaller probabilities, something that is difficult
to verify a priori in any specific application. If this is not the case, of course, then iterative
sampling may fail to locate these newer values. In the present case, although it requires
a nontrivial effort to construct the analytical approximation used to guide the biasing, the
insight provided by the analytic approach gives one much more confidence that nothing has
been missed when one preforms the Monte Carlo sampling.

A detailed comparison between the two approaches is beyond the scope of the present
work, of course. We hope to make such a comparison in the future, however, and thus further
clarify the pros and cons associated with the application of each type of method of simulating
lightwave systems.
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Abstract. The renormalization group (RG) method for differential equations is one of the perturbation methods
for obtaining solutions which approximate exact solutions for a long time interval. This article
shows that, for a differential equation associated with a given vector field on a manifold, a family of
approximate solutions obtained by the RG method defines a vector field which is close to the original
vector field in the C1 topology under appropriate assumptions. Furthermore, some topological
properties of the original vector field, such as the existence of a normally hyperbolic invariant
manifold and its stability, are shown to be inherited from those of the RG equation. This fact is
applied to the bifurcation theory.
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1. Introduction. The renormalization group (RG) method for differential equations is one
of the perturbation methods for obtaining solutions which approximate exact solutions for a
long time interval. In their papers [1, 2], Chen, Goldenfeld, and Oono established the RG
method for ODEs of the form

(1.1) ẋ =
dx

dt
= f(t, x) + εg(t, x), x ∈ Rn,

where ε > 0 is a small parameter. For this equation, the method for deriving approximate
solutions of the form

(1.2) x(t) = x0(t) + εx1(t) + ε2x2(t) + · · ·

is called the naive expansion or the regular perturbation method, where xi(t)’s are governed by
inhomogeneous linear ODEs obtained by putting (1.2) into (1.1) and equating the coefficients
of εi of both sides of (1.1). It is well known that approximate solutions constructed by the
naive expansion are valid only in a time interval of O(1) in general, since secular terms diverge
as t → ∞. Many techniques for obtaining approximate solutions which are valid in a long
time interval have been developed until now; these are collectively called singular perturbation
methods.

The RG method proposed by Chen, Goldenfeld, and Oono is one of the singular pertur-
bation methods that look like the variation-of-constant method, in which the secular terms
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included in x1(t), x2(t), . . . of (1.2) are renormalized into the integral constant of x0(t). The
ODE to be satisfied by the renormalized integral constant is called the RG equation. Chen,
Goldenfeld, and Oono showed that the RG method unifies the conventional singular pertur-
bation methods, such as the multiscale method, the boundary layer technique, WKB analysis,
and the reductive perturbation method, by giving explicit examples. Though the multiscale
method requires occasionally fractional power laws or logarithmic functions of ε in the expan-
sion of x(t), the RG method needs only a power-series expansion of x(t) in ε, and it starts
with the naive expansion of x(t) to reach the same result the multiscale method does.

Kunihiro [3, 4] interpreted the RG method as a theory of envelopes for approximate
solutions constructed by the naive expansion. His insight revealed why the RG method works
well. Nozaki and Oono [5] and Goto, Masutomi, and Nozaki [6] proposed a proto-RG equation
or translational Lie group method to renormalize secular terms up to arbitrary order and to
obtain higher order approximate solutions. Ei, Fujii, and Kunihiro [7] apply the RG method
to obtain approximate center manifolds and slow manifolds. Ziane [8] and DeVille et al. [9]
proved that an orbit constructed on the RG method approximates an exact solution for a long
time interval. Further, DeVille et al. [9] showed that if the unperturbed part of a given ODE
is linear and diagonalizable, the RG equation for the ODE is equivalent to the normal form
of the vector field.

Despite the active interest in the RG method, little attention has been paid to date to the
question of whether a family of approximate solutions to exact solutions of the original ODE
(vector field), which is obtained by varying initial values, forms a well-defined vector field or
not. Put another way, a question to be asked is whether approximate solutions intersect with
one other or not. Further, the RG method has been applied to differential equations only
on the Euclidean space but has not yet been extended to a method applicable to differential
equations on manifolds.

In the present paper, it is shown that for a given vector field of the form f(t, x) + εg(t, x)
on an arbitrary manifold, approximate solutions obtained by the RG method define a vector
field which is close to the original vector field in the C1 topology on appropriate assump-
tions of boundedness for the flow of f(t, x) and for other functions. This implies that the
approximate vector field works well in investigating properties of the original vector field that
are persistent under C1 perturbation. In particular, if the approximate vector field has a
normally hyperbolic invariant manifold, then the original vector field is expected also to have
an invariant manifold because the Fenichel theory ensures that normally hyperbolic invariant
manifolds are persistent under C1 perturbation. In fact, it is shown that the existence of an
invariant manifold and its stability are inherited from those of the RG equation since the flow
of the RG equation is proved to be conjugate to that of the approximate vector field. In view
of this, it is desirable that the RG equation be easier to solve than the original equation. In
fact, it will be proved that the RG equation has larger symmetry than the original equation.
This method will be applied in the bifurcation theory to show that a periodic orbit emerges
far away from a fixed point, which is an example of the global bifurcation other than the
ordinary Hopf bifurcation.

In particular, the RG method is applied to a time-dependent linear equation of the form

(1.3) ẋ = F (t)x + εG(t)x, x ∈ Rn,
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where F (t) and G(t) are n × n matrix functions. On appropriate assumptions, the stability
of the trivial solution x = 0 of (1.3) is shown to coincide with that of the RG equation for
(1.3), which is a time-independent linear equation. By using this result, synchronous solution
of coupled oscillators is shown to be stable.

This paper is organized as follows: Section 2 presents basic facts and definitions in dy-
namical systems. Section 3 contains a simple example of the RG method. In section 4, a
main theorem on approximate vector fields is proved. Section 5 gives a few properties of the
RG equation in term of symmetries. In section 6, an invariant manifold of a given equation is
shown to be inherited from its RG equation. In section 7, the RG method is applied to time-
dependent linear equations (1.3). In Appendix A, we discuss the higher order RG equation
to prove Theorem 6.1.

2. Notation. Let f be a time-independent Cr vector field on a Cr manifold M and
ϕ : R×M → M its flow. We denote by ϕt(x0) ≡ x(t), t ∈ R, a solution to the ODE ẋ = f(x)
through x0 ∈ M , which satisfies ϕt ◦ ϕs = ϕt+s, ϕ0 = idM , where idM denotes the identity
map of M . For a fixed t ∈ R, ϕt : M → M defines a diffeomorphism of M . We assume ϕt is
defined for all t ∈ R.

For a time-dependent vector field, let x(t, τ, ξ) denote a solution to an ODE ẋ(t) = f(t, x)
through ξ at t = τ , which defines a flow ϕ : R×R×M → M by ϕt,τ (ξ) = x(t, τ, ξ). For fixed
t, τ ∈ R, ϕt,τ : M → M is a diffeomorphism of M satisfying

(2.1) ϕt,t′ ◦ ϕt′,τ = ϕt,τ , ϕt,t = idM .

Conversely, a family of diffeomorphisms ϕt,τ of M , which are C1 with respect to t and
τ , satisfying the above equality for any t, τ ∈ R defines a time-dependent vector field on M
through

(2.2) f(t, x) =
d

dτ

∣∣∣
τ=t

ϕτ,t(x).

3. A brief review of the renormalization group method. Before describing a general the-
ory of the RG method in the next section, we review the RG method for obtaining approximate
solutions of an ODE with a simple example.

Let us consider an ODE

(3.1) ẍ + x + εx3 = 0, x ∈ R, |ε| << 1.

Assume that the ODE admits a solution of the form x(t) = x0(t) + εx1(t) + O(ε2). Then the
substitution provides

ẍ0 + εẍ1 + x0 + εx1 + ε(x0 + εx1)
3 + O(ε2) = 0.

Expanding this into a power series in ε and equating the coefficients of ε0, ε1 to zero, respec-
tively, we get

ẍ0 + x0 = 0,(3.2)

ẍ1 + x1 = −x3
0.(3.3)
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We denote a general solution of the former whose initial time is t = 0 by

(3.4) x0(t, 0, A) = Aeit + Ae−it, A ∈ C.

Then (3.3) and (3.4) are put together to give

ẍ1 + x1 = −(A3e3it + 3|A|2Aeit + 3|A|2Ae−it + A
3
e−3it).

A special solution of this equation, whose initial time is t = τ , is written as

(3.5) x1(t, τ ;A) =
A3

8
e3it +

3i

2
|A|2A(t− τ)eit + c.c.,

where c.c. is the complex conjugate of the first two terms of the right-hand side. Note that a
secular term arises which diverges to infinity as t → ∞. The reason for taking the initial time
t = τ is that we want to construct a family of curves parameterized by τ since approximate
solutions obtained by the RG method are given as envelopes of the family (see Kunihiro [3, 4]).

Now let us define x̂ as

x̂(t, τ ;A) = x0(t, 0, A) + εx1(t, τ ;A).

Then x̂ is an approximate solution to (3.1) on short time intervals. Indeed, x̂ satisfies the
equation

(3.6) ¨̂x + x̂ + εx̂3 = 3ε2(Aeit + Ae−it)2
(
A3

8
e3it +

3i

2
|A|2A(t− τ)eit + c.c.

)
+ O(ε3),

which implies that if A is bounded and t is sufficiently close to τ , then x̂ approximates to
an exact solution of (3.1) well. This procedure for obtaining a local approximate solution is
called naive expansion.

The RG method employs two additional steps to obtain solutions approximating to exact
solutions on a long time intervals. At first, we regard the constant A as a differentiable
function of τ and differentiate x̂ with respect to τ at t:

dx̂

dτ

∣∣∣
τ=t

(t, τ, A(τ)) =
∂x0

∂A

dA

dτ

∣∣∣
τ=t

+ ε
∂x1

∂τ

∣∣∣
τ=t

+ ε
∂x1

∂A

dA

dτ

∣∣∣
τ=t

= A′eit + A
′
e−it + ε

(
−3i

2
|A|2Aeit +

3A2

8
A′e3it + c.c.

)
.

We impose the condition on A(t) that dx/dτ |τ=t = 0, which is called the RG condition. Then
we obtain the following ODE for A(t):

dA

dt
= ε

3i

2
|A|2A + O(ε2).

Truncating the higher order term O(ε2), we obtain the RG equation

(3.7)
dA

dt
= ε

3i

2
|A|2A,
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which is solved by

(3.8) A(t) := A(t, a, θ) =
1

2
a exp i

(
3ε

8
a2t + θ

)
,

where a, θ are arbitrary constants. With this A(t), we define X(t, a, θ) by

(3.9) X(t, a, θ) := x̂(t, t, A(t, a, θ)).

Then this X(t) gives a solution which approximates an exact solution of (3.1) for a long time
interval. The condition dx/dτ |τ=t = 0 means that the curve X(t, a, θ) = x̂(t, t;A(t, a, θ)) is
an envelope for the family of curves {x̂(t, τ ;A(τ, a, θ))}τ∈R (see Kunihiro [3, 4]). Our general
definition of the RG equation is shown in the next section.

4. Main theorem. In this section, under appropriate assumptions, we prove that a family
of orbits constructed by the RG method defines a vector field which approximates the original
vector field in the C1 topology. Though we show Theorem 4.4 for vector fields on Euclidean
space, it can be easily extended to vector fields on an arbitrary manifold. See Remark 4.5.

Let f(t, x) and g(t, x) be C4 and C3 time-dependent vector fields on Rn, respectively, and
consider an ODE

(4.1) ẋ(t) = f(t, x) + εg(t, x)

and its unperturbed system

(4.2) ẋ0(t) = f(t, x0).

We denote a general solution to the latter by

(4.3) x0(t) := x0(t, 0, A) = ϕ0
t,0(A),

whose initial value is x0(0) = A ∈ Rn at t = 0, and where ϕ0 is its flow. With this x0, we
further consider an ODE

(4.4) ẋ1(t) =
∂f

∂x
(t, x0)x1 + g(t, x0).

A general solution to this equation is written as

(4.5) x1 = (Dϕ0
t,0)A ◦ (Dϕ0

τ,0)
−1
A h(τ, A) + (Dϕ0

t,0)A

∫ t

τ
(Dϕs,0)

−1
A g(s, ϕ0

s,0(A))ds,

where τ is an initial time, h(τ, A) is an initial value, and (Dϕ0
t,0)A is the derivative of ϕ0

t,0 at
A. In what follows, we denote by R≥T the set of the real numbers which are larger than or
equal to T ∈ R: R≥T = {t ∈ R | t ≥ T}. Set R≥T = R if T = −∞.

Definition 4.1. A function p(t) is said to be Krylov–Bogolyubov–Mitropolskii (KBM) on
R≥T if the number

(4.6) lim
t→∞

1

t− t0

∫ t

t0

p(s)ds
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converges for all t0 ≥ T .
The notation of KBM vector fields was introduced in [14] and used in DeVille et al. [9] to

define the RG equation. Note that periodic functions and almost periodic functions are KBM
on R (see Fink [13]).

The next definition is proposed by DeVille et al. [9].
Definition 4.2. Suppose that (Dϕ0

t,0)
−1
A g(t, ϕ0

t,0(A)) is KBM on R≥T for each A ∈ Rn.

Then a C3 function R : Rn → Rn defined by

(4.7) R(A) = lim
t→∞

1

t− T

∫ t

T
(Dϕ0

s,0)
−1
A g(s, ϕ0

s,0(A))ds

is called the resonance or secular part for the solution x1 defined by (4.5).
By using (4.7), equation (4.5) is rewritten as

x1 = (Dϕ0
t,0)A ◦ (Dϕ0

τ,0)
−1
A h(τ, A) + (Dϕ0

t,0)A

∫ t

τ

(
(Dϕ0

s,0)
−1
A g(s, ϕ0

s,0(A)) −R(A)
)
ds

+ (Dϕ0
t,0)AR(A)(t− τ).

Define the initial value h(τ, A) to be

(4.8) h(τ, A) := (Dϕ0
τ,0)A

∫ τ (
(Dϕ0

s,0)
−1
A g(s, ϕ0

s,0(A)) −R(A)
)
ds,

where
∫ τ

is the indefinite integral, whose integral constant is fixed arbitrarily. Then, x1 is
expressed as

x1 := x1(t, τ ;A) = (Dϕ0
t,0)A

∫ t (
(Dϕ0

s,0)
−1
A g(s, ϕ0

s,0(A)) −R(A)
)
ds + (Dϕ0

t,0)AR(A)(t− τ)

= h(t, A) + (Dϕ0
t,0)AR(A)(t− τ).(4.9)

In perturbation theory, the second term of the right-hand side is called the secular term. The
reason for defining the initial value h(τ, A) as (4.8) is that we want to divide x1 into two
terms: one is the secular term which diverges as t → ∞, and the other is the bounded term
h(t, A) (see also the norm conditions (N) below). With this x1(t, τ ;A), we associate a curve
defined by

(4.10) x̂(t) := x̂(t, τ ;A) = x0(t, 0, A) + εx1(t, τ ;A),

which provides a locally approximate solution of (4.1). Now we define the RG equation.
Definition 4.3. Suppose that (Dϕ0

t,0)
−1
A g(t, ϕ0

t,0(A)) is KBM on R≥T for each A ∈ Rn.
Then, the equation defined by

(4.11)
dA

dt
= εR(A), A ∈ Rn,

is called the RG equation for f +εg, and the vector field εR(A) on Rn is called the RG vector
field for f + εg. We denote by ϕRG

t the flow generated by the RG vector field.



RENORMALIZATION GROUP METHOD 901

In the literature, the RG equation is defined so that its solution A := A(t) may satisfy
dx̂/dτ |τ=t(t, τ ;A(τ)) = 0. According to our definition of the RG vector field, dx̂/dτ |τ=t is
calculated as

(4.12)
dx̂

dτ

∣∣∣
τ=t

(t, τ ;A(τ)) = ε2∂x1

∂A
(t, t;A(t))R(A(t)).

The higher order term O(ε2) is truncated; (4.12) then implies that solutions to (4.11) satisfy
dx̂/dτ |τ=t(t, τ ;A(τ)) = 0.

To state our main theorem, we assume the following norm conditions (N) for the functions
f(t, x), g(t, x), x0(t, 0, A), and h(t, A) = x1(t, t;A) on R≥T × Rn. These conditions will be
used to prove that the vector field Fε defined in (4.16) is sufficiently close to the original vector
field f + εg in the C1 topology (see (4.18), (4.19)).

Norm conditions (N). Let K ⊂ Rn be an arbitrary compact subset. We assume that there
exists T such that (Dϕ0

t,0)
−1
A g(t, ϕ0

t,0(A)) is KBM on R≥T for each A ∈ K and the following
functions are bounded uniformly on R≥T ×K:

(N1) h(t, A),
(N2) ∂2f/∂x2, ∂f/∂x, ∂g/∂x, x0(−t, 0, A), (∂x0/∂A)−1, ∂2x0/∂A

2, ∂h/∂A, ∂h2/∂A2,
(N3) f , ∂2f/∂x∂t, ∂3f/∂x3, ∂3f/∂x2∂t, g, ∂2g/∂x2, ∂2g/∂x∂t, ∂3x0/∂A

3, ∂3h/∂A3.

In section 6 and Appendix A, we consider a system of the form

(4.13) ẋ = Fx + εg(t, x), x ∈ Rn,

where F is a diagonalizable n×n constant matrix, all of whose eigenvalues lie on the imaginary
axis. In this case, the following are sufficient conditions for this system to satisfy the norm
conditions (N1) to (N3):

(i) g(t, x) is polynomial in x and periodic in t.
(ii) g(t, x) is polynomial in x and almost periodic in t, the set of whose Fourier exponents

has no accumulation points.

See Appendix A for the proof. The case where F has eigenvalues on the left half plane will be
treated in a forthcoming paper. In Example 4.7, we show another example satisfying norm
conditions (N) whose unperturbed part is nonlinear.

In what follows, we fix an open subset U ⊂ Rn such that U is compact. Define αt : U → Rn

to be

(4.14) αt(A) = x0(t, 0, A) + εh(t, A)

for all t ∈ R≥T . The set U is defined so that αt is a diffeomorphism on U (see the proof of
Theorem 4.4(i) below). Note that the smaller |ε| is, the larger set U we can take.

Our main theorem is stated as follows.

Theorem 4.4. Let f , g, x0(t, 0, A), x1(t, τ ;A) be vector fields and solutions to differential
equations defined in (4.1) to (4.4) and (4.9), respectively. Let εR(A) be the RG vector field
for f + εg, and denote its integral curves, whose initial time is t0 and initial value is ξ ∈ U ,
by A(t) := A(t, t0, ξ) = ϕRG

t−t0(ξ). Then, there exist ε0 > 0 such that the following hold for all
|ε| < ε0:
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(i) Suppose that the norm condition (N1) is satisfied. Then,

(4.15) Φt,t0 := αt ◦ ϕRG
t−t0 ◦ α

−1
t0

: αt0(U) → Rn

defines a flow on Uε := {(t, x) | t ∈ R≥T , x ∈ αt(U)} associated with a time-dependent vector
field

(4.16) Fε(t, x) :=
d

da

∣∣∣
a=t

Φa,t(x).

The integral curves of Fε are put in the form

(4.17) X(t, t0; ξ) := x̂(t, t;A(t, t0, ξ)),

where x̂ is defined by (4.10).

(ii) Suppose that the norm conditions (N1)–(N2) are satisfied. Then, there exists a non-
negative constant L1 such that the vector field Fε defined by (4.16) satisfies an inequality

(4.18) sup
Uε

||f + εg − Fε|| < ε2L1.

(iii) Suppose that the norm conditions (N1)–(N3) are satisfied. Then, there exists a non-
negative constant L2 such that the vector field Fε satisfies an inequality

(4.19) sup
Uε

||Dt,xf + εDt,xg −Dt,xFε|| < ε2L2,

where Dt,xf = (∂f/∂t, ∂f/∂x) and ||Dt,xf || = ||∂f/∂x|| + ||∂f/∂t||. In particular, Fε is
sufficiently close to f + εg in the C1 topology if |ε| is sufficiently small.

Proof of (i). Since h(t, x) is bounded on R≥T × U by the norm condition (N1), εh(t, x)
can be sufficiently close to a null function as a C3 function of x for sufficiently small ε. Since
the flow ϕ0

t,0 is a C4 diffeomorphism and since the set of diffeomorphisms is open in the

space of C1 maps in the C1 topology, it follows that for a sufficiently small ε, the map αt

given by (4.14) is a diffeomorphism from U into Rn for each t ∈ R≥T . Therefore, the map
Φt,t0 : αt0(U) → Rn defined by (4.15) is a diffeomorphism from αt0(U) into Rn as well and
satisfies Φt,t′ ◦ Φt′,t0 = Φt,t0 , Φt,t = idαt(U). This shows that Φt,t0 is a flow associated with a
vector field Fε defined by (4.16). Then, it turns out that

Φt,t0(αt0(ξ)) = αt ◦ ϕRG
t−t0(ξ) = αt(A(t, t0, ξ)) = x̂(t, t;A(t, t0, ξ)) = X(t, t0; ξ),

which implies that X(t, t0; ξ) gives an integral curve of Fε, namely,

(4.20)
dX

dt
(t, t0; ξ) = Fε(t,X(t, t0; ξ)).

This ends the proof.
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Proof of (ii), (iii). Denote h(t, A) as ht(A). The vector field Fε(t, x) is calculated as

Fε(t, x) =
d

da

∣∣∣
a=t

(
(ϕ0

a,0 + εha) ◦ ϕRG
a−t ◦ α−1

t (x)
)

=
d

da

∣∣∣
a=t

(ϕ0
a,0 + εha) ◦ α−1

t (x) + (Dϕ0
t,0 + εDht)α−1

t (x)

d

da

∣∣∣
a=t

ϕRG
a−t ◦ α−1

t (x)

= f(t, x0(t, 0, α
−1
t (x))) + ε

∂f

∂x
(t, x0(t, 0, α

−1
t (x)))x1(t, t;α

−1
t (x)) + εg(t, x0(t, 0, α

−1
t (x)))

+ ε
d

da

∣∣∣
a=t

x1(t, a, α
−1
t (x)) + ε(Dϕ0

t,0 + εDht)α−1
t (x)R(α−1

t (x))

= f(t, x0(t, 0, α
−1
t (x))) + εg(t, x0(t, 0, α

−1
t (x)))

+ ε
∂f

∂x
(t, x0(t, 0, α

−1
t (x)))ht(α

−1
t (x)) + ε2(Dht)α−1

t (x)R(α−1
t (x)).

On account of αt(x) = x0(t, 0, x) + εht(x), the above equation is expanded as

Fε(t, x) = f(t, x) + ε
df

dε

∣∣∣
ε=0

(t, x0(t, 0, α
−1
t (x))) +

ε2

2

d2f

dε2

∣∣∣
ε=θ1ε

(t, x0(t, 0, α
−1
t (x))) + εg(t, x)

+ ε2dg

dε

∣∣∣
ε=θ2ε

(t, x0(t, 0, α
−1
t (x))) + ε

∂f

∂x
(t, x)ht((ϕ

0
t,0)

−1(x))

+ ε2∂f

∂x
(t, x)

dht
dε

∣∣∣
ε=θ3ε

(α−1
t (x))

+ ε2 d

dε

∣∣∣
ε=θ4ε

(
∂f

∂x
(t, x0(t, 0, α

−1
t (x)))

)
ht(α

−1
t (x)) + ε2(Dht)α−1

t (x)R(α−1
t (x)),

where 0 < θ1, θ2, θ3, θ4 < 1 are constants in the Taylor formula. The second term of the
right-hand side of the above is calculated as

df

dε

∣∣∣
ε=0

(t, x0(t, 0, α
−1
t (x))) =

∂f

∂x
(t, x)

∂x0

∂A
(t, 0, (ϕ0

t,0)
−1(x))

d

dε

∣∣∣
ε=0

α−1
t (x)

= −∂f

∂x
(t, x)ht((ϕ

0
t,0)

−1(x)).

Therefore, we obtain

Fε(t, x) − f(t, x) − εg(t, x) =
ε2

2

d2f

dε2

∣∣∣
ε=θ1ε

(t, x0(t, 0, α
−1
t (x))) + ε2dg

dε

∣∣∣
ε=θ2ε

(t, x0(t, 0, α
−1
t (x)))

+ ε2∂f

∂x
(t, x)

dht
dε

∣∣∣
ε=θ3ε

(α−1
t (x))

+ ε2 d

dε

∣∣∣
ε=θ4ε

(
∂f

∂x
(t, x0(t, 0, α

−1
t (x)))

)
ht(α

−1
t (x))

+ ε2(Dht)α−1
t (x)R(α−1

t (x)).(4.21)

We have to estimate the norm of the right-hand side of the above equation. At first, df/dε is
given by
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df

dε
(t, x0(t, 0, α

−1
t (x)))

= −∂f

∂x
(t, x0(t, 0, α

−1
t (x)))

∂x0

∂A
(t, 0, α−1

t (x))

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

ht(α
−1
t (x)).(4.22)

Note that equations

α−1
t (x) = (ϕ0

t,0 + εht)
−1(x) = (id + ε(ϕ0

t,0)
−1 ◦ ht)−1 ◦ (ϕ0

t,0)
−1(x),(4.23)

x0(t, 0, α
−1
t (x)) = ϕ0

t,0 ◦ α−1
t (x) = (id− εht ◦ α−1

t )(x),(4.24)

∂x0

∂A
(t, 0, α−1

t (x))

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

= id− ε

(
∂ht
∂A

)
α−1
t (x)

∞∑
k=0

(
−ε

(
∂x0

∂A

)−1

α−1
t (x)

◦
(
∂ht
∂A

)
α−1
t (x)

)k

◦
(
∂x0

∂A

)−1

α−1
t (x)

(4.25)

hold and the left-hand sides of the above three equations are bounded by the norm conditions
(N1)–(N2). Therefore, the right-hand side of (4.22) is bounded uniformly in R≥T . To show
the boundedness of the first term of the right-hand side of (4.21), it is sufficient to show that
the derivative of each factor of the right-hand side of (4.22) is bounded. They are calculated
as

d

dε

∂f

∂x
(t, x0(t, 0, α

−1
t (x)))

= −∂2f

∂x2
(t, x0(t, 0, α

−1
t (x)))

∂x0

∂A
(t, 0, α−1

t (x))

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

ht(α
−1
t (x)),

(4.26)

d

dε

∂x0

∂A
(t, 0, α−1

t (x))

= −∂2x0

∂A2
(t, 0, α−1

t (x))

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

ht(α
−1
t (x)),

(4.27)

d

dε

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

= −
(

∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1 d

dε

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

,

(4.28)

d

dε

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)

=

(
∂ht
∂A

)
α−1
t (x)

−
(

∂2

∂A2
(ϕ0

t,0 + εht)α−1
t (x)

)(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

ht(α
−1
t (x)),

(4.29)

d

dε
ht(α

−1
t (x))

= −
(
∂ht
∂A

)
α−1
t (x)

(
∂

∂A
(ϕ0

t,0 + εht)α−1
t (x)

)−1

ht(α
−1
t (x)).

(4.30)
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By the norm conditions and (4.23), (4.24), and (4.25), these are bounded uniformly in R≥T .
Therefore, the first term of the right-hand side of (4.21) is bounded.

The boundedness of the second term of the right-hand side of (4.21) is verified from
(4.22) by using g instead of f , and the boundedness of the other terms of the right-hand
side of (4.21) is verified from (4.26), (4.30), and the norm conditions (N1)–(N2). This
proves Theorem 4.4(ii). Theorem 4.4(iii) is verified by differentiating both sides of (4.21)
with respect to x, t and estimating the norm as above. This calculation is elementary and is
omitted here.

Remark 4.5. Though we have treated the vector field Fε on an open set of Rn, the vector
field Fε may be defined in the case of an arbitrary manifold M . Let {Ui}i∈Λ be an open
covering of M such that each U i is compact. We identify Ui with an open subset on Rn.
Suppose that Ui ∩ Uj 
= ∅ and let ψij : Ui ∩ Uj → Ui ∩ Uj be a coordinate transformation
function from Ui to Uj . Let εRi(A) and εRj(A) be the RG vector fields constructed on Ui and

Uj , respectively, and let ϕ
RG(i)
t , ϕ

RG(j)
t be respective flows. By (4.7), it is easy to verify that

Ri(A) = (Dψij)
−1Rj(ψij(A)) and ϕ

RG(i)
t = ψ−1

ij ◦ ϕ
RG(j)
t ◦ ψij . Let F i

ε , F
j
ε be approximate

vector fields constructed on Ui, Uj defined by (4.16), respectively. Then F i
ε is transformed by

the coordinate transformation as follows:

DψijF
i
ε(t, x) = Dψij

d

da

∣∣∣
a=t

Φa,t(x)

=
d

da

∣∣∣
a=t

ψij ◦ αt ◦ ϕRG(i)
t−t0

◦ α−1
t0

(x)

=
d

da

∣∣∣
a=t

ψij ◦ (x0 + εh) ◦ ψ−1
ij ◦ (ψij ◦ ϕRG(i)

t−t0
◦ ψ−1

ij )

◦ (ψij ◦ (x0 + εh) ◦ ψ−1
ij )−1(ψij(x)),

where ψij ◦ x0(t, 0, ψ
−1
ij (x)) and ψij ◦ h(t, ψ−1

ij (x)) = ψij ◦ x1(t, t, ψ
−1
ij (x)) are coordinate rep-

resentations on Uj of x0(t, 0, x) and of x1(t, t, x), respectively, which are represented in the
coordinates on Ui. This means that

(4.31) DψijF
i
ε(t, x) = F j

ε (t, ψij(x)), x ∈ Ui.

Let {ρi}i∈Λ be a partition of unity subordinate to the cover {Ui}i∈Λ and define Fε(t, x) :=∑
i∈Λ ρi(x)F i

ε(t, x); then Fε is a well-defined vector field on M which approximates to f + εg.
Remark 4.6. Now that we have the approximate vector field Fε(t, x) = f(t, x) + εg(t, x) +

O(ε2), the Gronwall inequality immediately proves the error estimate for approximate solu-
tions.

Let x(t, t0) be a solution of (4.1) satisfying the norm conditions (N) whose initial time is
t0. Let X(t, t0; ξ) be a curve defined by (4.17). Suppose that x(t0, t0) = X(t0, t0; ξ) ∈ αt(U).
Then, there exist positive constants ε0, T, C such that the inequality

(4.32) ||x(t, t0) −X(t, t0; ξ)|| < Cε, 0 < t < T/ε,

holds for 0 < ε < ε0.
This fact was essentially proved in Ziane [8] and DeVille et al. [9]. Note that DeVille

et al. also treated the case that the norm conditions (N) are not satisfied—for example,
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g(t, x) = x/
√
t. The above fact is also followed by putting m = 1 and replacing eFt by

(Dϕ0
t,0)A in the proof of Theorem A.8, in which the error estimate for a higher order case by

using the higher order RG equation is proved.
In the next example, the RG method is applied to a vector field whose unperturbed part

is nonlinear. Application to vector fields with linear unperturbed parts will be treated in
section 6.

Example 4.7. Consider a system on {(x, y) | x > 0, y ∈ R} ⊂ R2,

(4.33)

{
ẋ = xy + εxy2,
ẏ = − log x + εy,

where ε ∈ R is a small constant. Note that unperturbed part is nonlinear. In order to
obtain approximate solutions to (4.33), we apply the RG method. The unperturbed system
of (x0, y0) is written as ẋ0 = x0y0, ẏ0 = − log x0. Its general solution, whose initial value is
(x0(0), y0(0)) = (A,B), is given by

(4.34) x0(t) = eB sin t+(logA) cos t, y0(t) = B cos t− (logA) sin t.

The RG equation defined by (4.11) is calculated as

(4.35)
d

dt

(
A
B

)
=

ε

2

(
A logA

B

)
,

which is solved as

(4.36) A(t) = exp
(
peεt/2

)
, B(t) = qeεt/2,

where p, q ∈ R are arbitrary constants. On the other hand, h(t, A,B) defined by (4.8) is given
by h(t, A,B) = (Dϕ0

t,0)(A,B)M(t), where

(Dϕ0
t,0)(A,B) =

(
cos t · eB sin t+(logA) cos t/A sin t · eB sin t+(logA) cos t

− sin t/A cos t

)
,(4.37)

M(t) =

⎛
⎜⎜⎝

A(logA)2 −AB2

3
sin3 t +

2AB logA

3
cos3 t− AB

2
sin2 t + AB2 sin t− A logA

4
sin2 t

(logA)2 −B2

3
cos3 t− 2B logA

3
sin3 t− logA

2
sin2 t− (logA)2 cos t +

B

4
sin 2t

⎞
⎟⎟⎠ .

(4.38)

It is easy to verify that the norm conditions (N) are satisfied. According to (4.17) with the
present A(t), B(t), an approximate solution to (4.33) is given by

(4.39)

(
X(t)
Y (t)

)
=

(
eB(t) sin t−(logA(t)) cos t

B(t) cos t− (logA(t)) cos t

)
+ εh(t, A(t), B(t)).

Note that the RG vector field ε
2(x log x, y) commutes with the vector field (xy,− log x), which

is the unperturbed part of (4.33) with respect to the Lie bracket product. This fact is proved
generally in the next section.
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5. RG vector fields with symmetry. In this section, we consider an autonomous equation
on a manifold M :

(5.1) ẋ = f(x) + εg(x), x ∈ M.

For this equation, we suppose that (Dϕ0
s)

−1
A g(ϕ0

s(A)) is KBM on R≥T and the RG equation
for f + εg

(5.2)
dA

dt
= εR(A) = ε lim

t→∞
1

t− T

∫ t

T
(Dϕ0

s)
−1
A g(ϕ0

s(A))ds

is defined, where ϕ0 is a flow of f(x) satisfying ϕ0
t+t′ = ϕ0

t ◦ ϕ0
t′ .

Assume that a Lie group G acts on the manifold M . If a vector field f on M satisfies

(5.3) (Da)xf(x) = f(ax) ∀a ∈ G, ∀x ∈ M,

then f is called invariant under the action of G, where (Da)x is the derivative at x of the
map determined by a : M → M at x.

Proposition 5.1. If vector fields f and g are invariant under the action of a Lie group G,
then so is the RG vector field for f + εg.

Proof. For all a ∈ G, R(aA) is calculated as

R(aA) = lim
t→∞

1

t− T

∫ t

T
(Dϕ0

s)
−1
aAg(ϕ

0
s(aA))ds

= lim
t→∞

1

t− T

∫ t

T
(Da)A(Dϕ0

s)
−1
A (Da)−1

A g(aϕ0
s(A))ds

= (Da)A lim
t→∞

1

t− T

∫ t

T
(Dϕ0

s)
−1
A (Da)−1

A (Da)Ag(ϕ
0
s(A))ds = (Da)AR(A).

This proves the proposition.
The next proposition was proved by Ziane [8] for the case that f(t, x) is a linear vector

field.
Proposition 5.2. The RG vector field εR(A) for f +εg commutes with f with respect to the

Lie bracket product. Equivalently, R(A) satisfies

(5.4) (Dϕ0
t )AR(A) = R(ϕ0

t (A))

for all t ∈ R and all A ∈ M .
Proof. For all s′ ∈ R and for all A ∈ M , R(ϕ0

s′(A)) is calculated as

R(ϕ0
s′(A)) = lim

t→∞
1

t− T

∫ t

T
(Dϕ0

s)
−1
ϕ0
s′ (A)

g(ϕ0
s ◦ ϕ0

s′(A))ds

= lim
t→∞

1

t− T

∫ t

T
(Dϕ0

s′)A ◦ (Dϕ0
s)

−1
A ◦ (Dϕ0

s′)
−1
A g(ϕ0

s+s′(A))ds

= (Dϕ0
s′)A lim

t→∞
1

t− T

∫ t

T
(Dϕ0

s+s′)
−1
A g(ϕ0

s+s′(A))ds.
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Putting s + s′ = s′′ provides

R(ϕ0
s′(A)) =(Dϕ0

s′)A lim
t→∞

1

t− T

∫ t+s′

T+s′
(Dϕ0

s′′)
−1
A g(ϕ0

s′′(A))ds′′

= (Dϕ0
s′)AR(A) + (Dϕ0

s′)A lim
t→∞

1

t− T

∫ t+s′

t
(Dϕ0

s′′)
−1
A g(ϕ0

s′′(A))ds′′

− (Dϕ0
s′)A lim

t→∞
1

t− T

∫ T+s′

T
(Dϕ0

s′′)
−1
A g(ϕ0

s′′(A))ds′′

= (Dϕ0
s′)AR(A).

This proves the proposition.

Propositions 5.1 and 5.2 show that if vector fields f and g are invariant under the action
of a Lie group G, then the RG vector field εR(A) is invariant under the action of G and the
one-parameter group {ϕ0

t }t∈R. In this sense, the RG vector field has a simpler structure than
the original vector field f + εg.

6. Invariant manifolds. In this section, we consider an equation of the form

(6.1) ẋ = Fx + εg(x), x ∈ Rn,

where F is a diagonalizable n×n constant matrix, all of whose eigenvalues lie on the imaginary
axis, and where g is a polynomial vector field on Rn. Note that in this situation, the norm
conditions (N) are satisfied.

Theorem 6.1. If the RG vector field εR(x) for (6.1) has a boundaryless compact normally
hyperbolic invariant manifold N , then (6.1) also has a normally hyperbolic invariant manifold
Nε for sufficiently small ε > 0. This invariant manifold Nε is diffeomorphic to N , and its
stability coincides with that of N .

We will prove this theorem in Appendix A, while we give a brief sketch of the proof below.

Suppose that the RG vector field has a normally hyperbolic invariant manifold N . Then,
the approximate vector field Fε(t, x) defined by (4.16) has a normally hyperbolic invariant
manifold Ñ which is diffeomorphic to R×N in the (t, x) space since the flow of the approximate
vector field is related to the flow of the RG vector field through (4.15). Now we need Fenichel’s
theorem.

Theorem (Fenichel [10]). Let M be a Cr manifold (r ≥ 1) and X r(M) the set of Cr vector
fields on M with the C1 topology. Let f be a Cr vector field on M , and suppose that N ⊂ M
is a boundaryless compact connected normally hyperbolic f-invariant manifold. Then, the
following hold:

(i) There is a neighborhood U ⊂ X r(M) of f such that there exists a normally hyperbolic
g-invariant Cr manifold Ng ⊂ M for all g ∈ U .

(ii) Ng is diffeomorphic to N and the diffeomorphism h : Ng → N is close to the identity
id : N → N in the C1 topology.

See [10, 11, 12] for the proof of the theorem and the definition of normal hyperbolicity.
Since the approximate vector field Fε(t, x) is C1 close to the original vector field Fx + εg(x),
we expect that Fenichel’s theorem concludes that the original vector field Fx + εg(x) has
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an invariant manifold which is diffeomorphic to R × N in the (t, x) space. Since (6.1) is an
autonomous equation, Fx + εg(x) has an invariant manifold which is diffeomorphic to N in
the x space.

The above argument needs to be modified because the approximate vector field is a time-
dependent vector field even if the original vector is independent of t, while Fenichel’s theorem
holds for time-independent vector fields. In Appendix A, we define the higher order RG
equation to refine the error estimate of the approximate vector field to prove Theorem 6.1.

Note that for the case of compact normally hyperbolic invariant manifolds with boundary,
Fenichel’s theorem is modified as follows: If a vector field f has a compact connected normally
hyperbolic invariant manifold N with a boundary, then a vector field g, which is C1 close to
f , has a locally invariant manifold Ng which is diffeomorphic to N . In this case, an orbit of
the flow of g through a point on Ng may go out from Ng through its boundary. According
to this theorem, Theorem 6.1 has to be modified so that Nε is locally invariant if N has a
boundary.

Example 6.2. Consider the system on R2:

(6.2)

{
ẋ = y − x3 + εx,
ẏ = −x.

The unperturbed system ẋ = y − x3, ẏ = −x has the origin as a fixed point which is not
hyperbolic. By using Theorem 6.1, we show the occurrence of the Hopf bifurcation at ε = 0,
and a stable periodic orbit appears for ε > 0.

Changing the coordinate by (x, y) = (εX, εY ), we obtain

(6.3)

{
Ẋ = Y + ε(X − εX3),

Ẏ = −X.

We want to regard the term ε2X3 as a first order term with respect to ε since, at this time,
we define only the first order RG equation while the higher order RG equation will be defined
in Appendix A. To do so, define the function ε0(t) by ε0(t) ≡ ε, and rewrite (6.3) as

(6.4)

⎧⎨
⎩

Ẋ = Y + ε(X − ε0X
3),

Ẏ = −X,
ε̇0 = 0.

Then this system takes the form (6.1). The RG method is applicable to (6.4). Substitute
X = X0+εX1, Y = Y0+εY1 into (6.4) and equate the coefficients of ε0, ε1 to zero, respectively.
Then we get

(6.5)

{
Ẋ0 = Y0,

Ẏ0 = −X0,

{
Ẋ1 = Y1 + X0 − ε0X

3
0 ,

Ẏ1 = −X1.

We denote a solution to the former by

(6.6) X0(t) = Aeit + Ae−it, A ∈ C.

With this X0(t), a special solution to the latter defined by (4.9), whose initial time is t = τ ,
is written as
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(6.7) X1(t) =
1

2
(A− 3ε0A|A|2)(t− τ)eit +

3i

8
A3e3it + c.c.,

where c.c. is the complex conjugate of the first two terms of the right-hand side. Therefore,
the RG equation for (6.3) is given by

(6.8)
dA

dt
=

1

2
ε(A− 3ε0A|A|2).

Substituting A = reiθ into the above equation provides

(6.9)

⎧⎨
⎩ ṙ =

ε

2
(r − 3ε0r

3),

θ̇ = 0.

Fixed points of this system are r = 0 and r =
√

1/3ε0 := r0, when ε0 > 0. Further, we obtain

d

dr

∣∣∣
r=r0

ε

2
(r − 3ε0r

3) =
ε

2

(
1 − 9ε0 ·

1

3ε0

)
= −ε < 0.

This means that the RG equation (6.9) has a circle {r = r0} as a stable normally hyperbolic
invariant manifold (the set of fixed points) if ε > 0. By Theorem 6.1, the system (6.2) also
has a stable periodic orbit if ε > 0 is sufficiently small. This proves that the Hopf bifurcation
occurs for (6.2). Note that the radius of the invariant circle for the RG equation is of order
O(1/

√
ε). In the original coordinate (x, y), the radius of the periodic orbit for the system (6.2)

is of order O(
√
ε). Indeed, the periodic solution is approximately given by x(t) = 2

√
ε/3 cos t

in the (x, y) coordinate.
We can show that the second order RG equation defined in Definition A.5 for (6.3) is

given as ṙ = ε(r − 3εr3)/2, θ̇ = −ε2/8. Thus we can obtain the same result as above without
introducing ε0 by using the second order RG equation, although it provides a modification to
the motion in the θ direction.

We have just seen in Example 6.2 that the RG method can be used on problems in which
there is an ordinary Hopf bifurcation. In the next example, we show that the RG method can
also be used for systems in which a limit cycle is created far away from a fixed point, namely,
with O(1) radius.

Example 6.3. Consider the system on R2

(6.10)

{
ẋ = y + ε(x− x3),
ẏ = −x.

Substituting x = x0 + εx1, y = y0 + εy1 into (6.10) and equating the coefficients of ε0, ε1 to
zero, respectively, we get

(6.11)

{
ẋ0 = y0,
ẏ0 = −x0,

{
ẋ1 = y1 + x0 − x3

0,
ẏ1 = −x1.

We denote a solution to the former by

(6.12) x0(t) = Aeit + Ae−it, A ∈ C.
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With this x0(t), a special solution to the latter defined by (4.9), whose initial time is t = τ , is
written as

(6.13) x1(t) =
1

2
(A− 3A|A|2)(t− τ)eit +

3i

8
A3e3it + c.c.,

where c.c. is the complex conjugate of the first two terms of the right-hand side. Therefore,
the RG equation for (6.10) is given by

(6.14)
dA

dt
=

1

2
ε(A− 3A|A|2).

Substituting A = reiθ into the above equation provides

(6.15)

⎧⎨
⎩ ṙ =

ε

2
(r − 3r3),

θ̇ = 0.

Fixed points of this system are r = 0 and r =
√

1/3 := r0, when ε > 0. It is easy to verify
that r = r0 is the stable fixed point. Therefore, the system (6.10) has a stable periodic orbit
if ε > 0 is sufficiently small. Note that since the radius of the invariant circle for the RG
equation is of O(1), the radius of the periodic orbit of the system (6.10) is also of O(1). This
can be verified numerically. For each ε, points y0 > 0 at which the periodic orbit for the
system (6.10) crosses the y axis are calculated numerically to provide Figure 1. The radius y0

is almost independent of ε when ε > 0 is sufficiently small.

Figure 1. The radius y0 of the periodic orbit of the system (6.10) for each ε.

7. Linear equations. We apply the RG method to a time-dependent linear equation

(7.1) ẋ = F (t)x + εG(t)x, x ∈ Rn,

where F (t) and G(t) are n × n matrix functions which are of C1 class with respect to t. A
solution to the equation ẋ0 = F (t)x0 is denoted by x0(t, 0, v) = X(t)v, where X(t) is the
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fundamental matrix and v ∈ Rn is an initial value. We assume that X(t)−1G(t)X(t) is KBM
on t ≥ 0, and we define a constant matrix

(7.2) R := lim
t→∞

1

t

∫ t

0
X−1(s)G(s)X(s)ds.

We call it a secular matrix for (7.1). Then, a special solution to an equation ẋ1 = F (t)x1 +
G(t)x0(t, 0, v) defined by (4.9) is given by

(7.3) x1(t, τ ; v) = X(t)G̃(t)v + X(t)(t− τ)Rv, G̃(t) =

∫ t

(X(s)−1G(s)X(s) −R)ds,

and the RG equation for (7.1) is given by a linear equation

(7.4) v̇ = εRv, v ∈ Rn.

If X(t) and G̃(t) are bounded in t ≥ 0, then Theorem 4.4(i) holds and the flow Φt,t0 defined
by (4.15) is put in the form

(7.5) Φt,t0 = X(t)(I + εG̃(t))eεR(t−t0)(I + εG̃(t0))
−1X(t0)

−1,

where I is the n× n identity matrix. Accordingly, the approximate vector field Fε defined by
(4.16) is expressed as

(7.6) Fε(t, x) = F (t)x+εG(t)X(t)(I+εG̃(t))−1X(t)−1x+ε2X(t)G̃(t)R(I+εG̃(t))−1X(t)−1x.

The following proposition means that the stability of X(t)−1x(t) is inherited from that of the
RG equation if ε > 0 is sufficiently small. In fact, the proposition shows that if real parts of
all eigenvalues of R are negative, then ||X(t)−1x(t)|| → 0 as t → ∞ for an arbitrary solution
x(t) of (7.1), and that if there exists an eigenvalue of R whose real part is positive, then there
exists a solution x(t) of (7.1) such that ||X(t)−1x(t)|| → ∞ as t → ∞.

Proposition 7.1. Suppose that X(t) and G̃(t) defined in (7.3) are bounded in t ≥ 0. Let
R be a secular matrix for (7.1) and λ1, . . . , λn its eigenvalues. Then, for each integer k with
1 ≤ k ≤ n, there exist positive constants D1, D2, t0, a positive valued function φ(ε) with
φ(ε) → 0 as ε → 0, and a solution x(t) of (7.1) such that the inequality

(7.7) D2e
εRe(λk)t−2εφ(ε)t ≤ ||X(t)−1x(t)|| ≤ D1e

εRe(λk)t+2εφ(ε)t

holds for t ≥ t0.
Proof. Since G̃(t) =

∫ t
0 (X(s)−1G(s)X(s) − R)ds is bounded, (I + εG̃(t))−1 is expanded

into the Neumann series as (I + εG̃(t))−1 =
∑∞

n=0 (−ε)nG̃(t)n. With this expansion inserted
into (7.6), Fε(t, x) is rewritten as

Fε(t, x) = F (t)x + εG(t)x + ε2H(t, ε)x,(7.8)

H(t, ε) :=

∞∑
n=0

(−ε)n
(
X(t)G̃(t)RG̃(t)nX(t)−1 −G(t)X(t)G̃(t)n+1X(t)−1

)
.(7.9)
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Let us rewrite (7.1) as

(7.10) ẋ = Fε(t, x) − ε2H(t, ε)x.

Introducing a new function y(t) by x(t) = X(t)y(t), we verify that y satisfies the differential
equation

(7.11) ẏ = F̃ε(t)y − ε2H̃(t, ε)y,

where

F̃ε(t) := εX(t)−1G(t)X(t) + ε2X(t)−1H(t, ε)X(t),(7.12)

H̃(t, ε) :=

∞∑
n=0

(−ε)n
(
G̃(t)RG̃(t)n −X(t)−1G(t)X(t)G̃(t)n+1

)
,(7.13)

and further that the flow of the linear vector field F̃ε(t)y is given by

(7.14) Φ̃t,t0 = (I + εG̃(t))eεR(t−t0)(I + εG̃(t0))
−1.

To prove the proposition, we can suppose that the secular matrix R is put in the Jordan form.
In fact, if we change the variable x in (7.1) by x �→ Px, where P is an arbitrary nonsingular
constant matrix, then F (t), G(t), and X(t)−1G(t)X(t) are brought into P−1F (t)P , P−1G(t)P ,
and P−1X(t)−1G(t)X(t)P , respectively. This means that R turns into P−1RP . In what
follows, we assume that R is of the Jordan form

(7.15) R =

⎛
⎜⎜⎜⎜⎜⎝

λ1 p1

λ2 p2

. . .
. . .

λn−1 pn−1

λn

⎞
⎟⎟⎟⎟⎟⎠ ,

where λi (i = 1, . . . , n) are the eigenvalues of R such that Re(λ1) ≤ · · · ≤ Re(λn) and where
pi (i = 1, . . . , n− 1) are either 0 or 1.

Now let us fix an integer k < n such that Re(λk+1) − Re(λk) > 0. The case that n = k
and the case that there are no such k < n are treated later. Define matrices Q1(t), Q2(t) to
be upper triangle matrices

Q1(t) =

⎛
⎜⎜⎜⎝

eελ1t
* 0

. . .
eελkt

0
. . .

0

⎞
⎟⎟⎟⎠ , Q2(t) =

⎛
⎜⎜⎜⎜⎝

0
0

. . .
0

eελk+1t
*. . .

eελnt

⎞
⎟⎟⎟⎟⎠

such that Q1(t) + Q2(t) = eεRt. Then, a solution y(t) to (7.11) satisfies an integral equation

y(t) = Φ̃t,0ek − ε2

∫ t

0
(I + εG̃(t))Q1(t− s)(I + εG̃(s))−1 ◦ H̃(s, ε)y(s)ds

+ ε2

∫ ∞

t
(I + εG̃(t))Q2(t− s)(I + εG̃(s))−1 ◦ H̃(s, ε)y(s)ds,(7.16)
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where e1, . . . ,en are the canonical bases of Rn. The first term of the right-hand side of
the above is written as Φ̃t,0ek = (I + εG̃(t))(q1(t)e

ελkt, . . . , qk−1(t)e
ελkt, eελkt, 0, . . . , 0)t, where

qi(t) (i = 1, . . . , k − 1) are monomials of t whose degrees are at most k − 1. The fact that
G̃(t) =

∫ t
0 (X(s)−1G(s)X(s)−R)ds is bounded uniformly in t implies that (I + εG̃(t))±1 and

X(t)−1G(t)X(t) are also bounded uniformly in t, and thereby so is H̃(t, ε). Consequently,
there exist positive constants C0, C1 such that

(7.17) ||H̃(t, ε)|| ≤ C0, ||(I + εG̃(t))±1|| ≤ C1.

Further, there exist positive constants C2, C3 and a positive valued function φ(ε) satisfying
φ(ε) → 0 as ε → 0 such that

||Q1(t)|| ≤
C2

φ(ε)n
eεRe(λk)t+εφ(ε)t for t ≥ 0,

||Φ̃t,0ek|| ≤
C1C2

φ(ε)n
eεRe(λk)t+εφ(ε)t for t ≥ 0,(7.18)

||Q2(t)|| ≤
C3

φ(ε)n
eεRe(λk+1)t−εφ(ε)t for t ≤ 0.

Indeed, if εt ≥ 1, there exists a constant C such that ||Q1(t)|| ≤ CεntneεRe(λk)t. Suppose that
there exists a function q(ε) such that

||Q1(t)|| ≤ CεntneεRe(λk)t ≤ Cq(ε)eεRe(λk)t+εφ(ε)t.

This inequality is equivalent to the inequality εt ≤ q(ε)1/neεφ(ε)t/n, and it is easy to verify
that this inequality holds when q(ε) = (n/(φ(ε)e))n. Putting C2 = C(n/e)n, we obtain
||Q1(t)|| ≤ C2

φ(ε)n e
εRe(λk)t+εφ(ε)t for εt ≥ 1. This inequality also holds when 0 ≤ εt < 1 because

||Q1(t)|| ≤ CeεRe(λk)t holds if 0 ≤ εt < 1. The inequalities for ||Φ̃t,0ek|| and ||Q2(t)|| above
are verified in a similar way.

We define a sequence of functions {ym(t)}m≥0 by

y0(t) = Φ̃t,0ek,

ym+1(t) = y0(t) − ε2

∫ t

0
(I + εG̃(t))Q1(t− s)(I + εG̃(s))−1 ◦ H̃(s, ε)ym(s)ds

+ ε2

∫ ∞

t
(I + εG̃(t))Q2(t− s)(I + εG̃(s))−1 ◦ H̃(s, ε)ym(s)ds.

We need two lemmas to prove the proposition.

Lemma 7.2. Let φ(ε) = ε1/(2n+2) and fix ε > 0 small so that Re(λk+1)−Re(λk)−3φ(ε) > 0.
Then there exists a constant 0 < p < 1 such that

(7.19) ||ym(t) − ym−1(t)|| ≤ pmeεRe(λk)t+2εφ(ε)t, m = 1, 2, . . . ,

for t ≥ 0.
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Proof. We prove (7.19) by induction. For m = 1, the quantity ||y1(t)− y0(t)|| is estimated
as follows:

||y1 − y0|| ≤ ε2

∫ t

0
||I + εG̃(t)|| · ||Q1(t− s)|| · ||(I + εG̃(s))−1|| · ||H̃(s, ε)|| · ||y0(s)||ds

+ ε2

∫ ∞

t
||I + εG̃(t)|| · ||Q2(t− s)|| · ||(I + εG̃(s))−1|| · ||H̃(s, ε)|| · ||y0(s)||ds

≤ ε2C0C
3
1C

2
2

φ(ε)2n

∫ t

0
eεRe(λk)t+εφ(ε)teεφ(ε)sds

+
ε2C0C

3
1C2C3

φ(ε)2n

∫ ∞

t
eεRe(λk+1)t−εφ(ε)te−εRe(λk+1)s+εRe(λk)s+3εφ(ε)sds

≤ εC0C
3
1C2

φ(ε)2n+1

(
C2 +

C3φ(ε)

Re(λk+1) − Re(λk) − 3φ(ε)

)
eεRe(λk)t+2εφ(ε)t

= ε1/(2n+2)C0C
3
1C2

(
C2 +

C3φ(ε)

Re(λk+1) − Re(λk) − 3φ(ε)

)
eεRe(λk)t+2εφ(ε)t.

Define

(7.20) p = ε1/(2n+2)C0C
3
1C2

(
C2 +

C3φ(ε)

Re(λk+1) − Re(λk) − 3φ(ε)

)
;

then (7.19) holds for m = 1. Further, if ε is sufficiently small, the inequality 0 < p < 1
holds. With this p, if we suppose that (7.19) holds, then we can verify that ||ym+1 − ym|| ≤
pm+1eεRe(λk)t+2εφ(ε)t by the same calculation as above.

This lemma implies that the sequence {ym(t)}m≥0 converges to a solution of (7.11).
Lemma 7.3. Under the same conditions as Lemma 7.2, there exist positive constants D1

and t0 such that

(7.21) ||ym(t)|| ≤ D1e
εRe(λk)t+2εφ(ε)t, m = 0, 1, . . . ,

for t ≥ t0.
Proof. We prove the lemma by induction. When m = 0, the above inequality is clear if

D1 ≥ C1C2/φ(ε)n. Suppose that the above inequality holds for m; then

||ym+1|| ≤ ||y0|| + ε2

∫ t

0
||I + εG̃(t)|| · ||Q1(t− s)|| · ||(I + εG̃(s))−1|| · ||H̃(s, ε)|| · ||ym(s)||ds

+ ε2

∫ ∞

t
||I + εG̃(t)|| · ||Q2(t− s)|| · ||(I + εG̃(s))−1|| · ||H̃(s, ε)|| · ||ym(s)||ds

= D1e
εRe(λk)t+εφ(ε)t +

ε2C0C
2
1C2D1

φ(ε)n

∫ t

0
eεRe(λk)t+εφ(ε)teεφ(ε)sds

+
ε2C0C

2
1C3D1

φ(ε)n

∫ ∞

t
eεRe(λk+1)t−εφ(ε)te−εRe(λk+1)s+εRe(λk)s+3εφ(ε)s

≤ D1e
εRe(λk)t+εφ(ε)t +

εC0C
2
1C2D1

φ(ε)n+1
eεRe(λk)t+2εφ(ε)t

+
εC0C

2
1C3D1

φ(ε)n(Re(λk+1) − Re(λk) − 3φ(ε))
eεRe(λk)t+2εφ(ε)t
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≤ D1e
εRe(λk)t+2εφ(ε)t

(
e−εφ(ε)t +

εn/(2n+2)

C1C2
p

)
,

where p is defined by (7.20). Since 0 < p < 1, we can take sufficiently large t0 and sufficiently
small ε such that

0 < e−εφ(ε)t +
εn/(2n+2)

C1C2
p < 1

for t ≥ t0. This proves the lemma.

We return to the proof of Proposition 7.1. By taking the limit m → ∞ in (7.21), we obtain
a solution y(t) = y(k)(t) of (7.11) satisfying the right part of the inequality (7.7) when k 
= n.
If there exist eigenvalues λk′ of R satisfying Re(λk′) = Re(λk), we repeat the above discussion
with ek′ instead of ek included in (7.16). Then we obtain a solution y(k′)(t) of (7.11), which is
linearly independent of y(k)(t), satisfying the right part of the inequality (7.7). To prove the
same inequality for k = n, instead of (7.16), we use the integral equation

(7.22) y(t) = Φ̃t,0en − ε2

∫ t

0
(I + εG̃(t))eεR(t−s)(I + εG̃(s))−1 ◦ H̃(s, ε)y(s)ds.

The same procedure as above applied to this equation yields the right part of inequality (7.7)
for k = n.

We proceed to prove the left part of inequality (7.7). Let y(k)(t) be a solution of (7.11)
which satisfies the right part of inequality (7.7), and denote the fundamental matrix to (7.11)
by Y , whose column vectors are y(1)(t), . . . , y(n)(t). Define a matrix Z by Z = Y −t, where
Y −t is the abbreviation of (Y −1)t; this notation will be used in what follows. Each column
vector z(1)(t), . . . , z(n)(t) of Z satisfies an adjoint equation of (7.11):

(7.23) ż = −(F̃ε(t) − ε2H̃(t, ε))tz.

Since the flow of the linear vector field −(F̃ε)
tz is given by Φ̃−t

t,t0
= (I+εG̃(t))−te−εRt(t−t0)(I+

εG̃(t0))
t, we can prove that there exists a solution z(t) = u(k)(t) of (7.23) such that

(7.24) ||u(k)(t)|| ≤ D′
1e

−εRe(λk)t+2εφ(ε)t, k = 1, . . . , n, t ≥ t0,

by the same procedure as that for the proof of the inequality (7.7), where D′
1 is some

positive constant. Let U be the fundamental matrix for (7.23) whose column vectors are
u(1)(t), . . . , u(n)(t). By the uniqueness of solutions of (7.23), there exists a constant matrix K
such that U = ZK. Let kij be the (i, j) component of K. Since Y tU = K, the inequality
|kii| = |(y(i)(t), u(i)(t))| ≤ ||y(i)(t)|| · ||u(i)(t)|| holds, which then proves the left part of inequal-
ity (7.7) if kii 
= 0, where ( , ) denotes the standard inner product of the Rn. If kii = 0, we
define ũ(k)(t) by ũ(k)(t) = u(k)(t) +

∑n
i=k+1 αiu

(i)(t), with αi ∈ R. And we define a matrix

Ũ whose column vectors are ũ(1)(t), . . . , ũ(n)(t). Each ũ(k)(t) satisfies the inequality (7.24) for

some constant D′
1. Then there exists a constant matrix K̃ such that Y tŨ = K̃, and we can

assume that its diagonal component kii 
= 0 by defining αi ∈ R appropriately. This ends the
proof of Proposition 7.1.
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Corollary 7.4. Consider an equation ẋ = Fx + εG(t)x with x ∈ Rn, where F is an n × n
constant matrix and G(t) is an n × n matrix which is of C1 class with respect to t. Suppose
that all eigenvalues of F lie on the imaginary axis, and suppose that G(t) and G̃(t) defined by
(7.3) are bounded in t ∈ R. If ε > 0 is sufficiently small, then the stability of a trivial solution
x(t) ≡ 0 coincides with that of a trivial solution of the RG equation v̇ = εRv, where R is a
secular matrix for Fx + εG(t)x.

In the above corollary, the boundedness of G(t) and G̃(t) are satisfied if G(t) is a periodic
or almost periodic function in t whose Fourier exponents do not have accumulation points
in R.

Example 7.5. Let us consider the Mathieu equation:

(7.25) ÿ = −(a + 2ε cos t)y,

where a and ε are positive parameters. It is well known that there exists an area in the (a, ε)
plane such that the origin is an unstable fixed point for (7.25) if (a, ε) is in this area. We
calculate the area approximately by the RG method.

Let a = a0 + εa1 and y = y0 + εy1. Substituting them into (7.25) and comparing the
coefficients of ε0 and ε1 in both sides of (7.25) provides

ÿ0 = −b2y0,(7.26)

ÿ1 = −b2y1 − a1y0 − 2 cos t · y0,(7.27)

where a0 = b2. A general solution to the former is given by

(7.28) y0(t) = Aeibt + Ae−ibt, A ∈ C.

With this y0, (7.27) is rewritten as

(7.29) ÿ1 = −b2y1 −
(
a1Ae

ibt + Aei(1+b)t + Aei(1−b)t + c.c.
)
.

If b = 1/2 (i.e., a0 = 1/4), the secular term appears for all a1. In fact, the equation

(7.30) ÿ1 = −1

4
y1 −

(
a1Ae

it/2 + Ae3it/2 + Aeit/2 + c.c.
)

admits a special solution given by

(7.31) y1(t, τ ;A) = i(a1A + A)(t− τ)eit/2 +
A

2
e3it/2 + c.c.,

where the initial time has been chosen to be t = τ . Then, the RG equation for (7.25) is given
by

(7.32) Ȧ = iε(a1A + A).

Putting A = B + iC, B,C ∈ R, we break up (7.32) into

(7.33)

{
Ḃ = ε(1 − a1)C,

Ċ = ε(1 + a1)B.
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A general solution to this equation is given by

(7.34) B(t) =

{
peε

√
1−a2

1t + qe−ε
√

1−a2
1t (|a1| ≤ 1),

peiε
√

a2
1−1t + qe−iε

√
a2
1−1t (|a1| > 1),

where p, q ∈ R are arbitrary constants. This shows that the origin is an unstable fixed point
for the RG equation (7.33) if |a1| < 1. This proves the instability of the fixed point of the
Mathieu equation (7.25) if a = 1/4 + εa1 + O(ε2), |a1| < 1.

Example 7.6. Consider the coupled Mathieu equations

(7.35)

{
ẍ = −(a + 2ε cos t)x− εp(x− y) − εq(ẋ− ẏ),
ÿ = −(a + 2ε cos t)y − εp(y − x) − εq(ẏ − ẋ),

where ε > 0 and a, p, q ∈ R are constants. Put u = x + y; then the equation for u(t) is the
Mathieu equation (7.25). In Example 7.5, we proved that if a = 1/4, the trivial solution u = 0
of the Mathieu equation (7.25) is unstable. In what follows, we assume that a = 1/4. Put
z = x− y. Then z satisfies the equation

(7.36) z̈ = −1

4
z + ε(−2qż − 2pz − 2 cos t · z).

Put further z = z0 + εz1, where z0 is subjected to the unperturbed equation z̈0 = −1
4z0 and

has a general solution of the form z0(t) = Aeit/2 + Ae−it/2. With this z0(t), the equation for
z1 proves to be given by

(7.37) z̈1 = −1

4
z1 − iqAeit/2 − 2pAeit/2 −Ae3it/2 −Aeit/2 + c.c.,

where c.c. denotes the complex conjugate of the last four terms of the right-hand side. A
special solution of this equation, whose initial time is t = τ , is given by

(7.38) z1(t) = i(iqA + 2pA + A)(t− τ)eit/2 +
A

2
e3it/2 + c.c.

Therefore, the RG equation for (7.36) is put in the form

(7.39) Ȧ = iε(iqA + 2pA + A), A ∈ C.

Put A = α + iβ, α, β ∈ R. Then the above equation is rewritten as

(7.40)
d

dt

(
α
β

)
= ε

(
−q −2p + 1

2p + 1 −q

)(
α
β

)
.

Eigenvalues of the matrix in the right-hand side of the above equation are λ± = −q±
√

1 − 4p2.
Therefore, the stability of the trivial solution (α, β) = (0, 0) of the RG equation is as given in
Figure 2.

Corollary 7.4 shows that the stability of the trivial solution z(t) = 0 of (7.36) coincides with
that of the stability of (α, β) = (0, 0). This proves that if Re(λ±) < 0, then |x(t) − y(t)| → 0
as t → ∞, although each |x(t)|, |y(t)| diverges as t → ∞.

A numerical solution to (7.35) for ε = 0.01, x(0) = 0.5, y(0) = 0.1 is presented in Figure 3.
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Figure 2. The trivial solution (α, β) = (0, 0) is stable on the shaded area.

Figure 3. Numerical results for (7.35). The synchronous solution x(t) = y(t) is (a) stable if p = q = 1,
(b) unstable if p = q = 0.2.

Appendix A. Higher order RG equation. In this appendix, we define the higher order
RG equation for constructing an approximate vector field which is O(εm+1) close to a given
original vector field. The result is used in proving Theorem 6.1.

Let F be a diagonalizable n×n matrix, all of whose eigenvalues lie on the imaginary axis,
and let g1(t, x), . . . , gm(t, x) be C∞ vector fields on R × Rn which are polynomial in x and
periodic in t. Consider an ODE

(A.1) ẋ = Fx + εg1(t, x) + ε2g2(t, x) + · · · + εmgm(t, x), x ∈ Rn,

where ε ∈ R is a small parameter. Put x = x0 + εx1 + · · · + εmxm. Then the above equation
is rewritten as

(A.2) ẋ0 + εẋ1 + · · ·+ εmẋm = F (x0 + εx1 + · · ·+ εmxm)+

m∑
i=1

εigi(t, x0 + εx1 + · · ·+ εmxm).

Expanding the right-hand side of the above equation with respect to ε and equating the
coefficients of each εi of both sides of the above, we obtain ODEs for x0, x1, . . . , xm,
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ẋ0 = Fx0,(A.3)

ẋ1 = Fx1 + G1(t, x0),(A.4)

...

ẋi = Fxi + Gi(t, x0, x1, . . . , xi−1),(A.5)

...

ẋm = Fxm + Gm(t, x0, x1, . . . , xm−1),(A.6)

where Gi is some smooth function of t, x0, x1, . . . , xi−1 which is periodic in t. For example,
G1, G2, and G3 are given by

G1(t, x0) = g1(t, x0),(A.7)

G2(t, x0, x1) =
∂g1

∂x
(t, x0)x1 + g2(t, x0),(A.8)

G3(t, x0, x1, x2) =
1

2

∂2g1

∂x2
(t, x0)x

2
1 +

∂g1

∂x
(t, x0)x2 +

∂g2

∂x
(t, x0)x1 + g3(t, x0),(A.9)

respectively. We have to solve the above equations. At first, we denote by x0(t, 0, A) = X(t)A
a solution of the unperturbed part ẋ0 = Fx0, where X(t) = eFt is the fundamental matrix
and A ∈ Rn is an initial value. With this x0, by a discussion similar to that in section 4, a
solution of (A.4) is given by

(A.10) x1(t, τ ;A) = h
(1)
t (A) + X(t)R1(A)(t− τ),

where h
(1)
t (A) and R1(A) are defined by

R1(A) = lim
t→∞

1

t

∫ t

X(s)−1G1(s,X(s)A)ds,(A.11)

h
(1)
t (A) = X(t)

∫ t (
X(s)−1G1(s,X(s)A) −R1(A)

)
ds,(A.12)

respectively. The integral constants of the indefinite integrals in (A.11), (A.12) and (A.13),
(A.14) below are fixed arbitrarily. By choosing these integral constants appropriately, we can
reduce the RG equation. This will be done in a forthcoming paper. Note that since X(t)
and G1(t, x) are almost periodic in t, X(t)−1G1(t,X(t)A) is bounded uniformly in t ∈ R and
R1(A) is well defined. With this x0 and x1, we solve the equation for x2, as will be shown
in Proposition A.1. This process is performed step by step until a solution xm to (A.6) is
obtained.

Proposition A.1. Define functions Ri(A) and h
(i)
t (A), i = 2, . . . ,m, by

Ri(A) := lim
t→∞

1

t

∫ t
(
X(s)−1Gi(s,X(s)A, h(1)

s (A), . . . , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A)

)
ds,(A.13)
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h
(i)
t (A) := X(t)

∫ t
(
X(s)−1Gi(s,X(s)A, h(1)

s (A), . . . , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A) −Ri(A)

)
ds.(A.14)

Then, the curve defined by

(A.15) xi := xi(t, τ ;A) = h
(i)
t (A)+y

(i)
1 (t, A)(t− τ)+y

(i)
2 (t, A)(t− τ)2 + · · ·+y

(i)
i (t, A)(t− τ)i

gives a solution to (A.5) for i = 1, 2, . . . ,m, where y
(i)
1 , . . . , y

(i)
i are defined by

y
(i)
1 (t, A) = X(t)Ri(A) +

i−1∑
k=1

(Dh
(k)
t )ARi−k(A),(A.16)

y
(i)
j (t, A) =

1

j

i−1∑
k=1

∂y
(k)
j−1

∂A
(t, A)Ri−k(A), j = 2, 3, . . . , i− 1,(A.17)

y
(i)
i (t, A) =

1

i

i−1∑
k=1

∂y
(k)
i−1

∂A
(t, A)Ri−k(A) =

1

i

∂y
(i−1)
i−1

∂A
(t, A)R1(A),(A.18)

y
(i)
j (t, A) = 0, j > i.(A.19)

Proof. We prove Proposition A.1 by induction. Assume that x1, . . . , xi−1 defined by (A.15)
are solutions of (A.5) for i = 1, 2, . . . , i − 1. In order to prove that xi defined by (A.15) is a
solution of (A.5), we substitute (A.15) into (A.5) to obtain

Fh
(i)
t (A) + Gi(t,X(t)A, h

(1)
t (A), . . . , h

(i−1)
t (A)) −

i−1∑
k=1

(Dh
(k)
t )ARi−k(A) −X(t)Ri(t)

+

i∑
k=1

ẏ
(i)
k (t, A)(t− τ)k +

i∑
k=1

y
(i)
k (t, A)k(t− τ)k−1

= Fh
(i)
t (A) + F

i∑
k=1

y
(i)
k (t, A)(t− τ)k + Gi(t, x0, x1, . . . , xi−1).(A.20)

It is easy to verify that Gi(t, x0, x1, . . . , xi−1) with x0, x1, . . . , xi−1 defined by (A.15) is a
polynomial in t− τ whose degree is at most i− 1. We denote it by

(A.21) Gi(t, x0, . . . , xi−1) =

i−1∑
k=0

G̃
(k)
i (t, x0, . . . , xi−1)(t− τ)k.

Note that G̃
(0)
i (t, x0, . . . , xi−1) = Gi(t,X(t)A, h

(1)
t (A), . . . , h

(i−1)
t (A)). Equating the coeffi-

cients of (t− τ)k of both sides of (A.20) with (A.21), we obtain

y
(i)
1 (t, A) =

i−1∑
k=1

(Dh
(k)
t )ARi−k(A) + X(t)Ri(A),(A.22)
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ẏ
(i)
k (t, A) + (k + 1)y

(i)
k+1(t, A) = Fy

(i)
k (t, A) + G̃

(k)
i (t, x0, . . . , xi−1), k = 1, . . . , i− 1,(A.23)

ẏ
(i)
i (t, A) = Fy

(i)
i (t, A).(A.24)

These equations can determine y
(i)
1 , y

(i)
2 , . . . , y

(i)
i . Equation (A.22) gives (A.16). From (A.23)

for k = 1, we obtain

2y
(i)
2 (t, A) = Fy

(i)
1 (t, A) − ẏ

(i)
1 (t, A) + G̃

(1)
i (t, x0, . . . , xi−1)

=

i−1∑
k=1

F (Dh
(k)
t )ARi−k(A) + FX(t)Ri(A)

−
i−1∑
k=1

∂

∂t
(Dh

(k)
t )ARi−k(A) − ∂

∂t
X(t)Ri(A) + G̃

(1)
i (t, x0, . . . , xi−1)

=

i−1∑
k=1

F (Dh
(k)
t )ARi−k(A) −

i−1∑
k=1

∂

∂A

(
Fh

(k)
t (A) + Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))

−
k−1∑
j=1

(Dh
(j)
t )ARk−j(A) −X(t)Rk(A)

)
Ri−k(A) + G̃

(1)
i (t, x0, . . . , xi−1)

=

i−1∑
k=1

∂

∂A

(
k−1∑
j=1

(Dh
(j)
t )ARk−j(A) + X(t)Rk(A)

)
Ri−k(A)

+ G̃
(1)
i (t, x0, . . . , xi−1) −

i−1∑
k=1

∂

∂A
Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))Ri−k(A)

=

i−1∑
k=1

∂

∂A
y

(k)
1 (t, A)Ri−k(A)

+ G̃
(1)
i (t, x0, . . . , xi−1) −

i−1∑
k=1

∂

∂A
Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))Ri−k(A).(A.25)

If the equality

(A.26) G̃
(1)
i (t, x0, . . . , xi−1) =

i−1∑
k=1

∂

∂A
Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))Ri−k(A)

holds, then (A.17) for j = 2 is obtained. The left-hand side of the above is calculated as

G̃
(1)
i (t, x0, . . . , xi−1) = − ∂

∂τ

∣∣∣
τ=t

Gi(t, x0, . . . , xi−1)

= −
i−1∑
j=1

lim
τ→t

∂Gi

∂xj
(t, x0, . . . , xi−1)

∂

∂τ

∣∣∣
τ=t

xj(t, τ ;A)

=

i−1∑
j=1

lim
τ→t

∂Gi

∂xj
(t, x0, . . . , xi−1)

(
X(t)Rj(A) +

j−1∑
k=1

(Dh
(k)
t )ARj−k(A)

)
.(A.27)
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The right-hand side of (A.26) is calculated as

i−1∑
k=1

∂

∂A
Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))Ri−k(A)

=

i−1∑
k=1

k−1∑
j=1

lim
τ→t

∂Gk

∂xj
(t, x0, . . . , xi−1)(Dh

(j)
t )ARi−k(A)

+

i−1∑
k=1

lim
τ→t

∂Gk

∂x0
(t, x0, . . . , xi−1)X(t)Ri−k(A).(A.28)

Now we need a simple lemma.
Lemma A.2. For integers i, j with i > j, the equality

(A.29)
∂Gi

∂xj
=

∂Gi−1

∂xj−1
= · · · =

∂Gi−j

∂x0

holds.
We will prove this lemma after the proof of Proposition A.1 is completed. According to

Lemma A.2, (A.27) and (A.28) are brought into
(A.30)

G̃
(1)
i (t, x0, . . . , xi−1) =

i−1∑
j=1

lim
τ→t

∂Gi−j

∂x0
(t, x0, . . . , xi−1)

(
X(t)Rj(A) +

j−1∑
k=1

(Dh
(k)
t )ARj−k(A)

)
,

and

i−1∑
k=1

∂

∂A
Gk(t,X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))Ri−k(A)

=

i−1∑
k=1

k−1∑
j=1

lim
τ→t

∂Gk−j

∂x0
(t, x0, . . . , xi−1)(Dh

(j)
t )ARi−k(A)

+

i−1∑
k=1

lim
τ→t

∂Gk

∂x0
(t, x0, . . . , xi−1)X(t)Ri−k(A),(A.31)

respectively. This proves (A.26), and (A.17) for j = 2 is verified.

By using (A.23), y
(i)
3 , . . . , y

(i)
i−1, y

(i)
i are calculated in the same way as above, and (A.17)

and (A.18) are proved, but we omit the detailed calculation here. Next, we have to show that

y
(i)
i given by (A.18) satisfies (A.24). To show this, according to y

(1)
1 (t, A) = X(t)R1(t), we

rewrite (A.18) as

y
(i)
i (t, A) =

1

i

∂y
(i−1)
i−1

∂A
R1(A)

=
1

i(i− 1)

∂

∂A

(
∂y

(i−2)
i−2

∂A
R1(A)

)
R1(A)
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=
...

=
1

i!

∂

∂A

(
∂

∂A

(
· · · ∂

∂A

(
∂y

(1)
1

∂A
R1(A)

)
· · ·

)
R1(A)

)
R1(A)

= X(t)
1

i!

∂

∂A

(
∂

∂A

(
· · · ∂

∂A

(
∂R1

∂A
R1(A)

)
· · ·

)
R1(A)

)
R1(A).

Since X(t) is the fundamental matrix of the equation ẏ = Fy, y
(i)
i satisfies (A.24). Therefore,

xi defined by (A.15) satisfies (A.5). This ends the proof of Proposition A.1.
Proof of Lemma A.2. By definition, Gi(t, x0, . . . , xi−1) is written as

Gi(t, x0, . . . , xi−1) =

i−1∑
k=1

1

k!

dk

dεk

∣∣∣
ε=0

gi−k(t,
∑m

l=0 ε
lxl) + gi(t, x0).

On the other hand, Gi−1(t, x0, . . . , xi−2) is rewritten as

Gi−1(t, x0, . . . , xi−2) =

i−2∑
k=0

1

k!

dk

dεk

∣∣∣
ε=0

gi−k−1(t,
∑m

l=0 ε
lxl)

=

i−1∑
k=1

1

(k − 1)!

dk−1

dεk−1

∣∣∣
ε=0

gi−k(t,
∑m

l=0 ε
lxl).

To show the equality ∂Gi/∂xj = ∂Gi−1/∂xj−1, it is sufficient to prove the equality

(A.32)
∂

∂xj

1

k!

dk

dεk

∣∣∣
ε=0

gi−k(t,
∑m

l=0 ε
lxl) =

∂

∂xj−1

1

(k − 1)!

dk−1

dεk−1

∣∣∣
ε=0

gi−k(t,
∑m

l=0 ε
lxl)

for k = 1, 2, . . . , i−1. For simplicity, we denote gi−k(t, x) by g(x). Consider the trivial equality

(A.33)
∂

∂xj
g(
∑m

l=0 ε
lxl) = ε

∂

∂xj−1
g(
∑m

l=0 ε
lxl), j = 1, . . . ,m.

Expanding both sides of the above equation with respect to ε, we obtain

∂

∂xj

⎛
⎝ k∑

p=0

εp

p!

dp

dεp

∣∣∣
ε=0

g(
∑m

l=0 ε
lxl) + R̃(ε, x0, . . . , xm)

⎞
⎠

= ε
∂

∂xj−1

⎛
⎝ k∑

p=0

εp

p!

dp

dεp

∣∣∣
ε=0

g(
∑m

l=0 ε
lxl) + R̃(ε, x0, . . . , xm)

⎞
⎠ ,

where R̃ is some function satisfying R̃ ∼ o(|ε|k+1). Equating the coefficients of εk of both
sides of the above, we obtain (A.32). This ends the proof of Lemma A.2.

Remark A.3. Proposition A.1 also holds for a time-dependent matrix F (t) as long as the
fundamental matrix X(t) of F (t) is periodic in t. Further, for Proposition A.1, we do not



RENORMALIZATION GROUP METHOD 925

need to assume that functions gi in (A.1) are polynomial in x. These assumptions are used
to prove statements below.

Lemma A.4. For (A.1), functions h
(i)
t (A) with i = 1, 2, . . . ,m defined by (A.12) and (A.14)

are bounded uniformly in t.

To prove this lemma, we need a theory of almost periodic functions. Indeed, we can show

that functions h
(i)
t (A) are almost periodic functions. This fact also holds even if the gi(t, x)’s

in (A.1) are not periodic in t but almost periodic in t as long as the set of Fourier exponents
of the gi(t, x)’s does not have accumulation points in R. See Fink [13] for the definitions and
basic facts of almost periodic functions.

Proof of Lemma A.4. We prove the proposition by induction. At first, note that G1(t, x0)
defined by (A.7) is almost periodic uniformly in x0 because it is periodic in t and polynomial
in x0. Therefore, a function X(t)−1G1(t,X(t)A) included in (A.12) is almost periodic uni-
formly in A (see Theorem 2.11 of Fink [13]). Each component of the vector-valued function
X(t)−1G1(t,X(t)A) is of the form

∑p
k=1 bk(t)e

iξkt, where bk(t) are some periodic functions
and ξk ∈ R are some constants. Since each bk(t) can be expanded as a Fourier series in the
ordinary sense, the set of Fourier exponents of

∑p
k=1 bk(t)e

iξkt does not have accumulation
points on R. Since the Fourier coefficient corresponding to the zero Fourier exponent, if it
exists, is R1(A) defined by (A.11), X(t)−1G1(t,X(t)A) − R1(A) does not have a zero as a
Fourier exponent. Therefore,

∫ t
(X(s)−1G1(s,X(s)A) −R1(A))ds is almost periodic (we use

Theorem 4.12 of Fink [13]), and this proves Lemma A.4 for h
(1)
t (A).

Suppose that Lemma A.4 holds for h
(1)
t (A), . . . , h

(i−1)
t (A). Like the above, the integrand

in (A.14) is almost periodic uniformly in A because G1(t, x0, . . . , xi−1) is periodic in t and

polynomial in x0, . . . , xi−1. Since X(s)A, h
(1)
s (A), . . . , h

(i−1)
s (A), the set of whose Fourier ex-

ponents has no accumulation points by the assumption of induction, are almost periodic the
set of Fourier exponents of the function

p(s,A) := X(s)−1Gi(s,X(s)A, h(1)
s (A), . . . , h(i−1)

s (A)) −X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A)

included in (A.14) does not have accumulation points. Since Ri(A) defined by (A.13) gives
the Fourier coefficient corresponding to the zero Fourier exponent of p(s,A), if it exists, there
exists M > 0 such that all Fourier exponents λ of the integrand in (A.14) satisfy |λ| ≥ M .

Then Theorem 4.12 of Fink [13] proves that h
(i)
t (A) is almost periodic.

Definition A.5. Along with R1(A), . . . , Rm(A) defined by (A.11) and (A.13), we define the
mth order RG equation for (A.1) by

(A.34) Ȧ = εR1(A) + ε2R2(A) + · · · + εmRm(A), A ∈ Rn,

and we call εR1(A) + · · ·+ εmRm(A) the mth order RG vector field for (A.1). We denote by

ϕ
(m)
t the flow generated by the mth order RG vector field.

Fix an open set U ⊂ Rn such that U is compact. Define the map αt to be

(A.35) αt(A) := X(t)A + εh
(1)
t (A) + ε2h

(2)
t (A) + · · · + εmh

(m)
t (A)
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for all t ∈ R. Now we are in a position to restate Theorem 4.4 in the present situation.

Theorem A.6. Let ϕ
(m)
t be the flow of the mth order RG equation for (A.1) and αt the map

defined by (A.35). Then, there exists ε0 > 0 such that the following holds for all |ε| < ε0: A
map

(A.36) Φt,t0 := αt ◦ ϕ(m)
t−t0

◦ α−1
t0

: αt0(U) → Rn

defines a flow on Uε := {(t, x) | t ∈ R, x ∈ αt(U)} associated with a time-dependent vector
field

(A.37) Fε(t, x) :=
d

da

∣∣∣
a=t

Φa,t(x).

Further, there exists a vector field F̃ε(t, x), which is bounded in t and bounded as ε → 0,
satisfying

(A.38) Fε(t, x) = Fx + εg1(t, x) + · · · + εmgm(t, x) + εm+1F̃ε(t, x).

Proof. The proof of the fact that the map Φt,t0 defines a flow is the same as that of
Theorem 4.4(i). We prove (A.38). The vector field defined by (A.37) is calculated as

Fε(t, x) =
d

da

∣∣∣
a=t

αa ◦ ϕ(m)
a−t ◦ α−1

t (x)

=
d

da

∣∣∣
a=t

(
x0(a, 0, α

−1
t (x)) + εx1(a, a;α

−1
t (x)) + · · · + εmxm(a, a;α−1

t (x))
)

+
(
X(t) + ε(Dh

(1)
t )α−1

t (x) + · · · + εm(Dh
(m)
t )α−1

t (x)

)
◦
(
εR1(α

−1
t (x)) + · · · + εmRm(α−1

t (x))
)

=
d

da

∣∣∣
a=t

(
x0(a, 0, α

−1
t (x)) + εx1(a, t;α

−1
t (x)) + · · · + εmxm(a, t;α−1

t (x))
)

+
d

da

∣∣∣
a=t

(
εx1(t, a;α

−1
t (x)) + · · · + εmxm(t, a;α−1

t (x))
)

+
(
X(t) + ε(Dh

(1)
t )α−1

t (x) + · · · + εm(Dh
(m)
t )α−1

t (x)

)
◦
(
εR1(α

−1
t (x)) + · · · + εmRm(α−1

t (x))
)
.(A.39)

Since xi(a, t;α
−1
t (x)) is a solution of (A.5), it satisfies

d

da

∣∣∣
a=t

xi(a, t;α
−1
t (x))

= Fxi(t, t;α
−1
t (x)) + Gi(t, x0(t, 0, α

−1
t (x)), . . . , xi−1(t, t;α

−1
t (x)))

= Fh
(i)
t (α−1

t (x)) + Gi(t, x0, h
(1)
t (α−1

t (x)), . . . , h
(i−1)
t (α−1

t (x))).(A.40)

And, according to (A.15) and (A.16), the equality
(A.41)

d

da

∣∣∣
a=t

xi(t, a;α
−1
t (x)) = −y

(i)
1 (t, α−1

t (x)) = −X(t)Ri(α
−1
t (x))−

i−1∑
k=1

(Dh
(k)
t )α−1

t (x)Ri−k(α
−1
t (x))
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holds. Substituting (A.40) and (A.41) into (A.39), we obtain

Fε(t, x)

(A.42)

= Fx0(t, 0, α
−1
t (x)) +

m∑
k=1

εk
(
Fh

(k)
t (α−1

t (x)) + Gk(t, x0, h
(1)
t (α−1

t (x)), . . . , h
(k−1)
t (α−1

t (x)))
)

+ O(εm+1)

= Fx + εg1(t, x) + · · · + εmgm(t, x) + O(εm+1).

It is hard to write out the term O(εm+1) explicitly. However, it is easy to prove that the term
O(εm+1) is bounded uniformly in t, because it consists of the almost periodic functions X(t),

gi(t, x), h
(i)
t , α−1

t . This ends the proof of Theorem A.6.
Theorem 6.1 follows immediately as a corollary of the next theorem.
Theorem A.7. Consider an autonomous equation

(A.43) ẋ = Fx + εg1(x) + · · · + εmgm(x), x ∈ Rn,

where F is a diagonalizable n×n constant matrix, all of whose eigenvalues lie on the imaginary
axis, and where g1, . . . , gm are polynomial vector fields on Rn. Suppose that its mth order RG
vector field satisfies

(A.44) R1(A) = · · · = Rk−1(A) = 0, Rk(A) 
= 0, k ≤ 2m.

If the vector field Rk(A) has a compact normally hyperbolic invariant manifold N , then (A.43)
also has a normally hyperbolic invariant manifold Nε for sufficiently small ε > 0. The Nε is
diffeomorphic to N and its stability coincides with that of N .

Proof. Before proving the theorem, we point out that the condition k ≤ 2m is not essential
because we can take m ∈ N sufficiently large. Let us denote by Fε(t, x) the approximate vector
field for (A.43) defined by (A.37). From Theorem A.6, we can rewrite (A.43) as

(A.45) ẋ = Fε(t, x) − εm+1F̃ε(t, x).

On account of (A.36), the RG vector field εkRk(x) + · · · + εmRm(x) satisfies the equation

εkRk(x) + · · · + εmRm(x) =
d

da

∣∣∣
a=t

α−1
a ◦ Φa,t ◦ αt(x)

=
dα−1

a

da

∣∣∣
a=t

(αt(x)) + (Dα−1
t )αt(x)

d

da

∣∣∣
a=t

Φa,t ◦ αt(x)

= −(Dαt)
−1
x

dαt

dt
(x) + (Dαt)

−1
x Fε(t, αt(x)).(A.46)

Introducing a new function y(t) by x(t) = αt ◦ y(t) and substituting it into (A.45), we obtain

dαt

dt
(y(t)) + (Dαt)y(t)ẏ(t) = Fε(t, αt(y(t))) − εm+1F̃ε(t, αt(y(t))).
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This equation is put together with (A.46) to yield

(A.47) ẏ = εkRk(y) + · · · + εmRm(y) − εm+1(Dαt)
−1
y ◦ F̃ε(t, αt(y)).

We introduce a newly scaled time s by t = s/εk. Then the above equation is rewritten as

(A.48)
dy

ds
= Rk(y)+εRk+1(y)+ · · ·+εm−kRm(y)−εm−k+1(Dαs/εk)

−1
y ◦ F̃εk(s/ε

k, αs/εk(y)).

Since αt, (Dαt)y, and F̃ε(t, y) are bounded uniformly in t ∈ R, (Dαs/εk)
−1
y ◦F̃εk(s/ε

k, αs/εk(y))
is also bounded as s → ±∞ and ε → 0. Therefore, the time-dependent vector field H(s, y)
defined by the right-hand side of the above equation is sufficiently close to the vector field
Rk(y) in the C1 topology if ε > 0 is sufficiently small.

Now we use Fenichel’s theorem. We regard the vector field Rk(y) on Rn as a vector field on
R × Rn by putting Rk(t, y) := Rk(y). If Rk(y) has a normally hyperbolic invariant manifold
N , then Rk(t, y) has a normally hyperbolic invariant manifold R × N in (t, y) space. Since
H(s, y) is sufficiently close to Rk(t, y) as a vector field on R×Rn in the C1 topology, H(s, y)
also has a normally hyperbolic invariant manifold Ñε which is diffeomorphic to R×N . Since
x(t) = αt ◦ y(t) and since Dαt is bounded, (A.43) for x(t) has a normally hyperbolic invariant
manifold N̂ε which is diffeomorphic to R ×N in (t, x) space.

Since (A.43) is autonomous, the manifold N̂ε must be straight along the time axis (see
Figure 4). Consequently, (A.43) has a normally hyperbolic invariant manifold on Rn which is
diffeomorphic to N .

Figure 4. The case that Rk(x) has an invariant circle. In this case, the flows of (A.48) and (A.43) have
invariant cylinders in the (t, x) space.

Let A(t) be a solution of the mth order RG equation (A.34) for (A.1), and define the curve
x̃(t) to be

(A.49) x̃(t) := αt(A(t)) = X(t)A(t) + εh
(1)
t (A(t)) + · · · + εmh

(m)
t (A(t)).

Then, x̃(t) is an integral curve of the approximate vector field Fε(t, x) defined by (A.37), and
it gives an approximate solution for (A.1).

Theorem A.8. There exist positive constants ε0, C, T and a compact subset V = V (ε) ⊂ Rn

including the origin such that for all |ε| < ε0, every solution x(t) of (A.1) and x̃(t) defined
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by (A.49) with x(0) = x̃(0) ∈ V satisfies the inequality

(A.50) ||x(t) − x̃(t)|| < Cεm for 0 ≤ t ≤ T/ε.

Proof of Theorem A.8. Suppose that ||x(0)|| < K. At first, we show that there exists
T > 0 such that ||x(t)|| < 2K for 0 ≤ t ≤ T/ε. We rewrite (A.1) as the integral equation

(A.51) x(t) = eFtx(0) + eFt

∫ t

0
e−Fsεg(s, x(s), ε)ds,

where g(t, x, ε) := g1(t, x) + εg2(t, x) + · · ·+ εm−1gm(t, x). Choose t ≥ 0 so that ||x(s)|| < 2K
if 0 ≤ s ≤ t. Then, there exists a positive constant K ′ > 0 such that ||g(s, x(s), ε)|| < K ′ and
the inequality

||x(t)|| ≤ ||x(0)|| +
∫ t

0
ε||g(s, x(s), ε)||ds

≤ K +

∫ t

0
εK ′ds = K

(
1 +

K ′

K
εt

)
holds. When 0 ≤ t ≤ K/(K ′ε), we have ||x(t)|| < 2K so that we put T := K/K ′ for the
existence of T .

By Theorem A.6, an approximate solution x̃(t) satisfies an ODE

(A.52) ˙̃x(t) = Fε(t, x̃) = Fx̃ + εg1(t, x̃) + · · · + εmgm(t, x̃) + εm+1F̃ε(t, x̃).

Fix a positive number K such that the closed ball B2K of radius 2K centered at the origin
is included in the open set αt(U), where U is an open set on which αt is a diffeomorphism.
Then, we can verify that ||x̃(t)|| < 2K if ||x̃(0)|| < K and if 0 ≤ t ≤ T/ε in the same way as
above.

For x(t) and x̃(t) such that x(0) = x̃(0), ||x(0)|| < K, we put ξ(t) = α−1
t ◦ x(t), η(t) =

α−1
t ◦ x̃(t). They satisfy respective ODEs

ξ̇(t) = εR1(ξ) + ε2R2(ξ) + · · · + εmRm(ξ) + εm+1G̃ε(t, ξ),(A.53)

η̇(t) = εR1(η) + ε2R2(η) + · · · + εmRm(η),(A.54)

where G̃ε is a smooth function which is bounded uniformly in t ∈ R and bounded as ε → 0
for each ξ ∈ Rn. Let W be the image of the closed ball B2k under the map α−1

t . Then ξ(t)
and η(t) are sitting in the compact set W if 0 ≤ t ≤ T/ε. Let L1 > 0 be a Lipschitz constant
for R1(ξ) + εR2(ξ) + · · · + εm−1Rm(ξ) on W and suppose that supt∈R, ξ∈W ||G̃ε(t, ξ)|| < L2.
Then, for 0 ≤ t ≤ T/ε, the inequality

(A.55) ||ξ(t) − η(t)|| ≤ εL1

∫ t

0
||ξ(s) − η(s)||ds + εm+1L2t

holds. Then, the Gronwall inequality implies that

(A.56) ||ξ(t) − η(t)|| ≤ L2

L1
εm(eεL1t − 1) ≤ L2

L1
εm(eL1T − 1), 0 ≤ t ≤ T/ε.
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This shows that there exists a positive constant C such that ||x(t) − x̃(t)|| = ||αt ◦ ξ(t) −
αt ◦ η(t)|| ≤ Cεm holds if 0 ≤ t ≤ T/ε.

The next theorem is a simple extension of Propositions 5.1 and 5.2.
Theorem A.9. Consider an autonomous equation (A.43).
(i) If vector fields Fx and g1(x), g2(x), . . . are invariant under the action of a Lie group

G, then the mth order RG equation is also invariant under the action of G.
(ii) The mth order RG equation commutes with the linear vector field Fx with respect to

the Lie bracket product. Equivalently, each Ri(A), i = 1, 2, . . . , satisfies

(A.57) X(t)Ri(A) = Ri(X(t)A), A ∈ Rn.

Proof of Theorem A.9. Recall that Gi in (A.5) is independent of t since (A.43) is autono-
mous.

(i) We prove by induction that Ri(A) and h
(i)
t (A), i = 1, 2, . . . , are invariant under the

action of a Lie group G. Since aX(t)A = X(t)aA and ag1(x) = g1(ax) hold for all a ∈ G,
R1(aA) is brought into the form

R1(aA) = lim
t→∞

1

t

∫ t

X(s)−1G1(X(s)aA)ds

= a lim
t→∞

1

t

∫ t

X(s)−1G1(X(s)A)ds = aR1(A).

And the invariance of h
(1)
t , h

(1)
t (aA) = ah

(1)
t (A), is verified in a similar way. Suppose that

Rk(aA) = aRk(A) and h
(k)
t (aA) = ah

(k)
t (A) hold for k = 1, 2, . . . , i − 1. Then, it is easy to

verify that

(Dh
(k)
t )aA = a(Dh

(k)
t )Aa

−1,(A.58)

Gk(X(t)aA, h
(1)
t (aA), . . . , h

(k−1)
t (aA)) = aGk(X(t)A, h

(1)
t (A), . . . , h

(k−1)
t (A))(A.59)

for k = 1, 2, . . . , i − 1. This and (A.13), (A.14) imply that Ri(aA) = aRi(A) and h
(i)
t (aA) =

ah
(i)
t (A).

(ii) We prove by induction that Ri(X(t)A) = X(t)Ri(A) and h
(i)
t (X(t′)A) = h

(i)
t+t′(A) hold

for i = 1, 2, . . . . For all s′ ∈ R, R1(X(s′)A) takes the form

R1(X(s′)A) = lim
t→∞

1

t

∫ t

X(s)−1G1(X(s)X(s′)A)ds

= X(s′) lim
t→∞

1

t

∫ t

X(s + s′)−1G1(X(s + s′)A)ds.

Putting s + s′ = s′′, we verify that

R1(X(s′)A) = X(s′) lim
t→∞

1

t

∫ t+s′

X(s′′)−1G1(X(s′′)A)ds′′

= X(s′)R1(A) + X(s′) lim
t→∞

1

t

∫ t+s′

t
X(s′′)−1G1(X(s′′)A)ds′′

= X(s′)R1(A).
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Next, h
(1)
t (X(s′)A) is calculated as

h
(1)
t (X(s′)A) = X(t)

∫ t (
X(s)−1G1(X(s)X(s′)A) −R1(X(s′)A)

)
ds

= X(t)X(s′)

∫ t (
X(s′)−1X(s)−1G1(X(s)X(s′)A) −R1(A)

)
ds

= X(t + s′)

∫ t (
X(s + s′)−1G1(X(s + s′)A) −R1(A)

)
ds.

Putting s + s′ = s′′ provides

(A.60) h
(1)
t (X(s′)A) = X(t + s′)

∫ t+s′ (
X(s′′)−1G1(X(s′′)A) −R1(A)

)
ds′′ = h

(1)
t+s′(A).

Suppose that Rk(X(t)A) = X(t)Ri(A) and h
(k)
t (X(t′)A) = h

(k)
t+t′(A) hold for k = 1, 2, . . . , i−1.

Then, Ri(X(s′)A) is calculated as

Ri(X(s′)A) = lim
t→∞

1

t

∫ t
(
X(s)−1Gi(X(s)X(s′)A, h(1)

s (X(s′)A), . . . , h(i−1)
s (X(s′)A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )X(s′)ARi−k(X(s′)A)

)
ds

= X(s′) lim
t→∞

1

t

∫ t
(
X(s + s′)−1Gi(X(s + s′)A, h

(1)
s+s′(A), . . . , h

(i−1)
s+s′ (A))

−X(s + s′)−1
i−1∑
k=1

(Dh
(k)
s+s′)ARi−k(A)

)
ds.

Putting s + s′ = s′′ provides

Ri(X(s′)A) = X(s′) lim
t→∞

1

t

∫ t+s′
(
X(s′′)−1Gi(X(s′′)A, h

(1)
s′′ (A), . . . , h

(i−1)
s′′ (A))

−X(s′′)−1
i−1∑
k=1

(Dh
(k)
s′′ )ARi−k(A)

)
ds′′

= X(s′)Ri(A) + X(s′) lim
t→∞

1

t

∫ t+s′

t

(
X(s′′)−1Gi(X(s′′)A, h

(1)
s′′ (A), . . . , h

(i−1)
s′′ (A))

−X(s′′)−1
i−1∑
k=1

(Dh
(k)
s′′ )ARi−k(A)

)
ds′′

= X(s′)Ri(A).

We can show that h
(i)
t (X(t′)A) = h

(i)
t+t′(A) in a similar way.
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group method and normal form theory for perturbed ordinary differential equations, Phys. D, 237
(2008), pp. 1029–1052.

[10] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21
(1971), pp. 193–226.

[11] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-
Verlag, New York, 1977.

[12] S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag, New York,
1994.

[13] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math. 377, Springer-Verlag, New
York, 1974.

[14] N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscil-
lations, Gordon and Breach, New York, 1961.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2008 Society for Industrial and Applied Mathematics
Vol. 7, No. 3, pp. 933–961

Stability Analysis of Two-Dimensional Pool-Boiling Systems∗

M. Speetjens†, A. Reusken‡, S. Maier-Paape§, and W. Marquardt¶

Abstract. In this paper we consider a model for pool-boiling systems known from the literature. This model
involves only the temperature distribution within the heater and models the heat exchange with
the boiling medium via a nonlinear boundary condition imposed on the fluid-heater interface. The
model allows multiple homogeneous (i.e., spatially constant) and multiple heterogeneous steady-
state solutions. The structure of this family of steady-state solutions has been studied by means
of a bifurcation analysis in two recent papers by Speetjens, Reusken, and Marquardt [Commun.
Nonlinear Sci. Numer. Simul., 13 (2008), pp. 1475–1494; Commun. Nonlinear Sci. Numer. Simul.,
13 (2008), pp. 1518–1537]. The present study concentrates on stability properties of these steady-
state solutions. To this end, a generic linear and a case-specific nonlinear stability analysis are
performed which show that only the homogeneous steady-state solutions of complete nucleate or
complete film boiling are linearly stable. All heterogeneous steady-state solutions appear linearly
unstable. These stability results are consistent with laboratory observations.

Key words. pool boiling, stability, bifurcation analysis, numerical simulation

AMS subject classifications. 35K05, 47J35, 35B35, 35B41, 37M05

DOI. 10.1137/070706823

1. Introduction. Pool boiling refers to boiling processes that lean on natural convection
as a means for heat transfer through the boiling medium and is the key mode of thermal
transport in many practical applications. Local heat-transfer phenomena near heating walls
in industrial boiling equipment (e.g., evaporators and kettle reboilers) are essentially pool-
boiling processes [3]. Furthermore, pool boiling is emerging as a novel cooling technique for
electronics components [4]. Despite its importance, many aspects of (pool) boiling remain
largely unexplored to date, mainly due to the immense complexity of the process induced by
the intricate interplay between hydro- and thermodynamics. Studies on boiling known in the
literature are mainly experimental and empirical. Theoretical investigations of fundamental
phenomena in pool boiling, on the other hand, are scarce. This is the primary motivation for
our recent studies, reported in [1] and [2], as well as for the follow-up study presented in this
paper.
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The central topic of the present study is the stability behavior of pool-boiling systems.
Laboratory experiments indicate that, without active control, pool-boiling systems allow only
two stable steady-state solutions, namely nucleate boiling and film boiling [5, 6, 7, 8]. Other
states belong to the transition-boiling regime and are inherently unstable. Nucleate boiling
is, as opposed to film boiling, an efficient and safe mode of heat transfer and the sought-after
boiling mode in most practical applications [9]. However, for typical operating conditions, the
system admits both nucleate boiling and film boiling as steady states [1], and, consequently,
the stable state eventually attained by the system is a priori unclear. Whether a given unstable
state in the transition-boiling regime evolves towards either the nucleate-boiling or the film-
boiling state is of major practical importance, though. This is intimately related to the
stability properties of boiling states. Stability analyses of pool-boiling systems are hitherto
restricted to highly idealized models such as, for instance, heated wires [10, 11, 12], heated
foils [13], heated cylinders with homogeneous boiling conditions [14, 15], and rectangular
“thick” heaters with artificial heterogeneous boiling conditions [13]. Similar studies for more
sophisticated models including both realistic heater geometries and realistic heterogeneous
boiling conditions are not known in the literature. This is the impetus for the study presented
in this paper.

The stability analysis in this paper concerns the stability properties of the multiple hetero-
geneous boiling states that have been found in [1] for a spatially two-dimensional (2D) heater.
Key to the modelling approach is the phenomenological connection between the local state
of aggregation of the boiling medium and the local temperature at the fluid-heater interface
at mesoscopic length and time scales:1 “lower” and “higher” temperatures correspond to the
liquid and vapor phases, respectively. This allows a description of the (qualitative) behavior
of the pool-boiling problem entirely in terms of the temperature field within the heater. Thus
the pool-boiling problem is reduced to a heat-transfer problem for the heater with a nonlinear
heat-flux relation at the interface between the heater and the boiling medium. This heater-
only model is based on the approach used in [13, 14]. Section 2 provides a concise description.
Further details can be found in [1].

The nonlinear heat-transfer model resembles nonlinear evolution equations of parabolic
type (e.g., reaction-diffusion and pattern-formation equations) known from mathematical
physics [17, 18]. The dynamics of such systems are typically dominated by a global at-
tractor, consisting of the steady-state solutions and their heteroclinic connections, to which
initial conditions converge if time evolves [18]. Said resemblance suggests that the pool-boiling
model may exhibit similar dynamical behavior. However, in the pool-boiling model the non-
linearity of the problem is due to the nonlinear heat-flux condition at the heater-fluid interface
and is not due to a nonlinearity in the partial differential equation itself as in “conventional”
nonlinear parabolic evolution equations. Thus the concepts known for the latter problem
class cannot be applied directly to the pool-boiling problem. We are unaware of rigorous
mathematical studies on, e.g., existence, smoothness, and asymptotic stability of solutions
of problems involving nonlinear boundary conditions such as our pool-boiling problem. A
rigorous mathematical analysis is beyond the present scope, however. Instead, preliminary

1Here mesoscopic means locally averaged in space and time over intervals larger than bubble dimensions
and bubble lifetimes in order to smooth out microscopic short-term fluctuations [16].
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results are given that indicate the existence of a global attractor consisting of steady-state
solutions and their heteroclinic connections (section 3.1). This strongly suggests dynamical
behavior akin to that of “conventional” nonlinear evolution equations and justifies a study on
the existence of (multiple) steady-state solutions and their stability properties.

The set of steady-state solutions of the 2D boiling problem has been studied extensively
in [1]; an extension to the three-dimensional (3D) case is given in [2]. The present study
investigates the stability properties of these steady states by a linear stability analysis. This
analysis hinges on linearization of the nonlinear problem at a given steady-state solution.
Treatment of the resulting linearized model with a separation-of-variables technique results in
a linear eigenvalue problem that governs the eigenmodes and corresponding eigenvalues (i.e.,
temporal growth rates) of steady-state solutions (section 3.2.1). Analysis of this eigenvalue
problem yields generic stability properties (section 3.2.2). The eigenmodes and eigenvalues of a
given steady state can be computed (approximately) using a Fourier-collocation discretization
method (section 3.2.3). The generic linear stability analysis and the eigenmode decomposition
are demonstrated for a representative set of steady-state solutions (section 4.1). A brief
recapitulation of steady-state solutions determined in [1] is given in section 3.3. Numerical
simulation of the nonlinear evolution of linearly unstable steady states is performed by a
spectral algorithm. These simulations validate the linear analysis and yield first insight into
the nonlinear (in)stability behavior (section 4.2). Conclusions are drawn in section 5.

2. Model problem. The stability of pool-boiling systems is investigated in terms of a
model problem considered in [1]. An extensive discussion and motivation of this model is pro-
vided in that paper. Here we restrict ourselves to a concise description of the nondimensional
formulation of this model.

We consider the heat transfer within the 2D rectangular heater D := [0, 1] × [0, D] (Fig-
ure 1(a)). Its boundary is given by Γ = ∂D = ΓH ∪ ΓA ∪ ΓF and comprises the boundary
segments ΓH : y = 0 (constant heat supply), ΓA: x = 0, 1 (adiabatic sidewalls), and ΓF : y = D
(nonconstant heat extraction by boiling process). The heat transfer within D is modeled by

∂T

∂t
= κ∇2T in D × [0, tend],

T (x, 0) = T0(x) for x := (x, y) ∈ D,(2.1)

∂T

∂ν
= g(x, T ) on Γ,

with ν the outward normal of Γ. The boundary condition on Γ introduces a nonlinearity due
to the dependence of g on T (x,D, t) =: TF (x, t). Note that TF denotes the value of T at the
fluid-heater interface ΓF . The function g is given by

(2.2) g(x, Z) =

⎧⎨
⎩

0 for x = 0 or x = 1,
1/Λ for y = 0,

−Π1 qF (Z; Π2,Π3)/Λ for y = D.

The function T = T (x, t) is the nondimensional temperature excess (i.e., the temperature
relative to the boiling point of the medium). System parameters are D (aspect ratio of the
heater), Λ (nondimensional thermal conductivity), κ (nondimensional thermal diffusivity),



936 SPEETJENS, REUSKEN, MAIER-PAAPE, AND MARQUARDT

Π2
qF

10 1

D

x

y

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

T
F

q
F

(a) Heater configuration. (b) Heat-flux function.

T (x, t)

Figure 1. Nondimensional model problem: (a) heater configuration and (b) heat-flux function qF . The
dashed line represents the normalized heat supply Π−1

1 .

and Π1 (nondimensional critical heat flux of boiling process), all of which are positive. The
nonlinear heat-flux function qF (·; Π2,Π3) accounts for the heat exchange between the heater
and the boiling medium. This function is specified in the appendix and introduces two further
control parameters, viz. Π2 and Π3, resulting in a total of six parameters. However, physical
considerations suggest ΛD/κ = |1−Π1|, and thus the model contains five independent control
parameters.

Physical considerations further suggest that the heat-flux function qF , which describes the
local heat exchange between fluid and heater, should be qualitatively similar to the so-called
boiling curve. The latter describes the global heat exchange between fluid and heater obtained
via averaging over the fluid-heater interface ΓF . Therefore, as before [1] we use a heat-flux
function schematically shown in Figure 1(b), which has the typical shape of a boiling curve;
see the appendix for an explicit expression. The heat-flux function is parameterized by Π2

(ratio of extremal heat fluxes) and Π3 (ratio of extremal temperatures) and consists of three
distinct regimes that correspond to one of the local boiling modes and associated mesoscopic
states: nucleate boiling (left of local maximum; fluid-rich state); transition boiling (in between
both extrema; transitional state); film boiling (right of local minimum; vapor-rich state).2

Important to note is that, despite being of the same shape, imposition of the heat-flux
function qF on the fluid-heater interface ΓF is not equivalent to imposition of the boiling curve
on ΓF . Heat-flux function qF describes the local heat flux as a function of the local interface
temperature and holds for both homogeneous and heterogeneous interface states. The boiling
curve, on the other hand, describes the mean heat flux as a function of the mean interface
temperature and strictly holds only for homogeneous interface states. (Homogeneous states
satisfying qF automatically satisfy the boiling curve and form a subset of the total set of
solutions to the proposed model.) The local nature of qF is essential for the present model to
admit the (multiple) heterogeneous boiling states that characterize physical boiling systems.

3. Unsteady pool-boiling problem: Generic analysis. The nonlinear heat-transfer model
(2.1) bears resemblance to nonlinear parabolic problems known from mathematical phys-
ics [18]. However, a fundamental difference is that in the heat-transfer model (2.1) the nonlin-
earity resides in the boundary condition rather than in the partial differential equation itself.

2Further physical background for this heater-only model is given by [1].
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This is a direct consequence of the finite thickness (D > 0) of the present heater configu-
ration and distinguishes our problem from “thin” (D → 0) configurations. For vanishing D
the model reduces to a partial differential equation with a nonlinear source term (see, e.g.,
[13]), and generic concepts for the analysis of parabolic systems—in particular of the reaction-
diffusion type [17]—can be applied. Examples of such approaches to pool-boiling systems are
in [10, 11, 12, 13].

Rather than providing a rigorous mathematical analysis, which is beyond the present
scope, in this section we indicate that concepts similar to those introduced for “conventional”
parabolic evolution equations [18] can be applied to the pool-boiling problem, too. We as-
sume that solutions of the pool-boiling problem fulfill all the regularity conditions that admit
application of such concepts. We note that the results of the generic analysis and those of the
case study in section 4 are in good agreement.

3.1. Generic dynamical behavior. The dynamical behavior of an evolutionary (parabolic)
system is commonly investigated based on its corresponding weak formulation [18]. We use
the Sobolev space H1(D) and the notation

(u, v)L2(D) :=

∫
D
uv dx dy, B(T, ϕ) :=

∫
D
∇T · ∇ϕdx dy.

For the heat-transfer problem (2.1) the weak formulation is as follows: find u = u(t) = T (·, t) ∈
H1(D) with du(t)

dt ∈ L2(D) such that

(3.1)

(
du(t)

dt
, ϕ

)
L2(D)

=

∫
∂D

g(x, u)ϕdσ − κB(u, ϕ) for all ϕ ∈ H1(D).

If a solution u of (3.1) is sufficiently smooth, it clearly provides an L2-solution of (2.1).
Conversely, regular solutions to (2.1) naturally are solutions to (3.1).

The weak formulation describes the evolution of the system from its initial state u(0) to
its current state u(t); i.e., u(t) = Φt(u(0)) defines a flow. Thus the weak formulation (3.1)
defines a dynamical system for the weak solution u(t). Existence and uniqueness of a solution
of (3.1) depend on smoothness and growth properties of g. This topic is not studied in the
present paper. We assume that g is such that the following property holds.

Property 1. System (3.1) results in a global semiflow: Φt : H1(D) → H1(D), t ∈ [0,∞).

The dynamical system (3.1) has a gradient structure; i.e., the functional E : H1(D) → R,

(3.2) E(u) :=
κ

2
B(u, u) −

∫
∂D

G(x, u) dσ,

with G(x, u) such that DuG(x, u) = g(x, u), defines an energy or Lyapunov function for
the solutions u of (3.1). Under certain smoothness and growth assumptions on g we have
DE(u) ∈ L

(
H1(D),R

)
and

(3.3) DE(u)[ϕ] = κB(u, ϕ) −
∫
∂D

g(x, u)ϕdσ for all u, ϕ ∈ H1(D).
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Along a solution curve u(t) of (3.1) the energy E decays monotonically in time:

(3.4)
d

dt
[E(u(t))] = DE(u)

[
du

dt

]
= −

(
du

dt
,
du

dt

)
L2(D)

≤ 0,

with equality (for a range of t-values) only if u(t) = T (·, t) = T∞(·) is a steady-state solution.
This property implies a loss of energy of solutions u(t) = T (·, t) with progressing time. This
already provides important information on the long-term dynamical behavior, namely that
for any initial condition u0 the corresponding solution converges to a steady-state solution.

Our case study for the pool-boiling problem further indicates the existence of a global
attractor A for the semiflow Φ·, i.e., a strictly positive invariant subset of H1(D), which is
compact and attracts all bounded subsets of H1(D) (cf. [18], Definition I. 1.3). We assume
the following property to guarantee this existence.

Property 2. Assume that the global semiflow Φ· generated by (3.1) has some compactness
property, e.g., in the sense of [18, Theorem I. 1.12 or I. 1.13], and further assume the existence
of a bounded set M ⊂ H1(D), which attracts all bounded sets in H1(D).

In order to elucidate the consequences of the above properties we introduce the following
notation. Let E be the set of equilibria:

E =
{
u ∈ H1(D) : Φt(u) = u for all t ≥ 0

}
.

For u0, v0 ∈ E let C(u0, v0) be the set of heteroclinic connections between u0 and v0, i.e., all full
orbits that approach u0 as t → −∞ and v0 as t → ∞. Using these notions we can formulate
the following result.

Theorem 3.1. We assume Properties 1 and 2. Then the semiflow Φ· possesses a global
compact attractor A. This global attractor equals the unstable set of E; i.e., it consists of full
orbits which approach the set of steady-state solutions for t → −∞. If, furthermore, E is
discrete, then the global attractor consists of steady-state solutions u(t) = T (·, t) = T∞(·) ∈
H1(D) of (3.1), i.e.,

(3.5) κB(T∞, ϕ) =

∫
∂D

g(x, T∞)ϕdσ for all ϕ ∈ H1(D),

and their heteroclinic connections

(3.6) A =

⎛
⎝ ⋃

u0∈E
{u0}

⎞
⎠ ∪

⋃
u0,v0∈E

C(u0, v0).

Proof. [18, Theorems I.1.1 and VII.4.1].
In general, unstable steady-state solutions u0 have a stable manifold Ms(u0) = {w ∈

H1(D) : Φt(w) → u0 for t → ∞} with a finite nonzero codimension. Therefore it is most
likely for a generic initial condition u0 to lie in the stable manifold of a stable equilibrium
g ∈ E . Hence in realistic systems due to physical imperfections as well as numerical simulations
due to rounding errors the evolution process basically always converges towards a stable steady
state.
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Isolation of the global attractor of the boiling problem requires identification of its steady-
state solutions and determination of the corresponding stability properties. The steady-state
solutions have been studied extensively in [1]; a brief recapitulation is given in section 3.3.
The present paper concerns the corresponding stability properties. Section 3.2 gives a generic
linear stability analysis; section 4 demonstrates and validates this linear analysis by way of
numerical simulation of the nonlinear evolution of unstable steady-state solutions. This also
offers first insight into the nonlinear stability behavior of the system. Moreover, it may enable
a more detailed investigation of the structure of the attractor by the approach proposed in [19]
along the lines of the analysis of the Cahn–Hilliard equation in [20] and [21].

3.2. Linear stability analysis of steady-state solutions.

3.2.1. Linearized heat-transfer model. The stability analysis of steady-state solutions
that we present is based on the linear theory of stability; cf. [22, section I.6]. To determine
stability of a steady-state solution T∞(x), one subjects this steady-state solution to a small
initial perturbation v0(x) = v(x, 0). We assume that for the nonlinear problem (2.1) the
principle of linearized stability holds (cf. [23]); i.e., solutions of the nonlinear problem in a
neighborhood of a steady-state solution T∞ and of the linearized problem (linearization at
T∞) have the same qualitative behavior. This assumption justifies the analysis of stability
properties of the nonlinear problem by means of a stability analysis of the linearized problem.
In this paper, unless stated otherwise explicitly, the notions stable and unstable are always
meant in the sense of this linear theory of stability.

For the stability analysis we introduce the linearization of (2.1). Let T∞(x) be a regular
steady-state solution of (2.1); i.e., T∞ satisfies the following Laplace equation with a nonlinear
Neumann boundary condition:

(3.7) ∇2T∞ = 0 in D,
∂T∞
∂ν

= g(x, T∞) on Γ = ∂D

(g as in (2.2)). Properties of the nonlinear steady-state problem (3.7) are derived in [1] and
summarized in section 3.3. The corresponding linearized problem at T∞ for the perturbation
v(x, t) induced by an initial perturbation v0(x) is given by

∂v

∂t
= κ∇2v in D × [0, tend],

v(x, 0) = v0(x) for x ∈ D,(3.8)

∂v

∂ν
= f(x)v on Γ.

The Neumann boundary condition is given by

(3.9) f(x) =

{
0 on Γ \ ΓF ,

−γ(x) on ΓF ,

with

(3.10) γ(x) =
Π1

Λ

dqF
dZ

(TF,∞(x)) , x ∈ [0, 1],
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where TF,∞(x) := T∞(x,D) is the steady-state temperature profile at the fluid-heater interface
ΓF . Thus the original nonlinear condition on ΓF simplifies to a standard linear Neumann
condition with an x-dependent coefficient determined by the interface temperature TF,∞(x)
of the steady-state solution.

As ansatz (based on separation of variables) we seek solutions of (3.8) of the form

(3.11) v(x, t) = e−κμtψ(x).

Substitution of (3.11) into (3.8) leads to the following linear elliptic eigenvalue problem for ψ:

∇2ψ + μψ = 0 in D,(3.12)

∂ψ

∂ν
= 0 on Γ \ ΓF ,(3.13)

∂ψ

∂ν
+ γ(x)ψ = 0 on ΓF .(3.14)

The weak formulation of this eigenvalue problem is as follows: determine μn ∈ R, ψn ∈ H1(D)
such that

(3.15) −B(ψn, ϕ) −
∫

ΓF

γ ψn ϕdσ + μn

∫
D
ψn ϕdx dy = 0 for all ϕ ∈ H1(D).

The eigenpairs that solve this problem are denoted by (μn, ψn), n = 1, 2, . . . . The eigenfunc-
tions are scaled such that ‖ψn‖L2(D) = 1. Whether, for generic γ (e.g., γ ∈ L∞(ΓF )), the
eigenfunctions (ψn)n≥1 form a complete orthogonal basis of L2(D) is an open question. We
do not study this topic in the present paper. Instead, we assume that these eigenfunctions
span a space that is sufficiently large such that it makes sense to restrict the choice of the
initial perturbations v0(x) to this space. We obtain the following representation for the unique
solution v of (3.8) induced by an initial perturbation v0 ∈ span{ψn | n ≥ 1}:

Let v0(x) =

∞∑
k=0

ηkψk, with ηk = (v0, ψk)L2(D);(3.16)

then v(x, t) =

∞∑
k=1

ηke
−κμktψk(x).(3.17)

Note that the eigenvalues μk depend (via γ) on T∞ yet not on the perturbation v0.

Representation (3.17) implies that the steady-state solution T∞ of (2.1) is linearly stable
w.r.t. all perturbations of the form (3.16) if all μk are nonnegative. Conversely, T∞ is an
unstable steady-state solution if at least one μk is negative. Relation (3.15), in turn, implies
that μk ≥ 0 for all k if γ ≥ 0. Thus it follows that γ ≥ 0 on the fluid-heater interface ΓF is a
sufficient condition for linear stability of the steady-state solution.

3.2.2. Analysis of the eigenvalue problem. The stability properties of steady-state so-
lutions T∞ of (2.1) are directly related to the eigenvalues of problem (3.12)–(3.14). In this
section we study this eigenvalue problem.
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We use an approach based on Fourier analysis. First, for a fixed μ ∈ R we consider the
problem (3.12)–(3.13) and apply separation of variables to construct bivariate Fourier modes
that satisfy (3.12)–(3.13). Let φ(x) = α(x)β(y). An elementary computation shows that
c α(x)β(y), c ∈ R \ {0}, solves (3.12)–(3.13) if and only if

α(x) = cos(nπx), β(y) = cosh
(√

(nπ)2 − μ y
)
, n = 0, 1, 2, . . . .

Note that for z < 0 we have cosh(
√
z) = cosh(i

√
|z|) = cos(

√
|z|). We now make the ansatz

that the whole solution space of (3.12)–(3.13) is obtained by superposition of these Fourier
modes; i.e., all solutions of (3.12)–(3.13) lie in the space

Sμ :=

{
ψ(x) =

∞∑
n=0

An cos(nπx) cosh(
√
αn,μ y), An ∈ R, αn,μ := (nπ)2 − μ

}
.

If we take the boundary condition (3.14) into account, then the solutions of (3.12)–(3.14) form
a subspace of Sμ. A function φ(x) =

∑∞
n=0 An cos(nπx) cosh(

√
αn,μ y) ∈ Sμ solves (3.14) if

and only if

(3.18)
∞∑
n=0

An
√
αn,μ sinh(

√
αn,μD) cos(nπx) + γ(x)φ(x,D) = 0 for all x ∈ [0, 1].

Thus the problem of finding the eigenvalues of (3.12)–(3.14) is transformed to the problem
of finding μ such that (3.18) has a nontrivial solution φF (x) := φ(x,D). Note that the latter
problem is spatially one-dimensional (1D). Furthermore, for z < 0 we have

√
z sinh(

√
z) =

−
√

|z| sin(
√
|z|), and thus for all αn,μ ∈ R (3.18) is real. We will solve this equation using a

univariate Fourier analysis. To this end some notation is introduced. Let F : L2([0, 1]) → �2

be the Fourier transform:

F
( ∞∑

n=0

cn cos(nπ· )
)

= (cn)n≥0.

For c,d ∈ �2 the elementwise multiplication is denoted by c ∗ d = (cndn)n≥0. Furthermore,
we write for φ ∈ Sμ restricted to fluid-heater interface ΓF

φF (x) := φ(x,D) =

∞∑
n=0

An cosh(
√
αn,μD) cos(nπx) =

∞∑
n=0

φ̃n cos(nπx),

φ̃n := An cosh(
√
αn,μD).

(3.19)

Using this, (3.18) can be rewritten as follows: find φF (x) =
∑∞

n=0 φ̃n cos(nπx) such that

(3.20)

∞∑
n=0

√
αn,μ tanh(

√
αn,μD)φ̃n cos(nπx) + γ(x)φF (x) = 0 for all x ∈ [0, 1].

For z < 0 we have
√
z tanh(

√
z) = −

√
|z| tan(

√
|z|). Define

dμ ∈ �2, (dμ)n :=
√
αn,μ tanh(

√
αn,μD), n = 0, 1, . . . .
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Then problem (3.20) has the following compact formulation: find φF such that

(3.21) JμφF := F−1
(
dμ ∗ FφF

)
+ γφF = 0.

In this formulation it is implicitly assumed that a solution φF is sufficiently smooth such
that dμ ∗ FφF ∈ range(F). The linear operator Jμ is well defined on a dense subspace of
L2([0, 1]). We are interested in values for μ for which (3.21) has a nontrivial solution φF .
Furthermore, we are interested in the sign of these eigenvalues μ, as they determine the
stability of corresponding steady-state solutions. In the analysis below we distinguish two
cases: constant and nonconstant γ. For γ(x) = γ = constant the relevant properties of μ
can be determined analytically. For the general case of a smooth but not necessarily constant
function γ(x) certain properties can still be derived analytically. However, for full insight we
must resort to discretization of (3.21) and study its properties via numerical computations.
Note that, for brevity, φ hereafter refers to both the full and the boundary solutions; its
meaning readily follows from the context.

Homogeneous temperature on fluid-heater interface: Constant γ. If γ(x) = γ is con-
stant, the following holds.

Theorem 3.2. There exist sequences (z+
k )k∈N with z+

k ∈ [(k − 1)π, (k − 1
2)π), k ≥ 1, and

(z−k )k∈N with z−1 < 0, z−k+1 ∈ [(k − 1
2)π, kπ), k ≥ 1, such that the following holds. If (μ, φ),

with φ = 0, solves (3.21), then μ ∈ (μk,n)k,n∈N with μk,n defined by

μk,n = z+
k + (nπ)2 if γ ≥ 0,(3.22)

μk,n = z−k + (nπ)2 if γ < 0.(3.23)

For all k, n, the pair μ = μk,n, φ(x) = cos(nπx) is a solution of (3.21).
Proof. Note that

F−1
(
dμ ∗ Fφ

)
+ γφ = 0

⇔ dμ ∗ Fφ + γFφ = 0

⇔ for all n : (dμ)n + γ = 0 or φ̃n = (Fφ)n = 0.

Take an n ∈ N such that φ̃n = 0. Then (dμ)n + γ = 0 must hold. We consider the equation

(3.24) μ → (dμ)n + γ =
√
αn,μ tanh

(√
αn,μD

)
+ γ = 0, αn,μ = (nπ)2 − μ.

Thus we look for the roots of the function g(z) :=
√
z tanh(

√
z D) + γ. For z > 0 and γ ≥ 0

the equation g(z) = 0 has no solution. For z > 0 and γ < 0 there is a unique root z∗ > 0.
Define z−1 := −z∗. This induces a corresponding μ1 := z−1 +(nπ)2 that solves (3.24). For z ≤ 0
we have g(z) = −

√
−z tan(

√
−z D) + γ. An elementary analysis shows that for γ ≥ 0 the

equation g(z) = 0 has negative roots z∗ with −z∗ =: z+
k ∈ [(k−1)π, (k− 1

2)π) for k = 1, 2, . . . .
For γ < 0 the equation g(z) = 0 has negative roots z∗ with −z∗ =: z−k+1 ∈ [(k − 1

2)π, kπ) for
k = 1, 2, . . . . Due to −z = −αn,μ = μ − (nπ)2 we obtain corresponding solutions of (3.24):
μk = z+

k + (nπ)2, k = 1, 2, . . . , for the case γ ≥ 0 and μk = z−k + (nπ)2, k = 2, 3, . . . , for the
case γ < 0. Combining the results for the cases z > 0 and z ≤ 0 reveals that all possible roots
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of (3.24) are given by (3.22)–(3.23). If we take φ̃n = 1, φ̃m = 0 for all m = n, then (μk,n, φ)
with φ(x) = cos(nπx) solves (3.21).

Remark 1. Relation (3.22) implies that for the case γ ≥ 0 all eigenvalues μ = μk,n of
(3.12)–(3.14) are positive. Relation (3.23) yields that for the case γ < 0 there always exists
some integer n0 > 0 such that μ1,n < 0 for all 0 ≤ n ≤ n0. Thus Theorem 3.2 describes
the linear stability properties of the pool-boiling problem in case of constant γ. Steady-state
solutions for which γ ≥ 0 holds are linearly stable, whereas steady-state solutions for which
γ < 0 holds are unstable.

Remark 2. Using Theorem 3.2 and the representation (3.19) we obtain that the eigenfunc-
tion corresponding to μ = μk,n is given by φ(x, y) = cos(nπx) cosh(

√
(nπ)2 − μk,n y). Note

that (nπ)2 − μk,n = −z+
k for γ ≥ 0 and (nπ)2 − μk,n = −z−k for γ < 0. Hence, for γ ≥ 0 an

eigenfunction corresponding to μ = μk,n is given by φ(x, y) = cos(nπx) cos(
√

z+
k y), and for

γ < 0 we obtain φ(x, y) = cos(nπx) cosh(
√

−z−1 y) if k = 1 and φ(x, y) = cos(nπx) cos(
√

z−k y)
if k ≥ 2.

Heterogeneous temperature on fluid-heater interface: Nonconstant γ. The linear op-
erator Jμ in (3.21) is symmetric on its domain in L2([0, 1]). This allows a general analysis
using real eigenvalues and energy arguments. We introduce the notation I := [0, 1] and
γmin := minx∈I γ(x). We derive a similar stability condition as before.

Theorem 3.3. Assume that γmin ≥ 0 holds. Then for all solutions (μ, φ) of (3.21), with
φ = 0, we have μ ≥ 0.

Proof. If μ, φ = 0 satisfies (3.21), we attain

(3.25)
(
F−1(dμ ∗ Fφ), φ

)
L2(I)

+ (γφ, φ)L2(I) = 0.

Suppose μ < 0. Then αn,μ = (nπ)2 − μ > 0 for all n, and thus (dμ)n > 0 for all n. This
implies, with cn := ‖cos(nπx)‖L2(I), that

(
F−1(dμ ∗ Fφ), φ

)
L2(I)

=

∞∑
n=0

(dμ)nc
2
nφ̃

2
n > 0.

Combined with (γφ, φ)L2(I) ≥ γmin(φ, φ)L2(I) ≥ 0, this results in a contradiction with
(3.25).

Below we derive properties of eigenvalues μ < 0, i.e., eigenvalues for which corresponding
unstable stationary solutions exist. Due to Theorem 3.3 these exist only if γmin < 0 holds.

Lemma 3.4. Let μ < 0 be such that Jμφ = 0 for a φ = 0; i.e., (3.21) holds. Then μ ∈ [μ∗, 0)
holds, where μ∗ < 0 is the unique solution of

(3.26) λ∗(μ∗) = 0, λ∗(μ) =
√
−μ tanh

(√
−μD

)
+ γmin.

Proof. Due to γmin < 0 relation (3.26) has a unique solution. Through Jμφ = 0 we arrive
at

(3.27)
(
F−1(dμ ∗ Fφ), φ

)
L2(I)

+ (γφ, φ)L2(I) = 0.
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For μ < μ∗ and arbitrary φ = 0 we have(
F−1(dμ ∗ Fφ), φ

)
L2(I)

≥ (dμ)0‖φ‖2
L2(I) =

√
−μ tanh

(√
−μD

)
‖φ‖2

L2(I)

>
√

−μ∗ tanh
(√

−μ∗D
)
‖φ‖2

L2(I)

= γmin‖φ‖2
L2(I) ≥ −(γφ, φ)L2(I).

Hence (3.27) cannot hold for μ < μ∗.
Lemma 3.4 implies that negative eigenvalues must lie in the finite interval μ ∈ [μ∗, 0).

The result in the following theorem characterizes the number of negative eigenvalues in this
interval.

Theorem 3.5. Let μ∗ ≤ μ1 < μ2 < · · · < μs < 0 be all μi such that Jμiφi = 0 for some
φi = 0. Assume that for all i the null space of Jμi is 1D. Let ΣJ be the number of strictly
negative eigenvalues (the “index”) of J0 =: J and assume that for each of these eigenvalues
the corresponding eigenspace is 1D. Then s = ΣJ holds.

Proof. Let λ(μ), v(μ) be an eigenpair of Jμ, i.e., Jμv(μ) = λ(μ)v(μ), with ‖v(μ)‖L2(I) = 1.
This implies that

λ(μ) =
(
λ(μ)v(μ), v(μ)

)
L2(I)

=
(
Jμv(μ), v(μ)

)
L2(I)

.

Differentiation w.r.t. μ is denoted by a prime. Using the symmetry of Jμ we obtain

λ′(μ) =
(
J ′
μv(μ), v(μ)

)
L2(I)

+ 2
(
Jμv(μ), v′(μ)

)
L2(I)

=
(
J ′
μv(μ), v(μ)

)
L2(I)

+ 2λ(μ)
(
v(μ), v′(μ)

)
L2(I)

=
(
J ′
μv(μ), v(μ)

)
L2(I)

.

The last equality follows from differentiation of ‖v(μ)‖2
L2(I) = 1 w.r.t. μ. The linear operator

J ′
μ is given by J ′

μφ = F−1
(
d̂μ ∗ Fφ

)
, with

(d̂μ)n =
d

dμ
(dμ)n =

d

dμ

[√
(nπ)2 − μ tanh(

√
(nπ)2 − μD)

]
.

An elementary computation yields that −c0 ≤ (d̂μ)n < 0 holds, where c0 is a constant inde-
pendent of n and μ. Thus −c0 ≤

(
J ′
μv(μ), v(μ)

)
L2(I)

= λ′(μ) ≤ 0 holds for all μ ≤ 0. This

means that λ(μ) is a decreasing function with a bounded derivative. For Jμiφi = 0, φi = 0
(with a 1D null space), this implies a unique eigenvalue curve λ(μ) which passes through μi,
i.e., λ(μi) = 0. Due to the monotonicity of λ(μ) this curve must intersect the negative y-axis,
resulting in a corresponding negative eigenvalue of J0. This implies s ≤ ΣJ . Conversely, let ξ
be a negative eigenvalue of J0. Then there is a unique eigenvalue curve λ(μ) with λ(0) = ξ.
Due to Lemma 3.4 this curve must intersect the μ-axis in the interval [μ∗, 0). Hence, a unique
corresponding μi ∈ [μ∗, 0) exists such that λ(μi) = 0. This implies ΣJ ≤ s.

From Theorem 3.5 it follows that steady-state solutions with γmin < 0 and ΣJ > 0 are
always unstable. The necessary condition for instability γmin < 0 is satisfied only if the
fluid-heater temperature falls (at least locally) within the transition regime; this implies a
fundamental relation between transition boiling and instability.
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The results of Theorem 3.5 induce a method for computing the number of negative eigen-
values μ ∈ [μ∗, 0). This number equals the number of negative eigenvalues of the operator
J = J0. For the general case of a smooth but nonconstant γ the eigenvalues of Jμ cannot be
determined analytically. Thus we apply a discretization method (section 3.2.3) for numerical
approximation. Using a sufficiently high resolution, this allows us to determine the correct
number of negative eigenvalues (i.e., the same number as for the continuous problem). More-
over, an accurate approximation of the negative continuous eigenvalues can be computed.
The resolution needed is not very high due to the fact that the eigenfunctions corresponding
to the negative eigenvalues are dominated by low-frequency modes. This is explained in the
following remark.

Remark 3. Consider φ with ‖φ‖L2(I) = 1 and ξ < 0 such that Jφ = ξφ. Represent φ in

the cosine basis as φ(x) = c0 +
∑∞

n=1 cn
√

2 cos(nπx) (with ‖φ‖2
L2(I) =

∑∞
n=0 c

2
n = 1). Then(

F−1(d0 ∗ Fφ), φ
)
L2(I)

+ (γφ, φ)L2(I) = ξ(φ, φ)L2(I) < 0

holds, and
∞∑
n=0

c2nnπ tanh(nπ) =
(
F−1(d0 ∗ Fφ), φ

)
L2(I)

= −(γφ, φ)L2(I) ≤ ‖γ‖L∞(I)‖φ‖2
L2(I) = ‖γ‖L∞(I).

Thus cn must become “smaller” for “larger” n, meaning that, in this sense, the eigenfunction
φ is dominated by low-frequency modes.

3.2.3. Discretization method. As explained above, the problem of finding eigenvalues of
(3.12)–(3.14) has been transformed to the problem of finding μ such that (3.21) has a nontrivial
solution. If for some μ an eigenvalue λ(μ) of Jμ equals zero, this μ is an eigenvalue of (3.12)–
(3.14). For a general smooth function γ the eigenvalue curves λ(μ) of the operator Jμ cannot
be determined analytically. We introduce a discretization method that is used to discretize
Jμ and thus determine the eigenvalue curves approximately. We use a Fourier-collocation

method [24]: determine φF (x) :=
∑N

n=0 φ̃n cos(nπx) such that

(3.28)

N∑
n=0

{√αn,μ tanh(
√
αn,μD) + γ(xk)}φ̃n cos(nπxk) = 0 for all 0 ≤ k ≤ N

holds, with xk = k/N , k = 0, . . . , N , the collocation points. Note that this is a discrete version
of the continuous problem in (3.20). The N + 1 equations (3.28) for the N + 1 unknowns φ̃n

can be represented in a compact matrix-vector formulation. To this end we introduce some
notation. Let φ = (φ0, . . . , φN )T be the vector of nodal values φn := φF (xn). The latter relate
to the truncated Fourier spectrum φ̃ = (φ̃0, . . . , φ̃N )T via

(3.29) φ = V φ̃, φ̃ = V −1φ,

with

(3.30) V :=

⎡
⎢⎣ 1 cos(πx0) . . . cos(Nπx0)

...
...

...
1 cos(πxN ) . . . cos(NπxN )

⎤
⎥⎦ = V T .
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The relation

(3.31) V −1 =
2

N
D V D, D = diag

(
1

2
, 1, . . . , 1,

1

2

)

holds; i.e., the matrix
√

2
N V D is orthogonal. Define

Kμ = V KS,μV −1, KS,μ = diag
(√

αn,μD tanh(
√
αn,μD)

)
0≤n≤N

,(3.32)

Q = diag
(
Dγ(xn)

)
0≤n≤N

.(3.33)

Note that KS,μ and Q are both diagonal matrices. The discrete problem (3.28) can be
formulated in matrix-vector form as

(3.34) Jμφ = 0, Jμ := Kμ + Q.

In spectral form this becomes

(3.35) JS,μφ̃ = 0, JS,μ := V −1JμV = KS,μ + QS , QS := V −1QV .

The eigenvalues μ and eigenfunctions φF are approximated by those μ ∈ R and φ ∈ R
N+1 for

which φ is a nontrivial null-vector of Jμ.
Numerical tests for the case study in section 4 revealed that in these (approximate) eigen-

functions, for sufficiently high N , the Fourier coefficients decay exponentially with increasing
wave number n. This is consistent with Remark 3 in that the low-frequency modes are in-
deed dominant. In all our experiments we use a resolution with N = 128. This resolution
allows a correct determination of the number of negative eigenvalues μ as well as an accurate
approximation of their numerical value.

3.3. Steady-state solutions. A detailed analysis of the steady-state behavior of the pool-
boiling problem is given in [1]. The approach is in essence similar to that adopted above.
The nonlinear 2D steady-state problem (3.7) is reduced to a 1D boundary model via the
method of separation of variables. This 1D model is solved (approximately) through numerical
approximation with a Fourier-collocation discretization method. The issues relevant in the
present context are summarized below.

Application of separation of variables to (3.7) yields a (formal) representation of the so-
lution of the Laplace equation and the linear Neumann boundary conditions on Γ \ ΓF . This
results in

(3.36) T∞(x, y) =

∞∑
n=0

T̃n
cosh(nπy)

cosh(nπD)
cos(nπx) +

D − y

Λ
,

which can easily be checked by substitution. The coefficients T̃n form the spectrum of the
Fourier cosine expansion

(3.37) TF,∞(x) := T∞(x,D) =

∞∑
n=0

T̃n cos(nπx)
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of the temperature profile at the fluid-heater interface ΓF . These coefficients are determined by
the nonlinear Neumann boundary condition on ΓF . Substitution of (3.36) into the nonlinear
boundary condition on ΓF leads to

(3.38)

∞∑
n=0

nπ tanh(nπD)T̃n cos(nπx) + η(TF,∞(x))TF,∞(x) − 1

Λ
= 0,

for all x ∈ [0, 1], where η(TF ) = Π1
Λ

qF (TF )
TF

is the scaled heat-transfer coefficient. The nonlinear
equation (3.38) is the characteristic equation that determines the particular properties of the
steady-state solutions of (3.7). Note the resemblance to relation (3.20).

The reduced steady-state problem (3.38) admits trivial and nontrivial solutions. Trivial
solutions are homogeneous interface temperatures, for which TF,∞(x) = T̃0 and T̃n = 0 for
n ≥ 1 holds. Then the nonlinear condition (3.38) simplifies to

(3.39) qF (T̃0) = Π−1
1 .

Thus homogeneous solutions coincide with intersection(s) between the heat-flux function qF
and the normalized heat supply given by Π−1

1 (Figure 1(b)). Nontrivial, i.e., heterogeneous,
solutions TF,∞(x) that satisfy (3.38) cannot be determined analytically. However, certain
properties of such solutions (if they exist) can be derived. One important property, proved
in [1], is that such solutions always occur as conjugate pairs

(3.40) TF,∞(x) and T ∗
F,∞(x) := TF,∞(x + 1/k) for a k ∈ N.

This means that if TF,∞(x) is a solution, then (for a certain k ∈ N) the shifted function
TF,∞(x + 1/k) is a solution, too. This implies nonuniqueness of heterogeneous solutions. Ho-
mogeneous steady-state solutions can easily be determined by a standard root-finding method
applied to (3.39). Heterogeneous steady-state solutions are computed (approximately) by us-
ing a Fourier-collocation discretization method, as described in section 3.2.3, applied to (3.38).
This results in a nonlinear system of equations of the form

(3.41) G(T ) :=
(
K + M(T )

)
T − G = 0,

T = (T0, . . . , TN )T , Tn := TF,∞(xn), K = K0, as in (3.32) and

(3.42) M = diag
(
ηn
)
0≤n≤N

, ηn := η(TF,∞(xn)), G = (1/Λ, . . . , 1/Λ)T .

The discrete system (3.41) defines a nonlinear set of equations that is solved by a continuation
procedure. To this end we introduce a parameterized heat-flux function

(3.43) qF (TF ;P ) := CD

(
F1 − PF2H(CDTF − 1)

)
TF , 0 ≤ P ≤ 1

(cf. (A.1)). In this modified heat-flux function the degree of nonlinearity is controlled through
the nonlinearity parameter P . For P = 0 function (3.43) reduces to a linear form; for P = 1
the physical heat-flux qF (TF ) is recovered. This P -dependence of qF induces a P -dependence
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of the matrix M via the function η. This is expressed by the notation MP . The continuation
procedure is applied to the function

(3.44) P → G(T , P ) :=
(
K + MP (T )

)
T − G = 0.

For each P ∈ [0, 1] the set of homogeneous solutions of this system can be easily computed.
Starting on a branch of homogeneous solutions, the continuation algorithm determines (pitch-
fork) bifurcations at which the conjugate solution pairs (3.40) branch off from the homogeneous
branch. An extensive treatment of these bifurcation results is given in [1]. In section 4.1 a
bifurcation diagram for a representative case study is given.

4. Unsteady boiling problem: An illustrative case study. In this section the concepts
introduced above are demonstrated by means of a representative case study. Unless indicated
otherwise, the fixed parameter set Λ = 0.2, D = 0.2, Π2 = 4, Π1 = 2, and Π3 = 0.37 (corre-
sponding with W = 1; see appendix) is used. The steady-state solutions and corresponding
linear stability properties are treated in section 4.1. The nonlinear (long-term) evolution
of perturbed unstable steady-state solutions is investigated in section 4.2 via numerical sim-
ulation of (2.1). These results give a numerical validation of the linear stability analysis
(section 4.1) and provide insight into the nonlinear stability behavior (section 4.2).

4.1. Steady-state solutions and their linear stability properties.

4.1.1. Homogeneous steady-state solutions. Homogeneous solutions are determined
through relation (3.39) and coincide with the intersections between the heat-flux function
qF (solid line) and the normalized heat supply given by Π−1

1 (dashed line) in Figure 1(b).
Three nondegenerate situations can occur:

Regime Π1 > Π2. Relation (3.39) admits one steady-state solution TF,∞ in the
nucleate-boiling regime (Figure 2(a)). The local positive slope of the boiling curve
(q̇F := dqF /dT > 0) implies γ > 0, and thus by Theorem 3.2 we have stability of
TF,∞.
Regime 1 < Π1 < Π2. Relation (3.39) yields three steady-state solutions (Figure 2(b)):

T
(1)
F,∞ (nucleate boiling); T

(2)
F,∞ (transition boiling); T

(3)
F,∞ (film boiling). For T

(1,3)
F,∞ we

have γ > 0 (due to q̇F > 0), and thus by Theorem 3.2 we have stability of these

steady-state solutions. For T
(2)
F,∞ we have q̇F < 0 and thus γ < 0. From Theorem 3.2

we conclude that T
(2)
F,∞ is unstable.

Regime Π1 < 1. Relation (3.39) has one steady-state solution TF,∞ in the film-boiling
regime (Figure 2(c)). From γ > 0 and Theorem 3.2 we conclude that this solution is
stable.

Cases Π1 = Π2 and Π1 = 1 are the degenerate cases through which the system switches
between one and three homogeneous solutions.

4.1.2. Heterogeneous steady-state solutions.

Steady-state behavior. The study of [1] strongly suggests that heterogeneous solution pairs
(3.40) emerge only from pitchfork bifurcations that occur on branches of homogeneous solu-
tions. For homogeneous solutions, T = TF = constant, the Jacobian w.r.t. T of G(T ;P ) is
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(a) Π1 > Π2 (b) 1 < Π1 < Π2 (c) Π1 < 1

Figure 2. Homogeneous steady-state solution(s) as a function of the system parameters Π1 and Π2. The
solutions (dots) coincide with the intersections between the heat-flux function qF (solid lines) and normalized
heat supply Π−1

1 (dashed lines).

given by

(4.1)
∂G(T ;P )

∂T
=: ĴP (T ) = V ΛPV −1, ΛP = diag

(
nπ tanh(nπD) + γP (TF )

)
0≤n≤N

,

with γP (Z) = Π1
Λ

∂qF (Z;P )
∂Z . Note that for P = 1 (i.e., qF (Z; 1) = qF (Z)) this Jacobian is equal

to the matrix J0 in (3.34): Ĵ1 = J0. The origin of this identity lies in the fact that for μ = 0
the linear eigenvalue problem (3.12)–(3.14) (which has a corresponding discrete boundary
operator J0 as in (3.34)) is the same as the linearization of the stationary problem in (3.7)
(which has a corresponding discrete boundary operator Ĵ1 as in (4.1)).

The eigenvalues and corresponding eigenvectors of ĴP are given by

(4.2) λn = nπ tanh(nπD) + γP (TF ), vn = (cos(nπx0), . . . , cos(nπxN ))T , 0 ≤ n ≤ N.

The eigenvector vn coincides with the nth Fourier mode. The Jacobian is singular if one
or more of its eigenvalues λn vanish. Because nπ tanh(nπD) ≥ 0 for all n ≥ 0, this can
happen only if γ(TF ) ≤ 0. Thus a bifurcation on a homogeneous solution branch can occur
only for those TF for which the boiling curve has a negative slope. Only the intersection

T
(2)
F satisfies this criterion. This explains why bifurcations are restricted to the T

(2)
F -branch

in the bifurcation diagram (Figure 3). This implies that bifurcations—and thus multiple
(heterogeneous) solutions—can occur only for surface temperature values in the transition
range of the boiling curve. Figure 3 shows the bifurcation diagram as a function of the
nonlinearity parameter P [1]. The heavy curves are the solution branches corresponding to

the homogeneous solutions T
(1,2,3)
F,∞ . The lower (nearly horizontal) branch coincides with the

intersection T
(1)
F,∞ that exists for all 0 ≤ P ≤ 1; the upper branch, with turning point at PB

(here PB ≈ 0.926), coincides with the two intersections T
(2,3)
F,∞ that exist only in the interval

PB ≤ P ≤ 1. The lower and upper legs of this upper branch (connected at the turning point)

correspond to T
(2)
F,∞ and T

(3)
F,∞, respectively. The solid curves are the heterogeneous solution

branches that originate from pitchfork bifurcations (dots) on the T
(2)
F,∞-branch and from left to

right correspond with the single vanishing eigenvalue λn = 0 for n = 1, 2, 3. The corresponding
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Figure 3. Bifurcation diagram for the nonlinearity parameter P . Heavy curves correspond to homogeneous
solutions; normal curves correspond to heterogeneous solutions. Filled circles represent bifurcations. The left-
most bifurcation is the tangent bifurcation that leads to multiple homogeneous solutions; the bifurcations from
which the heterogeneous branches emerge are pitchfork bifurcations. Included also is the corresponding index
ΣJ (section 4.1.3).

eigenvector vn determines the form of the bifurcating heterogeneous solution and equals the
nth Fourier mode. These heterogeneous solutions that originate from the bifurcation point
corresponding to λn are called “mode-n” solutions. The lower and upper legs in a pitchfork
bifurcation correspond to TF,∞ and its conjugate T ∗

F,∞, respectively; cf. (3.40).
The final states (P = 1) in the bifurcation diagram (Figure 3) correspond to the physically

meaningful steady-state solutions to the boiling problem (2.1). Figure 4 (top row) shows the
boundary profiles TF,∞ associated with the pairs of steady-state mode-n solutions, where solid
and dashed lines indicate TF,∞ and its conjugate T ∗

F,∞, respectively. Figure 4 (bottom row)
gives the profiles of the function γ(x) from (3.10) corresponding to TF,∞.

4.1.3. Qualitative linear stability properties. Theorems 3.3 and 3.5 state that the qual-
itative stability (i.e., stable or unstable) of the heterogeneous mode-n solutions depends on
γmin and the index ΣJ . The boundary profiles (Figure 4) show that for all cases we have
γ < 0—and hence transition boiling—on one or more sections of the boundary ΓF (Figures
4(d)–(f)). This implies that γmin < 0 and thus rules out unconditional stability (Theorem 3.3);
stability properties depend on the quantity ΣJ as defined in Theorem 3.5. We generalize the
definition of ΣJ by defining ΣJ as the P -dependent number of negative eigenvalues of the
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Figure 4. Heterogeneous steady-state (mode-n) solutions of the boiling problem. The top row gives the
boundary profiles TF,∞ (solid) and T ∗

F,∞ (dashed) of the pairs of mode-n solutions. The bottom row gives
coefficient γ corresponding with TF,∞; γ < 0 indicates regions of transition boiling.

Jacobian ĴP from (4.1). The identity Ĵ1 = J0 means that for P = 1 this generalized ΣJ co-
incides with the ΣJ as defined in Theorem 3.5 (provided that the resolution is high enough to
determine the correct number of negative eigenvalues; cf. Remark 3). Thus the linear stability
properties of the steady-state solutions follow directly from the bifurcation analysis visualized
in Figure 3. On the homogeneous branches ΣJ can be easily computed using (4.2). Compu-
tational analysis reveals that on the heterogeneous solution branches no further bifurcations
occur, apart from the pitchfork bifurcation points at the intersection with the homogeneous
branch. Thus ΣJ remains constant along a heterogeneous branch, meaning that ΣJ for P = 1
(the relevant quantity for Theorem 3.5) equals ΣJ at the underlying bifurcation. The value
for ΣJ at P = 1 is computed numerically. The values for ΣJ corresponding with each solution
branch are indicated in Figure 3. For all heterogeneous solutions we have ΣJ > 0 at P = 1,
and, thus, due to Theorem 3.5, all heterogeneous solutions are unstable. Moreover, ΣJ—and
thereby the number of unstable modes (Theorem 3.5)—increases with each bifurcation. In
this sense mode-n solutions become more unstable for higher n. The change of the value of
ΣJ at the bifurcation points and its effect on the linear stability properties are closely related
to the “exchange of stability principle”; cf. [23].

The linear stability analysis shows that the pool-boiling problem is linearly bistable. The

homogeneous nucleate-boiling (T
(1)
F ) and film-boiling (T

(3)
F ) states are the only stable states;

other steady states are always unstable. The bistability implies that the system has two basins

of attraction, associated with the two stable states T
(1)
F and T

(3)
F , divided by a separatrix
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formed by the stable manifolds of the unstable solutions [19].

The bistability established above is entirely consistent with laboratory experiments on
physical boiling systems [6, 25, 26]. The homogeneous nucleate-boiling and film-boiling states
are the only hitherto known stable states of such systems and thus are the only steady-state
solutions that may occur naturally. The bistability admits the boiling system (for specific per-
turbations) to transit from nucleate to film boiling and vice versa via intermediate—and highly
unstable—heterogeneous states. The triggering mechanisms behind such transitions and the
ensuing evolution of the boiling states remain ill understood to date, however. Consequently,
prevention of, in particular, the transition from nucleate to film boiling, or “burnout” [16],
remains the key challenge in industrial boiling processes (section 1). The bistability further-
more implies the absence of stable homogeneous boiling states outside the nucleate-boiling
and film-boiling regimes. This poses formidable challenges for reproducible measurements
of the boiling curve in the transition-boiling regime; namely, boiling conditions are assumed
homogeneous along the entire boiling curve (section 2). Active stabilization of transition boil-
ing during boiling-curve measurements offers a way for attainment of such conditions [27].
However, it appears that accomplishment of homogeneous transition boiling is not always
possible, despite successful stabilization. This significantly complicates boiling-curve mea-
surements, which implicitly assume a homogeneous state.

4.1.4. Quantitative linear stability properties. The unstable heterogeneous solutions de-
velop into essentially unsteady states in the case of some nonzero initial perturbation v0(x).
In practice, such perturbations are always present. Hence, the heterogeneous steady-state
solutions cannot be sustained by the system and must undergo some evolution in time. This
evolution depends largely on the unstable eigenmode(s) ψk(x), i.e., for which the correspond-
ing eigenvalue μk is negative, according to (3.17).

Figure 5 gives the sequence of eigenvalues μ1 < μ2 < · · · corresponding with the mode-n
solutions (n = 1, 2, 3). The number of negative eigenvalues equals n = ΣJ , consistent with the
values of the index ΣJ in Figure 3. Furthermore, the magnitude |μk| of the negative eigenvalues
grows—implying higher growth rates of perturbations—with increasing n. Figure 6 shows
the boundary profiles of the unstable eigenmodes ψk(x), with corresponding μk-values as
indicated, associated with the mode-n solutions. Figure 7 gives the three unstable modes
of the mode-3 solution in the whole domain D. Note that due to the maximum principle
the extrema of ψk occur at the boundary of D. The mode-1 solution has only one unstable
eigenmode. This mode dominates the evolution of the instability, largely independent of the
initial perturbation. The mode-2 and mode-3 solutions have multiple unstable eigenmodes
with associated eigenvalues of comparable magnitude, and, consequently, the space spanned
by these modes has dimension larger than one. Thus the evolution of the instability becomes
essentially dependent upon the initial perturbation and allows a much richer spatial structure
compared to the mode-1 case.

4.1.5. The role of heater properties in the stability behavior. The inherent instability
of transition boiling greatly hampers reliable and reproducible laboratory experiments on
boiling heat transfer under transition conditions. The heater properties are important design
parameters for such transition experiments [14]. Our pool-boiling model enables examination
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of the role of the heater properties in the stability behavior of pool-boiling systems under
representative conditions (i.e., heterogeneous boiling states on realistic heaters) and may thus
be beneficial for the design of laboratory experiments. To this end a short exploratory study,
as a prelude to future work, is given below.

In the present model the heater properties are described by the parameters Λ (thermal
conductivity) and D (heater thickness). In the case study we investigate the changes in stabil-
ity properties of the heterogeneous solutions induced by variation of Λ or D. The instability
is quantified in terms of the eigenvalue μ1 < 0 of the most unstable eigenmode. Figure 8 gives
μ1 as a function of Λ (panel (a)) and D (panel (b)) for the mode-n heterogeneous steady-state

solutions (symbols), the homogeneous transition solution T
(2)
F (with μ1 = z−1 as in Theo-

rem 3.2), and the lower bound μ∗ according to (3.26). The dashed vertical line indicates
the parameter value used in the case study. (The plots actually show −μ so as to facilitate
the logarithmic scale.) Both graphs reveal that the number of mode-n solutions decreases
with both increasing Λ and increasing D. Beyond Λ ≈ 1.2 mode-n solutions have vanished
altogether; beyond D ≈ 0.1 the system settles for three mode-n solutions and effectively be-
comes independent of the heater thickness for D � 0.5. Thus increasing thermal conductivity
and/or the heater thickness promotes homogeneity and uniqueness of boiling states. This is
consistent with results in [1].

In Figure 8(a) one can observe the bifurcation of mode-n profiles from the T
(2)
F -profile

with decreasing thermal conductivity Λ. (For D essentially the same happens. This is less
apparent in Figure 8(b), though.) The instability of the mode-n solutions is stronger (in the

sense that |μ1| increases) for larger n, and T
(2)
F appears to be the most unstable solution.

Physically, this may be explained by the fact that the portion of the interface on which the
temperature is in the transition regime (i.e., where γ < 0) grows with n and is maximal for

the homogeneous state T
(2)
F .
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The mode-n solutions for n > 1 become more unstable (larger |μ1|) for increasing Λ

and/or D. For the homogeneous solution T
(2)
F , on the other hand, this lessens the instability.

For the mode-1 solution |μ1| exhibits a nonmonotonic dependence on Λ and on D. These
observations reveal that the dependence of the stability behavior on changes in the heater
properties is related to the kind of steady-state solution. For the mode-n (n > 1) solutions,
increasing heater thickness D and/or thermal conductivity Λ amplifies instability, whereas for

the homogeneous solution T
(2)
F this dampens instability.

The above results strongly suggest that, despite significant quantitative variations in μ1,
the instability itself remains under all conditions and that, in consequence, the existence
of stable heterogeneous solutions for specific heater properties is therefore highly unlikely.
Laboratory experiments support this assertion (consult [14] for a survey). This consolidates
the widely accepted observation that active stabilization, via, e.g., the methodology by [6],
is essential for detailed experimental studies on homogeneous boiling states in the transition
region and on any heterogeneous boiling state. Moreover, this confirms that the stability
analysis of [28] is erroneous, as already pointed out by [15]. Haramura [28] studied the stability
of homogeneous boiling states on the fluid-heater interface of a 3D heater with constant
heating in the transition boiling regime (i.e., γ < 0) and derived critical conditions for which
the homogeneous boiling state supposedly becomes unstable. These critical conditions are in
contradiction to findings in previous studies (e.g., [14, 8]) as well as to those in the present
study.

4.2. Evolution of perturbed unstable steady-state solutions. The nonlinear long-term
evolution of perturbed unstable steady-state solutions, i.e., the nonlinear (in)stability behav-
ior, can be determined via numerical simulation of (2.1). We used a spectral tau method
based on Fourier (x) and Chebyshev (y) expansion of T (x, t) for spatial discretization in com-
bination with a second-order Crank–Nicolson time-marching scheme [24]. The nonlinearity
on the interface ΓF has been dealt with by Picard iteration [29].

Numerical studies of (2.1) serve two purposes, namely, validation of the linear stability
analysis (section 3.2) and gaining first insight into the nonlinear stability behavior of the pool-
boiling system. These two topics are addressed in section 4.2.1 and section 4.2.2, respectively.

4.2.1. Validation of the linear stability analysis. The spectral scheme proposed above
is used for the numerical simulation of the linearized heat-transfer model (3.8). Tests with
various identical initial conditions v0(x) for each of the steady-state solutions T∞ reveal that
solutions v(x, t) obtained through the linear model (3.8) and the expansion (3.17) coincide
within machine accuracy. This validates the eigenmode decomposition (3.17).

A second issue is a comparison of the evolution of the perturbation v(x, t) in the nonlinear
model (2.1) and in the eigenmode decomposition (3.17). Tests reveal that in both cases the
stability properties are qualitatively the same: heterogeneous steady-state solutions are un-
stable, and the homogeneous nucleate-boiling and film-boiling states are stable. This provides
strong evidence that the pool-boiling system is nonlinearly bistable as well.

Quantitative validation of the linear stability analysis and establishment of a range of va-
lidity of the linear approximation follow from investigation of two representative heterogeneous
cases, namely, the steady-state mode-1 and mode-2 solutions. As initial perturbation we take
v0(x) = εψ1(x), with ε = 0.01 and ψ1 the first eigenfunction (normalized) of (3.12)–(3.14).
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Figure 9. Solutions v(x, t) of the linear approximation (3.11) (heavy lines) and of the nonlinear model
(thin lines) for the mode-1 (panel (a)) and mode-2 (panel (b)) steady-state solutions. Initial perturbation is
v0(x) = 0.01ψ1(x). The curves correspond to time steps Δt = 5 (mode-1) and Δt = 0.5 (mode-2).

Figure 9 shows the profiles at the interface ΓF at several time instances t corresponding with
the solutions to the nonlinear model and the linearized problem. (For the nonlinear model we
give the departure v(x, t) = T (x, t) − T∞(x) from the initial state.) The more pronounced
peaks correspond with more advanced time levels. The results show a good agreement between
linear approximation and nonlinear evolutions for a significant time interval.

4.2.2. Nonlinear stability analysis. The present case study involves the following unstable

steady-state solutions: the homogeneous solution T
(2)
F,∞ in the transition-boiling regime and

the three pairs of mode-n solutions. Perturbations are not imposed explicitly but are due
to rounding errors in the machine representation of the initial condition. This implies a
machine-dependent yet reproducible perturbation. These small perturbations are sufficient to
trigger evolution of the unstable states. We use the functionals TΣ =

∑
n T̃n and K(kΔt) =

‖T
k−T

k−1‖/‖T
k‖, where T

k is the matrix consisting of all coefficients in the discrete Fourier–
Chebyshev series of the solution at t = kΔ, as measures for quantifying the evolution. The
mode-n solutions always occur as pairs (3.40). We consider only one solution of this pair
(lower legs of the heterogeneous branches in Figure 3).

Figure 10(a) demonstrates the dynamical behavior of the system during transition from
unstable to stable steady states via the measure of unsteadiness K(t) for the unstable homo-

geneous solution T
(2)
F,∞. The progression clearly reveals that the evolution of the temperature

field accelerates (i.e., K(t) grows continuously) up to a turning point at t ≈ 6, where the sit-
uation reverses and a deceleration sets in that continues until a stable steady state is reached
at t ≈ 25. (The erratic evolution beyond t ≈ 25 is due to fluctuations around the steady
state at machine-accuracy level.) The mode-n solutions exhibit essentially similar behavior
as that shown in Figure 10(a); differences are entirely quantitative in that turning points and
attainment of stable steady states occur at different instances in time. Figure 10(b) gives the
evolution from unstable to stable steady states in terms of the functional TΣ(t) (split into two

frames.) The unstable homogeneous solution T
(2)
F,∞ and the mode-3 solutions progress towards
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Figure 10. Evolution of perturbed unstable steady-state solutions towards a stable state. Panel (a) shows
the initial acceleration and subsequent deceleration of the evolution with the measure of unsteadiness K(t) for

the unstable homogeneous solution T
(2)
F,∞. Panel (b) gives the progression of the unstable states (as indicated)

towards one of the two stable steady states (dashed lines) in terms of the functional TΣ(t). (Split into two
frames, the right frame concerns only the mode-1 solution.) Only the parent solution TF of each conjugate pair
(3.40) is included.

the stable steady-state solution T
(1)
F,∞ in the nucleate-boiling regime (lower dashed line); the

mode-1 and mode-2 solutions progress towards the stable steady-state solution T
(3)
F,∞ in the

film-boiling regime (upper dashed line). The sharp transitions of the evolutions occur around
the aforementioned turning points and reflect the fact that the changeover from unstable to
stable states happens rather abruptly within a relatively narrow time window. Moreover, this
changeover takes place earlier, suggesting stronger instability, with decreasing length scales of
the heterogeneous features (higher n) of the mode-n solutions. This is in qualitative agreement
with experimental observations [9].

Figure 11 gives the evolutions of the profiles of the interface temperature TF for each of
the unstable steady-state solutions in Figure 10(b) at equidistant time intervals, where the
arrows indicate progression in time. (Time intervals are different for each case and are set
proportional to the duration of the entire evolution.) The heavy dashed profiles correspond
with the intermediate state at the respective turning points; the lower and upper dashed lines
indicate the stable nucleate-boiling and film-boiling states, respectively. The evolution of the
profiles nicely illustrates the progression towards either the nucleate-boiling state (panels (a)
and (d)) or the film-boiling state (panels (b) and (c)). Note that for the unstable homogeneous

case T
(2)
F,∞ (panel (a)) the profile remains homogeneous throughout the evolution. Moreover,

the expansion and subsequent condensation of the profiles before and after the turning point
(heavy dashed lines) demonstrate the initial acceleration and the subsequent deceleration
of the evolution. The acceleration phase of the mode-n solutions is characterized by rapid
smoothing of the heterogeneous features (panels (b)–(d)); during the subsequent deceleration
phase the (approximately) homogeneous intermediate state gradually tends to the ultimate
stable state.

5. Conclusions. In this paper we consider a 2D nonlinear heat-transfer problem as a
model for pool-boiling systems. The model problem involves only the temperature distribu-
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Figure 11. Evolution of the perturbed unstable steady-state solutions (heavy lines) on the interface. Shown
are the progressions of the boundary profiles (equidistant time intervals) towards one of the two stable steady
states. The arrow indicates progression in time. The heavy dashed profiles indicate the intermediate state at
the turning points; the lower and upper dashed lines indicate the stable nucleate-boiling and film-boiling states,
respectively. Only one solution TF of each conjugate pair (3.40) is included.

tion within the heater and models the heat exchange with the boiling medium via a nonlinear
boundary condition imposed at the fluid-heater interface. This results in a linear parabolic
partial differential equation (heat equation) with a nonlinear Neumann boundary condition
at the fluid-heater interface. Important information about the (qualitative) behavior of this
dynamical system can be obtained from its steady-state solutions and the corresponding sta-
bility properties. The steady-state behavior has been studied in [1]. The main topic of the
present study is the corresponding stability behavior. To this end a linear (short-term) and a
nonlinear (long-term) stability analysis are performed.

In the linear stability analysis the linearized heat-transfer model is, by separation of space
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and time, reduced to a nonlinear eigenvalue problem that depends only on the two spatial
variables. Separation of the two spatial variables subsequently leads to a nonlinear spatially
one-dimensional problem for the eigenvalues. Analysis of the latter problem yields generic
stability properties for steady-state solutions. These are demonstrated and validated by nu-
merical simulations in a representative case study. One of the main conclusions is that the
(linearized as well as nonlinear) system is bistable: all steady-state solutions, except the
homogeneous nucleate-boiling and film-boiling states, are inherently unstable. Perturbed
unstable states always progress towards one of these two stable states. Our study further-
more strongly suggests that these stability properties are qualitatively independent of heater
properties (thermal conductivity Λ and thickness D). Changes in heater properties affect the
stability properties of the system only in a quantitative manner. Thus the present study rigor-
ously demonstrates the bistability of pool-boiling systems, which is consistent with laboratory
experiments [6] and other theoretical studies [10, 12, 14, 13].

The numerical simulations for the case study provide evidence that there is a strong
analogy between the nonlinear heat-transfer problem and generic nonlinear parabolic evolu-
tion equations, which typically have a nonlinearity in the partial differential equation. This
analogy suggests the fundamental property that the dynamical behavior of the system is dom-
inated by a global attractor made up of steady-state solutions and corresponding heteroclinic
connections (section 3.1). Both the linear and nonlinear stability behavior that we observe
in the pool-boiling system indicate that this property holds. Although many stability results,
based on both theoretical analysis and numerical experiments, are derived in this paper, a
complete rigorous mathematical analysis of the dynamics of the pool-boiling model is not yet
available.

Recent studies revealed that the steady-state behavior and the mathematical structure of
3D pool-boiling problems is essentially similar to that of the simplified 2D case considered
here [2]. This means that the stability behavior found in the present work in principle extends
to the 3D case. Moreover, the present analysis may form the basis for future research on
active stabilization of unstable heterogeneous boiling states by extending the model with a
temperature-control loop similar to that proposed in [14].

Appendix. Heat-flux function. The heat-flux function qF (Z; Π2,Π3) is given by

(A.1) qF (Z) = h(Z)Z,

with

(A.2) h(Z) = CD {F1 − F2H(CDZ − 1)} , H(ζ) =
1

2

[
tanh

(
2ζ

W

)
+ 1

]
.

The function H(ζ) is a smoothed Heaviside function. The parameter W > 0 controls the
width of the transient (from H = 0 to H = 1) around ζ = 0 and is specified a priori. The
value of W indirectly sets the physical parameter Π3. The coefficient CD rescales the argument
Z such that the single deflection point of qF coincides with Z = 1; i.e., q′′F (1) = 0. Its value
is defined implicitly through

(A.3) 2
dH

dζ
(CD − 1) + CD

d2H

dζ2
(CD − 1) = 0
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and thus depends only on W . It can be shown that qF as in (A.1) possesses a local maximum
and minimum at Zmax < 1 and Zmin > 1, respectively. Introduction of the scaling factors F1

and F2, which scale qF such that the conditions

(A.4) q′F (Zmax) = 0, q′F (Zmin) = 0, qF (Zmax) = 1, qF (Zmin) = Π−1
2

are fulfilled, then results in a heat-flux function that is consistent with the physical boiling
curve. For given Π2 and W the conditions (A.4) result in four nonlinear equations that can
be solved for the four unknowns (F1, F2, Zmin, Zmax).
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Abstract. We accurately compute the golden and silver critical invariant circles of several area-preserving
twist maps of the cylinder. We define some functions related to the invariant circle and to the
dynamics of the map restricted to the circle (for example, the conjugacy between the circle map
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within their numerical accuracy—these regularities are the same for the different maps studied. We
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behavior of the iterates on the critical invariant circle (discovered by Kadanoff and Shenker) and
(b) to some characteristics of the singular invariant measures connected with the distribution of
iterates. Some of the functions studied have pointwise Hölder regularity that has different values
at different points. Our results give convincing numerical support to the fact that the points with
different Hölder exponents of these functions are interspersed in the same way for different maps,
which is a strong indication that the underlying twist maps belong to the same universality class.
In particular, the numerical results on the regularity of the so-called big conjugacies imply that the
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1. Introduction. It has been known since the late 1970s and early 1980s that many objects
at the boundary of chaotic behavior exhibit remarkable scaling properties and that, further-
more, these properties are “universal.” Such properties are exhibited by unimodal maps of
the interval [1, 2] and [3] (reprinted in [59]), critical maps of the circle [4] (reprinted in [59]),
critical KAM tori [5, 6], and other systems. These observations have been explained in terms
of a renormalization group analysis, following a methodology that had been developed ear-
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(reprinted as a book [11]), and [12] (reprinted in [61]).

The scale invariance of the critical objects affects many of their properties. Notably, the
Hölder regularity of the critical objects (or some functions related to them) tends to have a
low and fractional value. Presumably the values of the regularities are related to exponents
and geometric properties of the renormalization group fixed points which describe the critical
objects.

Furthermore, the observation that critical objects can be divided into “universality classes”
such that all objects in a given class “look the same” can be tested numerically. One way to do
this is to define certain functions related to the critical objects—typically these functions are
not very regular (in some cases not even once differentiable)—and to test numerically whether
the regularities of these functions are the same for different objects. Another—even more
sensitive—test for universality is to take two functions, say h1 and h2, from the same class,
and to study the regularity of functions such as H1,2 := h1 ◦ h−1

2 —for h1 and h2 belonging to
the same universality class, one can expect h1 ◦h−1

2 to be more regular than h1 and h−1
2 . From

the fact that H1,2 is more regular than h1 and h−1
2 one can also draw important conclusions

about the pointwise Hölder regularity of the functions hi. If the Hölder regularity of the
functions hi has different values at different points (as in the case we consider), then one can
conclude that the points at which the function h1 has certain values of the pointwise Hölder
exponent are interspersed in the same way as the corresponding points for the function h2

(for more precise statements, see sections 2.6 and 5.3).

The idea of using the regularity of a function as an indicator for the universality class was
tested in [13] in the case of noncritical and critical (with different degree of criticality) circle
maps, in which the empirical results are accompanied by an extensive mathematical theory.
A substantial part of the effort in [13] was to develop implementations of methods known in
harmonic analysis (finite differences, Littlewood–Paley theory, wavelet analysis) to assess the
regularity of the objects numerically.

In the present paper, we extend the methodology of [13] to the study of critical invariant
circles of area-preserving twist maps. Invariant circles in dynamical systems are among the
most important objects that organize the long-term behavior of the system, and the critical
ones are especially important because of their role as “last barriers to chaos” (for readable re-
views see, e.g., [14] or, with more emphasis on the mathematical aspects, the recent book [15]).
Critical invariant circles have been studied extensively since the early 1980s [5, 6, 10, 12].

We accurately compute the golden critical invariant circles of several standard-like area-
preserving twist maps and some functions related to the dynamics of the iterates of the maps
on these circles. Then we apply methods developed in [13] to study the Hölder regularity of
these functions and some universality aspects. We also perform some computations in the
case of critical invariant circles with rotation number equal to the silver mean.

In section 2 we give some background on twist maps and their critical invariant circles,
define the functions that are the objects of our numerical study, and present several precise
conjectures concerning the properties of the critical invariant circles and the functions in-
troduced. Section 3 is devoted to a discussion of the numerical methods used to compute
critical invariant circles and to assess Hölder regularity of functions. We collect our results
in section 4, and in section 5 we discuss their significance and relationship with previous
studies.
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2. Critical invariant circles of twist maps.

2.1. Twist maps. Let T := R/Z stand for the circle. We will be concerned with maps F
of the (infinite) cylinder T × R,

F : T × R → T × R : (θ, r) �→ F (θ, r) =: (θ′, r′) ,

which satisfy the following properties:
• Area preservation. The map F preserves the oriented area: detDF = 1.
• Zero-flux. The oriented area between a homotopically nontrivial circle and its image

under F is 0. (In our situation, this is equivalent to saying that every nontrivial circle
intersects its image.)

• Twist condition. For any fixed value of θ, ∂θ′

∂r > 0.

A map of the cylinder can be identified with a map F̃ : R
2 → R

2 (called a lift of F ) which
satisfies

F̃ (θ + 1, r) = F̃ (θ, r) + (1, 0) .

Often one does not need to keep the distinction.
The maps which we will use in our numerical studies are of the form (θ′, r′) := F (θ, r)

with

θ′ = (θ + r′) mod 1 ,

r′ = r + λV (θ) ,
(2.1)

where λ is a parameter and V : T → R is a function satisfying
∫ 1
0 V (θ) dθ = 0. In particular,

many numerical studies have been devoted to studying (2.1) with

(2.2) V (θ) = − 1

2π
sin 2πθ ,

in which case we will call the map F the Taylor–Chirikov map. In our studies we used six
functions V (given in section 4.1), all of them odd. The fact that the functions V are odd
allows us to use the technique of the symmetry lines described in section 3.1 in order to
compute periodic orbits of F . Of course, one would expect that the same results hold for
any V , not only for odd ones.

Given an orbit X = {(θn, rn) = Fn(θ0, r0) | n = 0, 1, 2, . . .}, we define its rotation number,
ρ(X ), as the limit

ρ(X ) := lim
n→±∞

θ̃n − θ0

n

whenever this limit exists; here θ̃n is the projection to the first argument of the nth iterate of
the point (θ0, r0) under a lift F̃ of F . In contrast to the situation for circle maps, the rotation
number depends on the orbit (and it may happen that some orbits do not have a rotation
number).

We say that an orbit is well-ordered when, for every k and l, the function of n defined as
e(n) = θn+k − l − θn has the same sign. Every well-ordered orbit has a rotation number (the
converse, however, is not true).
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It is also easy to see that if a bounded orbit is well-ordered and ρ(θ0, r0) is irrational, the
closure of the orbit, {(θn, rn)}∞n=0, is a perfect set (i.e., every point is an accumulation point
of points in the set); in other words, in this case the orbit is either a homotopically nontrivial
circle or a Cantor set.

A set U ⊆ T × R is invariant if U = F (U).

The following result plays an important role [15, Chap. 2].

Theorem 2.1. If F is as above, for every ρ ∈ R there exists a well-ordered orbit with
rotation number ρ.

2.2. Invariant circles of twist maps—rigorous results. The proof of the following theo-
rem can be found in [16] (reprinted in [60]) and [17] (reprinted in [61]). We refer to [15] and [18]
for a detailed exposition.

Theorem 2.2. Let U be an open simply connected invariant set containing one of the ends
of the cylinder. Then the boundary, ∂U , of the set U is an invariant circle which is the graph
of a Lipschitz function. In other words, ∂U can be written as r = R(θ), where R : T → R is
a Lipschitz function.

For the map (2.1), the Lipschitz constant of the function R can be bounded by an expression
which involves only the Lipschitz constant of the function F in a neighborhood of the circle ∂U .

In particular, we have the following corollary.

Corollary 2.1. Any homotopically nontrivial invariant circle is the graph of a Lipschitz
function R.

A number ρ is said to be Diophantine if, for each m,n ∈ N \ {0}, for some C > 0, and for
some d > 2, it satisfies ∣∣∣ρ− m

n

∣∣∣ > C

nd
.

In the case when the map F is close to integrable and its rotation number ρ is Diophantine,
one can apply the Kolmogorov–Arnold–Moser theory to obtain that there exists an analytic
invariant circle such that the orbits on it have rotation number ρ.

Golden, respectively, silver, invariant circles are those with rotation number equal to the
golden mean,

(2.3) σG := [1, 1, 1, . . .] =

√
5 − 1

2
,

respectively, to the silver mean, σS := [2, 2, 2, . . . .] =
√

2− 1. Here we have used the notation
ρ = [a1, a2, a3, . . .] = 1/(a1 + 1/(a2 + 1/(a3 + · · · ))) for the continued fraction expansion of
ρ ∈ (0, 1) [19].

There are rigorous results that guarantee the nonexistence of invariant circles of F of the
form (2.1).

Theorem 2.3.
(i) If supθ |λV (θ)| > 1, then (2.1) has no invariant circles.
(ii) If supθ |V ′(θ)| = 1 (which holds for the function (2.2)), then for |λ| > 4

3 the map (2.1)
has no invariant circles.

(iii) For V given by (2.2), the map (2.1) has no golden invariant circles for |λ| > 63
64 =

0.984375 . . . .
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(iv) For V given by (2.2), the map (2.1) has no golden invariant circles for |λ| > 0.9718.
Part (i) of Theorem 2.3 is elementary: if λ supθ |V (θ)| > 1, then there will exist points

(θ∗, r∗) ∈ T×R such that F (θ∗, r∗) = (θ∗, r∗+1), which, when iterated, gives that Fn(θ∗, r∗) =
(θ∗, r∗+n)—the unbounded growth of the second coordinate of Fn(θ∗, r∗) with n implies that
a topologically nontrivial invariant circle cannot exist. (These orbits are called “Chirikov
accelerator modes” [20].)

Part (ii) can be found in [17], and parts (iii) and (iv) are proved by computer-assisted
methods in [21] and [22], respectively.

It is widely believed that the following conjecture holds.
Conjecture 2.1. For a Diophantine number ρ and for a map F of the form (2.1), there is a

number Λ(ρ) such that when |λ| > Λ(ρ), there is no invariant circle with rotation number ρ,
and when |λ| < Λ(ρ), there exists an analytic invariant circle with rotation number ρ. The
invariant circle becomes critical when |λ| = Λ(ρ).

Since our paper is devoted to homotopically nontrivial invariant circles, we will usually
omit the words “homotopically nontrivial.”

2.3. Functions related to the critical invariant circles. We are interested in describing
the critical invariant circles with rotation number ρ which are in the boundary of existence.
Postponing for the moment issues about how these objects can actually be computed, we
point out that, to a given critical invariant circle γ of rotation number ρ, we can associate

• the function R : T → R such that the critical invariant circle γ is the graph of R:

(2.4) γ = {(θ, r) ∈ T × R : r = R(θ)} ;

• the advance map g : T → T defined by

(2.5) F (θ,R(θ)) = (g(θ), R ◦ g(θ)) ;

• the hull map Ψ : T → T × R, which gives a representation of the invariant circle γ in
such a way that the dynamics on γ becomes a rotation by ρ, i.e.,

(2.6) F ◦ Ψ(θ) = Ψ(θ + ρ) ;

• the map h = π1 ◦ Ψ : T → T (where π1 : T × R → T is the projection onto T), which
conjugates the advance map to a rotation by ρ:

(2.7) g ◦ h(θ) = h(θ + ρ) ;

• the map h−1 : T → T, which is the inverse of the map h defined in (2.7).
We note the following rigorous results.
Theorem 2.2 guarantees that the function R is Lipschitz. It is an easy consequence of

the implicit function theorem that g should be as regular as R. Nevertheless, it is useful
to compute the regularities of both g and R independently to assess the reliability of the
numerical methods used.

Because of (2.7), it is clear that the regularity of g is not smaller than the minimum of
the regularities of h and h−1.
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2.4. The “big” conjugacies. Let ρ be a Diophantine number, Fi (i = 1, 2) be area-
preserving twist maps, and γi be the critical invariant circle of Fi with rotation number ρ.
Let gγi and hγi be the associated advance map (2.5) and conjugacy (2.7), respectively. We
introduce the conjugating functions

Gγ1,γ2 := gγ1 ◦ g−1
γ2

: T → T ,

Hγ1,γ2 := hγ1 ◦ h−1
γ2

: T → T .

We will call these functions “big” conjugacies to distinguish them from the “small” conjuga-
cies h that conjugate the projected dynamics on the critical circles to a rigid rotation (2.7).
Note that the “big” conjugacies satisfy

Gγ1,γ2 ◦Gγ2,γ3 = Gγ1,γ3 , Hγ1,γ2 ◦Hγ2,γ3 = Hγ1,γ3 .

Below we discuss one aspect of the definition of the big conjugacies that will be important in
our computations.

Since there is no “origin” on the circle T, one has a certain amount of freedom in the
definition of some maps. For example, if the function Ψ is a hull map (i.e., satisfies (2.6)),
then the function Ψ̃ defined as Ψ̃(θ) = Ψ(θ + ζ) will also satisfy (2.6) for any choice of
the constant ζ. Similarly, the map h (2.7) that conjugates the advance map g to a rigid
rotation can be redefined by composing it on the right with a rotation, and the resulting map,
h̃(θ) = h(θ + ζ), will also conjugate g to a rigid rotation. Naturally, all important properties
of the maps h and h̃—in particular, their Hölder regularity—will be the same. However,
one cannot use this freedom liberally when studying the big conjugacies. To understand the
reason for this, consider the map h defined by (2.7) for some twist map F . Naturally, the
map h ◦ h−1 is the identity map, so it is C∞. However, for any nonzero ζ in the definition
of h̃, there is no guarantee that the map h ◦ h̃−1 will be C∞. This is due to the fact that the
regularity of h may be different at different points, and while in h ◦ h−1 these “irregularities”
cancel out, in h ◦ h̃−1 the action of h does not necessarily “undo” the irregularities caused
by h̃−1. In section 2.5 we explain in detail how we choose ζ in order to avoid the “spurious”
irregularities of the big conjugacy.

In section 2.6 we formulate some conjectures about the regularity of the big conjugacies,
and in the conclusion (section 5.3) we discuss the implications for the pointwise Hölder spectra
of the functions hi.

2.5. Big conjugacies and symmetries. Consider two functions hγ1 and hγ2 corresponding
to the critical circles γ1 and γ2 of the twist maps F1 and F2. If F1 and F2 happen to belong to
the same “universality class” (see section 2.6), then one would expect that the big conjugacy
Hγ1,γ2 will be more regular than the functions hγ1 and h−1

γ2
. To avoid introducing spurious

irregularities in Hγ1,γ2 , we use the symmetries of the map h that come from the symmetries
of the F [23], [24] (reprinted in [61]), and [25].

It is well known that if the function V is odd, then the map F given by (2.1) can be
written as a composition of two involutions:

(2.8) F = I1 ◦ I0 , I2
0 = I2

1 = Id ,
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where

(2.9) I0(θ, r) = (−θ, r + λV (θ)) , I1(θ, r) = (−θ + r, r) .

From (2.8) we have I0 ◦F = F−1 ◦ I0 and I1 ◦F = F−1 ◦ I1. Acting on (2.6) with I0 from the
left, we obtain

(2.10) F−1 ◦ (I0 ◦ Ψ)(θ) = (I0 ◦ Ψ)(θ + ρ) .

On the other hand, if we define the function L : T → T×R by L(θ) := Ψ(−θ), then (2.6) can
be written as

(2.11) F−1 ◦ L(θ) = L(θ + ρ) .

Comparing (2.10) and (2.11), we see that L and I0 ◦ Ψ can differ only by a shift in the
argument; i.e., there has to exist a constant ζ such that I0 ◦ Ψ(θ) = L(θ + ζ) = Ψ(−θ − ζ).
This, together with (2.9) and h = π1 ◦ Ψ, implies

h(θ) = −h(−θ − ζ) .

This implies that h(− ζ
2) = 0, and the numerical value of ζ can be found from the computed

values of h. Setting h̃(θ) := h(θ − ζ
2), we obtain that h̃ is an odd function. In what follows,

we will assume that the appropriate value of ζ has been subtracted, and we will omit the tilde
over h.

2.6. Universality. In this section, we formulate precisely some conjectures on the behavior
of critical invariant circles described by a nontrivial fixed point of the renormalization group.
It seems quite possible that these conjectures can be proved as conditional theorems assuming
existence and certain properties of this fixed point.

One of the most striking predictions of the renormalization group theory is that many
characteristics of the critical invariant circles are largely independent of the details of the
map. This is captured by the notion of universality.

Definition 2.1. We say that a numerical characteristic is universal when it takes the same
value in an open set of maps. We say that a property is universal when it holds for an open
set of maps.

The open sets alluded to in Definition 2.1 are called domains of universality.
For the case that we will be concerned with, the description of the domains of universality

in terms of properties of the nontrivial fixed points of the renormalization operator is still
debated, but there are indications that the domain of universality is not the whole space
[26, 27, 28].

Conjecture 2.2. The existence of one and only one nontrivial fixed point of the renormal-
ization operator is a universal property.

This conjecture has been known for a long time [12]. Recently in [29] it has been shown
how this conjecture can be formulated in terms of some other conjectured properties related
to the transversal intersection of some manifolds with the unstable invariant manifold of
the nontrivial fixed point. Even the formulation of the subsequent conjectures depends on
Conjecture 2.2.
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An important new development is the computer-assisted proof [30] of the existence of a
nontrivial fixed point of the renormalization group associated with the breakup of the golden
invariant torus (the proof in [30] is based on renormalization of time-dependent Hamiltonians
developed in [31] and earlier papers of the same author).

The concept of universality is rather natural when one wants to study properties that
depend on the speed at which the set of maps converges to the fixed point under the renormal-
ization operator. In particular, regularity of conjugacies depends on this speed of convergence
and, hence, should be a universal quantity (more precise formulations are given in [32]). To
formulate the conjectures below, we will need the following definition.

Definition 2.2. For κ = n + χ with n ∈ Z, χ ∈ (0, 1), we say that the function K : T → R

has (global) Hölder exponent κ and write K ∈ Λκ(T) when K is n times differentiable and,
for some constant C > 0,

|DnK(θ) −DnK(θ̃)| ≤ C|θ − θ̃|χ

for all θ, θ̃ ∈ T.
For the case of an integer value of κ, this definition is more complicated, but we will omit

it since in the applications considered in this paper κ is not an integer.
Now we formulate several conjectures concerning the regularities of the functions intro-

duced in sections 2.3 and 2.4.
Conjecture 2.3. The regularity, κ(R), of the critical invariant circle is a universal number.
Conjecture 2.4. The regularities κ(g), κ(h), and κ(h−1) are universal numbers.
Conjecture 2.5. For pairs of critical circles γ1 and γ2, the regularities κ(Gγ1,γ2) and κ(Hγ1,γ2)

are universal numbers.
Directly from the definition of Hölder regularity, one can see that if κ(φ) and κ(ψ) are

between 0 and 1, then κ(φ ◦ ψ) ≥ κ(φ)κ(ψ). This implies that

(2.12) κ(Hγ1,γ2) = κ(hγ1 ◦ h−1
γ2

) ≥ κ(hγ1)κ(h−1
γ2

) .

For all critical invariant circles γi that we studied, we obtained numerically that κ(hγi) < 1
and κ(h−1

γi ) < 1, so (2.12) yields that Hγ1,γ2 is not less regular than κ(hγ1)κ(h−1
γ2

). For
γ1 and γ2 in the same universality class, however, we expect more—because of “cancellation”
of the “singularities” of hγ1 and h−1

γ2
, we state our final conjecture.

Conjecture 2.6. The following inequalities hold for i = 1, 2:

κ(hγi) < κ(Hγ1,γ2) , κ(h−1
γi ) < κ(Hγ1,γ2) .

3. Description of the numerical methods. In this section we first describe the methods
used for numerical computation of invariant circles and the related functions described in
sections 2.3 and 2.4. Then we briefly discuss the method we use to compute the Hölder
regularity of the functions.

3.1. Computing critical invariant circles. We need to compute (homotopically nontrivial)
critical invariant circles of twist maps of the form (2.1) with a Diophantine rotation number.
We approximate such invariant circles by well-ordered periodic orbits (whose existence is
guaranteed by Theorem 2.1). Consider a sequence {X (j)}j∈N of well-ordered periodic orbits
whose rotation numbers, {ρj}j∈N, constitute a sequence of rational numbers which converge
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to a Diophantine number ρ. Then the limit of these periodic orbits will be a well-ordered
invariant set Xρ of rotation number ρ; the existence of this set is guaranteed by the Aubry–
Mather theory [33, Chap. 13], [15, Chap. 2]. The set Xρ can be a continuous curve which
is a graph of a Lipschitz function under appropriate conditions (Theorem 2.2) or an orbit
homeomorphic to a Cantor set (Cantorus). In the former case, the rotation number uniquely
determines the invariant circle (see Remark 4.2), while in the latter case there may exist
different Cantor sets with the same rotation number.

We approximate a Diophantine number ρ by the rational numbers given by finite trunca-
tions of the continued fraction expansion of ρ. In the case of the golden mean σG (2.3), these
rational approximants are ratios ρm = Qm−1/Qm of consecutive Fibonacci numbers Qm. The
limit of the periodic orbits with rotation numbers ρm is the invariant set Xρ we are looking
for [24].

The problem of computing well-ordered orbits with a prescribed rational rotation num-
ber ρm is greatly simplified if the function V (θ) in (2.1) is odd. In this case the task of finding
a periodic orbit is reduced to a one-dimensional problem because the map F can be written as
the composition of two involutions as in (2.8); if such a decomposition is possible, the map F
is said to be reversible. If F is reversible, there exists a set of lines in the (θ, r) space—called
symmetry lines—that are invariant with respect to the involutions I0 and I1 (2.9). It can be
shown that any periodic orbit has two points that belong to one of the symmetry lines; hence
we can find these points (and, therefore, the periodic orbits that contain them) by using a
one-dimensional root finder [24]. Using the fact that the periodic orbits computed in this
way are well ordered, we can implement a numerical procedure to compute periodic orbits of
several million points that approximate the invariant set Xρ.

We are interested in studying the properties of area-preserving twist maps of the form
(2.1). When the parameter λ in (2.1) is equal to 0, the corresponding twist map acts on each
point (θ, r) as a rigid rotation in the θ-direction, F (θ, r) = (θ+r, r), and hence the phase space
is foliated by invariant circles of the form {r = const}. For small values of |λ|, KAM theory
guarantees the existence of invariant circles with Diophantine rotation numbers. According
to Conjecture 2.1, there is an upper bound Λ(ρ) on the values of |λ| such that for |λ| < Λ(ρ)
there exists an invariant circle with rotation number ρ (some rigorous upper bounds on Λ(ρ)
are given in Theorem 2.3). To find an accurate numerical approximation of the critical value,
Λ(ρ), of λ for which the invariant circle of rotation number ρ disintegrates, we applied an
empirical method known as the “residue criterion” proposed in [24], developed in [34], and
partially justified rigorously in [35, 36]. The main idea of this method is to determine the
value of λ such that the residue of all the approximating periodic orbits reaches the same
value. Let Rm be the residue of a periodic orbit which is the mth approximant to an invariant
circle with rotation number ρ. If limm→∞Rm = 0, then there exists an invariant circle with
rotation number ρ; if limm→∞Rm = ∞, then the invariant set Xρ is a Cantor set. A critical
invariant circle is obtained at the value of λ for which Rm tends to a finite value as m → ∞
(see Remark 4.2).

3.2. Studying Hölder regularity numerically. In this section we describe briefly the
method we employed to study Hölder regularity, referring the reader to [13] for details, addi-
tional references, and an assessment of the numerical accuracy of various numerical methods
for computing regularity.
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In this paper, we will use only the method developed in [13] that was found to be the most
accurate for studying Hölder regularity—the so-called continuous Littlewood–Paley (CLP)
method. Here we do not use the wavelet-based methods implemented in [13]. The CLP
method has been used in [37, 25, 38].

3.2.1. Theoretical basis of the CLP method. The CLP method is based on the following
result (which can be found in [39, Chap. 5, Lemma 5]).

Theorem 3.1 (CLP). The function K ∈ L∞(T) is in Λκ(T) if and only if for some integer
η > κ there exists a constant C > 0 such that for any t > 0

(3.1)

∥∥∥∥
(

∂

∂t

)η

e−t
√
−ΔK

∥∥∥∥
L∞(T)

≤ Ctκ−η ,

where Δ is the one-dimensional Laplace operator: ΔK(θ) = K ′′(θ).

Remark 3.1. If the above result holds for some integer η > α, then it holds for all integers
η̃ > α.

Remark 3.2. The operator e−t
√
−Δ is a convolution with the Poisson kernel: e−t

√
−ΔK =

Pexp(−2πt) ∗ K. The function u(θ, t) := e−t
√
−ΔK(θ) is a solution of Laplace’s equation,

uθθ + utt = 0, on the half-cylinder (θ, t) ∈ T × (0,∞), with Dirichlet boundary condition
u(θ, 0) = K(θ).

Remark 3.3. The mathematical theory requires only that (3.1) be an upper bound. In our
numerical experiments, however, this bound is saturated for a significant range of values of t.
This fact is very possibly a consequence of the self-similarity at small scales of the functions
we consider (which is at the basis of the renormalization group description). This saturation
was also observed for the functions considered in [13, 37, 25, 38].

3.2.2. Remarks on the numerical implementation. To use the CLP method, we need
to repeatedly apply fast Fourier transform (FFT), which is easiest to do if the values of the
function K in (3.1) are known at 2N equally spaced points in the interval [0, 1) for some positive
integer N . However, as we describe in section 4, we do not have control over the set of points
at which the values of K can be computed (where K stands for any of the functions R, g, h,
h−1, H, G). Hence, the first step in applying the CLP method would be the computation of
the values of K on an evenly spaced grid. If we accurately know the values of K at M points
in [0, 1), we can expect that, by using some interpolation method, we will be able to obtain

the approximate values of K on 2N ≈ M equidistant points, {2−N j}2N−1
j=0 . To compute the

approximate values of K on the equidistant grid, we used cubic spline interpolation. Using
interpolation poses the question of whether the interpolated values faithfully represent the
true values of K. Naturally, the answer to this question is no, but, practically, if M is large
enough, the interpolated values will be very close to the true values, which will allow us to
accurately compute many Fourier coefficients of K. The degree of “contamination” of the
Fourier spectra due to the interpolation depends on the uniformity of the distribution of the
M points at which the value of K is accurately known (see Remark 4.3).

To apply the CLP method numerically, we observe that the operator ( ∂
∂t)

η e−t
√
−Δ used in

Theorem 3.1 is diagonal in a Fourier series representation: if K(θ) =
∑

k∈Z
K̂ke

−2πikθ, then
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(3.2)

(
∂

∂t

)η

e−t
√
−ΔK(θ) =

∑
k∈Z

(−2π|k|)η e−2πt|k| K̂k e−2πikθ .

Having computed the values of the spline interpolant to the function K on an equally spaced
grid, applying (3.1) is easy. Namely, we fix some values of the parameters η and t, perform FFT

to find K̂k, and compute the Fourier coefficients of ( ∂
∂t)

η e−t
√
−ΔK. Then we apply inverse

FFT to find the values of ( ∂
∂t)

η e−t
√
−ΔK at the equally spaced set of points {2−N j}2N−1

j=0 ;
among these values we find the one with maximum absolute value—this value we take for the
numerical value of the left-hand side of (3.1). For a fixed value of η, we repeat this procedure
for many values of t (we used several hundred values of t in our computations). According to
(3.1), if we plot

(3.3) log

∥∥∥∥
(

∂

∂t

)η

e−t
√
−ΔK

∥∥∥∥
L∞(T)

versus log t ,

the points should lie below a straight line of slope κ− η. As pointed out in Remark 3.3 (see
also Remark 4.4) the points on the log-log plot should not only be below this straight line,
but should also be close to it. We perform linear regression to find the slope of this line, from
which we find κ.

4. Numerical results.

4.1. Twist maps studied. We study numerically a set of one-parameter families of area-
preserving twist maps of the form (2.1), each family having a different function V . Within
each family we find numerically the value Λ(σG) of the parameter λ for which the golden
(resp., silver) invariant circle is critical. The set of functions V that we selected—all of them
odd (so that we can use the symmetry lines technique as explained in section 3.1)—consists
of the following:

1. The standard (Taylor–Chirikov) map:

(4.1) V1(θ) = − 1

2π
sin 2πθ .

2. The “standard map with two harmonics”:

(4.2) V2(θ) = − 1

2π
[sin(2πθ) − 0.03 sin(6πθ)] .

3. The “critical standard map with two harmonics”:

(4.3) V3(θ) = − 1

2π

[
sin(2πθ) − 1

2
sin(6πθ)

]
.

For this choice of coefficients, the first three derivatives of V (θ) at θ = 0 are zero.
4. The “0.2-analytic map”:

(4.4) V4(θ) = − 1

2π

sin(2πθ)

1 − 0.2 cos(2πθ)
.

This map has infinitely many nonzero Fourier coefficients. It would be very interesting
to study this map when the coefficient of the cosine function in the denominator is
close to 1, but then it would be extremely difficult to compute periodic orbits.
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5. The “0.4-analytic map”:

(4.5) V5(θ) = − 1

2π

sin(2πθ)

1 − 0.4 cos(2πθ)
.

6. The “tent map”:

(4.6) V6(θ) =

17∑
j=1

cj sin(2πjθ) ,

where cj = (−1)
j+1
2

4
π2j2

for j odd and cj = 0 for j even are the Fourier coefficients of
the function

V(θ) =

⎧⎪⎨
⎪⎩

−4θ for 0 ≤ θ < 1
4 ,

4θ − 2 for 1
4 ≤ θ < 3

4 ,

4 − 4θ for 3
4 ≤ θ < 1 .

The function V6 is close to the piecewise linear continuous function V.
Our numerical experiments were performed with the twist maps coming from the above

six functions V (θ) and the corresponding values Λ(σG), following the six steps below. All
numerical values here are given for rotation number golden mean; for silver mean the algorithm
is analogous.

1. As discussed in section 3.1, the invariant circle of rotation number σG can be obtained
as a limit of periodic orbits of rotation numbers equal to ratios of consecutive Fibonacci
numbers, ρm = Qm−1/Qm. We chose to compute hyperbolic periodic orbits and found
the values of Λ(σG) by applying Greene’s residue criterion [24].

2. The highest approximant to the critical invariant circle that we computed was a pe-
riodic orbit with rotation number Q29/Q30 = 832040/1346269. The value of Λ(σG)
was determined by using the condition that the difference |R30 −R29| of the residues
of the periodic orbits with periods Q29 and Q30 be zero (in practice, we wanted this
difference to be smaller than 10−10); this procedure is related to Greene’s residue cri-
terion (see Remark 4.2 below). The periodic orbits were computed with an error not
exceeding 10−23.

3. We computed the hyperbolic periodic orbit {(θm, rm)}M−1
m=0 of period M = Q30. The

values of the advance map g (2.5) at the points θm (m = 0, 1, . . . ,M − 1) were then
computed by g(θm) = θm+1 (here and below, we take mod 1 wherever needed). The
values of the conjugacy h at the points mσG (these points correspond to m applications
of the rigid rotation by σG to 0) are given by h(mσG) = θm and, similarly, h−1(θm) =
mσG.

4. In our Fourier analysis–based CLP method we need to deal with periodic functions,
so we compute the “periodized” versions, g− Id, h− Id, and h−1 − Id, of the functions
g, h, and h−1. Then we sort the periodized functions with respect to their argument;
the function R is already periodic, so we just sort its values.

5. The periodic functions are passed to the cubic spline interpolation routine to find
approximations to the values of the corresponding functions on a uniformly spaced
grid of 2N points; we used N = 20 (so that 220 = 1048576 is roughly equal to the
length, Q30, of the periodic orbit).
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6. The interpolated values of the functions are given to the CLP algorithm to compute
their Hölder regularity. We used integer values of η in (3.1) from 1 to 5, and for each
analyzed function chose the value of η that gave the best straight line on the log-log
plot (3.3). The log-log plots for the other values of η were used as a consistency check.

In sections 4.4.1 and 4.4.2 we give the results on the regularity of the functions related to
the critical invariant circles with rotation numbers σG and σS, respectively (for σS, we used
only the functions V1 and V2).

Remark 4.1. In computing the big conjugacies Hγ1,γ2 , we had to take special care to
preserve the symmetries of the maps h. For each critical circle we studied, we needed to find
the appropriate value of the constant ζ and shift the argument of the corresponding function h
as explained in section 2.5.

Remark 4.2. Greene’s residue criterion [24] was defined using elliptic periodic orbits, but
one can obtain similar results using hyperbolic orbits (in this case the residue’s value is neg-
ative; for rotation number golden mean it is limm→∞Rm ≈ −0.255426); see [34]. According
to the Aubry–Mather theory, the hyperbolic periodic orbits are minimizing, while the elliptic
ones are minimax orbits [15]. Each invariant circle is a minimizing orbit, and it is the limit set
of a sequence of minimizing periodic orbits whose rotation numbers converge to the rotation
number of the invariant circle. For any sequence of periodic orbits with rotation number pn

qn
that converges to ω (the rotation number of the invariant circle), the hyperbolic and the ellip-
tic orbits that belong to this sequence are interleaved: any elliptic orbit with rotation number
pn+1

qn+1
is bounded by two hyperbolic orbits with rotation number pn

qn
and pn−1

qn−1
, respectively.

Hence, the sequence of elliptic periodic orbits and the sequence of hyperbolic periodic orbits
converge to the same invariant circle. We conjectured that the regularity of invariant circles
computed with elliptic and hyperbolic periodic orbits is the same, and performed some numer-
ical experiments that supported this conjecture. We use hyperbolic periodic orbits to compute
the regularity of critical invariant curves because our numerical methods for computing the
orbits are more robust for hyperbolic orbits than for the elliptic ones.

4.2. Critical invariant circles—visual explorations. In Figure 1 we show the critical in-
variant circles which, by the definition (2.4), are graphs of the functions R corresponding to
the six twist maps studied. The graphs of the “periodized versions” of the advanced maps,
g− Id; the conjugacies, h− Id; and their inverses, h−1 − Id, are plotted in Figures 2, 3, and 4,
respectively.

Figure 5 illustrates the self-similar nature of the functions h; needless to say, the insets
are true zooms of parts of the graph of the function.

Figure 6 shows the graphs of several periodized big conjugacies H − Id; it is obvious that
these functions are smoother than the “small” conjugacies h.

4.3. Fourier spectra, CLP method. Figure 7 depicts log10 of the modulus of the kth
Fourier coefficient of a periodized conjugacy (h − Id) versus log10 k; here h is the conjugacy
corresponding to the twist map F with V3 (4.3). The horizontal distance between two adjacent
high peaks is approximately equal to |log10 σG| ≈ 0.209, which is a manifestation of the self-
similarity at small scales. The log10-log10 plots of the Fourier spectra of the functions (g− Id)
and (h−1 − Id) for the same map F are given in Figure 8.



REGULARITY OF CRITICAL INVARIANT CIRCLES 975

Figure 1. Critical invariant circles, r = R(θ), of the maps corresponding to the maps V1, V2, . . . , V6 given
by (4.1)–(4.6) (V1 = thin solid line, V2 = thick solid line, V3 = dotted line, V4 = thin dashed line, V5 = thick
dashed line, V6 = dotted-dashed line).

Figure 2. “Periodized” advance maps g − Id (notation same as in Figure 1).
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Figure 3. “Periodized” conjugacies h− Id (notation same as in Figure 1).

Figure 4. “Periodized” inverse conjugacies h−1 − Id (notation same as in Figure 1).

Remark 4.3. Note that the spectrum of h is very accurate even at length-scales ∼ 10−6,
while the spectrum of h−1 is quite noisy. As explained in sections 3.2.2 and 4.1, the main reason
for this is that the exact values of h are known at the points (mσG) mod 1, which are almost
uniformly distributed on T. On the other hand, we know the exact values of g and h−1 at the
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Figure 5. Zooming in the graph of the function h− Id corresponding to the map V2 (4.2).

Figure 6. “Periodized” big conjugacies H − Id.

very nonuniformly distributed points of the form gm(θ0) (because the underlying invariant
measure is singular; see section 5.2), which results in the presence of big gaps between these
points and, hence, distorted values of the spline interpolant.

In Figure 9 we show several plots of log10 of the left-hand side of (3.1) versus log10 t.
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Figure 7. Plot of log10 |(ĥ− Id)k| versus log10 k, where h corresponds to the map F coming from the
function V3 (4.3).

Figure 8. Plot of log10 |(ĝ − Id)k| and log10 |( ̂h−1 − Id)k| versus log10 k, for the same map F as in Figure 7.
The impulses correspond to (g − Id), and the dots above them to (h−1 − Id).
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Figure 9. Plots of log10 ‖( ∂
∂t

)η e−t
√
−ΔK‖L∞(T) versus log10 t for the functions K = (h− Id) for the twist

maps coming from V1, . . . , V6 for η = 2 (shallowest lines), η = 3, and η = 4 (steepest lines).

The six lines in each group of lines of similar slope correspond to the six different choices
(4.1)–(4.6) of functions V , and the lines in each group come from the same value of η in (3.1).
Each of the “lines” in the figure in fact consists of 400 points (visually indistinguishable). The
computer time spent on the CLP analysis is of the order of one minute per point (we used
220 Fourier coefficients to compute each of these points).

We computed the regularity by performing linear regression on the points on graphs like
the one in Figure 9, in the regions where the points follow more or less a straight line. As one
can see from this figure, for t close to 1 (i.e., log10 t ≈ 0), the graphs for different functions are
not straight lines, then as t decreases they form more or less straight lines, and as t decreases
further, these lines level out. This behavior can be understood intuitively from (3.2)—for
t ≈ 1 the high-k Fourier coefficients are strongly suppressed by the factor (−2π|k|)η e−2πt|k|,
so the CLP method still does not “feel” the asymptotic self-similarity of the functions at
small length-scales; at the other extreme, the leveling out of the lines for very small t comes
from the fact that in our computations we use a finite—albeit very large—number of Fourier
coefficients.

Remark 4.4. The “straight lines” in Figure 9 are not really straight (which has been
noticed in different contexts in [13, 25]). We show this effect in Figure 10, which was created
as follows. We took the six lines for η = 2 from Figure 9, and for each of them we computed
the slope of the line as a function of the horizontal coordinate in the figure, log10 t. To
compute this slope, we took each pair of adjacent points on the line and found the slope of the
straight line connecting these points. The distance between two consecutive peaks in Figure 9
is |log10 σG|; more interestingly, as log10 t becomes more negative, the lines tend to the same
wavy line, until all lines reach saturation around log10 t ≈ −4.5.
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Figure 10. Slope of the lines on Figure 9 as a function of log10 t (see text). The notation is the same as
in Figure 1.

Table 1
Regularities of the functions R, g, h, and h−1 for the golden critical invariant circles of maps F corre-

sponding to different functions V .

F with κ(R) κ(g) κ(h) κ(h−1)

V1 1.83(9) 1.83(9) 0.722(1) 0.92(1)

V2 1.79(6) 1.75(9) 0.721(1) 0.92(1)

V3 1.83(4) 1.84(3) 0.724(2) 0.93(2)

V4 1.86(8) 1.86(8) 0.722(1) 0.92(1)

V5 1.85(5) 1.85(5) 0.724(2) 0.93(1)

V6 1.85(15) 1.88(12) 0.726(3) 0.93(2)

4.4. Hölder regularities—numerical results.

4.4.1. Hölder regularities for rotation number golden mean. Table 1 summarizes our
numerical results. The first column gives the map V used in the numerical computations (for
the six functions V given by (4.1)–(4.6)). In the other columns we give the values of the
(global) Hölder exponent κ of the function R (representing the invariant circle as a graph in
the (θ, r)-plane), the advance map g, the conjugacy h, and its inverse h−1, coming from the
(dynamics on) the golden critical invariant circle of the corresponding area-preserving twist
map F . The notation used is the following: 1.85(15) stands for 1.85 ± 0.15, and 0.726(3) for
0.726 ± 0.003. Note that, within the numerical error, κ(R) = κ(g), as expected.

We also computed the Hölder regularities of all big conjugacies H between each of the six
functions h1, . . . , h6 (coming from V1, . . . , V6) with all other hj ’s. We applied the CLP method
to find that the regularity of all thirty functions H studied is

(4.7) κ(H) = 1.80 ± 0.15 .
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4.4.2. Hölder regularities for rotation number silver mean. We computed the regularity
of the maps Rj , gj , hj , and h−1

j (j = 1, 2) for the twist maps with the functions V1 and V2, as
well as the regularity of the “big conjugacies” H1,2 and H2,1, for the critical invariant circle
with rotation number the silver mean, σS = [2, 2, 2, . . .]. The regularities for V1 and V2 were
numerically the same, so we give only one value; similarly for H1,2 and H2,1. Here are the
results for the regularities (the subscript S stands for “silver”):

κ(RS) = 1.70 ± 0.15 ,

κ(gS) = 1.75 ± 0.15 ,

κ(hS) = 0.715 ± 0.015 ,

κ(h−1
S ) = 0.87 ± 0.02 ,

κ(HS) = 1.80 ± 0.15 .

5. Discussion and conclusion. In sections 5.1 and 5.2 we point out some relationships
between our results and previous studies related to universal scaling factors and singular
measures. In the final section 5.3, we recapitulate our findings.

5.1. Hölder regularity and scaling factors. Here we will explain how the scaling of the
distances of closest returns of the iterates of a point gives bounds on the Hölder regularity
of some of the functions we study. Our analysis here is reminiscent of the analysis in [13,
sect. 8.2]. The numerical values below are for rotation number the golden mean.

We start by recalling the crucial observation of Kadanoff and Shenker [5, 6] (see also
[10, sect. 4.4]) of the existence of universal scalings in the distribution of the iterates of the
Taylor–Chirikov map on the critical invariant circle γ in neighborhoods of certain points of γ.
Let θrar ∈ T stand for the value around which the iterates of the function g are most rarefied
(in our notation θrar = 1

2 , while in [6] θrar = 0). Let θden ∈ T stand for the value around
which the iterates of the function g are most dense (in our notation θden = 0, while in [6] it is
θden = 1

2). Since by Theorem 2.2 the function R is Lipschitz, around the points (θrar, R(θrar))
and (θden, R(θden)), the iterates of any point on γ under F are most rarefied, respectively,
dense. Shenker and Kadanoff found that the critical invariant circle in a neighborhood of θrar

is asymptotically invariant under simultaneous scalings in both the θ- and r-directions, with
scaling factors

α0 ≈ −1.414836 (in θ) , β0 ≈ −3.0668882 (in r)

(see also the bounds on these values in Stirnemann [40]). This implies that, for large n,

(5.1)
gQn+1(θrar) − θrar

gQn(θrar) − θrar
≈ α−1

0 ,
R(gQn+1(θrar)) −R(θrar)

R(gQn(θrar)) −R(θrar)
≈ β−1

0 .

The scaling around θden is a bit more complicated—it is called “step-3” scaling for obvious
reasons:

(5.2)
gQn+3(θden) − θden

gQn(θden) − θden
≈ α−1

3 ,
R(gQn+3(θden)) −R(θden)

R(gQn(θden)) −R(θden)
≈ β−1

3 ,

where the “step-3” scaling factors are

α3 ≈ −4.84581 (in θ) , β3 ≈ −16.8597 (in r) .
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To understand heuristically why these scalings give restrictions on the Hölder regularity
of R, set Δθ := gQn+1(θrar) − θrar, Δr := R(gQn+1(θrar)) − R(θrar) for some large value of n.
Then if the local Hölder exponent of R at θ = θrar is κ, we will have |Δr| ∼ |Δθ|κ. If the graph
of R is asymptotically invariant around (θrar, R(θrar)) with respect to the scalings (5.1), we
will have |β0 Δr| ∼ |α0 Δθ|κ. “Dividing out” the last two relationships, we obtain |β0| ∼ |α0|κ,
i.e., κ ∼ log |β0|

log |α0| . This argument (which can easily be made rigorous) implies that the (global)

Hölder exponent of R does not exceed log |β0|
log |α0| ≈ 3.22945. The scaling (5.2) yields a tighter

bound on the Hölder regularity of R:

(5.3) κ(R) ≤ log |β3|
log |α3|

≈ 1.7901 .

Note that the fact that the scaling (5.2) is “step-3” (as opposed to “step-1”) is irrelevant for
the bounds on the Hölder regularity.

To obtain bounds on κ(h) and κ(h−1), we use Lemma 8.1 from [13], which says that if the
function h conjugates f1 and f2, h◦f1 = f2◦h, and if for some sequence of positive integers Qn

the functions fj (j = 1, 2) behave in a neighborhood of the fixed point θfix = h(θfix) of h as

fQn

j (θfix) = θfix + Cjη
−n
j + o(η−n

j )

for some constants ηj and Cj , then κ(h) ≤ log |η2|
log |η1| . Applying this to the definition of h and

using the well-known fact that (Qn σG) mod 1 ≤ Cσn
G, we obtain the bounds

(5.4) κ(h) ≤ log |α−1
0 |

log |σG|
≈ 0.721125 , κ(h−1) ≤ log |σ3

G|
log |α−1

3 |
≈ 0.91478 .

A comparison with Table 1 suggests that these bounds are saturated.

5.2. Conjugacies and singular measures. The functions whose Hölder regularity we study
are defined through high iterates of maps. For example, the graph of the function R defined
by (2.4) is nothing but the critical invariant circle γ of F which is densely filled by the iterates
Fn(θ0, r0) of some point (θ0, r0) ∈ γ. Here we discuss how some characterizations of the
singularities in the distribution of the iterates of F on γ are related to the Hölder regularity
of some of the functions considered.

Hentschel and Procaccia [41] pointed out the importance of the generalized (Rényi) dimen-
sions D(q) of a singular measure for dynamical systems; these quantities have been defined
previously in the context of probability theory by Rényi [42]. Halsey et al. in their seminal
paper [50] related heuristically the Rényi dimension of a singular measure to the spectrum of
singularities f(α). We recall that f(α) is the Hausdorff dimension of the set Eα of points
where the measure has singularity of strength α. The spectrum f(α) is a function supported
on the interval [αmin, αmax], where αmin = D(∞) (resp., αmax = D(−∞)) describes the scaling
behavior of the measure in the region where the measure is most dense, respectively, most
rarefied.

Let (θ0, r0) be an arbitrary point on the critical invariant circle γ of the area-preserving
twist map F . Then the distribution of the iterates in a very long orbit, {Fn(θ0, r0)}Kn=0,
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approaches as K → ∞ the “density” of the measure on γ that is invariant with respect to the
restriction of the map F onto γ. (We put “density” in quotation marks because for singular
measures this is not a function but a set of Dirac δ-distributions.) This invariant measure
on γ induces an invariant measure μg of the map g on T. It is easy to see that (2.7) implies
that

h−1(θ) =

∫ θ

0
dμg

(for an appropriately chosen ζ in the redefinition of h as in section 2.5). This relationship
implies that the spectrum of singularities f(α) of the measure μg is the same as the Hölder
spectrum fH(α) of the function h−1. By definition, fH(α) is the Hausdorff dimension of the set
where the local Hölder exponent of the function is equal to α; for a readable account we refer
the reader to Jaffard [43, 44]. The (global) Hölder regularity κ(φ) of a function φ is equal to
the lowest end, αmin, of the support of the Hölder spectrum, fH(α), of φ.

Osbaldestin and Sarkis [45] applied the method of [50] to determine numerically the func-
tions f(α) and D(q) of the invariant measure μg coming from the distribution of iterates of
the Taylor–Chirikov map F on the golden invariant circle. They found that

αmin = D(∞) ≈ 0.915 , αmax = D(−∞) ≈ 1.387 ≈ 1

0.720
.

Comparing these with the values in Table 1, the reader should recognize that their αmin is
nothing but our κ(h−1), while αmax is equal to the inverse of the regularity of the conjugacy h.

Burić, Mudrinić, and Todorović [46, 47] studied numerically the Taylor–Chirikov map and
the map (2.1) with V (θ) = 1

2 sin 2πθ + 1
4 sin 4πθ for rotation numbers with continued fraction

expansions of the form [S, 1∞] := [S, 1, 1, 1, . . .], [S, 2∞], [S, 3∞], [S, 4∞], where S stands for
some short string of positive integers. They found that f(α) and D(q) depend only on the
tail but do not depend on the initial part S or on whether the Taylor–Chirikov map or the
other map was used in their numerics.

Other papers related to numerical computations of singular measures on critical invariant
circles of area-preserving twist maps are Shi and Hu [48, 49], where the methods of [50]
(reprinted in [59]) were used, and Hunt et al. [51], where the authors used the thermodynamic
formalism developed in [52] (reprinted in [59]) to compute the information dimension D(1) of
the standard map for different rotation numbers.

5.3. Conclusion. We accurately computed the golden critical invariant circles for six twist
maps of the form (2.1) and the global Hölder regularity κ of some functions related to the
dynamics on these circles, as well as regularities of the functions associated with the silver
critical invariant circles of two twist maps. Our numerical experiments lend credibility to
Conjectures 2.3, 2.4, and 2.5 concerning the universality of the regularities of the functions
R, g, h, h−1, and H (see Table 1 and (4.7)). Yamaguchi and Tanikawa [53] found numerically
that the golden invariant circle (given by the function R) of the Taylor–Chirikov map is
differentiable, but R′ is not of bounded variation; our studies significantly narrow the numerical
bounds on κ(R) for this and other maps.

Our results seem to indicate that the regularities of R, h, and h−1 saturate the upper
bounds (5.3) and (5.4) coming from previous studies of scaling exponents.



984 ARTURO OLVERA AND NIKOLA P. PETROV

Our finding that κ(H) is greater than κ(h) and κ(h−1) by a comfortable margin (cf. Con-
jecture 2.6) has an interesting consequence. As discussed in section 5.2, the Hölder regularity
of h and h−1 is different at different points, and for each α ∈ (αmin, αmax), the set Eα (where
the pointwise Hölder exponent of h−1 is α) has Hausdorff dimension fH(α) strictly between
0 and 1. Previous numerical studies indicated that fH(α) are the same for different maps F .
Our finding shows that the “irregularities” of functions h coming from different maps F are
interspersed in the same way in [0, 1] for all twist maps studied. Note that this does not mean
that for a certain value of α the sets Eα are the same for different F in the same universality
class—only the way all sets Eα for different α are interwoven is universal.

Perhaps it would be interesting for the reader to compare the results of the present paper
with those on regularity of nontwist maps [25]. One has to keep in mind, however, that,
while—according to Theorem 2.2—the critical invariant circles for twist maps are graphs (in
polar coordinates), in the case of nontwist maps this is not so. Therefore, some of the objects
we studied here (i.e., the functions R and g) do not have analogues for nontwist maps.

It would be interesting to apply wavelet-maxima methods for pointwise regularity [54, 55]
(see also the rigorous analysis in [43, 44]) to the problem studied in this paper and to compare
the results of the wavelet analysis with the results about the singular invariant measures.

The case of more general Bryuno numbers also deserves attention (see, e.g., [56, 57]).
However, we do not think that numerical studies of the regularities of functions related to twist
maps with such rotation numbers are feasible at present for several reasons. Most importantly,
the accuracy of the results on regularity behaves like the logarithm of the computational effort
and of the size of the data arrays needed in the computations; note that Figure 9 is in log-
log scale. Also, the inherent “oscillations” around the straight line in that figure (shown
in Figure 10) contribute to the numerical error in the determination of the averaged slopes.
Achieving higher precision in computing the regularity will require computing the parameters
of the twist map with a very high accuracy, which in turn will necessitate very long runs of
the programs.

As a by-product of our studies, we have computed millions of Fourier coefficients of the
functions h and noticed some self-similarity properties that to the best of our knowledge have
not been observed before. Currently we are working on understanding these properties.

Acknowledgments. We would like to express our gratitude to Rafael de la Llave, who
introduced the authors of the present paper to each other, suggested the problem, and took
an active part in the early stages of this research. We have profited immensely from his expert
advice and friendly prodding throughout our work on the paper.

We also thank the referees whose constructive suggestions helped us clarify some important
points.

Our computations were carried out on the computers of IIMAS-UNAM and the Depart-
ment of Mathematics of the University of Texas. A.O. would like to thank Ana Pérez for
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Abstract. We prove that the stationary Swift–Hohenberg equation has chaotic dynamics on a critical energy
level for a large (continuous) range of parameter values. The first step of the method relies on a
computer assisted, rigorous, continuation method to prove the existence of a periodic orbit with
certain geometric properties. The second step is topological: we use this periodic solution as a
skeleton, through which we braid other solutions, thus forcing the existence of infinitely many
braided periodic orbits. A semiconjugacy to a subshift of finite type shows that the dynamics is
chaotic.
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1. Introduction. Finding analytic solutions of nonlinear, parameter dependent, ordinary
differential equations (ODEs) is in general an extremely difficult task—most of the time im-
possible. The use of numerical techniques then becomes a useful path to adopt in order to
understand the dynamics of a given nonlinear ODE. One may obtain insight not just through
simulations; today the numerical output can also be used to rigorously extract coarse topo-
logical information from the systems, often revealing complicated dynamics. In particular,
proving the existence of chaos in nonlinear dynamical systems in such a way has become quite
popular (see [1, 14, 17, 26, 33, 35, 36]). One may interpret these results as forcing-type theo-
rems, since a finite number of computable objects can be used to draw conclusions about the
existence of infinitely many other objects. In this paper we propose a novel approach along
those lines to prove existence of chaos for a class of problems with a special structure, namely,
so-called second-order Lagrangian dynamical systems with the Twist property. This is a class
of variational problems that lead to fourth-order ODEs. In particular, the well-known Swift–
Hohenberg equation, one of standard models for pattern formation, falls into this class of
problems.

A common feature of the proofs in [1, 17, 26, 35, 36] is the use of interval arithmetic to
integrate the flow over sets and look for images of these rigorously integrated sets on some
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prescribed Poincaré sections. In contrast, our proof requires only proving the existence of
a single periodic solution of a certain type. This will be done via validated continuation
(cf. [15, 18]). One important advantage of this validated continuation method is that it
becomes natural to prove the existence of chaos for a continuous range of parameter values.

We focus our attention on the Swift–Hohenberg equation, a fourth-order parabolic partial
differential equation (PDE), traditionally written as

(1)
∂U

∂T
= −

(
∂2

∂X2
+ 1

)2

U + αU − U3,

which is widely used as a model for pattern formation due to a finite wavelength instability,
such as in Rayleigh–Bénard convection (see, e.g., [11, 32]). The onset of instability is at α = 0.
The Swift–Hohenberg equation was originally devised to describe the behavior of systems at,
and just beyond, the onset of a supercritical finite wavelength instability, and it has since
served as a universal model equation in the study of pattern formation, where the parameter
α is not necessarily taken to be small (see, e.g., [9, 21, 28, 31]). Stationary profiles satisfy the
ODE

(2) −U ′′′′ − 2U ′′ + (α− 1)U − U3 = 0,

which has a constant of integration, called the energy

E = U ′′′U ′ − 1

2
U ′′2 + U ′2 − α− 1

2
U2 +

1

4
U4 +

(α− 1)2

4
,

which has been normalized so that, for α > 1, the nontrivial homogeneous states U = ±
√
α− 1

have energy E = 0. The dynamics of (2) has been studied extensively, especially for small
α > 0, but many questions remain open for larger values of the parameter. Numerical simula-
tions suggest chaotic behavior for most α > 0, but this has so far not been verified rigorously.
In particular, although both shooting methods (e.g., [2, 7, 8, 27]) and variational methods (e.g.,
[6, 22, 24, 29]) have been used extensively to study (2) and related fourth-order equations,
they have not succeeded in revealing chaos for the Swift–Hohenberg ODE.

The energy level E = 0 is special in the sense that it is a singular energy level, and
it contains the nontrivial homogeneous states U = ±

√
α− 1. Those equilibria are stable

solutions of the PDE (1) for α > 3
2 , and saddle-foci for the ODE (2) in the same parameter

range. It is well known that saddle-foci may act as organizing centers for complicated dynamics
[16, 23], and this inspires us to focus our attention on the dynamics in the energy level E = 0.
Our main result is to establish rigorously that the Swift–Hohenberg ODE has chaotic dynamics
in the energy level E = 0 for a large continuous range of parameter values.

Proposition 1. The dynamics of the Swift–Hohenberg ODE (2) on the energy level E = 0
is chaotic for all α ≥ 2.

Before we discuss the method of proof, let us comment on some generalizations of this
result. First, the method is amenable to a larger class of equations, namely, second-order
Lagrangians with the Twist property; see [3]. Second, the result is stable in the sense that
for energy levels arbitrarily close to 0, chaos can be proved via a few adjustments of the
arguments. We will comment on both generalizations when appropriate but will keep the
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Figure 1. Sketch of a periodic solution ũ satisfying the geometric properties H.

focus firmly on Proposition 1 to reduce technical details. Finally, the parameter range α ≥ 2
can be extended somewhat using our method but certainly not to cover the entire range α > 0,
as will be explained below.

We now turn to the method behind Proposition 1. Rather than working directly with (2),
we first perform a change of coordinates that compactifies the parameter range as well as
makes the notation more convenient. The new variables are

(3) y =
X

4
√
α− 1

, u(y) =
U(X)√
α− 1

, ν =
2√

α− 1
.

The parameter range α ≥ 2 corresponds to ν ∈ (0, 2], and the differential equation becomes

(4) −u′′′′ − νu′′ + u− u3 = 0,

while the expression for the energy is now

(5) E = u′′′u′ − 1

2
u′′

2
+

ν

2
u′

2
+

1

4
(u2 − 1)2.

Equation (4), and variants with different nonlinearities, have been thoroughly investigated
(see [10] and [28] and the references therein), but the parameter range under scrutiny here,
namely, ν ≥ 0, remains much less explored than the range ν < 0, mainly because most methods
are somewhat less powerful for positive ν. An exception are the braid invariants introduced
in [19], which are especially suited to deal with positive ν, and which we will indeed exploit
in section 2.

In the method presented in this paper, chaos is forced by the existence of a single periodic
solution ũ with specific geometric properties, much like a period-3 solution of an interval map
implies chaos [25] (or a pseudo-Anosov braid in the context of surface homeomorphisms [34]).
The periodic solution we are looking for needs to satisfy the following geometric properties
(see also Figure 1):

H

⎧⎪⎪⎨
⎪⎪⎩

(H1) ũ has exactly four monotone laps and extrema {ũi}4
i=1;

(H2) ũ1 and ũ3 are minima, and ũ2 and ũ4 are maxima;
(H3) ũ1 < −1 < ũ3 < 1 < ũ2, ũ4;
(H4) ũ is symmetric in its minima ũ1 and ũ3.
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Figure 2. Building blocks for the solutions that lead to the chaos of Theorem 2.

Let the extrema ũi be attained in ỹi; then the last condition can be reformulated as

ũ(ỹ1 + y) = ũ(ỹ1 − y) and ũ(ỹ3 + y) = ũ(ỹ3 − y).

In particular, this implies that ũ2 = ũ4. We should note that condition H4 is in fact not
necessary for the results below to hold, but it simplifies the exposition.

As said before, such periodic solutions can be used to prove chaos when the equilibria
u = ±1 are saddle-foci, i.e., when ν <

√
8.

Theorem 2 (forcing). Let ν ∈ [0,
√

8), and suppose there exists a periodic solution ũ of (4)
at the energy level E = 0 satisfying the geometric conditions H. Then (4) is chaotic on the
energy level E = 0 in the sense that there exists a two-dimensional Poincaré return map which
has a compact invariant set on which the topological entropy is positive.

The construction of the chaotic invariant set hinges on an application of Conley index
theory for discretized braids [19] which will be adapted to our specific situation. The formu-
lation in terms of discretized braids and the computation of the Conley index for well-chosen
neighborhoods, whose construction involves the special periodic solution ũ, is presented in
section 2, together with all details of the proof of Theorem 2. Let us briefly discuss some
intuition behind the result. The set of solutions of (4) that leads us to chaotic dynamics is
obtained by putting the three building blocks in Figure 2 together. The order of the blocks
should follow the intuition coming from Figure 2; i.e., blocks 1 and 2 may be followed by
block 2 or 3, while block 3 can only be followed by block 1. The sequence of building blocks
may be chosen arbitrarily as long as these rules are obeyed, and the different possibilities are
sufficiently complicated to lead to chaos. The final technical step in proving chaos is then to
find a semiconjugacy to a subshift of finite type; see section 2.1.

It is important to note that the only hypothesis that needs to be verified in order to prove
the existence of chaos in (4) at E = 0 is the existence of the periodic solution ũ satisfying H.
This will be done via rigorous numerics, or computer assisted (interval arithmetic) calculations,
together with a set of analytic estimates of the “tail” terms, i.e., the remainder terms not
covered by the finite dimensional reduction. The construction leads to the existence of the
periodic solution with the required geometric properties for a large range of parameter values.
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Theorem 3 (rigorous computation). For every ν ∈ [0, 2] (4) has a periodic solution at energy
level E = 0 satisfying the geometric properties H.

The change of variables (3) directly converts Theorems 2 and 3 into Proposition 1.
Numerical simulations suggest that although the parameter range in Theorem 3 (and hence

Proposition 1) can be increased somewhat, the solution ũ with the described geometric behav-
ior in fact disappears in a saddle-node bifurcation at some critical value ν∗ > 2 (ν∗ ≈ 2.03).
Hence, one has to find a different mechanism to force chaos if one wants to prove a similar
result for the parameter range ν > 2 (or, e.g., α ∈ (0, 2]).

We are going to employ Fourier transformation, a finite dimensional reduction, and a
Newton-like operator, which we will prove is a contraction map via rigorous estimation of
the tail term. This method has been successfully used in [15] and [18], but here we need to
extend it considerably in three crucial aspects. First, the requirement E = 0 means that,
besides satisfying the differential equation, the solution must obey an additional requirement.
This means that the period of the periodic solution cannot be fixed a priori, and instead
is another unknown. The extra equation leads, at a more technical level, to the need for
better convolution estimates (see Appendix A), as will be explained later. Second, rigorous
continuation is required in order to obtain results not for isolated values of ν (cf. [15, 18, 38])
but for the entire parameter interval ν ∈ [0, 2]. Note that in [13], a result about an entire
parameter interval was also obtained, but at a much more computationally expensive price.
Third, the geometric condition H needs to be verified rigorously to be able to combine the
computational effort with the topological argument from Theorem 2, so that ũ forces chaotic
dynamics.

We give a brief outline of the arguments here; full details can be found in section 3. Let
2π
L be the a priori unknown period of the solution ũ, and let the local minima be attained at
y = 0 and y = π

L . The symmetry condition H4 implies that u′(0) = 0; hence evaluating the
energy constraint (5) at y = 0 reduces (5) to

(6) u′′(0) =
1√
2

(
u(0)2 − 1

)
,

where we have used that, since we look for solutions satisfying H, we may assume that u(0) < 1
is a nondegenerate minimum; hence u′′(0) > 0. In view of the symmetries, the Ansatz

u(y) = a0 + 2

∞∑
l=1

al cos(lLy)

is natural, and it reduces (4) to (with a−k ≡ ak)

gk
def
=
[
1 + νL2k2 − L4k4

]
ak −

∑
k1+k2+k3=k

ki∈Z

ak1ak2ak3 = 0 for all k ≥ 0,

while (6) becomes

e
def
= −2L2

∞∑
l=1

l2al −
1√
2

[
a0 + 2

∞∑
l=1

al

]2

+
1√
2

= 0.
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The first sum in the above expression requires a faster than cubic decay of the sequence al,
which leads to the need for improved convolution estimates (proved in Appendix A), since the
bounds previously used in [12, 13, 14, 15, 18] turn out to be impractical in the current context.
With the notation x = (L, a0, a1, a2, . . .) and f(x, ν) = (e, g0, g1, g2, . . .), we are thus looking
for a solution of f(x, ν) = 0. In this formulation, and using a finite dimensional reduction,
we may now use the classical predictor-corrector algorithm for following a continuous branch.
However, we need to add a validation step (see [15]) and interval arithmetic to make this into
a mathematically rigorous proof. We stress that the interval arithmetic, although necessary
and time consuming, is of much less practical importance than the analytic error estimates
due to the finite dimensional reduction. Using this finite dimensional reduction, we can, with
the help of a computer, for fixed ν̄ find an approximate solution x̄ of f(x, ν̄) = 0, as well as
an approximate solution ẋ of ∂xf(x̄, ν̄)ẋ + ∂νf(x̄, ν̄) = 0. We also compute an approximate
inverse J of ∂xf(x̄, ν̄). Via rigorous estimates on the remainder terms we show that

T (x,Δν) = x− Jf(x, ν̄ + Δν)

is a contraction map on a small ball around x̄ + Δν ẋ in an appropriate Banach space for
all sufficiently small Δν . Repeating this for many small parameter intervals leads us to the
existence of a symmetric periodic solution for all ν ∈ [0, 2], and, once we have verified the
geometric conditions H, to a proof of Theorem 3. It should be clear from the reformulation
above that it is quite natural to do parameter continuation. In fact, we expect to find a
continuous branch of solutions parametrized by ν. Although continuity is easy to verify for
each continuation step separately, and indeed this property is used in section 4 to reduce the
number of computations required, we do not need a globally (i.e., for all ν ∈ [0, 2]) continuous
branch for our proof. We refer the reader to [5] for a general overview of obtaining globally
continuous branches of solutions using these techniques in the more general context of pseudo–
arc-length continuation.

Let us comment on further developments. We prove here that the Poincaré return map
from Theorem 2, which is in fact the map that follows solutions from one local minimum to the
next (see section 2.1), has topological entropy of at least 0.48. It is possible to obtain better
bounds on the entropy, still based on the existence of the periodic solution ũ, using the u → −u
mirror symmetry, but we will not go into the details here. Furthermore, an analysis along
the lines of [4] may lead to statements about the size of the attractor for boundary value
problems associated to the PDE (1), all enabled by the rigorous establishment of a single
periodic solution with the geometric properties H. This is currently under investigation.

The outline of this paper is as follows. As already noted, it suffices to prove Theorems
2 and 3, which together imply Proposition 1. The forcing theorem, Theorem 2, is proved
in section 2. The method that leads to the existence of the special solution described in
Theorem 3 is explained in detail in section 3. Furthermore, section 4 deals with the verification
of the geometric properties H. The analytic estimates in sections 3 and 4 lead to an algorithm,
in which a finite set of inequalities needs to be checked, which is left to a computer program
(with interval arithmetic). The estimates together with the output from the computer program
prove Theorem 3. The appendix contains some general and rather sharp convolution estimates
needed for the analytic bounds on the remainder terms.
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Figure 3. Left: Sketch of the solution ũ. Right: Discretized version {ũi}4
i=1 and a shift {ũi+2}4

i=1.

Additional files come with the paper. The MATLAB functions SH continuation.m, SH
rigorous continuation.m, SH mesh generator.m, SH geometric properties.m, and SH run
proof.m (70912 01.zip [14KB]) rigorously verify Procedures 16 and 21. Furthermore, the
accompanying animation (70912 02.gif [1.32MB]) shows the evolution of the rigorously com-
puted periodic solution, as we move the parameter from ν = 0 to ν = 2. In section 3.1, details
about the computer implementation of the rigorous verification of Procedures 16 and 21 are
given, together with a brief description of the MATLAB functions.

2. Forcing theorem. In this section we assume, as in Theorem 2, that ν ∈ [0,
√

8) and
that there exists a periodic solution ũ of (4) at E = 0 with the geometric properties H.
The idea behind the proof is that we code periodic solutions u of (4) at E = 0 by their
extrema (see Figure 3). This leads to a discretization of the problem. If u′ = 0, then, by (5),
u′′ = ± 1√

2
(u2 − 1). Hence, extrema are nondegenerate except at u = ±1, and we are going to

avoid those values, so we may for the moment assume all extrema to be nondegenerate. We
denote the sequence of extrema of u by {ui}i∈Z, where ui represents a local minimum for odd
i and a local maximum for even i (see also Figure 3).

For ν ≥ 0 our system is a so-called Twist system on E = 0, as defined and proved
in [3]. The fact that the energy level is singular (contains equilibria) leads to some technical
complications, but we shall overcome them relatively easily in our present context. We can
therefore use the braid theory for discretized parabolic equations from [19]. The results on
Twist systems that are needed in this paper are summarized in the next lemma; its proof can
be found in [3] and [19, Thm. 37].

Lemma 4. Let ν ≥ 0. There exist functions Ri ∈ C1(Ωi; R) with domains

Ωi =
{
(u, v, w) ∈ R

3
∣∣ (−1)iu < (−1)iv, (−1)iw < (−1)iv, and u, v, w �= ±1

}
,

with the following properties:
(a) Ri+2 = Ri, so there are really only two different functions in play.
(b) (Ri)i∈Z is a parabolic recurrence relation; i.e., it has the monotonicity property

(7) ∂ui−1Ri > 0 and ∂ui+1Ri > 0.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70912_01.zip
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70912_02.gif
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(c) Define
Ω =

{
(ui)i∈Z

∣∣ (ui−1, ui, ui+1) ∈ Ωi for all i
}
.

A sequence (ui)i∈Z ∈ Ω solves

Ri(ui−1, ui, ui+1) = 0 for all i

if and only if it corresponds to solution of (4) at E = 0 with nondegenerate ex-
trema ui. An analogous statement holds for semi-infinite sequences (ui)i≥i0 which
solve Ri(ui−1, ui, ui+1) = 0 for all i ≥ i0 + 1.

The shapes of the domains Ωi reflect the fact that minima are preceded and followed
by maxima (and vice versa). The lemma thus implies that instead of looking for (periodic)
solutions of (4) at E = 0 with nondegenerate extrema, we may try to find (periodic) sequences
ui that solve Ri = 0. We remark that Lemma 4 (and the method in this paper) extends
to a more general class of fourth-order ODEs, namely, those derived from a second-order
Lagrangian satisfying the Twist property; see [3]. The Twist property, in essence, means that
there are unique monotone solutions of the ODE between extremal values ui and ui+1.

We want to exploit the fact that the energy level E = 0 contains the equilibria u = ±1.
However, these solutions do not correspond to a proper sequence of extrema. The linearization
around the equilibria is going to help us resolve this issue. Namely, for −

√
8 < ν <

√
8 the

equilibria ±1 are saddle-foci, and this leads to the following fact (formulated here for the
equilibrium +1).

Lemma 5. Let −
√

8 < ν <
√

8. For any ε > 0 there exists a sequence {uεi}∞i=1,

0 < (−1)i(uεi − 1) < ε,

which satisfies
Ri(u

ε
i−1, u

ε
i , u

ε
i+1) = 0 for i ≥ 2.

Notice that we do not claim that R1(u
ε
0, u

ε
1, u

ε
2) = 0; we did not even define uε0.

Proof. The idea is that the uεi are the extrema of an orbit in the stable manifold of +1,
which is contained in the energy level E = 0. That uεi − 1 alternates sign follows from the
fact that the equilibrium +1 is a saddle-focus: it is easy to check that for −

√
8 < ν <

√
8 the

linearized equation (i.e., u = 1 + v with v′′′′ + νv′′ + 2v +O(v2) = 0) has solutions of the form

1 + Ce−λrx cos(λix + φ),

with C and φ arbitrary (with λr, λi > 0 depending on ν). In particular, the stable manifold
of the linearized problem intersects the hyperplane {u′ = 0} in the line

� =
{
(1 + v, 0,−

√
2 v, 2

√
2λrv)

∣∣ v ∈ R
}
.

For the nonlinear equation we need to invoke the stable manifold theorem. Let us denote the
stable manifold by W s(+1) and the local stable manifold by W s

loc = W s(+1) ∩ Bε0(+1) for
ε0 > 0 chosen sufficiently small (so that the following arguments hold). By the stable manifold
theorem, the local stable manifold intersects the hyperplane {u′ = 0} in a curve tangent to �,
and thus

W s
loc ∩ {u′ = 0} ⊂

{
(1 + v, 0,−

√
2 v + O(v2), 2

√
2λrv + O(v2))

∣∣ v ∈ R
}
∩Bε0(+1).
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Figure 4. The “up-down” setting including the oscillating tails in the local stable manifolds of ±1.

In particular, for ε0 sufficiently small, for solutions u in the local stable manifold it holds that
if u′ = 0 and u > 1, then u′′ < 0, whereas if u′ = 0 and u < 1, then u′′ > 0. This shows that
all solutions in the local stable manifold have successive extrema on alternating sides of u = 1.
Now pick one orbit in the local stable manifold and denote its extrema by {uε0i }∞i=1, with uε01
a local minimum. Then 0 < (−1)i(uε0i − 1) < ε0, and uε0i → 1 as i → ∞ (exponentially fast,
in fact). For ε < ε0 we may choose uεi = uε0i+2n(ε) for some n(ε) ∈ N sufficiently large.

We can use the symmetry to obtain an analogous result near −1. To be explicit, ūεi =
−uεi+1 satisfies 0 < (−1)i(ūεi + 1) < ε. For “technical” reasons to become clear later, we will
need to shift this solution, modulo the 2p-periodicity:

(8) ûεi = ūεi−2 mod 2p.

In fact, we have not yet chosen the period of the sequences/solutions under scrutiny, but we
will do so shortly. See Figure 4 for an illustration of uεi and ûεi . Notice that ûεi does not “close”
at i = 3. Nevertheless, this will not stop us from putting it to use below.

To study solutions of Ri = 0 we introduce an artificial new time variable s and consider
ui(s) evolving according to the flow u′i = Ri. Clearly, we want to find stationary points, and
we are going to construct isolating neighborhoods for the flow (any p ∈ N)

(9)
dui
ds

= Ri(ui−1, ui, ui+1), i = 1, . . . , 2p,

where we identify u0 = u2p and u1 = u2p+1. The monotonicity property (7) implies that
this flow has the decreasing intersection-number property: if two solutions are represented as
piecewise linear functions (as in most of the figures), then the number of intersections can
only decrease as time s increases.

To build the isolating neighborhoods for (9), consider first the solution ũ with geometric
properties H. Since it is a periodic solution of (4) at E = 0, it follows from Lemma 4(c) that
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(recall that ũ2 = ũ4)

R1(ũ2, ũ1, ũ2) = 0,

R2(ũ1, ũ2, ũ3) = 0,

R1(ũ2, ũ3, ũ2) = 0,

R2(ũ3, ũ2, ũ1) = 0.

Next, we choose

ε =
1

2
max{−1 − ũ1, ũ2 − 1, 1 − ũ3}.

Although not strictly necessary for understanding the arguments that follow, it is worth
mentioning that in the setting of discretized braids described in [19], we are going to use a
skeleton consisting of four strands (see Figure 3, right, and Figure 4): v1

i = ũi and v2
i = ũi+2,

and v3
i = uεi and v4

i = ûεi . To be precise, both v1 and v2 are defined for all i ∈ Z and are
4-periodic. Furthermore, v3 is defined for all i ≥ 1 (though not periodic), while v4 is defined
for i = 0, . . . , 2p + 1, with v4

0 = v4
2p and v4

2p+1 = v4
1. All four strands satisfy

Ri(vi−1, vi, vi+1) = 0 for i = 1, . . . , 2p,

with the exception of v3 at i = 1 and v4 at i = 2, 3. Below we will make sure that these points
do not come into play in the construction of isolating neighborhoods.

Consider a finite, but arbitrarily long, sequence

(10) a = {aj}Nj=1, aj ≥ 2.

Let the period of the sequences (ui) be p =
∑N

j=1 aj . Now that p is fixed, the meaning of ûεi
in (8) is settled. We define the set of partial sums

A =

⎧⎨
⎩

n−1∑
j=1

aj

∣∣∣ n = 1, . . . , N

⎫⎬
⎭ .

Note that 0 ∈ A. Now define the set (neighborhood) Ua ⊂ R
2p as a product of intervals

Ua = {ui ∈ Ii, i = 1, . . . , 2p},

where the intervals are given by

Ii = [uεi , ũ2] if i is even;

Ii = [ũ3, u
ε
i ] if i is odd and

i− 1

2
/∈ A;

Ii = [ũ1, û
ε
i ] if i is odd and

i− 1

2
∈ A.

Notice that Ua is contained in the domain of definition Ω of R, since ±1 are not in any of the
intervals Ii, and the “up-down” criterion is also satisfied (the intervals Ii for odd i lie strictly
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Figure 5. The thin colored lines denote the skeleton, where we represent uε and ûε by constants for
convenience. The thick black lines represent the free strand, which is in Ua for a = (4), p = 4. One can check
that on the boundary of Ua the number of crossings with at least one of the skeletal strands decreases; hence
the flow points outward on the boundary ∂Ua.

below the ones for even i). It is useful to review the intervals in the context of Figure 4 and
to look at Figure 6 for an example with a = 243.

We now prove that every Ua contains an equilibrium of (9), still under the assumption
that ũ is a periodic solution of (4) at E = 0 with geometric properties H.

Lemma 6. For any a defined in (10) the set Ua contains an equilibrium, corresponding to
a periodic solution of (4) on E = 0.

Proof. The case a = 222 . . . 2 = 2q is exceptional, since the point (ũ1, ũ2, ũ3, ũ2)
q, corre-

sponding to the periodic solution ũ, lies on the boundary of (the closed set) U222...2.
For all other a, the corresponding solution lies in the interior of Ua. The proof follows

from the general theory in [19]. Namely, suppose from now on that a �= 222 . . . 2. Then Ua is
an isolating block for the flow in the sense of the Conley index, and the flow points outward
everywhere on the boundary. This is relatively easy to check on the codimension 1 boundaries
of Ua, i.e., exactly one of the ui lies on the boundary of Ii, while all the others are in the
interior; for the higher codimension boundaries, see [19]. For the following arguments it may
be helpful for the reader to consult Figure 5.

Let us consider one of the sides of the 2p-cube Ua. For example, ui = uεi for some even i;
i.e., ui is on the lower boundary of Ii. Since ui−1 < uεi−1, and ui+1 < uεi+1 on the codimension 1
piece of this side, we infer from the monotonicity (7) that

dui
ds

= Ri(ui−1, ui, ui+1) < Ri(u
ε
i−1, u

ε
i , u

ε
i+1) = 0.

Hence the flow points outward. And when ui = ũ2 for some even i (the upper boundary point
of Ii), then, since aj ≥ 2, either i−1

2 /∈ A or i+1
2 /∈ A, or both. Let us consider the case i−1

2 /∈ A
(the other case is analogous); then ui−1 > ũ3 and ui+1 > ũ1 (assuming again that (ui)

2p
i=1 is

in a codimension 1 boundary). Hence

dui
ds

= Ri(ui−1, ui, ui+1) > R2(ũ3, ũ2, ũ1) = 0,
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and thus the flow points outward again. All other (codimension 1) boundaries can be dealt
with analogously.

We should note that, by construction of the neighborhoods in combination with the defini-
tion of uε and ûε, we avoid the three points where the skeleton does not satisfy the recurrence
relation. In particular, no part of the boundary ∂Ua lies in the hyperplanes u1 = uε1 (since
u1 < −1) or u2 = ûε2 or u3 = ûε3 (since a1 ≥ 2; hence u2, u3 > ũ3). We leave the remaining
details to the reader.

As said before, for the higher codimension boundaries we refer the reader to [19, Prop. 11,
Thm. 15]. We can now conclude that since Ua is a 2p-cube and the flow points outward on ∂Ua,
its Conley index is homotopic to a 2p-sphere, and the nonvanishing of its Euler characteristic
implies that there has to be a stationary point in the interior of Ua [19, Lem. 36] corresponding
to a solution of (4) by Lemma 4(c).

Remark 7. A similar result holds for energy levels close to E = 0. The main difference is
that the infinite sequences uεi , consisting of the extrema of a solution in the stable manifold
of 1, is not available in energy levels E �= 0. Nevertheless, an analogous construction can
be set up for E sufficiently close to 0, provided the sequences a = {aj}Nj=1 are now chosen
with 2 ≤ aj ≤ NE < ∞, where NE tends to infinity as E approaches 0. For E > 0 (and
small) an additional difficulty arises, because the Twist property (and hence Lemma 4) does
not immediately follow from the results in [3]. However, perturbation methods can be used
to show that the Twist property persists for small E > 0, at least away from the equilibria
u = ±1. The details are beyond the scope of the current paper.

Remark 8. When the symmetry condition H4 is dropped, then the definition of Ua needs
to be modified to accommodate for the fact that ũ2 �= ũ4. The shape of the set Ua will be
more complicated than just a single 2p-cube. Namely, one needs to consider the appropriate
discretized braid class; see [19]. Nevertheless, the results in [19] show that the Conley index
of this braid class is again homotopic to a sphere, and Lemma 6 and the results in the next
section remain valid in the nonsymmetric setting.

2.1. Topological entropy. In this section we construct a semiconjugacy from a Poincaré
section of the flow to a subshift of finite type with positive entropy, and thereby we finish the
proof of Theorem 2. This process involves a couple of somewhat technical steps.

First, we look at an alternative coding, which is more convenient when examining the
entropy. We extend any sequence a = {aj}Nj=1, aj ≥ 2, periodically to a bi-infinite sequence:
aj+N = aj . To such a periodic sequence we associate a bi-infinite sequence of 0’s and 1’s:

b = · · · 01a−2−101a−1−101a0−1.01a1−101a2−10 · · · .

Notice, in particular, that b0 = 0. This coding is also indicated in Figure 6. It is not hard to
see that the sequences b are in the symbol space ΣB generated by the adjacency matrix

B =

(
0 1
1 1

)
.

We now interpret Ua as an infinite product of intervals, and in terms of b the intervals making
up the neighborhood Ua = Ub are given by (i ∈ Z)
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Figure 6. A schematic example of a pattern in Ua. At the top is the coding a, and below are the corre-
sponding codings b and c, which are used in the discussion of the entropy.

Ii = [uεi , ũ2] if i is even,

Ii = [ũ3, u
ε
i ] if i is odd and b i+1

2
= 0,

Ii = [ũ1, û
ε
i ] if i is odd and b i+1

2
= 1.

Let ua = ub be the periodic solutions of (4) at E = 0 corresponding to the stationary points
in Ua = Ub, which was found in Lemma 6.

An arbitrary periodic sequence in ΣB might not have a b0 = 0, but for any periodic
sequence b �= 1∞ in ΣB we can find a periodic solution of (4) at E = 0 in Ub by using an
appropriate shift.

It is now time to set up the semiconjugacy from a Poincaré map of the flow to the shift-
map σ on ΣB. It is not difficult to check that the sets C ⊂ {E = 0} ⊂ R

4 of all orbits, varying
over all possible periodic a’s or b’s, is uniformly bounded. Taking the closure of this set, we
obtain a compact invariant set C for the ODE. Notice that it may include the equilibrium
solution u ≡ 1.

Next we choose a Poincaré section. The energy level E = 0 is a three-dimensional subset
of the phase space R

4. A local minimum in E = 0 is defined by the values of u and u′′′, since
u′′ = 1√

2
|u2 − 1|. The Poincaré section is therefore defined as the two-dimensional subset

P =
{

(u, 0, 1√
2
|u2 − 1|, u′′′)

∣∣∣ u, u′′′ ∈ R

}
,

and the return map T : P → P follows solutions from one minimum to the next. For the
special point ±1 = (±1, 0, 0, 0) ∈ P we define T (±1) = ±1.

Lemma 9. For any ν > −
√

8 the Poincaré return map T is well defined on P, and T is
continuous.

Proof. That T is well defined follows from the fact that any solution u �≡ 1 in E = 0 has
infinitely many extrema, which was proved in, e.g., [28, Lem. 3.1.2]. That T is continuous
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away from ±1 follows from the methods in the proof of Lemmas 3.1.3 and 3.1.4 in [28]. There,
only symmetric settings were considered, but the method prevails in the nonsymmetric setting.
Continuity of T at ±1 follows from the fact that the equilibria are either saddle-foci (|ν| <

√
8)

or centers (ν ≥
√

8). Roughly speaking, the closer an orbit starts to ±1, the more extrema
near ±1 it has. It is not hard to deduce continuity at ±1 from this.

By construction and Lemma 9, the return map T , defined on P, has a compact invariant
set Λ = P ∩ C. For λ ∈ Λ, we denote by uλ(y) the solution with initial data λ.

Lemma 10. Let λ ∈ Λ, and let uλ be the associated solution of (4). Suppose uλ �≡ 1.
Then uλ has only nondegenerate extrema, with the maxima in (1, ũ2] and the minima either
in [ũ3, 1) or in [ũ1,−1).

Proof. We write u = uλ. All solutions in C can be approximated arbitrarily closely (on
compact intervals) by the periodic solutions found in Lemma 6. Nondegenerate extrema
persist, whereas degenerate extrema (u′ = u′′ = 0) in E = 0 must lie on the lines u = ±1.
Hence, the bounds on the extrema follow immediately from the definitions of Ua and Ii, once
we have excluded degenerate extrema, i.e., inflection points on u = ±1.

To rule out inflection points we argue by contradiction (see also [28, Lem. 3.1.5]). Suppose
u ∈ C has an inflection point, say, u′(0) = u′′(0) = 0. Hence u(0) = ±1 and u′′′(0) �= 0 (if
u′′′(0) = 0, then u ≡ 1 by uniqueness of the initial value problem). We consider the case
u(0) = 1 and u′′′(0) > 0; the other three cases are ruled out in an analogous manner. Let
{un}∞n=1 be a sequence of periodic solutions found in Lemma 6, such that un → u in C3 on
any bounded interval. Then by the implicit function theorem, for large enough n, there exist
points yn such that limn→∞ yn = 0 and u′′n(yn) = 0. We know that u′n(yn) �= 0, since the un
have only nondegenerate extrema.

We now consider two cases: either u′n(yn) > 0 or u′n(yn) < 0 for infinitely many n ∈ N. In
the former case we argue as follows. Taking a subsequence we may assume that u′n(yn) > 0
for all n. We conclude from E = 0 and u′′n(yn) = 0 that

u′′′n (yn) +
ν

2
u′n(yn) = −(un(yn)2 − 1)2

4u′n(yn)
≤ 0.

Taking the limit n → ∞ in the above inequality leads to u′′′(0)+ ν
2u

′(0) ≤ 0, which contradicts
the assumption that u has an inflection point at y = 0 with u′′′(0) > 0.

In the latter case, we may assume that u′n(yn) < 0 for all n. Since in the inflection point
u′′′(0) > 0, it follows that u′(y) > 0 for y �= 0 sufficiently small. This means that for n large
enough there are sequences y1

n < yn < y2
n of local maxima and minima of un, respectively, such

that y1,2
n → 0 as n → ∞. Since the periodic solutions un have their extrema on alternating

sides of +1 by construction, there is a sequence y3
n ∈ (y1

n, y
2
n) such that un(y3

n) = 1 and
u′n(y3

n) < 0. We conclude from E = 0 and un(y3
n) = 1 that

u′′′n (y3
n) +

ν

2
u′n(y3

n) =
u′′n(y3

n)2

u′n(y3
n)

≤ 0,

and we reach a contradiction as before by taking the limit n → ∞ in this inequality, thereby
concluding the proof.

To define the semiconjugacy ρ : Λ → ΣB we consider the solution uλ(y) of (4) with initial
data λ ∈ Λ. If uλ ≡ 1, we define ρ(λ) = 1∞. Otherwise, let uλi be the sequence of extrema
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of uλ, indexed such that uλ1 is the minimum corresponding to λ ∈ P. By Lemma 10, this
sequence lies in Ubλ

for some bλ ∈ ΣB, and we define ρ(λ) = bλ.
It follows from Lemmas 9 and 10 that the map ρ is continuous (also in the point +1, if

+1 happens to lie in Λ). Moreover, ρ ◦ T = σ ◦ ρ by construction and the properties of the
return map (where σ is the shift map). Finally, ρ is surjective. Namely, all periodic sequences
in ΣB have corresponding solutions in C (and thus in Λ), and since the set of periodic sequences
is dense in ΣB and Λ is compact, surjectivity follows. Hence, ρ defines a semiconjugacy, and
it follows (e.g., [30]) that the topological entropy of the map T on Λ is positive:

htop

(
T |Λ

)
≥ htop

(
σ|ΣB

)
= log

(
1 +

√
5

2

)
.

This finishes the proof of Theorem 2.
Remark 11. There is another way to make a coding that was already alluded to in the

introduction. The profile between two successive minima can, qualitatively, have three shapes
(see Figure 2):

ui < −1 and ui+2 > −1, coded by ci = 1;

ui > −1 and ui+2 > −1, coded by ci = 2;

ui > −1 and ui+2 < −1, coded by ci = 3.

This new coding c is also indicated in Figure 6. The corresponding adjacency matrix is⎛
⎝ 0 1 1

0 1 1
1 0 0

⎞
⎠ .

This of course does not improve the bound on the entropy of T , but the slightly more com-
plicated coding c, using “up-down” building blocks, is more intuitively related to the shape
of solutions, as expressed in Figure 2.

3. Rigorous continuation. We are going to restrict our attention to symmetric periodic
solutions u satisfying H. Hence, let

(11) u(y) = a0 + 2

∞∑
l=1

al cos(lLy),

with L an a priori unknown variable. Since u′(0) = 0, and the energy (5) is a conserved
quantity along the orbits of (4), we get that

E = u′′′(0)u′(0) − 1

2
u′′(0)2 +

ν

2
u′(0)2 +

1

4
(u2 − 1)2

= −1

2

[
u′′(0) − 1√

2

(
u(0)2 − 1

)] [
u′′(0) +

1√
2

(
u(0)2 − 1

)]
.

Since we look for u such that E = 0, u(0) < −1, and u′′(0) > 0, the energy condition boils
down to

(12) u′′(0) − 1√
2
[u(0)2 − 1] = 0.
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Substituting the expansion (11) of u(y) into (12), we obtain

(13) e(L, a)
def
= −2L2

∞∑
l=1

l2al −
1√
2

[
a0 + 2

∞∑
l=1

al

]2

+
1√
2

= 0.

Plugging the expansion (11) into (4) and computing the inner product of the resulting equa-
tions with each cos(kLx), k ≥ 0, we get

(14) gk(L, a, ν)
def
= [1 + νL2k2 − L4k4]ak −

∑
k1+k2+k3=k

ki∈Z

ak1ak2ak3 = 0,

where a = (a0, a1, . . .). Define x = (x−1, x0, x1, . . .) = (L, a0, a1, a2, . . .), and g = (g0, g1, g2, . . .)
T ,

as well as

(15) f(x, ν) =

[
e(x)

g(x, ν)

]
.

To simplify the presentation, we use the notation f−1 = e and fk = gk for k ≥ 0. Now,
since we want to use rigorous numerical methods to find pairs (x, ν) such that f(x, ν) = 0, we
need to consider a finite dimensional projection of (15). Define xF = (x−1, x0, . . . , xm−1) =
(L, a0, . . . , am−1) ∈ R

m+1,

e(m)(xF )
def
= −2L2

m−1∑
l=1

l2al −
1√
2

[
a0 + 2

m−1∑
l=1

al

]2

+
1√
2
,

and

g(m)(xF , ν)
def
= [g0(xF , ν), . . . , gm−1(xF , ν)]T .

The Galerkin projection of (15) is defined by

f (m)(xF , ν)
def
=

[
e(m)(xF )

g(m)(xF , ν)

]
.

It is important to note that f (m) has both a finitely truncated domain and a finitely truncated
codomain.

We now describe how we can modify the classical, numerical, predictor-corrector algorithm
for following a continuous branch of solutions to fit our setting. Suppose that, at parameter
value ν = ν0, we have used a Newton-like iteration method to numerically find x̄F such that

(16) f (m)(x̄F , ν0) ≈ 0.

Throughout this paper, Df represents the derivative of f with respect to the xF - or x-variable.
If (x̄F , ν0) is a solution of f (m)(xF , ν) = 0 such that the Jacobian matrix Df (m)(x̄F , ν0) is
invertible, then, by the implicit function theorem, there exists a unique one-dimensional local
continuum of solutions (xF , ν) such that the solution xF is locally a function of the parameter
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Figure 7. (a) Sketch of the predictor-corrector algorithm for the truncated problem f (m)(xF , ν) = 0. (b) The
neighborhood Wxν (r) in which we find solutions of the full problem f(x, ν) = 0.

ν (near ν0). Moreover, as a computational counterpart, we may numerically find a tangent
vector ẋF to the solution curve at (x̄F , ν0), i.e.,

(17) Df (m)(x̄F , ν0)ẋF +
∂f

∂ν

(m)

(x̄F , ν0) ≈ 0.

We can then use this tangent vector to obtain a predictor x̂F = x̄F +(ν1−ν0)ẋF for the solution
at a parameter value ν1 close to ν0. The corrector then consists of iterating a Newton-like
map, with initial point x̂F , to converge to the zero x̃F of f (m)(xF , ν1); see also Figure 7(a).
There are two essential problems to overcome in this scheme. First, the result for the finite
dimensional truncation needs to be “lifted” to the infinite dimensional setting. This lifting
is carried out via “validated continuation” [15], with a final interval arithmetic step. Second,
the described method leads to a discrete set of solutions (x, ν), whereas we aim for solutions
for a continuous range of parameter values, and we describe our approach below.

Denote by x̄F = (L̄, ā0, ā1, . . . , ām−1) and ẋF = (L̇, ȧ0, ȧ1, . . . , ȧm−1) the approximate
solutions of (16) and (17), respectively, and define their infinite extensions x̄ = (x̄F , 0, 0, 0, . . .)
and ẋ = (ẋF , 0, 0, 0, . . .). We define the “linear part” of gk as

μk(L, ν)
def
= 1 + νL2k2 − L4k4.

Furthermore, let the (m + 1) × (m + 1) matrix JF be the numerically computed inverse of
Df (m)(x̄F , ν0), and let 0F be the 1 × (m + 1) row vector (0, 0, . . . , 0). We define the linear
operator on sequence spaces

(18) A
def
=

⎡
⎢⎢⎢⎢⎢⎣

JF 0TF 0TF 0TF · · ·
0F μm(L̄, ν0)

−1 0 0 · · ·
0F 0 μm+1(L̄, ν0)

−1 0 · · ·
0F 0 0 μm+2(L̄, ν0)

−1

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ ,
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which acts as an approximate inverse of the linear operator Df(x̄, ν0). We shall always make
sure that m is sufficiently large, so that μm(L̄, ν0) < 0. For ν close to ν0, we consider the
Newton-like operator

(19) Tν(x)
def
= x−A · f(x, ν).

To formalize this approach, it is convenient to use a functional analytic setting. As weight
functions we define, for s > 0,

(20) ωs
k =

{
1, k = −1, 0,
ks, k ≥ 1.

In general, one can play around with these weight functions (and the norm below); for the
problem in this paper, we have found the choice (20) to be appropriate, because it leads to a
proof. These weight functions are used in the norms

(21) ‖x‖s = sup
k=−1,0,1,...

|xkωs
k|

and the sequence spaces

Ωs = {x, ‖x‖s < ∞},

consisting of sequences with algebraically decaying tails. For the first sum in (13) to make
sense, we shall require that s > 3.

Lemma 12. We have the following:

(a) The sequence space Ωs with norm ‖ · ‖s is a Banach space for all s. The injections
Ωs1 ↪→ Ωs2 are compact for all s1 > s2.

(b) Let s > 3. The map T (x, ν) is continuous from Ωs×R to Ωs+2, and T (x, ν) is compact
from Ωs × R to Ωs.

(c) Let s0 > 3 and fix ν. Zeros of f(x, ν), or, equivalently, fixed points of T (x, ν), that are
in Ωs0, are in Ωs for all s ≥ s0.

(d) Let s > 3. A sequence x = (L, a0, a1, . . .) ∈ Ωs is a zero of f , or a fixed point of T ,
if and only if u given by (11) is a periodic solution of (4) at energy level E = 0, with
period 2π

L , and symmetric in y = 0 and y = π
L .

Proof. We only outline the proofs; the reader may quite easily fill in the details.

Part (a) follows from standard functional analytic arguments. For part (b), observe
that, for any s > 1, the weighted discrete convolution ks|

∑
k1+k2+k3=k ak1ak2ak3 | is uniformly

bounded if ks|ak| is uniformly bounded; see, for example, Appendix A. It then follows that
gk = −L4k4ak+O(k2). Since μk = −L4k4+O(k2), the composition [A·f(x, ν)]k = xk+O(k−2)
as k → ∞, and we conclude that T maps Ωs × R to Ωs+2 for s > 3 (one needs s > 3 for
the first sum in (13) to be well defined). Continuity of T is straightforward to verify, and the
compact injections from part (a) then imply the compactness statement in (b).

Concerning part (c), the equivalence of zeros of f and fixed points of T is obvious, and
the remainder of the statement follows immediately from parts (a) and (b) by using that
x = T (x). Finally, since the tail of a fixed point of T decays faster than any algebraic
rate, all sums may be differentiated term by term; hence u defined by (11) is a solution of
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the differential equation (periodic, with energy E = 0). On the other hand, any (periodic)
solution of the differential equation is C∞; hence the tail of its Fourier transform decays faster
than any algebraic rate, and thus, by standard arguments, the Fourier transform solves g = 0,
and part (d) follows.

Lemma 12(d) shows that the problem of finding (symmetric) periodic solutions of (4) at
E = 0 is equivalent to studying fixed points of T . We will find balls in Ωs on which T , for
fixed ν, is a contraction mapping, thus leading to solutions of (4). Let us define the ball of
radius r, centered at the origin,

(22) W (r)
def
= [−r, r]2 ×

∞∏
k=1

[
− r

ks
,
r

ks

]
.

For Δν = ν − ν0 small, we define the predictors based at ν0 by

xν = x̄ + Δν ẋ.

For ν close to ν0 we define the ball centered at xν by

Wxν (r) = xν + W (r).

We look for fixed points of T inside these balls/neighborhoods; see also Figure 7(b). To show
that T is a contraction mapping, we need bounds Yk and Zk for all k = −1, 0, 1, 2, . . . , such
that, with Δν = ν − ν0,

(23)
∣∣∣[Tν(xν) − xν ]k

∣∣∣ ≤ Yk(Δν),

and

(24) sup
w,w′∈W (r)

∣∣∣[DTν(xν + w′)w]k

∣∣∣ ≤ Zk(r,Δν).

We will find such bounds in sections 3.2 and 3.3, respectively. Notice that Yk ≥ 0 and Zk ≥ 0.
Although this is not a restriction, we will, in this paper, consider only Δν ≥ 0, since we will
initiate the continuation at the parameter value ν = 0 and finish at ν = 2; hence we do
continuation in one direction only.

Variants of the following lemma were also used in [13, 15, 18, 37].
Lemma 13. Fix s > 3 and ν = ν0 + Δν . If there exists an r > 0 such that ‖Y + Z‖s < r,

with Y = (Y−1, Y0, Y1, . . .) and Z = (Z−1, Z0, Z1, . . .) the bounds as defined in (23) and (24),
then there is a unique x̃ν ∈ Wxν (r) such that f(x̃ν , ν) = 0.

Proof. We outline the proof, which can be found in more detail in [15] and [37]. The
mean value theorem (applied componentwise), combined with the assumption ‖Y + Z‖s < r,
implies that T (·, ν) maps Wxν (r) into itself. Since Yk ≥ 0 and Zk ≥ 0, it follows that
‖Z‖s ≤ ‖Y + Z‖s < r. We infer from the mean value theorem that the Lipschitz constant of
T (·, ν) on Wxν (r) can be estimated above by ‖Z‖s/r < 1, so that T is a contraction mapping.
Finally, zeros of f correspond to fixed point of T ; hence an application of the Banach fixed
point theorem concludes the proof.
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In order to verify the hypotheses of Lemma 13 in a computationally efficient way, we
introduce the notion of radii polynomials. Namely, as will become clear in sections 3.2 and 3.3,
the functions Yk(Δν) and Zk(r,Δν) are polynomials in their independent variables. Also, for
sufficiently large k, say, k ≥ M , one may choose

Yk = 0 and Zk = ẐM

(
M

k

)s

for some ẐM (r,Δν) > 0. This leads us to the following definition.
Definition 14. Let Yk(Δν) = 0 and Zk(r,Δν) = ẐM (r,Δν)

(
M
k

)s
for all k ≥ M . We define

the M + 2 radii polynomials {p−1, p0, . . . , pM−1, pM} by

pk(r,Δν)
def
=

{
Yk(Δν) + Zk(r,Δν) − r

ωs
k
, k = −1, 0, . . . ,M − 1,

ẐM (r,Δν) − r
ωs
M
, k = M.

The usefulness of the radii polynomials pk follows from the observation that the polyno-
mials Yk and Zk have a few exceptionally small terms. Namely, it turns out that they are
roughly of the form (to be made precise in sections 3.2 and 3.3)

Yk ∼ δ1 + δ2Δν + O(Δ2
ν),

Zk ∼ δ3r + O(Δνr, r
2),

where the δ1, δ2, and δ3 are small, because of the choice of x̄, the choice of ẋ, and the choice
of the linear operator A in the Newton-like map T , respectively. It is easy to see that the
zeroth-order term of Zk vanishes. Hence, the radii polynomials are roughly of the form

pk(r,Δν) ∼ (δ1 + Δνδ2) −
(

1

ωs
k

− δ3

)
r + O(r2,Δνr,Δ

2
ν),

so that one may anticipate them to be negative for small r (but not too small) for a reasonably
large range of Δν .

Lemma 15. Let s > 3 and let Yk(Δν) = 0 and Zk(r,Δν) = ẐM (r,Δν)
(
M
k

)s
for all k ≥ M .

Suppose that there exists an r > 0 such that pk(r,Δν) < 0 for all k = −1, . . . ,M ; then the
hypotheses of Lemma 13 are satisfied for ν = ν0 + Δν .

Proof. Let s > 3, r > 0, and ν = ν0 +Δν such that pk(r,Δν) < 0 for all k = −1, 0, . . . ,M .
Since Yk + Zk = ẐM

(
M
k

)s
for k ≥ M , by definition of the radii polynomials, we get that

‖Y + Z‖s = sup
k=−1,0,1,...

|[Yk(Δν) + Zk(r,Δν)]ω
s
k|

= max
k=−1,0,...,M

{pk(r,Δν)ω
s
k + r} < r.

Combining Lemmas 13 and 15, it should now become clear that proving the existence of
zeros of f , and hence periodic solutions of (4) at E = 0, is computable, since only a finite
number of polynomial inequalities need to be verified. There is one final observation to be
made. The Yk and the Zk are monotonically increasing in the variable Δν ≥ 0, that is,
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Yk(Δ
0
ν) ≤ Yk(Δ

1
ν) and Zk(r,Δ

0
ν) ≤ Zk(r,Δ

1
ν) for 0 ≤ Δ0

ν ≤ Δ1
ν . As a consequence, the same

property holds for the radii polynomials: if 0 ≤ Δ0
ν ≤ Δ1

ν , then pk(r,Δ
0
ν) ≤ pk(r,Δ

1
ν) for all

k = −1, . . . ,M . Hence, if the hypotheses in Lemma 13 are satisfied for some Δ0
ν > 0, then

they are satisfied for all Δν ∈ [0,Δ0
ν ]; hence there are corresponding periodic solutions of (4)

for all ν ∈ [ν0, ν0 + Δ0
ν ].

For what follows we recall that the construction of the radii polynomials pk involves Yk
and Zk, defined in (26) and (31), respectively, as well as M0 and ẐM , defined in (30) and (32),
respectively. Furthermore, because the coefficients of the polynomials Yk and Zk are all
positive, there is at most one interval in the positive half line on which pk is negative. With
these considerations in mind, the following procedure leads to a proof of the existence part of
Theorem 3. The geometric properties H will be checked in Procedure 21 in section 4.

Procedure 16. To check the hypotheses in Lemma 15 on the interval ν ∈ [0, 2] we proceed
as follows.

1. Choose minimum and maximum step-sizes 0 < Δmin < Δmax. Initiate s > 3, m ∈ N,
M ≥ max{3m − 2, 6}, ν0 = 0, Δν ∈ [Δmin,Δmax], Δ0

ν = 0, and an approximate
zero x̂F of f (m)(xF , 0). Calculate the analytic estimates (αk, k = 0, . . . ,M) that are
independent of everything.

2. With a classical Newton iteration, find near x̂F an approximate solution x̄F of f (m)(xF ,
ν0) = 0. Calculate an approximate solution ẋF of (17). Use the first component of x̄F
to calculate with interval arithmetic M0(L̄, ν0) and check that M0 ≤ M (this is never
a problem in practice).

3. Compute, using interval arithmetic, the coefficients of the radii polynomials pk, k =
−1, . . . ,M . This is the computationally most expensive step, since it involves the coef-
ficients in Tables 1, 3, and 4 and in particular requires the calculation of convolution
terms.

4. Calculate numerically I = [I−, I+]
def
=
⋂M

k=−1{r ≥ 0 | pk(r,Δν) ≤ 0}.
• If I = ∅, then go to Step 6.
• If I �= ∅, then let r = min{11

10I−,
I−+I+

2 }. Compute with interval arithmetic
pk(r,Δν). If pk(r,Δν) < 0 for all k = −1, . . . ,M , then go to Step 5; else go to
Step 6.

5. Update Δ0
ν ← Δν and r0 ← r. If 10

9 Δν ≤ Δmax, then update Δν ← 10
9 Δν and go to

Step 4; else go to Step 7.
6. If Δ0

ν > 0, then go to Step 7; else if 9
10Δν ≥ Δmin, then update Δν ← 9

10Δν and go
to Step 4; else go to Step 8.

7. The continuation step has succeeded. Store, for future reference, x̄F , ẋF , r0, ν0, and
Δ0

ν . Determine ν1 approximately equal to, but interval arithmetically less than, ν0+Δ0
ν .

If ν1 ≥ 2, then terminate the procedure successfully; else make the updates ν0 ← ν1,
Δν ← Δ0

ν , x̂F ← x̄F + Δ0
ν ẋF , and Δ0

ν ← 0, and go to Step 2 for the next continuation
step.

8. The continuation step has failed. Either decrease Δmin and return to Step 6 or increase
s or M and return to Step 3; or increase m and return to Step 2. Alternatively,
terminate the procedure unsuccessfully at ν = ν0 (although with success on [0, ν0]).

Note that computing I using interval arithmetic would be expensive, since we would need
to compute each set {r ≥ 0 | pk(r,Δν) ≤ 0} (k = −1, . . . ,M − 1) using interval arithmetic.
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Since we need only to get one radius r ∈ I, we chose to approximate I with floating point
arithmetic, pick a point r in the approximation of I, and finally prove that r ∈ I using
interval arithmetic. During the procedure, a sequence of intervals [ν0, ν0 + Δ0

ν ] covering [0, 2]
is stored, together with the variables defining the neighborhoods Wxν (r0). In section 4, the
balls Wxν0

(r0) will be used in Procedure 21 (and Lemma 22) to check the geometric conditions
H. Concerning the usefulness of the procedure in practice, the proof of the pudding is in the
eating.

Lemma 17. Let s = 4, m = 43, M = 127, Δmin = 10−10, and Δmax = 2. Then we
can choose an approximate zero x̂F = x̂∗F of f (m)(xF , 0) such that Procedure 16 terminates
successfully. Hence there are periodic solutions of (4) at E = 0 for all ν ∈ [0, 2].

The choice of x̂∗F is made in such a way that the solutions found satisfy the geometric
conditions H. This is checked using Procedure 21.

Proof. A MATLAB computer program successfully performing Procedure 16 accompanies
the paper. In particular, we never end up in Step 8 of the procedure. Concerning the imple-
mentation, the only difficult evaluations are the convolution terms, which can be computed
in a very efficient way using the fast Fourier transform combined with interval arithmetic;
see [18]. More details about the implementation are given in section 3.1.

3.1. Implementation. In this section, we discuss in detail the implementation of the rig-
orous verification of Procedure 16 and Procedure 21 (which checks the geometric properties
H; see section 4). First, as seen in [15], the errors induced by the floating point computations
of the coefficients of the radii polynomials are small. Hence, finding a positive r at which all
radii polynomials are negative without interval arithmetic gives significant confidence about
the success of Procedure 16. On top of that, the computational efficiency of floating point
arithmetic in MATLAB allows for fast computations. With this in mind, we wrote a pre-
liminary function called SH continuation.m, which verifies, without interval arithmetic, that
Procedure 16 performs successfully. Using the values given in Lemma 17, we obtained 13068
successful nonrigorous steps in a bit more than 7 minutes. In Figure 8, we plot the evolution
of Δν as the parameter ν runs from 0 to 2.

This being done, and armed with confidence, we then aimed for the proof. First we wrote
SH rigorous continuation.m, the equivalent of SH continuation.m, in the MATLAB interval
arithmetic package Intlab (see [20]). We did not try to optimize for speed in the interval
arithmetic setting, since we preferred to keep the changes with respect to the floating point
version SH continuation.m limited. The speed of the interval arithmetic is thus rather slow,
and we decided to distribute the computations over 20 different computers, each running 3 si-
multaneous calculations. Hence, we used the 13068 output points from SH continuation.m to
generate a nonuniform mesh {(νj , xj) | j = 1, . . . , 61} of the branch under study, where ν1 = 0
and ν61 = 2. The function SH mesh generator.m picks 61 points out of the 13068 defining
the discrete branch. Note that we do not need to define x61, since at this point we have
already reached ν = 2. This mesh is stored in the file SH mesh points.mat. Then, for each
j = 1, . . . , 60, we called the function SH run proof (j). This function first starts Intlab, loads
SH mesh points.dat, and then rigorously verifies Procedure 16 between the parameter values
νj and νj+1, using SH rigorous continuation.m with the initial point xj as input. Finally,
it verifies, by running the interval arithmetic function SH geometric properties.m, that the
periodic orbits rigorously generated by SH rigorous continuation(xj , νj , νj+1) satisfy the geo-
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Figure 8. The step size Δν as a function of the parameter ν ∈ [0, 2]. The step size increases at first, but
it then decreases as we approach a saddle-node bifurcation.

metric properties H, as described in section 4. Thus, the proof of Lemma 17 (and Lemma 22)
was finished when all 60 runs ended successfully. The total running time was around 12 hours.

3.2. The bounds Yk(Δν). Recalling (19) and (23), in this section we want to find bounds∣∣∣[−A · f(xν , ν)]k

∣∣∣ ≤ Yk(Δν).

We use the following notation. For an arbitrary vector yF = (y−1, y0, y1, . . . , ym−1), the
infinite extension is y = (y−1, y0, y1, . . . , ym−1, 0, 0, 0, . . .). For an infinite sequence z =
(z−1, z0, z1, . . .), the finite restriction is zF = (z−1, z0, z1, . . . , zm−1), whereas zI = (0, 0, . . . , 0,
zm, zm+1, zm+2, . . .) denotes the infinite tail. Similar notation is used for vectors/sequences of
which the index starts at 0 rather than −1—in particular, the vectors āF = (ā0, ā1, . . . , ām−1)
and ȧF = (ȧ0, ȧ1, . . . , ȧm−1). Also, absolute values of vectors, infinite sequences, and matri-
ces are taken componentwise, e.g., |x| = (|x−1|, |x0|, |x1|, |x2|, . . .). Furthermore, we use the
convolutions

(a ∗ b ∗ c)k =
∑

k1+k2+k3=k
k1,k2,k3∈Z

a|k1|b|k2|c|k3|,

which is of course the standard convolution when taking a−k ≡ ak, and (with the extension
convention)

(aF ∗ bF ∗ cF )k = (a ∗ b ∗ c)k =
∑

k1+k2+k3=k
|ki|<m

a|k1|b|k2|c|k3|,

which vanishes for k ≥ 3m− 2.
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Table 1
The nonzero coefficients in the expansion (25) of fk. In particular, d4

−1 = d5
−1 = 0. Notice that for k ≥ m

the only nonvanishing terms are the convolution terms. Furthermore, for k ≥ 3m− 2 all coefficients are 0.

k = −1

d1
−1 −2L̄2∑m−1

l=1 l2ȧl − 4L̄L̇
∑m−1

l=1 l2āl −
√

2
(
ā0 + 2

∑m−1
l=1 āl

)(
ȧ0 + 2

∑m−1
l=1 ȧl

)
d2
−1 −4L̄L̇

∑m−1
l=1 l2ȧl − 2L̇2∑m−1

l=1 l2āl − 1
2

√
2
(
ȧ0 + 2

∑m−1
l=1 ȧl

)2
d3
−1 −2L̇2∑m−1

l=1 l2ȧl

k = 0, 1, 2, . . .

d1
k

(
1 + ν0L̄

2k2 − L̄4k4
)
ȧk +

(
(2ν0L̄L̇ + L̄2)k2 − 4L̄3L̇k4

)
āk − 3(ā ∗ ā ∗ ȧ)k

d2
k

(
(2ν0L̄L̇ + L̄2)k2 − 4L̄3L̇k4

)
ȧk +

(
(ν0L̇

2 + 2L̄L̇)k2 − 6L̄2L̇2k4
)
āk − 3(ā ∗ ȧ ∗ ȧ)k

d3
k

(
(ν0L̇

2 + 2L̄L̇)k2 − 6L̄2L̇2k4
)
ȧk +

(
L̇2k2 − 4L̄L̇3k4

)
āk − (ȧ ∗ ȧ ∗ ȧ)k

d4
k

(
L̇2k2 − 4L̄L̇3k4

)
ȧk − L̇4k4āk

d5
k −L̇4k4ȧk

Exploiting that f is a vector of polynomials in the components of x and ν, we write

(25) fk(xν , ν) = fk(x̄ + Δν ẋ, ν0 + Δν) = fk(x̄, ν0) +

5∑
i=1

dik(x̄, ẋ, ν0)Δ
i
ν .

Here the constants dik are listed in Table 1.

For the zeroth-order term we have for the finite part fF (x̄, ν0) = f (m)(x̄F , ν0), which is
very small, since x̄F is a numerical zero of f (m)(xF , ν0). The choice of ẋF given by (17) implies
that the first-order term d1

F is also small, since

fF (xν , ν) = f (m)(x̄F , ν0) +

[
Df (m)(x̄F , ν0)ẋF +

∂f

∂ν

(m)

(x̄F , ν0)

]
Δν + O(Δ2

ν).

For the tail (k ≥ m) we have fk(x̄, ν0) = −(ā ∗ ā ∗ ā)k = −(āF ∗ āF ∗ āF )k, which vanishes for
k ≥ 3m− 2.

Using the vectors di from Table 1, this leads to bounds Yk(Δν) as listed below, with
Δν ≥ 0:

(26a) YF = |JF · f (m)(x̄F , ν0)| +
5∑

i=1

∣∣∣JF · diF
∣∣∣Δi

ν

for k = −1, 0, 1, . . . ,m− 1;

(26b) Yk =
|(ā ∗ ā ∗ ā)k| + 3|(ā ∗ ā ∗ ȧ)k|Δν + 3|(ā ∗ ȧ ∗ ȧ)k|Δ2

ν + |(ȧ ∗ ȧ ∗ ȧ)k|Δ3
ν

|μk(L̄, ν0)|
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for m ≤ k ≤ 3m− 3; and

(26c) Yk = 0

for k ≥ 3m− 2.

3.3. The bounds Zk(r, Δν). In this section we construct bounds

sup
w,w′∈W (r)

∣∣∣[DTν(xν + w′)w]k

∣∣∣ ≤ Zk(r,Δν).

We will use the notation introduced at the start of section 3.2. Furthermore, at several
instances, we employ a computational parameter M , and although not necessary, we choose
the same value of M every time for simplicity.

Recall that JF is a numerical inverse of Df (m)(x̄F , ν0). To simplify the exposition, we
introduce an almost inverse of the operator A defined in (18):

A† def
=

⎡
⎢⎢⎢⎢⎢⎣

Df (m)(x̄F , ν0) 0TF 0TF 0TF · · ·
0F μm(L̄, ν0) 0 0 · · ·
0F 0 μm+1(L̄, ν0) 0 · · ·
0F 0 0 μm+2(L̄, ν0)
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ .

We split Dfν(xν + w′)w into two pieces:

Dfν(xν + w′)w = A†w +
[
Dfν(xν + w′) −A†]w

and hence

(27) DTν(w
′ + xν)w = [I −AA†]w −A

[
Dfν(xν + w′) −A†]w,

where the first term will be very small. For w,w′ ∈ W (r) we consider v, v′ ∈ W (1) defined by
w = rv and w′ = rv′. Similar to section 3.2, we expand the expression [Dfν(xν + w′) −A†]w
in terms of r and Δν :

(28)
(
[Dfν(xν + w′) −A†]w

)
k

=

5∑
i=1

5−i∑
j=0

ci,jk (x̄, ẋ, v, v′, ν0)r
iΔj

ν .

Here the constants ci,jk are listed in Table 2. Since A† does not depend on r or Δν , it is

involved only in the calculation of the coefficient c1,0k . In particular, for the finite part,

c1,0F = DfF (x̄, ν0)v −Df (m)(x̄F , ν0)vF ,

and for the tail (k ≥ m),
c1,0k = Dfk(x̄, ν0)v − μk(L̄, ν0)vk.

The other coefficients ci,jk can be easily generated with the help of a computer (e.g., with
Maple). Here we have rearranged the terms in the output somewhat to make the formulas in
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Table 2
The nonzero coefficients in the expansion (28). In the expression for c1,0k we have used the notation

vI = (0, 0, . . . , 0, vm, vm+1, vm+2, . . .).

k = −1

c1,0−1 −2L̄2
∑∞

l=m l2vl −
√

2
(
ā0 + 2

∑m−1
l=1 āl

) (
2
∑∞

l=m vl
)

c1,1−1 −4
(
L̇
∑m−1

l=1 l2āl + L̄
∑m−1

l=1 l2ȧl

)
v−1 − 4L̄L̇

∑∞
l=1 l

2vl −
√

2
(
ȧ0 + 2

∑m−1
l=1 ȧl

) (
v0 + 2

∑∞
l=1 vl

)
c1,2−1 −4L̇v−1

∑m−1
l=1 l2ȧl − 2L̇2

∑∞
l=1 l

2vl

c2,0−1 −4
(
v′−1

∑m−1
l=1 l2āl + L̄

∑∞
l=1 l

2v′l

)
v−1 − 4L̄v′−1

∑∞
l=1 l

2vl −
√

2
(
v′0 + 2

∑∞
l=1 v

′
l

) (
v0 + 2

∑∞
l=1 vl

)
c2,1−1 −4

(
v′−1

∑m−1
l=1 l2ȧl + L̇

∑∞
l=1 l

2v′l

)
v−1 − 4L̇v′−1

∑∞
l=1 l

2vl

c3,0−1 −4v′−1v−1
∑∞

l=1 l
2v′l − 2(v′−1)2

∑∞
l=1 l

2vl

k = 0, 1, 2, . . .

c1,0k

{
−3 (ā ∗ ā ∗ vI)k for 0 ≤ k ≤ m− 1,

−3 (ā ∗ ā ∗ v)k for k ≥ m

c1,1k −k2
[(

4k2L̄3L̇− L̄2 − 2ν0L̄L̇
)
vk + 2

(
(6k2L̄2L̇− L̄− ν0L̇)āk + (2k2L̄3 − ν0L̄)ȧk

)
v−1

]
− 6 (ā ∗ ȧ ∗ v)k

c1,2k −k2
[(

6k2L̄2L̇2 − 2L̄L̇− ν0L̇2
)
vk + 2

(
(6k2L̄L̇2 − L̇)āk + (6k2L̄2L̇− L̄− ν0L̇)ȧk

)
v−1

]
− 3 (ȧ ∗ ȧ ∗ v)k

c1,3k −k2L̇
[(

4k2L̄L̇2 − L̇
)
vk + 2

(
2k2L̇2āk + (6k2L̄L̇− 1)ȧk

)
v−1

]
c1,4k −k4L̇3

[
L̇vk + 4ȧkv−1

]
c2,0k −2k2

[(
2k2L̄3 − ν0L̄

)(
v′−1vk + v′kv−1

)
+
(
6k2L̄2 − ν0

)
ākv

′
−1v−1

]
− 6 (ā ∗ v′ ∗ v)k

c2,1k −2k2
[(

6k2L̄2L̇− L̄− ν0L̇
)(
v′−1vk + v′kv−1

)
+
(
(12k2L̄L̇− 1)āk + (6k2L̄2 − ν0)ȧk

)
v′−1v−1

]
− 6 (ȧ ∗ v′ ∗ v)k

c2,2k −2k2
[(

6k2L̄L̇2 − L̇
)(
v′−1vk + v′kv−1

)
+
(
6k2L̇2āk + (12k2L̄L̇− 1)ȧk

)
v′−1v−1

]
c2,3k −4k4L̇2

[
L̇
(
v′−1vk + v′kv−1

)
+ 3ȧkv

′
−1v−1

]
c3,0k −k2v′−1

[(
6k2L̄2 − ν0

)(
v′−1vk + 2v′kv−1

)
+ 12k2L̄ākv

′
−1v−1

]
− 3 (v′ ∗ v′ ∗ v)k

c3,1k −k2v′−1

[(
12k2L̄L̇− 1

)(
v′−1vk + 2v′kv−1

)
+ 12k2

(
L̇āk + L̄ȧk

)
v′−1v−1

]
c3,2k −6k4L̇v′−1

[
L̇
(
v′−1vk + 2v′kv−1

)
+ 2ȧkv

′
−1v−1

]
c4,0k −4k4(v′−1)2

[
L̄
(
v′−1vk + 3v′kv−1

)
+ ākv

′
−1v−1

]
c4,1k −4k4(v′−1)2

[
L̇
(
v′−1vk + 3v′kv−1

)
+ ȧkv

′
−1v−1

]
c5,0k −k4(v′−1)3

[
v′−1vk + 4v′kv−1

]

Table 2 more aesthetically pleasing. However, such cosmetic changes are of course not needed
for any practical purposes.

We now compute uniform upper bounds for the ci,jk , i.e., Ci,j
k ≥ 0, such that

(29)
∣∣∣ci,jk (x̄, ẋ, v, v′, ν0)

∣∣∣ ≤ Ci,j
k (x̄, ẋ, ν0) for all v, v′ ∈ W (1).

The most involved are the convolution terms, and we have a dedicated lemma to estimate



1014 J. B. VAN DEN BERG AND J.-P. LESSARD

those. Although the formulas are quite cumbersome, the numbers defined below are easily
calculated with a computer. We introduce the computational parameter M ∈ N, arbitrary for
now, and we define

γM
def
= 2

[
M

M − 1

]s
+

[
4 ln(M − 2)

M
+

π2 − 6

3

] [
2

M
+

1

2

]s∗−2

,

where s∗ is the largest integer such that s∗ ≤ s, and

βk
def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 + 1
22s−1(2s−1)

, k = 0,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+
∑k−1

k1=1
ks

ks1(k−k1)s , k = 1, 2, . . . ,M − 1,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+ γM , k = M.

Using this, we set

αk =
6βM

(M + k)s(M − 1)s−1(s− 1)
+ 3

M+k−1∑
j=M

βj−k

js(j − k)s
for k = 0, 1, . . . ,M − 1,

while for k = M we define

αM
def
= β0 +

M−1∑
j=1

βj
js

⎡
⎣1 +

1[
1 − j

M

]s
⎤
⎦

+ βM

[
2 +

1

2s
+

1

3s
+

1

3s−1(s− 1)
+

1

(M − 1)s−1(s− 1)
+ γM

]
.

We introduce, for infinite sequence a = (a0, a1, a2, . . .), the notation

|a|M = (|a|0, |a|1, . . . , |a|M−1).

Analogous to (21) and (22), but now for sequences with index starting at 0 rather than −1,
we define

‖a‖0
s

def
= sup

k=0,1,...
|akωs

k| = sup{|a0|, |a1|, 2s|a2|, 3s|a3|, 4s|a4|, . . .}

and

W 0(r)
def
= {a, ‖a‖0

s ≤ r} = [−r, r] ×
∞∏
k=1

[
− r

ks
,
r

ks

]
.

Lemma 18. Let M ≥ 6, and let a, b, and c lie in the balls W 0(Aa), W
0(Ab), and W 0(Ac).

Then for k = 0, 1, . . . ,M − 1 we have

(a ∗ b ∗ c)k ∈
{(

|a|M ∗ |b|M ∗ |c|M
)
k

+ AaAbAcαk

}
[−1, 1],

while for k ≥ M we have

(a ∗ b ∗ c)k ∈ AaAbAc
αM

ks
[−1, 1].



CHAOTIC BRAIDED SOLUTIONS VIA RIGOROUS NUMERICS 1015

Proof. The proof is a special case of the general convolution estimates in Appendix A,

with p = 3, M1 = M , and the notation βk = α
(2)
k , αk = 3ε

(3)
k , and αM = α

(3)
M .

We are now ready to estimate the coefficients ci,jk (x̄, ẋ, v, v′, ν0), but we first introduce a
bit more notation, namely, in view of Lemma 18,

Qk(a, b, c)
def
=

{ (
|a|M ∗ |b|M ∗ |c|M

)
k

+ ‖a‖0
s ‖b‖0

s ‖c‖0
sαk, k = 0, 1, . . .M − 1,

‖a‖0
s ‖b‖0

s ‖c‖0
s
αM
ks , k ≥ M.

Furthermore, for s > 1, we use the notation

ζ(s, l0)
def
=

∞∑
l=l0

1

ls
and ζ(s)

def
= ζ(s, 1) =

∞∑
l=1

1

ls

and their estimates (which require only a finite computation) for l0 ≤ M ,

ζM (s, l0)
def
=

M∑
l=l0

1

ls
+

1

(M − 1)s−1(s− 1)
and ζM (s)

def
= ζM (s, 1)

so that ζ(s, l0) ≤ ζM (s, l0) and ζ(s) ≤ ζM (s). Finally, let

I
def
=

(
1, 1,

1

2s
,

1

3s
,

1

4s
, . . .

)
and II

def
=

(
0, 0, . . . , 0,

1

ms
,

1

(m + 1)s
, . . .

)
.

With this notation in place, and using Lemma 18, the bounds Ci,j
k (x̄, ẋ, ν0) satisfying (29),

listed in Table 3, are now straightforward to derive. For fixed k, these constants Ci,j
k each

involve only a finite computation, but there are of course still infinitely many values of k to
consider. Notice first that for k ≥ m many terms in Table 3 vanish, since only the first m
elements of ā and ȧ are nonzero. For the same reason, calculating ‖ā‖0

s and ‖ȧ‖0
s is a finite

computation. Moreover, many terms can be estimated using the fact that, for any A1, A2 ∈ R,∣∣∣∣A1 +
A2

k2

∣∣∣∣ ≤ max

{∣∣∣∣A1 +
A2

M2

∣∣∣∣ , |A1|
}

for all k ≥ M.

It follows from these considerations and Lemma 18 that

Ci,j
k ≤ Ĉi,j

M k4−s for k ≥ M ≥ min{m, 6},

where the Ĉi,j
M are listed in Table 4.

To conclude the calculation of Zk we need an estimate on

|μk(L̄, ν0)| = L̄4k4

∣∣∣∣1 − ν0

L̄2k2
+

1

L̄4k4

∣∣∣∣
for large k. Let

(30) M0(L̄, ν0)
def
=

{
0 for ν0 ≤ 0,√

2ν0/L̄ for ν0 > 0.
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Table 3
The uniform bounds Ci,j

k (x̄, ẋ, ν0) on the coefficients ci,jk (x̄, ẋ, v, v′, ν0). For k = 0 one should read k2−s = 0
and k4−s = 0, irrespective of s.

k = −1

C1,0
−1 2 L̄2 ζM (s− 2,m) + 2

√
2
∣∣∣ā0 + 2

∑m−1
l=1 āl

∣∣∣ ζM (s,m)

C1,1
−1 4

∣∣∣L̇∑m−1
l=1 l2āl + L̄

∑m−1
l=1 l2ȧl

∣∣∣+ 4
∣∣L̄L̇∣∣ ζM (s− 2) +

√
2
∣∣∣ȧ0 + 2

∑m−1
l=1 ȧl

∣∣∣ [1 + 2 ζM (s)
]

C1,2
−1 4

∣∣∣L̇∑m−1
l=1 l2ȧl

∣∣∣+ 2L̇2 ζM (s− 2)

C2,0
−1 8

∣∣L̄∣∣ ζM (s− 2) + 4
∣∣∣∑m−1

l=1 l2āl

∣∣∣+ √
2
[
1 + 2 ζM (s)

]2
C2,1

−1 4
∣∣∣∑m−1

l=1 l2ȧl

∣∣∣+ 8
∣∣L̇∣∣ ζM (s− 2)

C3,0
−1 6 ζM (s− 2)

k = 0, 1, 2, . . .

C1,0
k

{
3Qk(ā, ā, II) for 0 ≤ k ≤ m− 1,

3Qk(ā, ā, I) for k ≥ m

C1,1
k

∣∣∣4k2L̄3L̇− L̄2 − 2ν0L̄L̇
∣∣∣ k2−s + 2

∣∣∣2k2
(
3L̄2L̇āk + L̄3ȧk

)
−
(
L̄āk + ν0L̇āk + ν0L̄ȧk

)∣∣∣ k2 + 6Qk(ā, ȧ, I)

C1,2
k

∣∣∣6k2L̄2L̇2 − 2L̄L̇− ν0L̇
2
∣∣∣ k2−s + 2

∣∣∣6k2
(
L̄L̇2āk + L̄2L̇ȧk

)
−
(
L̇āk + L̄ȧk + ν0L̇ȧk

)∣∣∣ k2 + 3Qk(ȧ, ȧ, I)

C1,3
k

∣∣∣4k2L̄L̇3 − L̇2
∣∣∣ k2−s + 2

∣∣∣2k2
(
L̇3āk + 3L̄L̇2ȧk

)
− L̇ȧk

∣∣∣ k2

C1,4
k L̇4k4−s + 4

∣∣L̇3ȧk

∣∣k4

C2,0
k 4

∣∣∣2k2L̄3 − ν0L̄
∣∣∣ k2−s + 2

∣∣∣6k2L̄2āk − ν0āk

∣∣∣ k2 + 6Qk(ā, I, I)

C2,1
k 4

∣∣∣6k2L̄2L̇− L̄− ν0L̇
∣∣∣ k2−s + 2

∣∣∣6k2
(
2L̄L̇āk + L̄2ȧk

)
− āk − ν0ȧk

∣∣∣ k2 + 6Qk(ȧ, I, I)

C2,2
k 4

∣∣∣6k2L̄L̇2 − L̇
∣∣∣ k2−s + 2

∣∣∣6k2
(
L̇2āk + 2L̄L̇ȧk

)
− ȧk

∣∣∣ k2

C2,3
k 8|L̇3|k4−s + 12L̇2|ȧk|k4

C3,0
k 3

∣∣∣6k2L̄2 − ν0

∣∣∣ k2−s + 12
∣∣L̄āk

∣∣k4 + 3Qk(I, I, I)

C3,1
k 3

∣∣∣12k2L̄L̇− 1
∣∣∣ k2−s + 12

∣∣∣L̇āk + L̄ȧk

∣∣∣ k4

C3,2
k 18L̇2k4−s + 12

∣∣L̇ȧk

∣∣k4

C4,0
k 16

∣∣L̄∣∣k4−s + 4|āk|k4

C4,1
k 16

∣∣L̇∣∣k4−s + 4|ȧk|k4

C5,0
k 5 k4−s
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Table 4
The uniform bounds Ĉi,j

M on ks−4Ci,j
k (x̄, ẋ, ν0) for k ≥ M .

Ĉ1,0
M

3(‖ā‖0
s)

2
αM

M4

Ĉ1,1
M max

{∣∣4L̄3L̇− L̄2+2ν0L̄L̇
M2

∣∣ , 4∣∣L̄3L̇
∣∣}+

6‖ā‖0
s‖ȧ‖0

sαM

M4

Ĉ1,2
M max

{∣∣6L̄2L̇2 − 2L̄L̇+ν0L̇
2

M2

∣∣ , 6L̄2L̇2
}

+
3(‖ȧ‖0

s)
2
αM

M4

Ĉ1,3
M max

{∣∣4L̄L̇3 − L̇2

M2

∣∣ , 4∣∣L̄L̇3
∣∣}

Ĉ1,4
M L̇4

Ĉ2,0
M 4 max

{∣∣2L̄3 − ν0L̄
M2

∣∣ , 2∣∣L̄3
∣∣}+

6‖ā‖0
sαM

M4

Ĉ2,1
M 4 max

{∣∣6L̄2L̇− L̄+ν0L̇
M2

∣∣ , 6L̄2
∣∣L̇∣∣}+

6‖ȧ‖0
sαM

M4

Ĉ2,2
M 4 max

{∣∣6L̄L̇2 − L̇
M2

∣∣ , 6∣∣L̄∣∣L̇2
}

Ĉ2,3
M 8

∣∣L̇3
∣∣

Ĉ3,0
M 3 max

{∣∣6L̄2 − ν0
M2

∣∣ , 6L̄2
}

+
3αM

M4

Ĉ3,1
M 3 max

{∣∣12L̄L̇− 1
M2

∣∣ , 12
∣∣L̄L̇∣∣}

Ĉ3,2
M 18L̇2

Ĉ4,0
M 16

∣∣L̄∣∣
Ĉ4,1

M 16
∣∣L̇∣∣

Ĉ5,0
M 5

Then it is not hard to check that

|μk(L̄, ν0)| ≥
L̄4k4

2
for k ≥ M0.

Using the vectors Ci,j and the numbers Ĉi,j
M from Tables 3 and 4, and in view of (27), this

leads to bounds Zk(r,Δν) as listed below, with M ≥ min{M0,m, 6} and Δν ≥ 0:

(31a) ZF = |I − JF ·Df (m)(x̄F , ν0)| · IF r +

5∑
i=1

5−i∑
j=0

∣∣JF ∣∣ · Ci,j
F ri Δj

ν

for k = −1, 0, 1, . . . ,m− 1;
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(31b) Zk =
1

|μk(L̄, ν0)|

5∑
i=1

5−i∑
j=0

Ci,j
k ri Δj

ν

for m ≤ k ≤ M − 1; and

(31c) Zk =
2

L̄4

1

ks

5∑
i=1

5−i∑
j=0

Ĉi,j
M ri Δj

ν

for k ≥ M . Finally, for the purpose of Definition 14 and Lemma 15, we set

(32) ẐM
def
=

2

L̄4M s

5∑
i=1

5−i∑
j=0

Ĉi,j
M ri Δj

ν ,

so that Zk = ẐM

(
M
k

)s
.

4. Verification of the geometric properties H. We now put ourselves in the situation of
a single, successful, rigorous continuation step, where we have found an r > 0 such that the
set (s > 3)

(33) Wxν (r) = xν + W (r) with xν = x̄ + (ν − ν0)ẋ,

centered at the predictor based at ν0, contains a unique fixed point x̃ν of T (x, ν) for each
parameter value ν ∈ [ν0, ν1]. We write x̃ν = (L̃ν , ãν0 , ã

ν
1 , ã

ν
2 , . . .). The functions ũν defined

via (11) are periodic solutions of (4) with period 2π/L̃ν , which are symmetric in y = 0 and

y = π/L̃ν . For convenience, we incorporate the period of the periodic solution in the definition
of the geometric condition as follows:

H
L̃

⎧⎪⎪⎨
⎪⎪⎩

(H1) ũ has exactly four monotone laps and extrema {ũi}4
i=1 on [0, 2π/L̃],

(H2) ũ1 and ũ3 are minima, and ũ2 and ũ4 are maxima,
(H3) ũ1 < −1 < ũ3 < 1 < ũ2, ũ4,
(H4) ũ(x) is symmetric in its minima ũ1 and ũ3.

We need to make sure that the unique zero of f in Wxν satisfies these properties. The following
lemma will help us in the verification process, since it shows that we need only to check the
conditions for one parameter value along any continuous branch of solutions.

Lemma 19. Let ũν , ν0 ≤ ν ≤ ν1, be periodic solutions of (4) at the energy level E = 0 with
period 2π/L̃ν , which are symmetric in y = 0 and y = π/L̃ν . Suppose that ũν and L̃ν depend
continuously on ν; i.e., ũν depends continuously on ν as a C3-function on compact intervals.
If ũν0 satisfies H

L̃ν0
, then ũν satisfies H

L̃ν for all ν ∈ [ν0, ν1].
Proof. To reduce clutter, we remove all tildes from the notation. By symmetry, we need

only to consider the interval [0, π/Lν ]. Let

N =
{
ν ∈ [ν0, ν1]

∣∣ uν satisfies HLν

}
.

By assumption, ν0 ∈ N . We will show that N is both open and closed (in the relative
topology), i.e., connected; hence N = [ν0, ν1] as asserted.
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It is relatively easy to see that N is open. Namely, for ν ∈ N the extrema of uν do not lie
on the lines u = ±1. It then follows from the energy identity E = 0 that the extrema of uν are
all nondegenerate. Hence, the conditions H1,2,3,4 are open conditions (under the symmetry
assumption in the lemma).

To prove that N is closed is a bit more involved. Let {νn}∞n=1 ⊂ N be a sequence converging
to ν∗ ∈ [ν0, ν1]. Our goal is to show that ν∗ ∈ N . We denote un = uνn and u∗ = uν∗ . Let
the extrema un1,2,3 be attained in yn1,2,3. Clearly, we have that yn1 = 0 and yn3 = π/Lν

n, while,
taking a subsequence, we may additionally assume that yn2 converges to some y∗2 as n → ∞.
Denote also y∗1 = 0 and y∗3 = π/Lν∗ . By C3-continuity, we have u′∗(y

∗
1,2,3) = 0, and

(34) u∗(y
∗
1) ≤ −1 ≤ u∗(y

∗
3) ≤ 1 ≤ u∗(y

∗
2).

In fact, the inequalities are strict. We prove this for the last inequality u∗(y∗2) > 1; the other
cases are analogous. Suppose, by contradiction, that u∗(y∗2) = 1. Since u′∗(y

∗
2) = 0, it follows

from E = 0 that u′′∗(y
∗
2) = 0. By continuity,

max
y

u∗(y) = lim
n→∞

max
y

un(y) = lim
n→∞

un(yn2 ) = u∗(y
∗
2) = 1.

This implies that u′′′∗ (y∗2) = 0. Uniqueness of the initial value problem for the ODE then says
that u∗(y) = 1 for all y, which contradicts u∗(y∗1) ≤ −1. Similarly one can show that all the
other inequalities in (34) are strict; hence u∗ has at least four extrema on [0, 2π/Lν∗ ], and
those satisfy H3.

The final step is to prove that u∗ does not have more than four monotone laps. We
argue once more by contradiction. Recall that y∗2 = limn→∞ yn2 . Suppose there is a point
z ∈ (0, π/Lν∗) with u′∗(z) = 0, and z �= y∗2. If u′′∗(z) �= 0, then, by the implicit function
theorem, this extremum persists for un for n sufficiently large, leading to more than four
monotone laps of un, contradicting the fact that un satisfies the geometric conditions. Hence,
it must be that u′′∗(z) = 0, and thus u∗(z) = ±1, since E = 0. Moreover, since u∗ �≡ ±1, we
must have u′′′∗ (z) �= 0. Let us consider the case u∗(z) = 1 and u′′′∗ (z) > 0; all other (three)
cases are analogous.

We thus have

(35) u∗(z) = 1, u′∗(z) = 0, u′′∗(z) = 0, u′′′∗ (z) > 0.

Clearly u′∗(y) > 0 for y sufficiently close but not equal to z. By continuity, we have (un)′(z ±
ε) > 0 for ε sufficiently small and n large enough. By the implicit function theorem, for large
enough n, there exist points zn ∈ [z−ε, z+ε] such that limn→∞ zn = z and (un)′′(zn) = 0, and
(un)′(zn) �= 0, since un has no additional extrema in (0, Lνn) besides yn2 . In fact, (un)′(zn) > 0,
since, if (un)′(zn) < 0, then un would have two extrema in [z− ε, z + ε], leading to more than
four monotone laps of un, which is a contradiction. Hence (un)′(zn) > 0.

We conclude from E = 0 and (un)′′(zn) = 0 that[
(un)′′′(zn) +

νn
2

(un)′(zn)
]
(un)′(zn) = −1

4
(un(zn)2 − 1)2.

Since (un)′(zn) > 0, this means that

(un)′′′(zn) +
νn
2

(un)′(zn) ≤ 0.
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Finally, we take the limit n → ∞ in the above inequality to obtain

u′′′∗ (z) +
ν∗
2
u′∗(z) ≤ 0,

which contradicts (35). Hence u∗ indeed has exactly four monotone laps on [0, 2π/Lν∗ ], im-
plying that ν∗ ∈ N and that N is closed.

We now need only to show that the geometric properties are satisfied at ν = ν0, since the
solutions depend continuously on ν.

Lemma 20. The fixed point x̃ν ∈ Ωs depends continuously on ν for ν ∈ [ν0, ν1]. Similarly,
the corresponding periodic solutions ũν depend continuously on ν as C3-functions on compact
intervals.

Proof. Recall that we are dealing with a single continuation step ν ∈ [ν0, ν1], so that the
neighborhoods on which T is a contraction mapping are given by (33). The assertion now
follows from the continuity and compactness properties of the map T , described in Lemma 12,
using standard functional analytic arguments.

To check that ũν0 has the properties H
L̃ν0

, we follow the procedure outlined below. To

reduce clutter, we often drop ν0 from the notation. We introduce the variables z = L̃ν0y and
v(z) = ũν0(y), so that

v(z) = ã0 + 2

∞∑
k=1

ãk cos(kz).

This way, we separate the shape of the solution from the period; only the shape is important
for the geometric conditions. Clearly, v′(0) = v′(π) = 0, and v is symmetric in those extrema.

We recall that x̄ = (L̄, ā0, ā1, . . . , ām−1, 0, 0, . . .), while the fixed point is given by x̃ =
(L̃, ã0, ã1, ã2, . . .). We have ãk ∈ ak, where the intervals are given by

ak
def
=

⎧⎪⎨
⎪⎩

[ā0 − r, ā0 + r], k = 0,

[āk − r
ks , āk + r

ks ], k = 1, . . . ,m− 1,

[− r
ks ,

r
ks ], k ≥ m.

Consider z ∈ z
def
= [z−, z+] ⊂ R. Then, using interval arithmetic, we can compute rigorous

interval enclosures of v(z), v′(z), and v′′(z):

v(z) ∈ v[z]
def
= a0 + 2

m−1∑
k=1

ak cos(kz) +
2r

(m− 1)s−1(s− 1)
[−1, 1],

v′(z) ∈ v′[z]
def
= −2

m−1∑
k=1

ak k sin(kz) +
2r

(m− 1)s−2(s− 2)
[−1, 1],

v′′(z) ∈ v′′[z]
def
= −2

m−1∑
k=1

ak k
2 cos(kz) +

2r

(m− 1)s−3(s− 3)
[−1, 1].

We now use the following procedure (see also Figure 9). Note that we know a priori that
v′(0) = v′(π) = 0.

Procedure 21. Checking that ũν0 satisfies H
L̃ν0

is equivalent to verifying that v satisfies
Hπ. We proceed as follows.
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Figure 9. Illustration of the procedure to make sure that v satisfies Hπ, i.e., the periodic solution ũν0

satisfies the geometric conditions HL̃ν
0
. The extrema are denoted by vi = ũν0

i .

1. Verify that v[0] ⊂ (−∞,−1). That implies that ũν0
1 = v(0) < −1.

2. Find an (approximately largest) z0 > 0 such that v′′[0, z0] ⊂ (0,∞). Hence, there is a
unique extremum in [0, z0], namely, a minimum, at z = 0.

3. Find an (approximately largest) z1 > z0 such that v′[z0, z1] ⊂ (0,∞). Hence, the
interval [z0, z1] does not contain any extremum.

4. Verify that v[z1] ⊂ (1,∞).
5. Find an (approximately largest) z2 > z1 such that both v[z1, z2] ⊂ (1,∞) and v′′[z1, z2]

⊂ (−∞, 0).
6. Verify that v′[z2] ⊂ (−∞, 0). That implies that there is a unique extremum z∗ in

[z1, z2], namely, a maximum ũν0
2 = v(z∗) > 1.

7. Find an (approximately largest) z3 > z2 such that v′[z2, z3] ⊂ (−∞, 0). Hence, the
interval [z2, z3] does not contain any extremum.

8. Verify that v′′[z3, π] ⊂ (0,∞) and v[π] ⊂ (−1, 1). That implies that there is a unique
extremum in [z3, π], namely, a minimum ũν0

3 = v(π) ∈ (−1, 1) at z = π.
Combining Lemma 19 with Procedure 21 leads to the required result.
Lemma 22. The choice of the approximate zero x̂∗F of f (m)(xF , 0) in Lemma 17 can be

made such that for each of the resulting intervals [ν0, ν0 + Δ0
ν ] covering [0, 2], which were

extracted in Procedure 16, Procedure 21 is successful at ν0. Hence the solutions found in
Lemma 17 via Procedure 16 satisfy the geometric conditions H.

The animation (70912 02.gif [1.32MB]) accompanying this paper shows the changing shape
of the periodic solution ũν as the parameter ν increases from 0 to 2.

Proof. A MATLAB computer program (SH geometric properties.m; see also section 3.1)
successfully performing Procedure 21 accompanies the paper. The numerical implementation
of Procedure 21 is rather straightforward. Steps 1, 4, and 6 and the second part of Step 8
are mere evaluations of a function using interval arithmetic. Steps 2, 3, 5, and 7 and the first
part of Step 8 are all implemented in the same fashion. For instance, we describe here what is
done in the implementation of Step 3. First, we consider a mesh {x0, . . . , xn} of the interval

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70912_02.gif
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[z0, π], and we find the largest k ∈ {1, . . . , n} for which we have that v′[xi−1, xi] ⊂ (1,∞) for
all i ∈ {1, . . . , k}. We then let z1 = xi. Note that the smaller the mesh size, the nearer z1

will be to a zero of v′. Every verification thus requires a series of evaluations of v, v′, and v′′

using interval arithmetic. In the implementation, we chose the mesh size to be 0.01.
In conclusion, Theorem 3 is a consequence of Lemmas 17 and 22, which are based on

Procedures 16 and 21, respectively.

Appendix A. Estimates for infinite convolution sums with power decay. In this section,
we present two lemmas that are fundamental in the construction of the radii polynomials. Let
s ≥ 2 be a real number and M ≥ 6 a natural number.

We introduce an improvement of general estimates for infinite convolution sums with
power decay of the form

(36)
∑

k1+···+kp=k

a
(1)
k1

· · · a(p)
kp

,

introduced in [12, 14] and used in [13, 15, 18] (the special case p = 2 was considered earlier
in [38]). Most of the estimates used in the above papers are corollaries of Lemma 5.8 in [14].

Lemma 23 (from [14]). Let A > 0 and s ≥ 2. Let {ak}k∈Z be such that a−k = ak, a0 ∈
A[−1, 1], and ak ∈ A

|k|s for all k ∈ Z \ {0}. Let α = 2
s−1 + 2 + 3.5 · 2s. Then

∑
∑

ni=k

an1 · · · anp ⊆
{

αp−1Ap[−1, 1], k = 0,

αp−1Ap

|k|s [−1, 1], k �= 0.

Observe that the coefficient α provided by Lemma 23 grows exponentially in s. One reason
for being interested in getting tighter analytic estimates for sums of the form (36) comes from
the fact that, in solving (13) and (14), we need p = 3 and s ≥ 4. If we use the bounds given
by Lemma 23, the computational cost of the rigorous continuation will dramatically increase,
since we will need to use a very large computational parameter M . A lower bound on M
(depending on the α of Lemma 23) can actually be found in [18, section 2.2].

In this appendix we consider general values of the degree p of the convolution and the
decay power s, since the specific case is hardly any simpler than the general one. Moreover,
the general convolution estimates may be of use for future applications of the method laid out
in this paper.

Throughout this appendix we assume that a−k = ak for all k ∈ Z. Since∑
k1+···+kp=−k

ki∈Z

a
(1)
k1

· · · a(p)
kp

=
∑

k1+···+kp=k
ki∈Z

a
(1)
k1

· · · a(p)
kp

,

we consider only the cases k ∈ N. Note that the estimates are also applicable to the situation
where a−k = −ak for all k.

Before introducing the new general estimates, we need the following result.
Lemma 24. Let s ≥ 2, and let s∗ be the largest integer such that s∗ ≤ s. Let, for k ≥ 4,

(37) γk
def
= 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+

π2 − 6

3

] [
2

k
+

1

2

]s∗−2

.
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Then, for k ≥ 4,
k−1∑
k1=1

ks

ks1(k − k1)s
≤ γk.

Proof. First observe that

k−1∑
k1=1

ks

ks1(k − k1)s
= 2

[
k

k − 1

]s
+

k−2∑
k1=2

ks

ks1(k − k1)s

= 2

[
k

k − 1

]s
+ ks−1

k−2∑
k1=2

(k − k1) + k1

ks1(k − k1)s

= 2

[
k

k − 1

]s
+ ks−1

⎡
⎣ k−2∑
k1=2

1

ks1(k − k1)s−1
+

k−2∑
k1=2

1

ks−1
1 (k − k1)s

⎤
⎦

= 2

[
k

k − 1

]s
+ 2

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

.

We now set, using the above,

φ
(s)
k

def
=

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

=
1

2

k−2∑
k1=2

ks

ks1(k − k1)s
.

We obtain the recurrence inequality

φ
(s)
k =

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

= ks−2
k−2∑
k1=2

(k − k1) + k1

ks−1
1 (k − k1)s

= ks−2

⎡
⎣ k−2∑
k1=2

1

ks−1
1 (k − k1)s−1

+

k−2∑
k1=2

1

ks−2
1 (k − k1)s

⎤
⎦

=
1

k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+

k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s

≤ 1

k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+
1

2

k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s−1

=

[
2

k
+

1

2

]
φ

(s−1)
k .

Hence, since k
k1(k−k1) ≤ 1 for 2 ≤ k1 ≤ k − 2 and k ≥ 4,

φ
(s)
k ≤ φ

(s∗)
k ≤ φ

(2)
k

[
2

k
+

1

2

]s∗−2

,
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where s∗ is the largest integer such that s∗ ≤ s, and

φ
(2)
k =

k−2∑
k1=2

k

k1(k − k1)2
=

k−2∑
k1=2

1

k1(k − k1)
+

k−2∑
k1=2

1

(k − k1)2

=
2

k

k−2∑
k1=2

1

k1
+

k−2∑
k1=2

1

k2
1

≤ 2

k
ln(k − 2) +

π2

6
− 1.

By combining the above inequalities, we conclude that

k−1∑
k1=1

ks

ks1(k − k1)s
≤ 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+

π2 − 6

3

] [
2

k
+

1

2

]s∗−2

= γk.

Note that the estimates will be given via a recurrent definition in p, i.e., the power of
the nonlinearity. Hence, we begin by getting explicitly the estimates for the case p = 2.
Throughout this note, we use M ≥ 6 as a computational parameter; its use is primarily to
make all the estimates computable in practice.

A.1. Estimates for the quadratic nonlinearity.
Lemma 25 (quadratic estimates). Let s ≥ 2 and M ≥ 6. Define

α
(2)
k

def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 + 1
22s−1(2s−1)

for k = 0,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+
∑k−1

k1=1
ks

ks1(k−k1)s for 1 ≤ k ≤ M − 1,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+ γk for k ≥ M.

Let A1, A2 > 0 such that a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈ Ai

|k|s [−1, 1] for all k �= 0 and for i = 1, 2.

Suppose that a
(i)
−k = a

(i)
k . Then

∑
k1+k2=k

ki∈Z

a
(1)
k1

a
(2)
k2

∈

⎧⎨
⎩ α

(2)
0 A1A2 [−1, 1], k = 0,

α
(2)
k A1A2

|k|s [−1, 1], k �= 0.

Proof. Let k = 0. Then∑
k1+k2=0

ki∈Z

a
(1)
k1

a
(2)
k2

=
∑
k1<0

a
(1)
k1

a
(2)
−k1

+ a
(1)
0 a

(2)
0 +

∑
k1>0

a
(1)
k1

a
(2)
−k1

= a
(1)
0 a

(2)
0 + 2

∞∑
k1=1

a
(1)
k1

a
(2)
k1

∈ A1A2

⎡
⎣1 + 2

∞∑
k1=1

1

k2s
1

⎤
⎦ [−1, 1]

⊆ A1A2

[
4 +

1

22s−1(2s− 1)

]
[−1, 1]

= α
(2)
0 A1A2 [−1, 1].
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Now consider k ∈ {1, . . . ,M − 1}. Then

∑
k1+k2=k

ki∈Z

a
(1)
k1

a
(2)
k2

=

−1∑
k1=−∞

a
(1)
k1

a
(2)
k−k1

+ a
(1)
0 a

(2)
k +

k−1∑
k1=1

a
(1)
k1

a
(2)
k−k1

+ a
(1)
k a

(2)
0 +

∞∑
k1=k+1

a
(1)
k1

a
(2)
k−k1

∈ A1A2

⎡
⎣ 2

ks
+ 2

∞∑
k1=1

1

ks1(k + k1)s
+

1

ks

k−1∑
k1=1

ks

ks1(k − k1)s

⎤
⎦ [−1, 1]

⊂ A1A2

⎡
⎣ 2

ks
+

2

ks

∞∑
k1=1

1

ks1
+

1

ks

k−1∑
k1=1

ks

ks1(k − k1)s

⎤
⎦ [−1, 1]

⊆ α
(2)
k A1A2

ks
[−1, 1],

where we, quite arbitrarily, have bound the infinite sum
∑∞

k1=1
1
ks1

using an integral estimate

after the third term. For the case k ≥ M , we do the same analysis as in the case k ∈
{1, . . . ,M − 1}, and we use the upper bound γk from Lemma 24.

Remark 26. For any k ≥ M ≥ 6, we have that α
(2)
k ≤ α

(2)
M .

Proof. For k ≥ 6, the fact that ln(k−1)
(k+1) ≤ ln(k−2)

k implies that γ
(s)
k+1 ≤ γ

(s)
k . The conclusion

then follows from the definition α
(2)
k for k ≥ M ≥ 6.

A.2. Estimates for a general nonlinearity. Let p ≥ 3 be the degree of the nonlinearity,
s ≥ 2 the decay of the coefficients, and M ≥ 6 a natural number. We compute the general
estimates recursively. Hence, we first suppose that for every k ≥ 0, we know explicitly

α
(p−1)
k > 0 such that

∑
k1+···+kp−1=k

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

∈

⎧⎪⎨
⎪⎩

α
(p−1)
0

(∏p−1
i=1 Ai

)
[−1, 1], k = 0,

α
(p−1)
k
|k|s

(∏p−1
i=1 Ai

)
[−1, 1], k �= 0,

and such that α
(p−1)
k ≤ α

(p−1)
M for all k ≥ M . We define

α
(p)
k

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(p−1)
0 + 2

∑M−1
kp=1

α
(p−1)
kp

k2s
p

+
2α

(p−1)
M

(M−1)2s−1(2s−1)
for k = 0,

∑M−k−1
kp=1

α
(p−1)
k+kp

ks

ksp(k+kp)s + α
(p−1)
M

(
1 + 1

2s + 1
3s + 1

3s−1(s−1)

)
+ α

(p−1)
k +

∑k−1
kp=1

α
(p−1)
kp

ks

ksp(k−kp)s + α
(p−1)
0 +

∑M−1
kp=1

α
(p−1)
kp

ks

(k+kp)sksp

+
α

(p−1)
M

(M−1)s−1(s−1)
for 1 ≤ k ≤ M − 1,

α
(p−1)
M

[
2 + 1

2s + 1
3s + 1

3s−1(s−1)
+ 1

(M−1)s−1(s−1)
+ γk

]
+ α

(p−1)
0 +

∑M−1
kp=1

α
(p−1)
kp

ksp

[
1 + 1[

1− kp
M

]s
]

for k ≥ M.
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Lemma 27. For i = 1, . . . , p, let Ai > 0 such that a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈ Ai

|k|s [−1, 1] for

all k �= 0. Suppose that a
(i)
−k = a

(i)
k . Then

∑
k1+···+kp=k

ki∈Z

a
(1)
k1

· · · a(p)
kp

∈

⎧⎪⎨
⎪⎩

α
(p)
0

(∏p
i=1 Ai

)
[−1, 1], k = 0,

α
(p)
k

|k|s
(∏p

i=1 Ai

)
[−1, 1], k �= 0.

Proof. Several times throughout the proof, we use that α
(p−1)
k ≤ α

(p−1)
M for all k ≥ M . For

k = 0,

∑
k1+···+kp=0

ki∈Z

a
(1)
k1

· · · a(p)
kp

=

−1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=−kp

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+ a
(p)
0

∑
k1+···+kp−1=0

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+

∞∑
kp=1

a
(p)
kp

∑
k1+···+kp−1=−kp

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

∈
(

p∏
i=1

Ai

)⎡⎣ ∞∑
kp=1

α
(p−1)
kp

k2s
p

+ α
(p−1)
0 +

∞∑
kp=1

α
(p−1)
kp

k2s
p

⎤
⎦ [−1, 1]

⊆
(

p∏
i=1

Ai

)⎡⎣α(p−1)
0 + 2

M−1∑
kp=1

α
(p−1)
kp

k2s
p

+
2α

(p−1)
M

(M − 1)2s−1(2s− 1)

⎤
⎦ [−1, 1]

= α
(p)
0

(
p∏

i=1

Ai

)
[−1, 1].

For any k ≥ 1,

∑
k1+···+kp=k

ki∈Z

a
(1)
k1

· · · a(p)
kp

=

−1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+ a
(p)
0

∑
k1+···+kp−1=k

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+

k−1∑
kp=1

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+ a
(p)
k

∑
k1+···+kp−1=0

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1

+

∞∑
kp=k+1

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1

· · · a(p−1)
kp−1
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∈
(

p∏
i=1

Ai

)⎡⎣ ∞∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
+

α
(p−1)
k

ks
+

k−1∑
kp=1

α
(p−1)
kp

ksp(k − kp)s

+
α

(p−1)
0

ks
+

∞∑
kp=1

α
(p−1)
kp

(k + kp)sksp

⎤
⎦ [−1, 1].

Consider k ∈ {1, . . . ,M − 1}. Since α
(p−1)
kp

≤ α
(p−1)
M for all kp ≥ M , we have

∞∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
=

M−k−1∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
+

∞∑
kp=M−k

α
(p−1)
k+kp

ksp(k + kp)s

≤
M−k−1∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
+ α

(p−1)
M

∞∑
kp=M−k

1

ksp(k + kp)s

≤
M−k−1∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
+ α

(p−1)
M

∞∑
kp=1

1

ksp(k + kp)s

≤ 1

ks

⎡
⎣M−k−1∑

kp=1

α
(p−1)
k+kp

ks

ksp(k + kp)s
+ α

(p−1)
M

(
1 +

1

2s
+

1

3s
+

1

3s−1(s− 1)

)⎤⎦ .

Similarly,

∞∑
kp=1

α
(p−1)
kp

(k + kp)sksp
≤ 1

ks

⎡
⎣M−1∑
kp=1

α
(p−1)
kp

ks

(k + kp)sksp
+

α
(p−1)
M

(M − 1)s−1(s− 1)

⎤
⎦ .

Recalling the definition of α
(p)
k for the cases k ∈ {1, . . . ,M − 1}, we get that

∑
k1+···+kp=k

ki∈Z

a
(1)
k1

· · · a(p)
kp

∈ α
(p)
k

ks

(
p∏

i=1

Ai

)
[−1, 1].

Consider now k ≥ M ; then

∞∑
kp=1

α
(p−1)
k+kp

ksp(k + kp)s
+

α
(p−1)
k

ks
≤ α

(p−1)
M

ks

[
2 +

1

2s
+

1

3s
+

1

3s−1(s− 1)

]
.

Using Lemma 24, we get that
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k−1∑
kp=1

α
(p−1)
kp

ksp(k − kp)s
=

M−1∑
kp=1

α
(p−1)
kp

ksp(k − kp)s
+

1

ks

k−1∑
kp=M

ksα
(p−1)
kp

ksp(k − kp)s

≤ 1

ks

M−1∑
kp=1

α
(p−1)
kp

ksp
(
1 − kp

k

)s +
α

(p−1)
M

ks

k−1∑
kp=M

ks

ksp(k − kp)s

≤ 1

ks

⎡
⎣M−1∑
kp=1

α
(p−1)
kp

ksp
(
1 − kp

M

)s + α
(p−1)
M γk

⎤
⎦ .

Also,
∞∑

kp=1

α
(p−1)
kp

(k + kp)sksp
≤ 1

ks

⎡
⎣M−1∑
kp=1

α
(p−1)
kp

ksp
+

α
(p−1)
M

(M − 1)s−1(s− 1)

⎤
⎦ .

Combining the three above inequalities, we finally have that∑
k1+···+kp=k

ki∈Z

a
(1)
k1

· · · a(p)
kp

∈ 1

ks

(
p∏

i=1

Ai

)[
α

(p−1)
0 +

M−1∑
kp=1

α
(p−1)
kp

ksp

(
1 +

1(
1 − kp

M

)s
)

+ α
(p−1)
M

(
2 + 1

2s + 1
3s + 1

3s−1(s−1)
+ 1

(M−1)s−1(s−1)
+ γk

)]
[−1, 1]

=
α

(p)
k

ks

(
p∏

i=1

Ai

)
[−1, 1].

Remark 28. For any k ≥ M ≥ 6, we have that α
(p)
k ≤ α

(p)
M .

Proof. The proof is identical to that of Remark 26.

A.3. Comparison of the general estimates. We now compare the new estimates with
the ones given by Lemma 23 for different values of p and s. Since the only difference in the

estimates is αp−1 versus α
(p)
k , these are the quantities we compare in Table 5. In particular,

the new estimates lead to an improvement of a factor 102 for the values p = 3 and s = 4 used
in this paper, while for higher values of p and s they become even more beneficial. For the

computation, we fixed M = 100; in the case p ≥ 3, increasing M would make the α
(p)
k smaller

still.

A.4. Refinement for k ∈ {0, . . . , M − 1}. We present a corollary of Lemma 27 which
gives better bounds for 0 ≤ k ≤ M − 1.

Corollary 29. Let p ≥ 3 be the degree of the nonlinearity, s ≥ 2 the decay of the coefficients,
and M ≥ 6 a natural number. Consider another computational number M1 ≥ M . Let

the {α(p−1)
k }k∈{0,...,M1} be defined in Lemma 27. For i = 1, . . . , p, let Ai > 0 be such that
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Table 5
Comparison of the estimates αp−1 versus α

(p)
k used in Lemmas 23 and 27.

p s k αp−1 α
(p)
k

2 4 10 5.87 · 101 6.65 · 100

3 4 30 3.44 · 103 4.44 · 101

3 4 90 3.44 · 103 4.31 · 101

3 5 30 1.31 · 104 4.20 · 101

3 7 30 2.03 · 105 4.12 · 101

3 10 30 1.29 · 107 4.26 · 101

3 50 30 1.55 · 1031 1.68 · 102

4 4 10 2.02 · 105 3.28 · 102

4 5 10 1.50 · 106 3.17 · 102

4 7 10 9.13 · 107 3.59 · 102

5 10 10 1.65 · 1014 3.98 · 103

5 20 10 1.81 · 1026 1.82 · 105

10 25 20 4.25 · 1072 1.75 · 108

20 50 90 2.07 · 10296 5.01 · 1015

a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈ Ai

|k|s [−1, 1] for all k �= 0, and let |a|(i)M1
=
(
|a(i)

0 |, . . . , |a(i)
M1−1|

)
.

Suppose that a
(i)
−k = a

(i)
k . For k ∈ {0, . . . ,M − 1}, define

ε
(p)
k =

2α
(p−1)
M1

(M1 + k)s(M1 − 1)s−1(s− 1)
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ksp(kp − k)s
.

Then we have that, for k ∈ {0, . . . ,M − 1},

(
a(1) ∗ · · · ∗ a(p)

)
k
∈
[(

|a|(1)
M1

∗ · · · ∗ |a|(p)M1

)
k

+

(
p∏

i=1

Ai

)
pε

(p)
k

]
[−1, 1].

Proof. First notice that

(
a(1) ∗ · · · ∗ a(p)

)
k

=
∑

k1+···+kp=k
ki∈Z

a
(1)
k1

· · · a(p)
kp

=
∑

k1+···+kp=k
|ki|<M1

a
(1)
k1

· · · a(p)
kp

+
∑

k1+···+kp=k
max{|k1|,...,|kp|}≥M1

a
(1)
k1

· · · a(p)
kp

.

We have that
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∑
k1+···+kp=k

|kp|≥M1

a
(1)
k1

· · · a(p)
kp

=

−M1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=k−kp

a
(1)
k1

· · · a(p−1)
kp−1

+

∞∑
kp=M1

a
(p)
kp

∑
k1+···+kp−1=k−kp

a
(1)
k1

· · · a(p−1)
kp−1

∈
(

p∏
i=1

Ai

) ∞∑
kp=M1

⎡
⎣ α

(p−1)
k+kp

ksp(k + kp)s
+

α
(p−1)
kp−k

ksp(kp − k)s

⎤
⎦ [−1, 1]

⊆
(

p∏
i=1

Ai

)⎡⎣2α
(p−1)
M1

∞∑
kp=M1

1

ksp(k + kp)s
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ksp(kp − k)s

⎤
⎦ [−1, 1]

⊆
(

p∏
i=1

Ai

)⎡⎣ 2α
(p−1)
M1

(M1 + k)s(M1 − 1)s−1(s− 1)
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ksp(kp − k)s

⎤
⎦ [−1, 1].

Recalling the definition of ε
(p)
k , we can conclude that

(
a(1) ∗ · · · ∗ a(p)

)
k
∈
[(

|a|(1)
M1

∗ · · · ∗ |a|(p)M1

)
k

+

(
p∏

i=1

Ai

)
pε

(p)
k

]
[−1, 1].
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Existence of a Reversible T-Point Heteroclinic Cycle
in a Piecewise Linear Version of the Michelson System∗
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Abstract. The proof of the existence of a global connection in differential systems is generally a difficult
task. Some authors use numerical techniques to show this existence, even in the case of continuous
piecewise linear systems. In this paper we give an analytical proof of the existence of a reversible
T-point heteroclinic cycle in a continuous piecewise linear version of the widely studied Michelson
system. The principal ideas of this proof can be extended to other piecewise linear systems.
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1. Introduction. The existence of global connections in a differential system usually forces
a complex dynamical behavior in a neighborhood of such connections. For instance, under
the presence of a homoclinic cycle to a saddle-focus equilibrium point satisfying an eigenvalue
ratio condition, the celebrated works of Shil’nikov [26, 27] ensure the existence of infinitely
many periodic orbits of saddle type accumulating to the homoclinic cycle.

Moreover, the existence of a global connection in a differential system implies the ap-
pearance of subsidiary connections for certain perturbations of the system. For example, an
analysis of the bifurcation structure of homoclinic cycles and subsidiary connections can be
found in [15].

Heteroclinic cycles are also organizing centers of a very complex dynamic [10, 11, 12, 14].
In particular, Dumortier, Ibañez, and Kokubu [11] conjecture the existence of an infinite set of
bifurcation phenomena, called a cocoon bifurcation [20], accumulating at a reversible T-point,
that is, a point of the parameter space where a special kind of heteroclinic cycle satisfying
some nondegeneracy condition appears. Furthermore, they explain the occurrence of such
bifurcation phenomena as a consequence of the presence of this global connection.

Unfortunately, for nonlinear differential systems it is not easy to guarantee the existence of
a global connection. Even though this is possible, some other extra conditions, for instance,
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the nondegeneracy conditions in the case of a reversible T-point heteroclinic cycle, cannot
always be verified in a rigorous way. For example, the existence of a heteroclinic cycle in the
Michelson system [25, 28], having an explicit expression for one of its heteroclinic orbits, is
known [16, 18]. Nevertheless, the genericity conditions that determine if such a heteroclinic
cycle is a reversible T-point heteroclinic cycle remain to be verified [11].

On the other hand, there are a lot of papers devoted to the existence of global connections
in piecewise linear differential systems [2, 8, 9, 22, 23, 24]. Many of these works require
numerical arguments to show the existence of the global connections. However, in [22], the
authors provide an analytical proof of the existence of a homoclinic cycle in a three-dimensional
piecewise linear system. In a similar way, in the present work we pay attention to the existence
of a reversible T-point heteroclinic cycle in piecewise linear systems.

Now, some ideas for establishing the main result of the paper are introduced. The Michel-
son system is the one-parameter family of autonomous three-dimensional differential systems

(1.1)

⎧⎪⎨
⎪⎩

ẋ = y,
ẏ = z,

ż = d2 − y − 1

2
x2,

where the dot stands for the derivative with respect to t and, without loss of generality, we
can assume that d ≥ 0. This family appears in the study of traveling wave solutions of the
one-dimensional Kuramoto–Sivashinsky equation [25]. It also arises in the analysis of the
unfolding of the nilpotent singularity of codimension three [10, 13].

For d �= 0 the Michelson system has two equilibrium points, p± = (±d
√

2, 0, 0), which are
of saddle-focus type. The stable manifold W s(p+) of p+ (respectively, the unstable manifold
W u(p−) of p−) is one-dimensional and the unstable manifold W u(p+) of p+ (respectively,
the stable manifold W s(p−) of p−) is two-dimensional.

The vector field f associated to the Michelson system (1.1) satisfies the following important
properties that affect the solution set:

• The divergence of f is identically zero. Therefore, the family is volume-preserving.
• The vector field f is invariant under the linear involution R(x, y, z) = (−x, y,−z) and

sign reverse; that is,
R(f(x)) = −f(R(x)),

where x = (x, y, z)T .
From the second property, the following dynamical consequences are obtained:
• Let φ(t;p) denote the flow of system (1.1). The equality φ(t;R(p)) = R(φ(−t;p))

holds, and we say that the family is time-reversible with respect to the linear involu-
tion R.

• If p is a point on the y-axis, then R(p) = p. Therefore, the orbit through p is
reversible with respect to R, that is, φ(t;p) = R(φ(−t;p)), and the y-axis is called
the reversibility axis.

• By the reversibility, the stable and unstable manifolds of p− satisfy W s(p−) =
R (W u(p+)) and W u(p−) = R (W s(p+)), respectively.

An interesting object of the dynamics of the Michelson system which has been widely
studied (see [11, 16, 19, 20] and the references therein) is the so-called reversible T-point
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heteroclinic cycle. Following [11], we say that the Michelson system (1.1) has a reversible T-
point heteroclinic cycle Γ = {p+}∪ρ±∪{p−}∪ρ∓ for the parameter value d0 if the following
hold:

(a) The two-dimensional manifolds W u(p+) and W s(p−) have a transversal intersection
along the heteroclinic orbit ρ±.

(b) As the parameter d is varied around d0 the heteroclinic orbit ρ∓ unfolds generically.
That is, the one-dimensional manifolds W u(p−) and W s(p+) intersect at ρ∓ for d = d0

and the “distance” between W u(p−) and W s(p+) measured in a transverse plane is
diffeomorphic to μ = d− d0.

The value d0 is usually called a reversible T-point. Note that some authors [11] use the
name Bykov cycle to refer to a T-point heteroclinic cycle [3, 4, 5].

By abuse of notation, we can call the orbit ρ∓ a one-dimensional heteroclinic orbit, because
this orbit corresponds to the one-dimensional invariant manifolds of the singular points, and
the orbit ρ± a two-dimensional heteroclinic orbit because it is contained in the intersection
set of the two-dimensional invariant manifolds of the singular points.

From several recent works it is possible to discern that piecewise linear systems are able to
reproduce the dynamics of differentiable systems. Thus, it is natural to wonder if a suitable
continuous piecewise linear version of the Michelson system with a reversible T-point exists.

An easy way to obtain a continuous piecewise linear system from the Michelson system is
to perform, for d �= 0, the change of variables x → x/d2, y → y/d2, z → z/d2 followed by the
change of function x2 → |x|. This procedure transforms system (1.1) into

(1.2)

⎧⎨
⎩

ẋ = y,
ẏ = z,
ż = 1 − y − c|x|,

where c = d2

2 . Note that this system is also volume-preserving and time-reversible with respect
to the involution R.

Due to the lack of differentiability of the piecewise linear vector fields, the generic tools of
the analysis of differentiable systems cannot be applied. Therefore, the techniques used in [11]
for the Michelson system are useless for our piecewise linear continuous version. Nevertheless,
we also show that some dynamical aspects of the Michelson system remain in our piecewise
linear version.

System (1.2) is formed by two linear systems separated by the plane {x = 0}, called the
separation plane, and it can be written in a matricial form as

(1.3) ẋ =

{
A+x + e3 if x ≥ 0,
A−x + e3 if x ≤ 0,

with

A+ =

⎛
⎝ 0 1 0

0 0 1
−c −1 0

⎞
⎠ , A− =

⎛
⎝ 0 1 0

0 0 1
c −1 0

⎞
⎠ , and e3 =

⎛
⎝ 0

0
1

⎞
⎠ .

In the half-space {x < 0}, the system has exactly one equilibrium point p− = (−1/c, 0, 0)T

which is a saddle-focus point. Let λ > 0 and α± iβ be the eigenvalues of the Jacobian matrix
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at p−. This clearly implies that

(1.4) c = λ(1 + λ2), α = −λ

2
, β =

√
4 + 3λ2

2
.

By the reversibility with respect to R, there exists exactly one saddle-focus equilibrium p+ =
(1/c, 0, 0)T in the half-space {x > 0} whose eigenvalues are given by −λ and −α± iβ.

Using the expression of the parameter c given in (1.4), system (1.2) can be written as

(1.5)

⎧⎨
⎩

ẋ = y,
ẏ = z,
ż = 1 − y − λ(1 + λ2)|x|,

and the parameter λ > 0 can be chosen as the fundamental parameter of the family.
In the particular case of piecewise linear systems, global connections can be classified

attending to the number of intersections with the separation plane. Using the notation intro-
duced above, we say that a reversible T-point heteroclinic cycle Γ of system (1.5) is (n,m) if
the one-dimensional heteroclinic orbit ρ∓ intersects the separation plane {x = 0} at exactly n
points and the two-dimensional heteroclinic orbit ρ± intersects {x = 0} at exactly m points.

Obviously, the reversibility of system (1.5) forces n to be odd. As we will see later, due to
the local linear shape of the one-dimensional invariant manifolds, n has to be different than
one. So, the (3, 1) reversible T-point heteroclinic cycle can be considered to be the simplest
one and its existence will be the main goal of this work, as it is summarized in the following
theorem.

Theorem 1.1. There exists a value λ1 ∈ (1/2, 1) such that the piecewise linear version (1.5)
of the Michelson system has a (3, 1) reversible T-point heteroclinic cycle Γ for λ = λ1.

Some numerical computations allow us to obtain λ1 ≈ 0.65153556. In fact, its boundary
values 1/2 and 1 do not have any dynamical meaning, and they have been chosen for the sake
of simplicity of the handmade calculations involved in the proof.

Piecewise linear system (1.5) has been obtained from the Michelson system by using a
natural transformation. This transformation preserves not only the look of the equations but
also the properties of reversibility and volume-preservation. We must emphasize that this is
not casual. In fact, considering a piecewise linear continuous system with separation plane
{x = 0} and two saddle-focus equilibria, and assuming the reversibility, volume-preservation,
and nondegeneracy conditions, the unique system that can be obtained is (1.5) except for
linear changes of variables and time. More precisely, a piecewise linear continuous system
with separation plane {x = 0} under the hypothesis of observability can be written as

(1.6)

⎧⎨
⎩

ẋ = t±x− y,
ẏ = m±x− z,
ż = d±x− 1,

where parameters t+, m+, and d+ correspond to the linear system in the half-space {x > 0}
while t−, m−, and d− correspond to the linear system in the half-space {x < 0}. Observ-
ability is a nondegeneracy condition, which means that the dynamics of the system cannot
be uncoupled [6, 7]. The reversibility condition with respect to R implies that t− = −t+,



1036 V. CARMONA, F. FERNÁNDEZ-SÁNCHEZ, AND A. E. TERUEL

m− = m+, and d− = −d+. On the other hand, system (1.6) is volume-preserving if and only
if t+ = t− = 0. Now, the existence of two saddle-focus equilibria forces the parameters d+

and m+ to be positive. Hence, system (1.6) is really⎧⎨
⎩

ẋ = −y,
ẏ = mx− z,
ż = d|x| − 1,

where d = d+ > 0 and m = m+ > 0. The trivial linear change of variables and time,

X = −m3/2x, Y = my, Z = m3/2x−m1/2z, τ = m1/2t,

transforms the system into ⎧⎨
⎩

X ′ = Y,
Y ′ = Z,

Z ′ = 1 − Y − d
m3/2 |X|,

where the prime stands for the derivative with respect to τ . This is the piecewise linear version
of the Michelson system previously obtained.

The rest of the paper is devoted to the proof of Theorem 1.1, and it is organized as follows.
In section 2 we describe the basic geometric elements of the problem. In section 3 we prove
the existence, for every λ in a semi-infinite interval, of a two-dimensional heteroclinic orbit
with exactly one intersection point with the plane {x = 0}. For one of these values of λ,
there exists a one-dimensional heteroclinic orbit with exactly three intersection points with
{x = 0}, as is proved in section 4. From this follows the existence of a simple heteroclinic
cycle Γ. In section 5 we prove that Γ satisfies the nondegeneracy conditions of a reversible
T-point heteroclinic cycle.

2. Some geometric elements of the flow. In this section we describe the behavior of
the flow crossing the plane {x = 0} and the basic elements of the linear dynamics locally
contained in the half-spaces {x < 0} and {x > 0}.

For every point p = (xp, yp, zp)T ∈ R
3 we denote by xp (t;λ) = (xp (t;λ) , yp (t;λ) ,

zp (t;λ))T the solution of the system (1.5) with parameter λ and initial condition xp (0;λ) = p.
The corresponding orbit is denoted by γp.

If xp = 0 and yp > 0, then the orbit γp crosses transversally the plane {x = 0} with
xp(−t;λ) < 0 and xp(t;λ) > 0 for t > 0 small enough. If xp(t;λ) vanishes in (0,+∞), then
we define the flying time t+p as the positive value such that xp

(
t+p ;λ

)
= 0 and xp (t;λ) > 0

in
(
0, t+p

)
. In such a case, we define the Poincaré map Π+ at the point p as Π+ (p) =(

0, yp
(
t+p ;λ

)
, zp

(
t+p ;λ

))T
. Note that the Poincaré map Π+ depends only on the linear system

ẋ = A+x + e3 given in (1.3).

If xp = 0 and yp < 0, then the orbit γp crosses transversally the plane {x = 0} with
xp(−t;λ) > 0 and xp(t;λ) < 0 for t > 0 small enough. If xp(t;λ) vanish in (0,+∞), then
we define the flying time t−p as the positive value such that xp

(
t−p ;λ

)
= 0 and xp (t;λ) < 0

in
(
0, t−p

)
. In such a case, we define the Poincaré map Π− at the point p as Π− (p) =(

0, yp
(
t−p ;λ

)
, zp

(
t−p ;λ

))T
. This map depends only on the linear system ẋ = A−x + e3.
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x = 0

x y

z

m+

m−

p+

p−

q+

q−

q̄

P−

P+

Π−1
− (q−)

Π+(q+)

Π+(m−) = Π−1
− (m+)

Figure 1. Some geometric elements of the flow.

If p belongs to the z-axis, i.e., xp = 0 and yp = 0, then p is called a contact point of the
flow of system (1.5) with the plane {x = 0} because the vector field at this point is tangent
to the plane. Following [21], the first coordinate of the Taylor expansion of xp (t;λ) − p at
t = 0 is

eT1 (xp (t;λ) − p) = zp
t2

2
+

t3

3!
+ eT1 x

(4)
p (ξ;λ)

t4

4!
.

Hence, if zp < 0, then orbit γp is locally contained in the half-space {x ≤ 0}; if zp > 0, then
γp is locally contained in the half-space {x ≥ 0}; and if zp = 0, then γp crosses the plane
{x = 0} from the half-space {x < 0} to the half-space {x > 0}.

Now we describe the basic elements of the linear dynamics in every half-space; all this
information is summarized in Figure 1.

The stable manifold W s (p+) of p+ contains the half-line L+ = {p+ + μ(1,−λ, λ2) :
− 1

λ(1+λ2)
≤ μ < ∞} generated by the eigenvector associated to the eigenvalue −λ of the

matrix A+. The half-line L+ and the plane {x = 0} intersect at the point

m+ =

(
0,

1

1 + λ2
,− λ

1 + λ2

)T

.

The unstable two-dimensional manifold W u (p+) is locally contained in the half-plane

P+ =
{
λ
(
1 + λ2

)
x− λ2y + λz = 1 : x ≥ 0

}
,

which is called the focal half-plane of p+. This half-plane is obtained from the eigenvectors
associated to the complex eigenvalues of A+. The half-plane P+ and the separation plane
{x = 0} intersect along the straight line

D+ =
{
−λ2y + λz = 1

}
.

Let us emphasize that not every point in D+ belongs to the unstable manifold W u (p+); see

Figure 1. The intersection point of D+ and the z-axis is q+ =
(
0, 0, 1

λ

)T
. Since q+ is a contact
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point, the orbit γq+ is tangent to the separation plane {x = 0} at q+. Thus, the segment
S+ ⊂ D+ with endpoints q+ and Π+ (q+) is contained in W u (p+).

The unstable manifold W u (p−) of p− contains the half-line L− = {p− − μ(1, λ, λ2) :
− 1

λ(1+λ2)
≤ μ < ∞} generated by the eigenvector associated to the eigenvalue λ of the matrix

A−. The half-line and the plane {x = 0} intersect at the point

m− =

(
0,

1

1 + λ2
,

λ

1 + λ2

)T

.

The stable two-dimensional manifold W s (p−) is locally contained in the half plane

P− =
{
λ
(
1 + λ2

)
x + λ2y + λz = −1 : x ≤ 0

}
,

which is called the focal half-plane of p−. This half-plane is obtained from the eigenvectors
associated to the complex eigenvalues of A−. The half-plane P− and the separation plane
{x = 0} intersect along the straight line

D− =
{
λ2y + λz = −1

}
.

Let us emphasize that not every point in D− belongs to the stable manifold W s (p−). The

intersection point of D− and the z-axis is q− =
(
0, 0,− 1

λ

)T
. Since q− is a contact point, the

orbit γq− is tangent to the separation plane {x = 0} at q−. Thus, the segment S− ⊂ D− with
endpoints q− and Π−1

− (q−) is contained in W s (p−).

3. Existence of a two-dimensional heteroclinic orbit. In this section we prove the ex-
istence of a simple two-dimensional heteroclinic orbit ρ±, that is, a heteroclinic orbit ρ± ⊂
W u(p+) ∩W s(p−) which intersects the plane {x = 0} at exactly one point q̄.

A necessary and sufficient condition for the existence of the orbit ρ± is q̄ ∈ S− ∩S+. This

implies that q̄ =
(
0,−λ−2, 0

)T
, because it is the intersection point of the straight lines D+

and D−. We now proceed to look for the values of the parameter λ for which the point q̄
belongs to S− and, by reversibility, to S+.

By definition, the segment S− is defined by the endpoints q− and Π−1
− (q−). Since the

third coordinate of q− is negative and q̄ has the third coordinate equal to zero, then q̄ ∈ S−
if and only if the third coordinate of Π−1

− (q−) is nonnegative. Therefore, system (1.5) has a
simple two-dimensional heteroclinic orbit ρ± if and only if there exist t0 > 0 and λ0 > 0 such
that (t;λ) = (t0;λ0) is a solution of the system

(3.1)

{
xq−(−t;λ) = 0,
zq−(−t;λ) ≥ 0,

with

(3.2) xq−(−t;λ0) < 0 for every t ∈ (0, t0).

We emphasize that condition (3.2) ensures that the point xq−(−t0;λ0) is the preimage of q−
by the Poincaré map Π−.
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Taking into account condition (3.2), the expressions of xq− and zq− in (3.1) can be obtained
by integrating the linear system in the half-space {x < 0} in backward time with initial
condition x(0;λ) = q−. Thus, system (3.1) can be written as
(3.3)⎧⎪⎪⎨

⎪⎪⎩
xq−(−t;λ) = − 1

λ(1 + λ2)

[
1 − e

λ
2
t

(
cos

(√
4+3λ2

2 t
)
− λ√

4 + 3λ2
sin

(√
4+3λ2

2 t
))]

= 0,

zq−(−t;λ) = − 1

λ
e

λ
2
t

[
cos

(√
4+3λ2

2 t
)

+
λ√

4 + 3λ2
sin

(√
4+3λ2

2 t
)]

≥ 0.

Using the function ϕ (τ, γ) = 1− eγτ (cos(τ)− γ sin(τ)) defined in [1], system (3.3) can be
rewritten as ⎧⎪⎨

⎪⎩
− 1

λ(1 + λ2)
ϕ
(
−

√
4+3λ2

2 t,− λ√
4+3λ2

)
= 0,

− 1

λ
e

λ
2
t
(
1 − ϕ

(√
4+3λ2

2 t,− λ√
4+3λ2

))
≥ 0.

Hence, the existence of a solution (t;λ) = (t0;λ0) of (3.1) satisfying inequality (3.2) is equiv-
alent to the existence of a solution (t;λ) = (t0;λ0) of system

(3.4)

⎧⎨
⎩

ϕ
(
−

√
4+3λ2

2 t,− λ√
4+3λ2

)
= 0,

ϕ
(√

4+3λ2

2 t,− λ√
4+3λ2

)
≥ 1

with t0 > 0, λ0 > 0 and such that

(3.5) ϕ

(
−
√

4 + 3λ2
0

2
t,− λ0√

4 + 3λ2
0

)
> 0

for every t in (0, t0).
In the next result, whose proof is direct, we compile elementary properties of function

ϕ(τ, γ), some of which can be found in [1].
Lemma 3.1. Function ϕ (τ, γ) = 1−eγτ (cos(τ)−γ sin(τ)) satisfies the following properties.
(i) ϕ(−τ,−γ) = ϕ(τ, γ).

(ii) ∂ϕ
∂τ = (1 + γ2)eγτ sin(τ) and ∂2ϕ

∂τ2 = (1 + γ2)eγτ (cos(τ) + γ sin(τ)).
(iii) For every fixed γ > 0 the function ϕ(τ, γ) reaches its local maxima and minima

values, respectively, at τ2k+1 = (2k + 1)π and τ2k = 2kπ with k ∈ Z. Moreover, ϕ(τ2k+1, γ) =
1 + eγτ2k+1 and ϕ(τ2k, γ) = 1 − eγτ2k .

(iv) There exists a unique function τ̂1 : (0,+∞) → (π, 2π) such that ϕ(τ̂1(γ), γ) = 0,
ϕ(τ, γ) > 0 for τ ∈ (0, τ̂1(γ)) and ϕ(τ, γ) < 0 for τ ∈ (τ̂1(γ), 2π).

(v) ∂ϕ
∂γ = eγτ (−τ cos(τ) + (1 + γτ) sin(τ)).

(vi) There exists a unique function τ̂2 : (0,+∞) → (−2π,−π) such that ϕ(τ̂2(γ), γ) = 1
and ϕ(τ, γ) > 1 for τ ∈ (τ̂2(γ),−π).

The shape of functions τ̂1 and τ̂2 introduced in the previous lemma are described in the
next result. Some of these properties are shown in Figure 2.

Lemma 3.2. The following properties of functions τ̂1 and τ̂2, defined in Lemma 3.1, hold.
(i) The function τ̂1 is differentiable, dτ̂1

dγ < 0, limγ↘0 τ̂1(γ) = 2π, and limγ↗∞ τ̂1(γ) = π.
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Figure 2. Qualitative behavior of functions τ̂1 and τ̂2.

−3π

2

−2π

γ

π

3π

2

2π

γ∗

τ̂1(γ)

τ̂2(γ)

−τ̂2(γ)

(ii) The function τ̂2 is differentiable, dτ̂2
dγ < 0, limγ↘0 τ̂2(γ) = −3π

2 , and limγ↗∞ τ̂2(γ) =
−2π.

(iii) There exists a unique value γ∗ > 0 such that −τ̂2(γ
∗) = τ̂1(γ

∗). This value satisfies
γ∗ < 1√

19
. Moreover, −τ̂2(γ) < τ̂1(γ) in (0, γ∗) and −τ̂2(γ) > τ̂1(γ) in (γ∗,+∞).

(iv) If 0 < γ < γ∗, then ϕ(−τ̂1(γ), γ) < 1, and ϕ(−τ̂1(γ), γ) > 1 if γ > γ∗.
Proof. (i) Since τ̂1(γ) ∈ (π, 2π), by the implicit function theorem it follows that τ̂1 is a

differentiable function and

dτ̂1
dγ

∣∣∣∣
γ

=
τ̂1(γ)e−γτ̂1(γ) − sin(τ̂1(γ))

(1 + γ2) sin(τ̂1(γ))
< 0.

Taking the limit as γ tends to zero in the implicit expression ϕ(τ̂1(γ), γ) = 0, it is easy to
check that limγ↘0 cos(τ̂1(γ)) = 1 and limγ↗∞ sin(τ̂1(γ)) = 0. Hence, limγ↘0 τ̂1(γ) = 2π and
limγ↗∞ τ̂1(γ) = π.

(ii) This statement follows by the same arguments as in the previous item.

(iii) By the definition of ϕ and τ̂2 it follows that, for every γ > 0, cos (τ̂2(γ)) = γ sin (τ̂2(γ))
and τ̂2(γ) ∈

(
−2π,−3π

2

)
. Fixing γ = 1√

19
it is easy to obtain

cos

(
τ̂2

(
1√
19

))
=

1

2
√

5
and sin

(
τ̂2

(
1√
19

))
=

√
19

2
√

5
.

This clearly gives ϕ
(
−τ̂2

(
1√
19

)
, 1√

19

)
= 1− 1√

5
e
−

τ̂2( 1√
19

)
√

19 , which is negative because of τ̂2(γ) <

−3π
2 .

On the other hand, since ϕ
(
τ̂1

(
1√
19

)
, 1√

19

)
= 0 and ϕ

(
τ, 1√

19

)
is a monotone decreasing

function for τ ∈ (π, 2π) (see Lemma 3.1(iii)), then τ̂1
(

1√
19

)
< −τ̂2

(
1√
19

)
.

Following statements (i) and (ii) in this lemma, the auxiliary function h(γ) = τ̂1(γ)+ τ̂2(γ)
satisfies that h′(γ) < 0 for every γ > 0 and limγ↘0 h(γ) = π

2 > 0. Since h
(

1√
19

)
< 0, there
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exists a value γ∗ ∈
(
0, 1√

19

)
such that h(γ∗) = 0, h(γ) > 0 for 0 < γ < γ∗, and h(γ) < 0 for

γ > γ∗.
(iv) If 0 < γ < γ∗, then −2π < −τ̂1(γ) < τ̂2(γ) < −3π

2 ; see statement (iii). Therefore,
by using that ∂ϕ/∂τ > 0 in τ ∈ (−2π,−3π

2 ) (Lemma 3.1(ii)), it follows that ϕ(−τ̂1(γ), γ) <
ϕ(τ̂2(γ), γ) = 1. The other inequality of the statement follows in a similar way.

The boundary value 1√
19

appearing in statement (iii) of Lemma 3.2 has only computational

meaning. In fact, it has been chosen to obtain the value 1/2 in the statement of Theorem 1.1.

In the next result we prove the existence of a simple two-dimensional heteroclinic orbit in
the piecewise linear differential system (1.5) for every value of the parameter λ greater than
a certain value λ∗.

Proposition 3.3. There exists a value λ∗ in (0, 1
2) such that

(i) if λ ≥ λ∗, system (1.5) has a two-dimensional heteroclinic orbit with exactly one
intersection point with the plane {x = 0}, and

(ii) if λ < λ∗, system (1.5) has no two-dimensional heteroclinic orbits with exactly one
intersection point with the plane {x = 0}.

Proof. For the sake of simplicity, let us consider the change of variables

(3.6) τ =

√
4 + 3λ2

2
t, γ =

λ√
4 + 3λ2

.

In these new variables, system (3.4) and condition (3.5) can be written as

(3.7)

{
ϕ (−τ,−γ) = 0,

ϕ (τ,−γ) ≥ 1,
and

{
ϕ (−τ̄ ,−γ) > 0

for every τ̄ in (0, τ).

Hence, the existence of a solution (τ0; γ0) to (3.7) is equivalent to the existence of a two-
dimensional heteroclinic orbit with exactly one intersection point with the plane {x = 0}.
According to this, the proof of this proposition is reduced to the analysis of the existence of
a solution to system (3.7).

Let γ∗ be the value defined in Lemma 3.2(iii). Since 0 < γ∗ < 1√
19

, the corresponding

value λ∗ given by (3.6) is real and positive and satisfies 0 < λ∗ < 1
2 . Let us prove that this is

the value λ∗ for which both statements of the proposition hold.

(i) For λ0 ≥ λ∗, the corresponding value γ0 given by (3.6) satisfies γ0 ≥ γ∗. Thus, using
Lemmas 3.1(i) and 3.2(iv), we obtain ϕ(τ̂1(γ0),−γ0) ≥ 1. On the other hand, from Lemma
3.1(i) and (iv), we have ϕ(−τ̂1(γ0),−γ0) = 0 and ϕ(−τ,−γ0) > 0 for every τ ∈ (0, τ̂1(γ0)).
That is, (τ̂1(γ0); γ0) is the desired solution of system (3.7).

(ii) For λ0 < λ∗, the corresponding value γ0 given by (3.6) satisfies γ0 < γ∗. Note that
the unique solution τ̄ of ϕ(−τ,−γ0) = 0 which satisfies ϕ(−τ,−γ0) > 0 for every τ ∈ (0, τ̄)
is τ̄ = τ̂1(γ0); see Lemma 3.1(i) and (iv). Because of γ0 < γ∗ we have ϕ(τ̂1(γ0),−γ0) < 1;
see Lemma 3.2(iv). Consequently, we concluded that the system (3.7) does not have any
solutions.

Note that a value λ satisfying the statements of Proposition 3.3 has to be unique in λ > 0.
Moreover, the value λ∗ ≈ 0.41527324 can be numerically obtained.
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4. Existence of a one-dimensional heteroclinic orbit. In this section we prove the ex-
istence of a simple one-dimensional heteroclinic orbit ρ∓, that is, a heteroclinic orbit ρ∓ =
W u(p−) = W s(p+) which intersects the plane {x = 0} at exactly three points. Two of these
points are necessarily m− and m+.

An equivalent condition for the existence of a simple one-dimensional heteroclinic orbit
is Π+ (m−) = Π−1

− (m+). Due to reversibility, this occurs if and only if the point Π+ (m−)
belongs to the reversibility axis, that is, when the first and third coordinates of Π+ (m−) are
equal to zero. Therefore, system (1.5) has a simple one-dimensional heteroclinic orbit if and
only if the system

(4.1)

{
xm−(t;λ) = 0,
zm−(t;λ) = 0

has a solution (t1;λ1) such that t1 > 0, λ1 > 0, and

(4.2) xm−(t;λ1) > 0 for every t ∈ (0, t1).

Note that condition (4.2) ensures that the point xm−(t1;λ1) is the image of m− by the Poincaré
map Π+.

Now, to prove the existence of solutions of system (4.1) we are going to simplify its
equations. Integrating ẋ = A+x + e3 in forward time with initial condition x(0;λ) = m−,
system (4.1) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−λt

[
(1 + λ2)

√
4 + 3λ2 + 2e

3
2
λtλ2

√
4 + 3λ2 cos

(√
4+3λ2

2
t

)
− 6e

3
2
λtλ3 sin

(√
4+3λ2

2
t

)]
λ
√

4 + 3λ2(1 + λ2)(1 + 3λ2)
=

1

λ(1 + λ2)
,

e−λtλ

[
−(1 + λ2)

√
4 + 3λ2 + 2e

3
2
λt(1 + 2λ2)

√
4 + 3λ2 cos

(√
4+3λ2

2
t

)
− 2λe

3
2
λt sin

(√
4+3λ2

2
t

)]
√

4 + 3λ2(1 + λ2)(1 + 3λ2)
= 0.

Adding λ(1+λ2)

2e
λ
2 t

times the first equation to (1+λ2)

2λe
λ
2 t

times the second one gives

(4.3) cos
(√

4+3λ2

2 t
)
− λ√

4 + 3λ2
sin

(√
4+3λ2

2 t
)

=
1

2e
λ
2
t
.

Moreover, multiplying the second equation by 1
λe

λt(1 + λ2)(1 + 3λ2), adding 1 + λ2 to both

sides of the obtained expression, and multiplying the result by 1
2e

− 3
2
λt, we get

(4.4) (1 + 2λ2) cos
(√

4+3λ2

2 t
)
− λ√

4 + 3λ2
sin

(√
4+3λ2

2 t
)

=
1 + λ2

2e
3
2
λt

.

Now, the trigonometric functions are determined by solving the system given by (4.3) and
(4.4),

cos
(√

4+3λ2

2 t
)

=
1 + λ2 − eλt

4λ2e
3
2
λt

,

sin
(√

4+3λ2

2 t
)

=

√
4 + 3λ2

4λ3e
3
2
λt

(1 + λ2 − eλt(1 + 2λ2)),

(4.5)
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and thus

cos
(√

4+3λ2

2 t
)2

+ sin
(√

4+3λ2

2 t
)2

=
4λ6

1 + λ2
e3λt − (1 + 4λ2 + 3λ4)e2λt + (2 + 6λ2 + 3λ4)eλt − (1 + λ2)2 + 1

or, equivalently,

(4.6)
4λ6

1 + λ2
e3λt − (1 + 4λ2 + 3λ4)e2λt + (2 + 6λ2 + 3λ4)eλt − (1 + λ2)2 = 0.

Let us consider the system given by (4.3) and (4.6). Note that every solution of system
(4.1) is a solution of system (4.3) and (4.6), but the converse is not necessarily true. In the
following lemma we establish the conditions on a solution of system (4.3) and (4.6) for being
a solution of system (4.1).

Lemma 4.1. Let (t1;λ1) be a solution of system (4.3) and (4.6), with t1 > 0 and λ1 > 0.

Then, (t1;λ1) is a solution of system (4.1) if and only if (2k − 1)π <

√
4+3λ2

1

2 t1 < 2kπ with
k ∈ N.

Proof. Suppose that (t1;λ1) is a solution of system (4.1). Since t1 > 0 and λ1 > 0,

from (4.5) it is clear that sin(

√
4+3λ2

1

2 t1) < 0. Thus, the argument

√
4+3λ2

1

2 t1 belongs to
((2k − 1)π, 2kπ) with k ∈ N.

For the other implication, let us consider the system

(4.7)

⎧⎪⎨
⎪⎩

X − λ1√
4 + 3λ2

1

Y =
1

2e
λ1
2
t1
,

X2 + Y 2 = 1,

whose equations correspond to a straight line and a circle. Hence, it has at most two different
solutions. Since the straight line defined by the first equation contains a point with X = 1
and Y > 0, at most one of such solutions has a negative second coordinate.

Note that

(X,Y ) =

(
1 + λ2

1 − eλ1t1

4λ2
1e

3
2
λ1t1

,

√
4 + 3λ2

1

4λ3
1e

3
2
λ1t1

(1 + λ2
1 − eλ1t1(1 + 2λ2

1))

)

is a solution of system (4.7) with Y < 0. On the other hand, since (t1;λ1) is a solution of
system (4.3) and (4.6), then

(X̃, Ỹ ) =

(
cos

(√
4 + 3λ2

1

2
t1

)
, sin

(√
4 + 3λ2

1

2
t1

))

is also a solution of system (4.7) with Ỹ < 0. Therefore, we conclude that (X̃, Ỹ ) = (X,Y ),
which means that (t1;λ1) is a solution of (4.5) or, equivalently, a solution of (4.1).

In the next result we prove that system (4.1) has at least a solution (t1;λ1) which also
satisfies some important conditions to verify inequality (4.2).
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Lemma 4.2. System (4.1) has a solution (t1;λ1) satisfying

1

2
< λ1 < 1 and π <

√
4 + 3λ2

1

2
t1 < 2π.

Proof. Let us define ψ(s, λ) = 4λ6

1+λ2 s
3 − (1 + 4λ2 + 3λ4)s2 + (2 + 6λ2 + 3λ4)s− (1 + λ2)2

and τ =
√

4+3λ2

2 t. Thus, system (4.3) and (4.6) can be written as

(4.8)

⎧⎪⎪⎨
⎪⎪⎩

f1(τ, λ) = ϕ
(
τ, λ√

4+3λ2

)
− 1

2
= 0,

f2(τ, λ) = ψ

(
e

2λ√
4+3λ2

τ
, λ

)
= 0,

where ϕ is the function defined in Lemma 3.1.

From Lemma 4.1, the proof is complete by showing the existence of a solution (τ1;λ1)
of system (4.8) in (π, 2π) × (1

2 , 1). We will obtain such a solution by applying the Poincaré–
Miranda theorem [17], which is an n-dimensional extension of Bolzano’s theorem.

The definition of ϕ makes it obvious that f1(π, λ) > 0 and f1(2π, λ) < 0 for every λ > 0.
In particular, it is true for λ ∈ [12 , 1]. That is, function f1 takes different signs at the vertical
sides of the rectangle [π, 2π] × [12 , 1].

Let us now analyze the sign of function f2(τ, λ) at the horizontal sides of [π, 2π] × [12 , 1]
by studying the cubic polynomials ψ(s, 1) and ψ(s, 1

2). Since the derivative of ψ(s, 1) with
respect to s is positive in R and ψ(1, 1) = 1, we have ψ(s, 1) > 1 for every s ∈ (1,+∞).
Therefore, f2(τ, 1) > 1 for every τ > 0 and, in particular, f2(τ, 1) > 0 for every τ ∈ [π, 2π].

For the last side of the rectangle, straightforward computations show that the derivative
of ψ(s, 1

2) with respect to s vanishes at two values s1 < 1 < s2, where s2 is a local minimum.
Taking into account that ψ(1, 1

2) = − 1
80 and ψ(27, 1

2) = −41003
80 , it follows that ψ(s, 1

2) < 0 for

s ∈ [1, 27]. Note that, for λ = 1
2 and τ ∈ [π, 2π], the exponential function e

2λ√
4+3λ2

τ
takes values

in [1, 27], as is easy to check from inequalities 4π < 3
√

19 and e < 3. Therefore, f2(τ,
1
2) < 0

for every τ ∈ [π, 2π].

The lemma follows by the Poincaré–Miranda theorem.

To conclude the proof of the existence of a simple one-dimensional heteroclinic orbit for
system (1.5), it remains only to check that the solution (t1;λ1) of system (4.1), given in
Lemma 4.2, also satisfies condition (4.2). This is done in the following result.

Proposition 4.3. For λ = λ1, the system (1.5) has a simple one-dimensional heteroclinic
orbit.

Proof. From Lemma 4.2, there exists a solution (t1;λ1) of system (4.1). Integrating
ẋ = A+x + e3 in forward time with initial condition x(0;λ) = m−, we obtain the following
expression for the second coordinate of the solution:
(4.9)

ym−(t;λ) =
2e

1
2
λtλ2

√
4 + 3λ2 cos

(√
4+3λ2

2 t
)

+ 2e
1
2
λtλ(2 + 3λ2) sin

(√
4+3λ2

2 t
)

√
4 + 3λ2(1 + λ2)(1 + 3λ2)

+
e−λt

(1 + 3λ2)
.
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Figure 3. Qualitative behavior of functions G1 and G2.

ŝ1 ŝ2 ŝ3r̂1 r̂1+π ŝ3
τ◦ ◦• ◦• •

G2(τ)

G1(τ)

�
�

���

r̂1+2π

Remember that, in our system, ẋm−(t;λ) = ym−(t;λ). Thus, using (4.5) to simplify ym−(t1;λ1),
we obtain

ẋm−(t1;λ1) =
e−λ1t1 − 1

λ2
1

< 0.

On the other side, ẋm−(0;λ1) > 0.
Assume that (t1;λ1) does not satisfy condition (4.2). Therefore, there exists a value

in (0, t1) where xm−(t;λ1) vanishes. From ẋm−(0;λ1) > 0 and ẋm−(t1;λ1) < 0 it may be
concluded that the derivative ẋm−(t;λ1), that is, ym−(t;λ1), has to vanish at least at three
values s1, s2, s3 such that 0 < s1 < s2 < s3 < t1. For simplicity of notation, we consider

the change τ =

√
4+3λ2

1

2 t. Let ŝ1, ŝ2, ŝ3, τ1 denote the respective values of s1, s2, s3, t1 by this
change. Therefore, 0 < ŝ1 < ŝ2 < ŝ3 < τ1.

From (4.9), the equality ym−(t;λ1) = 0 is equivalent to G1(τ) = G2(τ), where

G1(τ) =
λ2

1

1 + λ2
1

cos (τ) +
λ1(2 + 3λ2

1)√
4 + 3λ2

1(1 + λ2
1)

sin (τ) ,

G2(τ) = −1

2
exp

(
−3λ1√
4+3λ2

1

τ

)
.

(4.10)

The qualitative behavior of G1 and G2 is shown in Figure 3.
Since G2(τ) < 0 for every τ and G1(0) > 0, there exists an r̂1 ∈ (0, ŝ1) where G1(r̂1) = 0,

G1(τ) < 0 for τ ∈
⋃∞

k=0 Ik, where Ik = (r̂1 + 2kπ, r̂1 + (2k + 1)π). On the other hand, the
second derivative G ′′

2 is always negative while the second derivative G ′′
1 is positive in every

interval Ik with k = 0, 1, 2, . . . . Therefore, in each interval Ik there may exist at most two
values where G1 and G2 coincide.

We conclude that ŝ3 > r̂1 + 2π. In particular, τ1 > 2π and, equivalently,

√
4+3λ2

1

2 t1 > 2π,
which contradicts Lemma 4.2. Thus, the proposition follows.

From Propositions 3.3 and 4.3 we conclude that for λ = λ1 system (1.5) has a simple two-
dimensional heteroclinic orbit ρ± and a simple one-dimensional heteroclinic orbit ρ∓. That
is, for λ = λ1 system (1.5) has a (3, 1) heteroclinic cycle Γ = p+ ∪ ρ± ∪ p− ∪ ρ∓.
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5. Existence of a reversible T-point heteroclinic cycle. In this section we finish the proof
of Theorem 1.1. It remains only to verify that the heteroclinic cycle Γ, obtained in section 4
for λ = λ1, satisfies the two following conditions, which are equivalent to those stated at the
definition of a reversible T-point heteroclinic cycle:

(i) Manifolds W u(p+) and W s(p−) intersect transversally along the two-dimensional
heteroclinic orbit ρ±.

(ii) The difference between the third coordinates of Π+(m−) and Π−1
− (m+) is diffeomor-

phic to μ = λ−λ1 (note that the distance between two points in the plane {x = 0} which are
symmetric with respect to R is two times the absolute value of the third coordinate of any of
them).

Statement (i) is a direct consequence of the transversality of manifolds W u(p+) and
W s(p−) at {x = 0} and the differentiability of the flow.

To verify condition (ii), it is necessary only to prove that the third coordinate of Π+(m−)
is diffeomorphic to μ = λ− λ1.

Let t+m−(λ) be the flying time of the solution through the point m− for each λ in a
neighborhood of λ1. In particular, t+m−(λ1) = t1, where t1 is defined in Lemma 4.2. The third
coordinate of Π+(m−), as a function of λ, can be written as h(λ) = zm−(t+m−(λ);λ). Notice
that h(λ) is analytical because the solution depends only on the linear system in the half-space
{x > 0} and the orbit through Π+(m−) is transversal to the plane {x = 0} for λ = λ1. Thus,
since h(λ1) = 0, to conclude that h(λ) is diffeomorphic to μ = λ− λ1 it is sufficient to prove
that h′(λ1) �= 0.

Proposition 5.1. Function h(λ) = zm−(t+m−(λ);λ) satisfies h′(λ1) < 0.

Proof. The first derivative h′(λ1) is given by

dh

dλ

∣∣∣∣
λ1

= żm−(t1;λ1)
dt+m−

dλ

∣∣∣∣∣
λ1

+
∂zm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

.

Since the derivative ẋm−(t1;λ1) = ym−(t1;λ1) does not vanish, the function t+m−(λ) is
implicitly defined by the equation xm−(t;λ) = 0 in a neighborhood of (t1;λ1) . Moreover,
t+m−(λ) is analytical and

dt+m−

dλ

∣∣∣∣∣
λ1

= −

∂xm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

ym−(t1;λ1)
.

On the other hand, since zm−(t;λ) is the third coordinate of the solution of system (1.5)
with initial condition m−, we have

żm−(t1;λ1) = −λ1(1 + λ2
1)xm−(t1;λ1) − ym−(t1;λ1) + 1 = −ym−(t1;λ1) + 1.

Therefore, substituting into the expression of dh/dλ, we obtain

dh

dλ

∣∣∣∣
λ1

=
ym−(t1;λ1) − 1

ym−(t1;λ1)

∂xm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

+
∂zm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

.
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Integrating the linear system ẋ = A+x + e3 with initial condition m− and taking into
account that xm−(t1;λ1) = 0 and zm−(t1;λ1) = 0, the following equalities hold:

ym−(t1;λ1) =
e−λ1t1 − 1

λ2
1

,

∂xm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

=
λ1t1

λ2
1(1 + 3λ2

1)(1 + λ2)(4 + 3λ2)

(
9λ4

1(e
−λ1t1 − 1) + 18λ2(e−λ1t1 − 1)

+ 9e−λ1t1 − 5
)

+
2

λ2
1(1 + 3λ2

1)(1 + λ2)(4 + 3λ2)

(
3λ2

1(2e
−λ1t1 − 3) + 7(e−λ1t1 − 1)

)
,

∂zm−(t;λ)

∂λ

∣∣∣∣
(t1;λ1)

=
3λ1t1

λ2
1(1 + 3λ2

1)(1 + λ2)(4 + 3λ2)

(
3λ6

1 + λ4
1(7 − e−λ1t1) + λ2

1(5 − 2e−λ1t1)

+ 1 − e−λ1t1
)

+
2

λ2
1(1 + 3λ2

1)(1 + λ2)(4 + 3λ2)

(
3λ4

1(e
−λ1t1 − 1) + λ2

1(3e
−λ1t1 − 2)

+ 1 − e−λ1t1
)
.

Straightforward computations show that

dh

dλ

∣∣∣∣
λ1

= − 2

λ2
1(1 + 3λ2

1)(1 + λ2)(4 + 3λ2)(eλ1t1 − 1)
P (t1, λ1),

where

P (t1, λ1) = 3(eλ1t1 + e−λ1t1 − 2)λ5
1t1 + 3(4eλ1t1 + e−λ1t∗ − 4)λ4

1 + 2(2eλ1t1 + 3e−λ1t1 − 6)λ3t1

+ 9(2eλ1t1 + e−λ1t1 − 3)λ2
1 + (eλt1 + 3e−λ1t1 − 4λ1t1) + 6(eλ1t1 + e−λ1t1 − 2).

From Lemma 4.2 we have 1
2 < λ1 < 1 and 2π√

7
< t1 < 8π√

19
. Therefore, π√

7
< λ1t1 < 8π√

19
and

3 < eλ1t1 . This implies that the coefficients of λ5, λ4, λ3, and λ2 in the expression of P (λ1, t1)
are positive. Moreover, eλt1 + 3e−λ1t1 − 4λ1t1 > −λ1t1 > − 8π√

19
, and 6(eλ1t1 + e−λ1t1 − 2) > 6.

Since 6
√

19 > 8π, it follows that P (λ1, t1) > 0, which proves the proposition.

From Proposition 5.1 we finish the proof of Theorem 1.1.
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Localized Hexagon Patterns of the Planar Swift–Hohenberg Equation∗
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Abstract. We investigate stationary spatially localized hexagon patterns of the two-dimensional (2D) Swift–
Hohenberg equation in the parameter region where the trivial state and regular hexagon patterns
are both stable. Using numerical continuation techniques, we trace out the existence regions of fully
localized hexagon patches and of planar pulses which consist of a strip filled with hexagons that is
embedded in the trivial state. We find that these patterns exhibit snaking: for each parameter value
in the snaking region, an infinite number of patterns exist that are connected in parameter space and
whose width increases without bound. Our computations also indicate a relation between the limits
of the snaking regions of planar hexagon pulses with different orientations and of the fully localized
hexagon patches. To investigate which hexagons among the one-parameter family of hexagons are
selected in a hexagon pulse or front, we derive a conserved quantity of the spatial dynamical system
that describes planar patterns which are periodic in the transverse direction and use it to calculate
the Maxwell curves along which the selected hexagons have the same energy as the trivial state. We
find that the Maxwell curve lies within the snaking region, as expected from heuristic arguments.
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1. Introduction. Localized stationary structures play an important role in many biologi-
cal, chemical, and physical processes (see, for instance, the textbooks [45, 72, 74]). Such struc-
tures have been observed in a variety of experiments ranging from vertically vibrated granular
materials [38, 89], liquid crystals [15], binary-fluid convection [8, 65], autocatalytic chemical
reactions such as the Belousov–Zhabotinsky system [31, 90], electrochemical systems [1, 6],
and localized microstructures in solidification [48] to nonlinear optical devices [63, 77, 86].
Localized patterns have also been found in many nonlinear models such as those derived from
magnetohydrodynamics [12], flame fronts [39], lasers [56], vibrated granular materials [36, 88],
neural networks [54, 55], and cellular buckling [47] as well as in the Swift–Hohenberg equation
[26, 28, 29, 44, 80], which often serves as a paradigm for general pattern-forming systems
[30, 37].

In this paper, we consider stationary solutions of the Swift–Hohenberg equation [30, 85]

(1.1) ut = −(1 + Δ)2u− μu + νu2 − u3,

where x ∈ R for the one-dimensional (1D) version and (x, y) ∈ R
2 in the planar case. We
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Figure 1. (a) Localized stationary spots and hexagon patches of (1.1) for (μ, ν) = (0.5, 2.2). (b) Localized
stationary spots and stripes of (1.5) for (μ, ν) = (2.5, 4). Both images are color plots of stationary solutions
u(x, y), with x plotted horizontally and y vertically, where the values of u(x, y) are represented by colors as
indicated in the color bars shown to the right of the color plots: The color plots in the remainder of this paper
are produced in the same fashion.

focus on the region ν ≥ 0 since the case ν < 0 is then recovered upon replacing u by −u. The
trivial state u = 0 is stable for μ > 0 and destabilizes at μ = 0 with respect to perturbations
that have nonzero finite spatial wavelength. At μ = 0, hexagons bifurcate in a transcritical
bifurcation from u = 0 for each ν > 0, while rolls bifurcate in a subcritical pitchfork bifurcation
from u = 0 provided ν > νr :=

√
27/38 [44]. While the bifurcating hexagons and rolls are

initially unstable for μ > 0, they stabilize in a subsequent saddle-node bifurcation, leading
to bistability between the nontrivial patterns and the trivial state for μ > 0. The bistability
of trivial and patterned states opens up the possibility of finding fully localized stationary
patches of hexagons or rolls such as those shown in Figure 1. It is patterns of this type that
we shall focus on in this paper.

We first review briefly the situation in one dimension and refer the reader to section 2 for
a more extensive discussion. In one space dimension, the Swift–Hohenberg equation exhibits
localized structures, as shown in Figure 2. The patterns shown there are connected in param-
eter space, and their width increases as we move up on the bifurcation curve: this scenario
is referred to as snaking [92]. There are several interesting questions one may ask about the
patterns shown in Figure 2: can we predict for which values of μ these structures exist, and
can we determine a priori which periodic pattern is selected to form the localized structure?

We begin with the second question: the steady-state equation

(1.2) −(1 + ∂2
x)

2u− μu + νu2 − u3 = 0

of the 1D Swift–Hohenberg equation exhibits, in the relevant parameter region, a one-param-
eter family of periodic patterns for each fixed (μ, ν). To decide which one of these makes
up the core of the localized structure, we consider a front that connects the trivial state to
a periodic pattern: this front corresponds to a heteroclinic orbit of the ordinary differential
equation (1.2) that connects u = 0 to a periodic orbit. It turns out that the ODE (1.2) admits
the first integral

(1.3) H(u) = uxxxux −
u2
xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
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Figure 2. A partial bifurcation diagram of localized stationary patterns in the 1D Swift–Hohenberg equation
(1.1) is shown for ν = 1.6 (other solution branches are given in Figure 8). Dotted blue lines indicate (temporally)
unstable solutions, while solid blue lines denote stable solutions. At each fold along the snake, a pair of new
rolls is formed in the pulse. The left and right fold bifurcations approach the vertical asymptotes μ1 = 0.181
and μ2 = 0.211, and the Maxwell point is μM = 0.2.

so that the value [H(u)](x) of H along a solution u(x) of (1.2) does not change as a function
of x. In particular, if we evaluate H along our front, we find that H must vanish along the
limiting periodic pattern as it vanishes at u = 0. Generically, H will vanish only at finitely
many periodic orbits in the family of periodic patterns and will therefore serve as a selection
principle that involves only the periodic patterns.

We now address the first question, namely, for which parameter values stationary fronts
exist. We recall that the Swift–Hohenberg equation (1.1) posed on R

d with 1 ≤ d ≤ 3 is a
gradient system,

ut = −∇E(u),

in H2(Rd), where the energy functional E is given by

(1.4) E(u) =

∫
Rd

[
[(1 + Δ)u]2

2
+

μu2

2
− νu3

3
+

u4

4

]
dx, x ∈ R

d,

and the gradient ∇E(u) = δE
δu (u) of E with respect to u is computed in L2(Rd). In particular,

E decreases strictly in time along solutions of (1.1) unless the solution is stationary. We
record that the existence of the first integral H given above is actually a consequence of the
translation invariance of the integrand of E . While we cannot evaluate the energy functional
along periodic patterns as they are not localized, whence the integral in (1.4) may not exist,
we may, however, define a local energy by integrating over one spatial period of the underlying
periodic pattern. We may then expect, on a heuristic level, that stationary interfaces between
the trivial state and the periodic pattern can exist only when their local energies coincide;
otherwise, one of the states would invade the other one to decrease energy, thus leading to
moving fronts. This gives a heuristic criterion that allows us to determine for which values
of μ stationary fronts can exist: for each μ, compute the periodic pattern u∗(μ) for which
H(u∗(μ)) = 0, calculate its local energy E(u∗(μ)), and then find μ so that E(u∗(μ)) = 0. The
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corresponding parameter value μM is referred to as the Maxwell point. It was first pointed out
by Pomeau [73] that stationary fronts should exist not only at the Maxwell point μ = μM but
in an entire interval that contains μM where fronts are pinned or locked. Consequently, we
expect to find localized roll patches in an entire interval, and this is what happens in Figure 2.
The specific pinning mechanism leading to Figure 2 was elucidated in [26, 52, 92] and will be
discussed in section 2.

We now turn to the planar Swift–Hohenberg equation (1.1). Several numerical observa-
tions of localized spots and hexagon patches of (1.1) have been documented in the literature
[26, 44, 78]. Localized square patterns have also been observed in the Swift–Hohenberg equa-
tion when an additional nonlinear gradient term is added [44, 79]. In addition, localized stripes
and spots have been found in the cubic-quintic Swift–Hohenberg equation

(1.5) ut = −(1 + Δ)2u− μu + νu3 − u5.

Close to our approach is the paper [63], in which a complex Ginzburg–Landau equation with
a saturable nonlinearity was studied in a cavity-soliton context. In [63], the steady-state
equation was solved numerically as a boundary-value problem, and the bifurcation diagram
was traced out for various localized patterns, including hexagon patches, using continuation
techniques. However, the authors continued solutions only up to the first fold and not beyond.

The aim of this paper is to investigate hexagon fronts and fully localized hexagon patches
in the two-dimensional (2D) Swift–Hohenberg equation (1.1). We have three main results.
The first is the construction of a conserved quantity H for the 2D Swift–Hohenberg equation:
the existence of H is a consequence of Noether’s theorem since the integrand of the energy
functional E is invariant under translations, i.e., does not depend explicitly on x.

Proposition 1 (conserved quantity for the 2D Swift–Hohenberg equation). If u(x, y) is a
smooth solution of the planar Swift–Hohenberg equation (1.1) which is spatially periodic with
period � in the y-variable, then the quantity

(1.6) H(u) =

∫ �

0

[
uxxxux −

u2
xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
− u2

xy − u2
y +

u2
yy

2

]
dy

does not depend on x.

As in the 1D case, the first integral H provides a selection principle for hexagons: if we
find a planar front that connects hexagons to the trivial state and is periodic in the transverse
direction (see Figure 3), then H must vanish when evaluated along a single hexagon in the
far field of the front. This selection principle together with the local energy E will allow us
to compute Maxwell points for the planar Swift–Hohenberg equation (1.1). Our second result
shows that, for each fixed ν > 0, and all sufficiently small μ > 0, there is a unique small-
amplitude hexagon pattern along which H vanishes. We refer the reader to section 3.3 for a
stronger result.

Proposition 2 (existence of hexagons with H = 0). For each fixed ν > 0, there is a number
μ0 > 0 so that the planar Swift–Hohenberg equation (1.1) admits a unique small-amplitude
hexagon solution u∗(μ) that satisfies H(u∗(μ)) = 0 for each μ ∈ (0, μ0). These hexagons
satisfy u∗(0) = 0, have wavenumber κ∗(μ) with κ∗(0) = 1, and depend smoothly on μ.
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Figure 3. Color plots of two stationary fronts are shown for the planar Swift–Hohenberg equation (1.1):
Both fronts connect hexagons to the trivial state along the horizontal x-direction, are periodic in the vertical
y-direction, and differ in the way in which their interfaces are aligned in a fixed hexagonal lattice.

Figure 4. Part of the bifurcation curve corresponding to localized hexagon patches of (1.1) with ν = 1.6 is
shown. Color plots of representative solutions are shown in panels 1–4. The entire snaking curve and color plots
of the associated stationary solutions can be viewed in the accompanying animation (70762 01.mpg [10.8MB]).

Our third result is a comprehensive numerical study of localized hexagon patches in the
planar Swift–Hohenberg equation (1.1). Instead of giving a detailed list of these results, which
can be found in section 5, we focus here on the observation that these localized structures
snake.

Observation 1 (snaking of localized hexagon patches). Localized hexagon patches of the
Swift–Hohenberg equation exist and snake in a wedge-shaped region in the (μ, ν)-parameter
plane. The shape of the hexagon patches changes along the snaking curve: their interfaces
resemble planar hexagon fronts with different orientations with respect to a fixed hexagonal
lattice; see Figures 3 and 4. The saddle-node bifurcations of the localized hexagon patches
are aligned with saddle-nodes of planar hexagon fronts, which are shown as vertical lines in
Figure 4.

The remainder of this paper is organized as follows. We begin in section 2 with a review
of snaking in one space dimension as this case motivated our paper to a large extent. We
also review known results about regular hexagons and planar hexagon fronts. In section 3,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_01.mpg
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Figure 5. Panel (i) contains the numerically computed fold bifurcation curve of 1D rolls of (2.1) with
wavenumber κ = 1 (solid green) and the Maxwell curve (dotted grey) along which rolls with H = 0 and E = 0
exist. The schematic picture in panel (ii) indicates that, for fixed ν > νr, rolls exist for any wavenumber κ
close to one. Panels (iii) and (iv) contain numerical bifurcation diagrams of the rolls that satisfy H = 0 for
ν = 1.6: Shown are the amplitude and the wavelength l = 1/κ (so that l = 1 corresponds to a period of 2π).
The Maxwell point E = 0 occurs on the upper branch, where rolls are stable.

we discuss selection principles for hexagons and prove Propositions 1 and 2. We outline
in section 4 the numerical algorithms that we used to compute planar hexagon fronts and
localized hexagon patches and comment on their implementation. Our main results can be
found in section 5, where we discuss fully localized hexagon and rhomboid patches. We end
in section 6 with conclusions and a discussion.

Throughout this paper, we use color plots to illustrate the profiles of stationary planar
patterns and refer the reader to the caption of Figure 1 for an explanation of what these plots
represent. Two-parameter bifurcation diagrams are always drawn using (μ, ν2) rather than
(μ, ν), which makes the diagrams more legible.

2. Review of 1D snaking and planar hexagons.

2.1. Snaking in one space dimension. Recall the steady-state equation

(2.1) −(1 + ∂2
x)

2u− μu + νu2 − u3 = 0, x ∈ R,

of the 1D Swift–Hohenberg equation (1.1). Equation (2.1) has two important features that
we shall exploit: it is invariant under the reflection x �→ −x and admits the first integral H
given in (1.3).

At μ = 0, the trivial state u = 0 undergoes a pitchfork bifurcation to even spatially periodic
patterns with period 2π or wavenumber κ = 1. These patterns bifurcate supercritically with
μ < 0 when ν < νr :=

√
27/38 and subcritically with μ > 0 when ν > νr. To accommodate

the switch from super- to subcritical at ν = νr, a fold of periodic patterns with wavenumber
κ = 1 emerges from (μ, ν) = (0, νr) into the positive half-plane, as shown in Figure 5(i). In
fact, even periodic patterns bifurcate for any wavenumber κ close to one along a curve of
pitchfork bifurcations, as indicated in Figure 5(ii) for a fixed ν > νr.

We are interested in standing localized structures such as those shown in Figure 2. As
argued in section 1, the Maxwell curve predicts parameter regions where these structures may
exist [11, 68, 70]: recall that Maxwell points are found by calculating, for each given (μ, ν),
the periodic roll pattern uper(μ, ν) that has vanishing first integral H = 0 and subsequently
adjusting the parameters so that the energy E(uper(μ, ν)), computed over one period of uper,
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vanishes as well. This can be done numerically, and the result [17, 19] is the Maxwell curve
shown in Figure 5(i) which emerges from the codimension-two point (0, νr), where the bifur-
cation to rolls changes from super- to subcritical. We give two arguments that show that the
Maxwell curve can emerge only from this point. First, small-amplitude rolls are unstable at
subcritical bifurcations, while they bifurcate for μ < 0 at supercritical bifurcations: in neither
case can we find stable rolls for μ > 0 that coexist with the stable trivial state. Alterna-
tively, the normal form at pitchfork bifurcations is μw − aw3 = 0, and the associated energy
E(w) = μw2/2 − aw4/4 does not vanish at the bifurcating state when a �= 0.

Around the Maxwell curve, a pinning region exists where stable localized patterns can be
found [73]. We shall now briefly review two different approaches that explain why this pinning
region is present and why snaking occurs.

Asymptotics beyond all orders. Near the codimension-two point (μ, ν) = (0, νr) with νr =√
27/38, the snaking behavior in (1.1) can be explained by the interaction between the under-

lying periodic state and the slowly varying envelope which forms the localized structure. On
the level of amplitude equations, the fast scale of the underlying periodic pattern is ignored,
and these amplitude equations then predict that stationary pulses exist only at the Maxwell
point. In the works [11, 13], the fast scale was formally reintroduced at lowest order into
the amplitude equation, and the effect on locking and pinning was analyzed. This approach
predicts an exponentially small width of the order exp(−π/|ν − νr|2) of the locking region in
the parameter μ when ν > νr is fixed with |ν − νr| 	 1 but does not capture the precise
asymptotic behavior in ν. A consistent asymptotic analysis beyond all orders was recently
carried out in [25, 52] which gives the precise asymptotic behavior of the width of the locking
region in the parameter μ as a function of ν as ν approaches νr. Multiple scale expansions that
capture the different scaling regimes near the bifurcation point and the Maxwell curve in one
step, albeit without addressing terms beyond all orders, were introduced earlier in [16, 17]; in
addition, the wavelength correction along the Maxwell curve was calculated in [17, (3.27)].

Dynamical-systems geometry. The second approach we shall discuss is of a more geometric
nature and due to [92, 26]. We rewrite the fourth-order steady-state equation (2.1) as the
first-order system

(2.2) Ux = F (U ;μ, ν), U = (u, ux, uxx, uxxx) ∈ R
4,

where we regard x as the time-like evolution variable. Recall that (2.2) has the first integral
H from (1.3). The reflection invariance x �→ −x of (2.1) means that (2.2) is reversible with
reverser RU := (u,−ux, uxx,−uxxx): if U(x) is a solution, so is RU(−x). Reversible solutions
U(x) of (2.2), which by definition satisfy U(0) ∈ FixR, correspond to even solutions u(x) of
(2.1).

The trivial state u = 0 and the even periodic patterns uper(x) of (2.1) correspond to the
equilibrium U = 0 and reversible periodic orbits Uper(x), respectively, of (2.2). If the trivial
state u = 0 and the rolls uper(x) are temporally stable with respect to the Swift–Hohenberg
equation, then the corresponding solutions U = 0 and Uper(x) of (2.2) are hyperbolic. If,
for instance, U = 0 were not hyperbolic, then the matrix FU (0;μ, ν) would have a purely
imaginary eigenvalue iω, and u(x, t) = eiωx would satisfy the linearization of (1.1) about
u = 0, which contradicts temporal stability. A similar argument applies to purely imaginary
Floquet exponents of Uper(x), which are related to the dispersion relation of uper(x): if the
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Figure 6. The leftmost panel shows the Maxwell curve in the (μ, ν2)-parameter space, while the center-left
panel shows the bifurcation diagram for a fixed value of ν. The three pictures in the center-right panel illustrate
the geometry of the stable and unstable manifolds of the equilibrium U = 0 and the periodic orbit Uper in a
two-dimensional Poincaré section (see text for further details): The tangles of the unstable and stable manifolds
of U = 0 are caused by the expansion and contraction near the periodic orbit and are therefore more pronounced
near the periodic orbit. The localized pattern shown in the rightmost panel corresponds to the intersection Uloc

of the stable and unstable manifolds of U = 0 near the periodic orbit Uper.

rolls uper(x) are spectrally stable, then the periodic orbit Uper(x) will have only two Floquet
exponents at zero; see [66, 67, 82, 83] and [81, sect. 3.4.2] for further details. In summary, we
can identify the localized patterns uloc(x) shown in Figure 2 with homoclinic orbits of (2.2)
that lie in the intersections of the stable and unstable manifolds of U = 0 which come close
to the hyperbolic periodic orbit Uper(x).

To visualize this situation better, we restrict (2.2) to the three-dimensional invariant zero
level set H−1(0) of the first integral H. Next, we choose a two-dimensional Poincaré section
Σ in the three-dimensional set H−1(0) at the point Uper(0) on the periodic orbit Uper(x). The
fixed-point space FixR of the reverser R becomes a line in the section Σ which can be used to
identify symmetric orbits: note that the phase diagrams will be symmetric under the reverser
R. We now make the assumption that the unstable manifold of U = 0 intersects the stable
manifold of the periodic orbit Uper(x) transversely in the section Σ and that the parameter
μ moves these manifolds transversely through each other,1 as shown in Figure 6. Numerical
computations in [42] confirmed this assumption in the snaking regime of a reversible system of
two coupled second-order equations. Figure 6 illustrates the resulting geometry which explains
why the existence region of localized structures is an interval in parameter space. The end
points of the intervals correspond to parameter values where fronts that connect the trivial
state to the patterned state disappear in saddle-node bifurcations. Figure 7 explains in more
detail why the localized structures get broader as we move up along the snaking curve.

1Due to reversibility, the same is then true for the stable manifold of U = 0 and the unstable manifold of
Uper(x).
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Figure 7. As we move upward on the snaking curve, μ first increases and then decreases. Geometrically,
the localized structure moves from one branch of the invariant manifolds through a saddle-node bifurcation to
the adjacent branch. In doing so, it moves closer to the periodic orbit: Thus, it spends more “time” x near Uper

and therefore broadens in space. As a result, its norm increases, which explains the structure of the snaking
curve. Besides saddle-node bifurcations, the localized structures also undergo pitchfork bifurcations, which result
in two asymmetric structures explained further in the text and in Figure 8.

Figure 8. The left and center panels contain the bifurcation diagrams of asymmetric localized structures that
bifurcate at pitchfork bifurcations from even localized structures [20, 22]: Solutions along the curved branches
are even with minima (blue) or maxima (red) at x = 0, while solutions along the horizontal ladders (black) are
asymmetric. Panels 1–3 contain the graphs of selected solution profiles u(x).

As can be seen from Figure 7, the reflection symmetry x �→ −x of the Swift–Hohenberg
equation has another interesting consequence: each saddle-node bifurcation of an even local-
ized structure is accompanied by a pitchfork bifurcation at which two asymmetric structures
bifurcate. In the Swift–Hohenberg equation, these asymmetric states and the associated bi-
furcation diagrams were recently computed numerically in [20, 22], and we reproduce their
numerical computations in Figure 8. As shown in Figure 8, the asymmetric structures connect
two different families of even localized structures in parameter space. We give now a brief
heuristic explanation of this phenomenon and refer the reader to [10] for a rigorous approach.
Here and in [10], we assume that the parameter μ unfolds the intersection of W u(0) and
W s(Uper) as indicated in Figure 6 and that the resulting bifurcation diagram of even local-
ized structures is as shown in Figure 8. Each symmetric periodic orbit Uper(x) intersects the
fixed-point space FixR precisely twice, and the two intersection points correspond to maxima
and minima of uper. Even localized structures arise as intersections of the unstable manifold
W u(0) with FixR near either the maximum or the minimum of Uper. In the Swift–Hohenberg
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Figure 9. Shown is the dynamics of the linearized Poincaré map near the periodic orbit Uper. On the left,
the parameter μ is close to the pitchfork bifurcation in FixR that creates an asymmetric localized structure
Uasym(0) (red bullet). As μ is increased, we assume that W u(0) is moved to the left and, correspondingly, by
reversibility, W s(0) is moved upward. Following their intersection Uasym(0), which occurs along the branches
plotted with dashes, we observe that it ends at a second pitchfork bifurcation in Fix R̃. Thus, the asymmetric
localized structures connect, in parameter space, even solutions with a minimum at x = 0 to even solutions with
a maximum at x = 0. The points Uasym(0) stay on the same horizontal and vertical segments of the invariant
manifolds, and their distance from Uper(0) therefore does not change much: In particular, their L2-norm cannot
change by too much, which explains why the ladders are approximately horizontal. See also the accompanying
animation (70762 02.mov [533KB]).

equation, numerical evidence suggests that both these structures exist; see Figure 8. To cap-
ture them, we can work with two different Poincaré sections Σmax and Σmin, placed at the
maximum and minimum, or else work with a second reverser R̃ := ΠRΠ−1 near the section
Σ := Σmin, where Π : Σmax → Σmin is the first-return map induced by the flow of (2.2). We
choose the latter approach as it allows us to visualize the entire dynamics in one section. We
straighten out the invariant manifolds of Uper and use the linearized Poincaré map near the
symmetric orbit Uper. Using the assumptions made above on the unfolding of the intersections
with respect to the parameter μ, we obtain the diagrams shown in Figure 9 which reproduce
the numerically observed ladder structure geometrically.

We now turn to a discussion of the shape of the snaking region in the (μ, ν)-parameter
space. Figure 6 indicates that snaking occurs in an interval in μ that is bounded by fold
bifurcations of heteroclinic orbits which connect U = 0 to the rolls Uper(x). To demarcate
the snaking region in (μ, ν)-space, we should therefore continue these fold bifurcations in
parameter space, which is a difficult numerical task as we would need to find simultaneously
periodic solutions, their Floquet eigenfunctions, and the heteroclinic orbits at a structurally
unstable saddle-node bifurcation (see [53] for a recent numerical approach to this problem).
Instead, we continue fold bifurcations of localized rolls in the parameters (μ, ν). As shown in
Figure 10, these fold curves do not reach the codimension-two point (μ, ν) = (0, νr) but instead
collide pairwise in cusp bifurcations. Continuing fold curves of localized rolls therefore gives
a good approximation of the snaking region which fails, however, near the codimension-two

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_02.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_02.mov
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Figure 10. The middle panel contains the numerically computed fold curves of localized rolls of (2.1)
associated with the folds labeled (1) and (2) in the left panel: The two fold curves collide in a cusp bifurcation.
The right panel contains a schematic illustration of the sheet of localized rolls: Fold curves of localized rolls
will collide pairwise in cusps, and we believe that the sequence of cusps approaches the codimension-two point
(0, νr) along the Maxwell curve.

point.

2.2. Regular hexagonal patterns. We briefly review known results on the existence and
stability of regular hexagons [33, 40, 41, 49] (see also [35, sect. 2] for a review), which can be
tiled to cover the entire plane.

The planar Swift–Hohenberg equation

(2.3) ut = −(1 + Δ)2u− μu + νu2 − u3, x = (x, y) ∈ R
2

is equivariant under the action of the Euclidean symmetry group E(2) which consists of ro-
tations, translations, and reflections of the plane. Thus, we may seek stationary solutions to
this equation that are invariant under a given fixed subgroup of E(2). We focus on hexagons
with wavenumber κ = 1 and consider therefore the planar hexagonal lattice L,

L = {n1l1 + n2l2 + n3l3 ∈ R
2; n1, n2, n3 ∈ Z},

where

l1 = 2π

(
1,

1√
3

)
, l2 = 2π

(
0,− 2√

3

)
, l3 = 2π

(
−1,

1√
3

)
;

see Figure 11. It is convenient to retain the lattice vector l3 even though it is redundant.
Hexagons are time-independent solutions u(x) of (2.3) which are invariant under the subgroup
D6 of E(2) and which are L-periodic so that

u(x + l) = u(x) ∀l ∈ L, ∀x ∈ R
2.

To find hexagons, it is convenient to use the dual lattice L∗ defined via

L∗ = {n1k1 + n2k2 + n3k3 ∈ R
2; n1, n2, n3 ∈ Z}
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Figure 11. Shown are color plots of regular hexagons on the lattice L together with the lattice vectors l1,
l2, and l3 in panel (a) and with two lines with Bravais–Miller indices 〈10〉 and 〈11〉 in panel (b).

with

k1 = (−1, 0), k2 =

(
1

2
,

√
3

2

)
, k3 =

(
1

2
,−

√
3

2

)
,

which allows us to represent L-periodic solutions of (2.3) by the Fourier series

u(x, t) =
∑
k∈L∗

ûk(t)e
ik·x.

We now restrict our attention to hexagons that bifurcate from u = 0. Linearizing (2.3)
about u = 0 gives the linear operator −(1+Δ)2−μ. Posed on appropriate spaces of L-periodic
functions, the first instability occurs at μ = 0, where an eigenvalue of algebraic multiplicity
six, with eigenfunctions exp(±ikj · x) for j = 1, 2, 3, crosses into the right half-plane. On the
resulting six-dimensional center manifold, we can parametrize solutions as
(2.4)

u(x, t) = A1(t)e
−ix +A2(t)e

i(x+
√

3y)/2 +A3(t)e
i(x−

√
3y)/2 +h(A1, A2, A3, A1, A2, A3;μ, ν)+c.c.,

where the function h represents the higher-order contributions to the center manifold. The
flow on the center manifold can be calculated for |μ| 	 1 and |ν| 	 1 by evaluating the
Swift–Hohenberg equation on the elements of the center manifold and projecting the resulting
expression back onto the center eigenspace.2 The result is

Ȧ1 = −μA1 + α1A2A3 + α2A1|A1|2 + α3A1(|A2|2 + |A3|2) + r(A1, A2, A3),

Ȧ2 = −μA2 + α1A1A3 + α2A2|A2|2 + α3A2(|A1|2 + |A3|2) + r(A2, A3, A1),(2.5)

Ȧ3 = −μA3 + α1A2A1 + α2A3|A3|2 + α3A3(|A2|2 + |A1|2) + r(A3, A1, A2),

plus the complex conjugated equations of six ODEs for the complex amplitudes Aj , where the
coefficients αj are real and are given by

α1 = 2ν + O(|μ|(|μ| + |ν|)), α2 = −3 + O(|μ| + |ν|), α3 = −6 + O(|μ| + |ν|),
2If ν is small, then the function h is not needed for the calculation of the cubic terms of the reduced vector

field: The coefficients in (2.5) for arbitrary ν can be found in [44].
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Figure 12. The bifurcation diagram of hexagons with critical wavenumber κ = 1 in the Swift–Hohenberg
equation is shown for fixed 0 < ν � 1. Solid lines correspond to stable patterns, while dotted lines correspond
to unstable ones. The hexagons undergo a saddle-node bifurcation at amplitude A = ν/15 + O(ν2) when
μ = ν2/15 + O(ν3). The energy E vanishes only for μ = μE given in (2.9) for the hexagons with amplitude
A = 4ν/45 + O(ν2) on the upper branch.

and the remainder term r(z) = O(|z|4) is of higher order. Equivariance of the Swift–Hohenberg
equation and invariance of the hexagonal lattice with respect to rotations by π/3, reflections,
and translations manifest themselves in the equivariance of the reduced system with respect
to the transformations

σ : (A1, A2, A3) �→ (A3, A1, A2),

ρ : (A1, A2, A3) �→ (A1, A3, A2),

τa : (A1, A2, A3) �→ (eia1A1, e
−i(a1+

√
3a2)/2A2, e

i(−a1+
√

3a2)/2A3),

respectively. Hexagons are invariant under D6 and therefore lie, in particular, in the one-
dimensional intersection of the fixed-point spaces of σ2 and σ3, which is given by A := A1 =
A2 = A3 ∈ R. As an intersection of fixed-point spaces, the line A1 = A2 = A3 ∈ R is invariant
under (2.5), and hexagons can therefore be found as nontrivial equilibria of the differential
equation

(2.6) Ȧ = −μA + 2νA2 − 15A3 + O((|μ| + |ν|)(|μ| + |A|)|A|2 + |A|4)

which exist for

(2.7) μ = 2νA− (15 + O(|ν| + |A|))A2.

The stability of these hexagons with respect to L-periodic perturbations is calculated by
considering the linearization of (2.5) about the hexagons [23, 40]. The resulting bifurcation
diagram of hexagons is plotted for ν > 0 in Figure 12; other solution branches corresponding
to mixed modes, which bifurcate in secondary bifurcations, and rolls exist but are not shown
in Figure 12. The hexagons with A > 0 shown in Figure 12 are up-hexagons: our focus is
on μ, ν > 0, and we shall therefore encounter only up-hexagons in the rest of this paper.
When ν < 0, the bifurcation diagram in Figure 12 does not change except that A is reflected
via A �→ −A: in this case, localized hexagon patterns consist of down-hexagons, though
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the bifurcation diagrams shown in the remainder of the paper would not change due to the
symmetry (u, ν) �→ (−u,−ν).

We now calculate the energy E(u) given in (1.4) along the hexagon branch (2.7). Substi-
tuting

u(x, y) = 2A
[
cos(x) + cos((x +

√
3y)/2) + cos((x−

√
3y)/2)

]
into (1.4) and integrating over the fundamental domain [0, 4π] × [0, 4π/

√
3], we find that the

energy of the hexagons with wavenumber κ = 1 is given by

(2.8) E =
8π2A3

√
3

(4ν − 45A) + O((|ν| + |A|)A4),

which vanishes precisely when A = 4ν/45 + O(ν2), which corresponds to the parameter curve

(2.9) μE =
8ν2

135
+ O(ν3).

For fixed ν > 0, the energy (2.8) along the bifurcating hexagons is strictly larger than zero
for 0 < |A| 	 1.

Throughout this section, we considered only hexagons with wavenumber κ = 1. Hexagons
with wavenumbers κ close to one bifurcate for μ = −(1 − κ2)2, and these can be captured by
an analogous analysis upon using the arguments (κx, κy) in place of (x, y) in the right-hand
side of (2.4).

2.3. Planar hexagon fronts. We now discuss planar stationary hexagon fronts that con-
nect hexagons to the trivial state. As illustrated in Figure 3, these fronts can have different
orientations with respect to the hexagonal lattice L, which can be classified using the Bravais–
Miller index [5].

Definition 1 (Bravais–Miller index). Fix the hexagonal lattice L. The Bravais–Miller index
〈n1 n2 n3〉 of a line in the plane is given by the reciprocals nj of the intercepts of the line with
the lines Rlj generated by the lattice vectors lj (assigning the reciprocal nj = 0 if the line does
not intersect Rlj). Negative indices −n with n > 0 are conventionally written as n := −n.
Since n1 + n2 + n3 = 0, we may write the index using only two indices: our choice is 〈n1 n2〉,
and we refer the reader to Figure 11(b) for examples.

If a hexagon front has a straight interface, we assign the Bravais–Miller index of its in-
terface to it. Two examples of Bravais–Miller indices are given in Figure 11(b), and the
corresponding hexagon fronts are shown in Figure 3. We shall present more detailed numeri-
cal results for the existence of fronts with these orientations later in the paper.

For μ close to zero, stationary fronts between hexagons and the trivial state can be found
using a formal multiscale expansion as carried out in [60], though we note that this approach
cannot capture the expected pinning and locking of these fronts. To construct stationary 〈10〉
fronts, we substitute the ansatz

u(x, y) = ε
(
A1(εx)e−ix + A2(εx)

[
ei(x+

√
3y)/2 + ei(x−

√
3y)/2

]
+ c.c.

)
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into (2.3), set μ = ε2μ̃ and ν = εν̃, and expand in powers of ε. To leading order, we obtain
the system

0 = 4∂2
XA1 − μ̃A1 + 2ν̃A

2
2 − 3A1|A1|2 − 12A1|A2|2,(2.10)

0 = ∂2
XA2 − μ̃A2 + 2ν̃A1A2 − 9A2|A2|2 − 6A2|A1|2,

where the nonlinearity on the right-hand side comes from (2.5) upon setting A2 = A3. A
similar ODE can be derived for 〈11〉 fronts and, in fact, for fronts of any given orientation [60].

Stationary fronts with index 〈10〉 that connect the trivial state to hexagons with wave-
number κ = 1 correspond to heteroclinic orbits of (2.10) that connect (A1, A2) = (0, 0) to
the hexagon solutions (A1, A2) = (Ã, Ã), where A = εÃ is an equilibrium of (2.6). Equation
(2.10) admits the first integral

H(A1, A2) = 2|∂XA1|2 + |∂XA2|2 − μ̃

(
|A1|2

2
+ |A2|2

)
(2.11)

+ ν̃(A1A
2
2 + A1A

2
2) −

3

4
|A1|4 − 6|A1|2|A2|2 −

9

2
|A2|4,

which is constant along solutions of (2.10). In particular, heteroclinic orbits between (0, 0)
and (Ã, Ã) can exist only when H(Ã, Ã) = H(0, 0) = 0, which gives the condition

H(Ã, Ã) = −3μ̃

2
Ã2 + 2ν̃Ã3 − 45

4
Ã4 = 0

that we need to solve for Ã. Using (2.7) and interpreting the results in the original unscaled
parameters, we arrive at the condition

(2.12) μM =
8ν2

135
+ O(ν3),

along which H vanishes at the bifurcating hexagons with wavenumber κ = 1. Equation (2.9)
shows that the energy E vanishes at the same hexagons for the same parameter values, to the
order in which we computed them. Thus, the curve defined by (2.12) gives the Maxwell curve,
which provides a heuristic criterion for the existence of planar fronts but does not account for
pinning and locking phenomena.

The analysis reviewed here is valid only in the limit (μ, ν) → 0 and does not address the
wavenumber selection as we fixed κ = 1. In section 3, we will construct a conserved quantity H
which defines the Maxwell curve for general parameter values and prove Proposition 3 on the
selection of hexagons that satisfy H = 0. In section 5.2, we shall compare the predictions made
by the Maxwell curve (2.12) and its extension from section 3 with numerical computations for
the full 2D Swift–Hohenberg equation.

3. Spatial dynamics, and selection principles for hexagons. In this section, we prove
Propositions 1 and 2.
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3.1. Proof of Proposition 1. Proposition 1 states that if u(x, y) is a bounded solution of
the planar stationary Swift–Hohenberg equation

(3.1) −(1 + Δ)2u− μu + νu2 − u3 = 0, (x, y) ∈ R
2,

which is spatially periodic with period � in the y-variable, then the quantity

(3.2) H(u) =

∫ �

0

[
uxxxux −

u2
xx

2
+ u2

x +
(1 + μ)u2

2
− νu3

3
+

u4

4
− u2

xy − u2
y +

u2
yy

2

]
dy

does not depend on x. This can, of course, be verified directly by computing the derivative
of (3.2) with respect to x and using (3.1), and we omit this straightforward calculation.

Instead, we outline how the first integral H can be derived in the first place from the
translation invariance of the Lagrangian associated with (3.1) and refer the reader to [2, 3]
and [24, Ch. 15] for a general abstract approach. We start with a general energy functional3

E(u) =

∫
Rd

L(u(x),∇u(x),Δu(x)) dx, x = (x1, . . . , xd) ∈ R
d,

where L(q, p, r) : R × R
d × R → R is a given smooth function that does not depend explicitly

upon x. The Euler–Lagrange equation associated with the energy functional E reflects the
extremum condition ∇E(u) = δE

δu (u) = 0, where the gradient with respect to u is calculated
in the L2-scalar product, and is given by

(3.3) Lq(u,∇u,Δu) −∇ · Lp(u,∇u,Δu) + ΔLr(u,∇u,Δu) = 0, x = (x1, . . . , xd) ∈ R
d,

where the partial derivatives Lq, Lp, and Lr of the function L(q, p, r) are evaluated at
(u(x),∇u(x),Δu(x)). Assume now that u(x) is a smooth solution of the Euler–Lagrange
equation (3.3). We compute

d

dx1
[L(u,∇u,Δu)] = Lqux1 + Lp · ∇ux1 + LrΔux1

(3.3)
= (∇ · Lp − ΔLr)ux1 + Lp · ∇ux1 + LrΔux1

= ux1∇ · Lp + ∇ux1 · Lp + LrΔux1 − (ΔLr)ux1

= ∇ · (ux1Lp) + ∇ · (Lr∇ux1 − ux1∇Lr).

Thus, we have established the existence of a conservation law for the Euler–Lagrange equation.
Lemma 1. Assume that u(x) is a smooth solution of the Euler–Lagrange equation (3.3)

associated with the Lagrangian L(q, p, r); then the conservation law
(3.4)
∂x1L(u,∇u,Δu) −∇ · [ux1Lp(u,∇u,Δu) + Lr(u,∇u,Δu)∇ux1 − ux1∇Lr(u,∇u,Δu)] = 0

is satisfied for all x ∈ R
d.

3In section 3.1, we use L exclusively for the Lagrangian; in all other sections, this letter refers to the
hexagonal lattice.
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We now return to the planar Swift–Hohenberg equation (3.1), which is the Euler–Lagrange
equation associated with the energy functional

E(u) =

∫
R2

L(u,∇u,Δu) dxdy

for the Lagrangian

(3.5) L(q, p, r) :=
(q + r)2

2
+

μq2

2
− νq3

3
+

q4

4
,

where (q, p, r) ∈ R×R
2×R. Lemma 1 asserts that (3.4) is met for any smooth solution u(x, y)

of (3.1). If we further assume that u(x, y) is periodic with period � in y, then we can integrate
(3.4) in y over [0, �] and use periodicity in y to find that the equation

∂x

∫ �

0
[L(u,∇u,Δu) − uxLp1(u,∇u,Δu) − Lr(u,∇u,Δu)uxx + ux∂xLr(u,∇u,Δu)] dy = 0

is met for all x, where we write p = (p1, p2). In particular, along such solutions,∫ �

0
[L(u,∇u,Δu) − uxLp1(u,∇u,Δu) − Lr(u,∇u,Δu)uxx + ux∂xLr(u,∇u,Δu)] dy

does not depend on x. Substituting the expression for L from (3.5), we find that the integral
above coincides with the expression (3.2) for H, as claimed.

3.2. Spatial dynamics. As in the 1D situation, the quantity H(u) given in (3.2) deter-
mines which hexagons can be connected by a stationary planar front to the trivial state. We
use spatial dynamics to gain further insight into why snaking should occur for stationary pla-
nar fronts. We focus on fronts that connect hexagons to the trivial state and that are spatially
periodic along the interface.

Thus, assume that u(x, y) is a smooth solution of (3.1) which is periodic in y with positive
minimal period �. We define the wavenumber

κ =
2π

�

and introduce the rescaling φ = κy. With this rescaling, φ ∈ [0, 2π] corresponds to y ∈ [0, �],
and the planar Swift–Hohenberg equation (3.1) becomes

(3.6) ∂4
xu + 2κ2∂2

x∂
2
φu + κ4∂4

φu + 2(∂2
xu + κ2∂2

φu) + (1 + μ)u− νu2 + u3 = 0.

Exploiting that we are now interested in solutions with period 2π in φ, we write this equation
as a first-order system in x and obtain

(3.7) Ux = A(μ, κ)U + N (U ; ν), U ∈ U ,

where

A(μ, κ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−κ4∂4
φ − 2κ2∂2

φ − (1 + μ) 0 −2 − 2κ2∂2
φ 0

⎞
⎟⎟⎠ , N (U ; ν) =

⎛
⎜⎜⎝

0
0
0

νU2
1 − U3

1

⎞
⎟⎟⎠ ,
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and U(x) = U(x)(ϕ) is, for each fixed x, a function of ϕ that lies in U := H3(S1)×H2(S1)×
H1(S1) × L2(S1), where S1 is the interval [0, 2π] with the end points identified. Equation
(3.7) is reversible with respect to the reverser

RU = R(U1, U2, U3, U4)
t = (U1,−U2, U3,−U4)

t,

which corresponds to reflections in x, and admits the first integral

H(U ;μ, ν, κ) =

∫ 2π

0

[
U2U4 −

U2
3

2
+ U2

2 +
(1 + μ)U2

1

2
− νU3

1

3
+

U4
1

4
(3.8)

− κ2(∂φU2)
2 − κ2(∂φU1)

2 +
κ4(∂2

φU1)
2

2

]
dφ,

which is simply (3.2) with y rescaled and (u, ux, uxx, uxxx) replaced by U . Even though
the system (3.7) is ill-posed in the sense that (3.7) may not have a solution for a given
initial condition, we can still apply the theory developed in [71, 82, 83] to show that stable
and unstable manifolds of equilibria and periodic orbits of (3.7) exist. These manifolds are
infinite-dimensional, but the results in [10, 71, 83] imply that the geometric situation for (3.7)
is analogous to the 1D situation.

The existence of the first integral H implies that if there is a heteroclinic orbit of (3.7)
that connects U = 0 to a periodic orbit, then H must vanish along the heteroclinic orbit and
on the periodic orbit. In particular, if we seek stationary fronts between the trivial state and
regular hexagons, then for each fixed (μ, ν) there will typically be a unique regular hexagon,
with a uniquely selected wavenumber κ, that satisfies the condition H = 0. Under appropriate
existence and transversality assumptions on the heteroclinic orbits that correspond to such
fronts, we can use spatial dynamics to prove the existence of transverse homoclinic orbits,
corresponding to planar hexagon pulses with the same selected hexagonal wavenumber, and
of complex snaking bifurcation diagrams, and we refer the reader to [10] for details.

For fully localized hexagon patches such as those shown in Figures 1(a) and 4, spatial
dynamics may not work: while we can view the radial variable as the evolution variable, it
is not clear how appropriate function spaces can be set up that allow for the increasingly
finer hexagon structure in the angular variable. Nevertheless, we may formally move along
the radial direction from the center of a localized hexagon patch toward infinity and consider
the interface between regular hexagons and the trivial state at the patch boundary: if this
boundary becomes approximately planar as the patch grows, as seems to be the case for the
hexagon patches that we present later in this paper, then we should expect, on a formal level,
that the selection principle for hexagon fronts applies to localized patches, too: the existence
region of localized hexagon patches should therefore be centered around the Maxwell curve
of the planar hexagon fronts between trivial state and regular hexagons. Furthermore, the
hexagons inside the hexagon patch should satisfy H = 0, which selects their wavenumber.

So far, we have focused on planar hexagon fronts between the trivial state and regular
hexagons as these are relevant for localized hexagon patches. However, other stationary planar
hexagon fronts exist, and we outline now how they arise and what their spatial profiles look
like. Assume that we found a transversely constructed heteroclinic orbit of (3.7) between
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regular hexagons and the trivial state for the parameter values (μ0, ν0) and the wavenumber
κ0. If we vary the wavenumber κ near κ0 while keeping (μ0, ν0) fixed, then the assumed
transversality implies that the heteroclinic orbit will persist. However, this orbit will now
connect the trivial state to frustrated hexagons that have minimal period � = 2π/κ in the
y-direction but are slightly compressed or expanded in the x-direction to accommodate the
condition H = 0 on the new cross-section [0, �]. The planar hexagon fronts constructed in
this fashion live on the domain R× [0, �] with periodic boundary conditions in the y-variable.
Periodic boundary conditions allow us to view these fronts as planar hexagon fronts on the
domains R × [−n�, n�] for arbitrary positive integers n on the plane: the resulting fronts
connect the trivial state to frustrated hexagon patterns that are periodic with minimal period
� in the transverse y-direction. The corresponding Maxwell curves will depend on � (or κ),
and we therefore obtain an entire family of Maxwell curves.

3.3. Regular hexagons. We prove Proposition 2, which states that, for each fixed ν, there
is a unique branch of regular hexagons which bifurcate from u = 0 at μ = 0 along which the
first integral H from (3.2) vanishes. The wavelength of these selected hexagons may vary along
the branch and therefore needs to be treated as an unknown which will adjust itself to satisfy
the constraint H = 0. This is a special case of the more general problem of finding solutions
to Hamiltonian systems with a prescribed value of the Hamiltonian [9, 14, 18, 69, 75, 76].
Indeed, we prove Proposition 2 by applying the following general bifurcation theorem.

Theorem 3.1 (see [9, Theorem 2.2]). Let X , Y, and Z be Banach spaces. Let ψ ∈ Z∗,
F ∈ Cω(X × R

2,Y), and H ∈ Cω(X × R
2,Z), and consider the equation

(3.9)

(
F(u, μ, κ)

ψ(H(u, μ, κ))

)
= 0,

where u ∈ X and (μ, κ) ∈ R
2. We assume that u = 0 is a solution of (3.9) for all (μ, κ)

with Hu(0, μ, κ) ≡ 0. Furthermore, assume that Fu(0, μ0, κ0) ∈ L(X ,Y) is Fredholm4 with
index zero with N(Fu(0, μ0, κ0)) = Rû �= {0}. We write X = Rû⊕ X̂ , Ŷ := R(Fu(0, μ0, κ0)),
and Y = Rv̂ ⊕ Ŷ and denote by P : Y → Ŷ the projection along v̂. We assume now that
ψ(Huu(0, μ0, κ0)[û, û]) = 0 and that the operator D ∈ L(X̂ × R

2, Ŷ × R
2) given by

(3.10) D :=

⎛
⎝ PFu(0, μ0, κ0) PFuμ(0, μ0, κ0)[û, 1] PFuκ(0, μ0, κ0)[û, 1]

0 (1 − P )Fuμ(0, μ0, κ0)[û, 1] (1 − P )Fuκ(0, μ0, κ0)[û, 1]
ψ(Huu[û, ·]) ψ(Huuμ[û, û, 1]) ψ(Huuκ[û, û, 1])

⎞
⎠

is an isomorphism. Under these assumptions, (0, μ0, κ0) is a bifurcation point for (3.9), and
there is an interval I containing 0 and a unique analytic branch (u, μ, κ)(s) of solutions of
(3.9), defined for s ∈ I, which satisfies (u, μ, κ)(0) = (0, μ0, κ0) and ‖u(s)− sû‖X = O(s2) as
s → 0.

We now set up an appropriate framework that allows us to appeal to the preceding theorem
to prove Proposition 2. We first rescale (x, y) by setting x = X/κ and y = Y/κ. In the rescaled

4A linear operator L is called Fredholm if its null space N(L) is finite-dimensional, its range R(L) is closed,
and the range R(L) has finite codimension. In this case, the Fredholm index is defined to be the difference
dim N(L) − codim R(L).
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variables, the Swift–Hohenberg equation is given by

(1 + κ2Δ)2u + μu− νu2 + u3 = 0.

We are interested in regular hexagons and therefore seek, as in section 2.2, solutions with
D6-symmetry. In addition, we require that solutions be centered at the origin to reduce the
multiplicity of solutions. Thus, we set

X =
{
u ∈ C4(R2,R); u(X,Y ) = u(X,Y + 4π/

√
3) = u(X + 2π, Y + 2π/

√
3),

u(X,Y ) = u((X +
√

3Y )/2, (−
√

3X + Y )/2) ∀(X,Y )
}
,

Y =
{
u ∈ C0(R2,R); u(X,Y ) = u(X,Y + 4π/

√
3) = u(X + 2π, Y + 2π/

√
3),

u(X,Y ) = u((X +
√

3Y )/2, (−
√

3X + Y )/2) ∀(X,Y )
}
,

Z = C0(R,R)

and define

F(u, μ, κ) := (1 + κ2Δ)2u + μu− νu2 + u3,

H(u, μ, κ) :=

∫ 4π√
3

0

[
κ4

(
uXXXuX − u2

XX

2

)
+ κ2u2

X +
(1 + μ)u2

2
− νu3

3
+

u4

4

− κ4u2
XY − κ2u2

Y +
κ4u2

Y Y

2

]
dY,

ψH(u, μ, κ) := H(u, μ, κ)
∣∣
X=0

.

The required regularity assumptions are then met, and it is clear that u = 0 is a solution for
all (μ, κ) with Hu(0, μ, κ) ≡ 0. We calculate the derivatives

Fu(0, μ, κ)[v] = (1 + κ2Δ)2v + μv,

Fuμ(0, μ, κ)[v] = v,

Fuκ(0, μ, κ)[v] = 4κ3Δ2v + 2κΔv,

Huu(0, μ, κ)[v, w] =

∫ 4π√
3

0
[κ4(vXwXXX + vXXXwX − vXXwXX) + 2κ2vXwX + (1 + μ)vw

− 2κ4vXY wXY − 2κ2vY wY + κ4vY Y wY Y ] dY,

Huuμ(0, μ, κ)[v, w] =

∫ 4π√
3

0
vw dY,

Huuκ(0, μ, κ)[v, w] =

∫ 4π√
3

0
[4κ3(vXwXXX + vXXXwX − vXXwXX) + 4κvXwX

− 8κ3vXY wXY − 4κvY wY + 4κ3vY Y wY Y ] dY.

The analysis reviewed in section 2.2 implies that we should pick (μ0, κ0) = (0, 1), for which
Fu(0, 0, 1) has a one-dimensional null space spanned by

û(X,Y ) = cos(X) + cos((X +
√

3Y )/2) + cos((X −
√

3Y )/2).
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We may set v̂ := û and use the L2-inner product on the fundamental periodicity domain
[0, 4π] × [0, 4π/

√
3] to define complements X̂ and Ŷ of Rû in X and Y, as Fu(0, 0, 1) is

symmetric with respect to this inner product.

Substituting these expressions, we find that Huu(0, 0, 1)[û, û] = 0. Furthermore, we find
that the operator D defined in (3.10) is given by

D =

⎛
⎝ PFu(0, 0, 1) 0 0

0 1 2

� 4π
√

3 −8π
√

3

⎞
⎠ ∈ L(X̂ × R

2, Ŷ × R
2).

In particular, this operator is invertible, and we obtain the following result, which is formulated
again in the original spatial variables.

Proposition 3 (L-periodic hexagons with H = 0). Fix any ν; then there exist an interval
I ⊂ R and a unique branch s �→ (u, μ, κ)(s) of nontrivial L-periodic hexagons of the Swift–
Hohenberg equation (3.1) with zero constraint (3.8) and aspect ratio κ(s), which are defined
and smooth for s ∈ I. Moreover, (u, μ, κ)(0) = (0, 0, 1) and
(3.11)∥∥∥[u(s)](x, y) − s

[
cos(κ(s)x) + cos(κ(s)(x +

√
3y)/2) + cos(κ(s)(x−

√
3y)/2)

]∥∥∥
C4

= O(s2)

as s → 0.

For ν > 0, (2.7) and (3.11) imply that μ(s) > 0 for all sufficiently small s > 0, as claimed
in Proposition 2.

4. Numerical algorithms. In this section, we describe the numerical algorithms, and
their implementation, that we used to compute regular hexagons, planar hexagon pulses, and
localized hexagon patches.

Though we will rely on continuation methods for most of our computations, we shall
also occasionally employ an initial value problem solver, which we discuss first. Afterward,
we outline the computation of regular hexagons and the associated hexagon Maxwell curve.
This information will guide us as to where we may find hexagon pulses and localized hexagon
structures in the Swift–Hohenberg equation. We then move on to the computation of planar
hexagon pulses that are periodic in the transverse direction. Last, we present the numerical
methods for the computation of localized hexagon patches: these methods are designed to
take advantage of the D6-symmetry of localized structures and allow us to compute localized
structures that extend over large spatial regions. The computations of localized hexagon
patches were also repeated with other methods to check the reliability of the numerical results.

The actual computations were carried out on finch, a dual core 2.7 GHz PowerPC G5
with 4GB of RAM, and phoenix, a server with two 3GHz dual core Xeon processors with
8GB of RAM, both running Mac OS 10.4.

4.1. The initial value problem solver. To quickly find solutions of the Swift–Hohenberg
equation, investigate the stability of patterns with respect to small symmetry-breaking per-
turbations, and confirm the solutions obtained from our other numerical solvers, we employ
an initial value problem solver for the Swift–Hohenberg equation (1.1), which we shall now
discuss briefly. First, we use the 2D Fourier transform to reduce the initial value problem



1070 LLOYD, SANDSTEDE, AVITABILE, AND CHAMPNEYS

Figure 13. Regular hexagons are computed with Neumann boundary conditions on the domain Ωhex shown
in panel (a). Reflection-symmetric planar hexagon pulses are defined on the domain shown in panel (b) with
Neumann conditions in the horizontal x-direction and periodic boundary conditions in the vertical y-direction.
Panel (c) illustrates the computational domain Ω = (0, �x) × (0, �y) with Neumann conditions.

on a rectangular box with periodic boundary conditions to a system of ODEs. The resulting
ODE system is truncated at a sufficiently large Fourier mode and solved in time using the
first-order exponential time-stepping algorithm developed in [27]. We implemented this solver
in MATLAB. Computations are done on domains of size 60×60 with 256×256 and 512×512
Fourier modes. Typical time steps are 0.01 and 0.001.

4.2. Regular hexagons and Maxwell curves. To find regular hexagons, we proceed ini-
tially as in section 3.3. It has been shown in [62, 61] that regular hexagons can be computed
in a rectangular box with Neumann boundary conditions provided the ratio of the lengths of
the sides of the rectangle is an integer multiple of

√
3. Thus, we introduce new independent

coordinates X = κx and Y = κy and use the rescaled Swift–Hohenberg equation

(4.1) F(u;μ, ν, κ) = (1 + κ2Δ)2u + μu− νu2 + u3 = 0, (X,Y ) ∈ Ωhex

on the computational domain Ωhex = (0, 4π)×(0, 4π/
√

3) with Neumann boundary conditions;
see Figure 13(a).

For the computation of Maxwell curves, we add the constraints

H(u;μ, ν, κ) =

∫ 4π√
3

0

[
−κ4(uXX)2

2
+

(1 + μ)u2

2
− νu3

3
(4.2)

+
u4

4
− κ2(uY )2 +

κ4(uY Y )2

2

]
X=0

dY = 0,

which ensures that the first integral H vanishes, and

(4.3) E(u;μ, ν, κ) =

∫
Ωhex

[
[(1 + κ2Δ)u]2

2
+

μu2

2
− νu3

3
+

u4

4

]
dX dY = 0,

which enforces zero energy. Note that several terms in the original expression (3.2) for H
vanish on account of the Neumann conditions uX(0, Y ) = uXXX(0, Y ) = 0. The choice of our
computational domain means that we accurately compute the energy of two full hexagons in
(4.3); see Figure 13(a).

We expect that the equation F(u;μ, ν, κ) = 0 has a locally unique regular zero u for each
fixed (μ, ν, κ) in appropriate regions5 in parameter space. We can also use (4.1) together with

5For instance, for μ close to zero, due to the results in section 2.2; see also Proposition 3.
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the constraints (4.2)–(4.3) in a numerical continuation framework where we expect to find a
curve of solutions (u, μ, ν, κ) that depend on an arclength parameter s. Since the resulting
Maxwell curves do not exhibit any folds in the parameter μ, we can, in fact, compute this
curve by stepping in the parameter μ.

For the actual computations, we evaluate derivatives using spectral differentiation as in [87,
sect. 3] and compute the integrals in the constraints (4.2)–(4.3) using the periodic trapezoid
rule [87, sect. 12]. We now briefly outline how this is done in our context. We choose the mesh
Xi = 4πi/N and Yj = 4πj/N

√
3 for i, j = 1, . . . N and write uij = u(Xi, Yj) on this mesh.

A convenient way of evaluating first-order derivatives and the Laplacian is via Kronecker
products: if A is an m×n matrix and B is a p× q matrix, then the Kronecker product A⊗B
is an mp×nq matrix which consists of m×n blocks, where each block is a p× q matrix. The
(i, j)th block is given by aijB. Introducing the step size h = 2π/N , the spectral differentiation
matrices for functions of one variable are given by

DN = toeplitz

[
0,

(
(−1)j

2 tan(jh/2)

)
j=1,...,N−1

]

for the first derivative and by

D
(2)
N = toeplitz

[
− π2

3h2
− 1

6
,

(
− (−1)j

2 sin2(jh/2)

)
j=1,...,N−1

]

for the second derivative [87, sect. 3], where toeplitz[v] denotes the symmetric Toeplitz matrix
(a matrix whose entries are constant along each diagonal) formed by the row vector v ∈ R

N .
Using Kronecker products, we can now set up the N2×N2 differentiation matrices for u(X,Y )
which are given by

DX,N = I ⊗
(

1

4

)
DN , DY,N =

(√
3

4

)
DN ⊗ I, ΔN = I ⊗

(
1

4

)2

D
(2)
N +

(√
3

4

)2

D
(2)
N ⊗ I,

corresponding, respectively, to the first-order derivatives ∂X and ∂Y and to the Laplacian Δ.
The above procedure results in a finite-dimensional system. We solve this system in

MATLAB using the nonlinear Newton trust-region solver fsolve. For (μ, ν) close to zero, we
choose

u(X,Y ) = A[cos(X) + cos((X +
√

3Y )/2) + cos((X −
√

3Y )/2)]

as an initial guess, where a good approximation for the amplitude A can be obtained from
normal-form theory by solving (2.7). MATLAB’s Newton trust-region solver has the advantage
of often achieving global convergence even when starting from poor initial guesses. We have
frequently obtained better convergence by solving initially only the Swift–Hohenberg equation,
without the integral constraints (4.2)–(4.3), with κ = 1 and ν fixed. Afterward, using this
solution as initial data, we solve the Swift–Hohenberg equation together with one or both of
the integral constraints by including one or two of the parameters κ and ν as unknowns. Once
we have a solution to (4.1)–(4.3), we continue it in μ by stepping in the parameter μ and
solving (4.1)–(4.3) for (u, ν, κ) for each fixed μ. We use 18 · 18 = 324 interpolation points in
the box Ωhex = (0, 4π) × (0, 4π√

3
) and compute solutions within an absolute tolerance of 10−4.

The entire Maxwell curve was computed in a couple of minutes.
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4.3. Numerical continuation of planar hexagon pulses. In this section, we discuss the
computation of stationary planar hexagon pulses with Bravais–Miller indices 〈10〉 and 〈11〉
such as those shown in Figure 3. The interfaces in these solutions are vertical, and the overall
patterns are periodic in the transverse y-direction and reflection symmetric.

Hence, we will focus on computing stationary solutions u(x, y) of the planar Swift–
Hohenberg equation that are periodic in the y-direction and are symmetric under reflections
in x and y so that u(−x, y) = u(x, y) = u(x,−y) for all (x, y). These solutions therefore
satisfy

(4.4) (1 + Δ)2u + μu− νu2 + u3 = 0, (x, y) ∈ Ω,

on Ω = (0, �x) × (0, �y) with Neumann boundary conditions

(4.5) ux|{x=0,�x} = uxxx|{x=0,�x} = uy|{y=0,�y} = uyyy|{y=0,�y} = 0

on ∂Ω; see Figure 13. We need to choose �x large enough to avoid boundary effects (we used
�x = 50), while �y is chosen in such a way as to accommodate hexagon interfaces with 〈10〉
or 〈11〉 orientation: we pick �y = 4πn/

√
3 for interfaces with index 〈10〉 and �y = 2πn for

interfaces with index 〈11〉. The choice of n ∈ N allows us to compute patterns for several
wavelengths in the vertical y-direction.

Fixing the length �y of the domain in the y-direction may frustrate the hexagons: since
regular hexagons can no longer choose their wavenumber freely to satisfy the constraint H = 0,
the patterned state will typically consist of frustrated hexagons that have a fixed period �y/N
in the y-variable for some integer N to accommodate the fixed length in the y-direction, while
their wavelength in the x-direction adjusts itself to satisfy the constraint H = 0; the resulting
frustrated hexagons are therefore slightly compressed or elongated in the x-direction and no
longer D6-symmetric. We could add the constraint (4.2) and allow �y to vary so that regular
hexagons always fit into the domain. Since we have found that the regular hexagons for which
H = 0 have wavenumbers κ very close to κ = 1, we believe that the effect of fixing �y on
the selected patterns is negligible. However, the snaking limits of the planar hexagon pulses
may coincide better with the snaking limits of the localized hexagon patches had we elected
to allow �y to vary.

To solve (4.4)–(4.5) numerically, we used a 13-point finite difference stencil for the spa-
tial discretization. We implemented the resulting system in the continuation framework
paracont [7], a module built on top of the continuation module loca of the package Trilinos,
which is written and maintained by Sandia Laboratories [43]. Since Trilinos does not currently
offer a direct solver for loca that works on parallel processors, we employed a multilevel pre-
conditioner on a coarse level so that an exact sparse linear solve is done. The computations
were carried out on the domain Ω = (0, �x) × (0, �y) with �x = 50. We used �y = 20π/

√
3 for

〈10〉 pulses and �y = 10π for 〈11〉 pulses and worked with both 128× 256 and 256× 256 mesh
points for both computations.

We remark that localized pulses on long cylinders (0, �x)× S1 have been computed previ-
ously in the von Karman–Donnell equations, a coupled system of elliptic PDEs that describe
equilibria of axially compressed cylindrical shells [46, 59]. The approach adopted there was to
carry out a Fourier decomposition in the angular direction leading to a large system of ODEs
that were solved with the boundary-value solver AUTO97.
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4.4. Numerical continuation of localized hexagon patches. We now turn to the com-
putation and continuation of planar localized hexagon patches such as the ones presented in
Figures 1(a) and 4. We focus on the computation of patterns with D6-symmetry. Since we
found that sparse Cartesian meshes give a preference to D4-symmetric square patterns, we
discretize the planar Swift–Hohenberg equation in polar coordinates. In particular, we found
that a spectral Fourier discretization in the angular coordinate combined with an adaptive
collocation mesh in the radial coordinate appears to be a very efficient method for computing
localized hexagon patches.

In the following, we will outline our approach for computing localized patterns with an
arbitrary D2k-symmetry.6 Restricting ourselves to solutions with D2k-symmetry allows us to
compute them on the first quadrant Ω = {x, y > 0} with Neumann boundary conditions,
which is advantageous for various reasons. First, it factors out, in a natural fashion and with-
out the need for introducing additional constraints, the continuous translation and rotation
symmetries in E(2) of the Swift–Hohenberg equation, whose presence would otherwise yield a
singular Jacobian, which is problematic for Newton solvers. Second, computing solely on the
first quadrant greatly reduces the size of the discretized system. Third, as already mentioned,
we can center localized solutions at the origin and compute efficiently in polar coordinates.
The main disadvantage of computing on the first quadrant is that temporal stability cannot
be deduced and bifurcations to D2k+1 patterns cannot be detected. Overall, we believe that
the advantages outweigh the disadvantage of potentially failing to detect instabilities during
continuation as these can often be identified a posteriori by direct numerical simulations.

We therefore consider the stationary planar Swift–Hohenberg equation

(4.6) (1 + Δr,θ)
2u + μu− νu2 + u3 = 0

written in polar coordinates (r, θ) ∈ (0,∞) × [0, 2π), where

Δr,θu = urr +
ur
r

+
uθθ
r2

.

Polar coordinates are singular at r = 0, and we need to find appropriate boundary conditions at
the origin to remove this singularity. To do this, we follow [84]. Assuming that u is a sufficiently
localized solution, we multiply (4.6) by another localized function v and subsequently integrate
over (r, θ) to arrive at the weak formulation∫ 2π

0

∫ ∞

0

[
ΔuΔv − 2∇u∇v + (1 + μ)uv − νu2v + u3v

]
r dr dθ(4.7)

=

∫ 2π

0

∫ ∞

0

[(
(rur)r

r
+

uθθ
r2

)(
(rvr)r

r
+

vθθ
r2

)
− 2

(
urvr +

uθvθ
r2

)
+ (1 + μ)uv − νu2v + u3v

]
r dr dθ = 0

of (4.6). The boundary conditions at r = 0 which make the bilinear form (4.7) meaningful are

ur|(0,θ) = (rur)r|(0,θ) = uθ|(0,θ) = uθr|(0,θ) = uθθ|(0,θ) = (uθθ)r|(0,θ) = 0 ∀θ ∈ [0, 2π).

6This method can be extended to localized D2k+1-symmetric patterns, but we do not go into the details
here.
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Since (rur)r = rurr + ur, the conditions above reduce to

(4.8) ur(0, θ) = uθθ(0, θ) = uθθr(0, θ) = 0 ∀θ ∈ [0, 2π).

We now expand u(r, θ) in a Fourier series which we truncate at order N ∈ N to get a finite-
dimensional system. Thus, we set

(4.9) u(r, θ) =

N∑
n=−N

an(r)e−inθ,

where N is the truncation order, and an(r) is complex-valued for each n. The Laplacian
becomes

Δr,θu =

N∑
n=−N

[
∂2
ran +

∂ran
r

− n2an
r2

]
e−inθ.

Substituting these expressions, we find that the truncated planar Swift–Hohenberg equation
(4.6) can be written as

∂4
ran +

2∂3
ran
r

− ∂2
ran
r2

+
∂ran
r3

− 2n2∂2
ran

r2
+

2n2∂ran
r3

− 4n2an
r4

+
n4an
r4

(4.10)

+ 2

(
∂2
ran +

∂ran
r

− n2an
r2

)
+ (1 + μ)an − ν

∑
p+q=n

apaq +
∑

p+q+s=n

apaqas = 0,

while the boundary conditions (4.8) at the origin reduce to

∂ra0

∣∣
r=0

= ∂3
ra0

∣∣
r=0

= 0,

an
∣∣
r=0

= ∂ran
∣∣
r=0

= 0 ∀n �= 0.

Solutions u(r, θ) with D2k-symmetry are invariant under the reflection θ �→ −θ and the
rotation θ �→ θ − π so that

u(r, θ) = u(r,−θ) and u(r, θ) = u(r, θ − π)

for all (r, θ). These identities imply that

an = a−n and an = (−1)nan ∀n,

for the coefficients an(r) of the Fourier representation (4.9) of u. The first of these two
conditions implies that we need to compute the coefficients an only for n ≥ 0, while the
second condition implies that all odd Fourier coefficients a2n+1 must vanish identically. The
two summations in (4.10) can then be simplified by noting that

∑
p+q=n

apaq =

N∑
p=−N

a|p|a|n−p|,

∑
p+q+s=n

apaqas =

N∑
p=−N

N∑
q=−N

a|p|a|q|a|n−p−q|.
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So far, we have considered solutions with an arbitrary D2k-symmetry. From now on, we
restrict ourselves to solutions with D6-symmetry, such as hexagons. Such solutions are in
addition invariant under rotations by an angle of π/3, which is equivalent to requiring that

an = einπ/3an ∀n.

The only nonzero modes that can satisfy this constraint are those for which n = 6m for some
m ∈ Z. Hence, for the purpose of computing localized D6-symmetric solutions, we need to
consider only the Fourier modes a6m(r): note that the space spanned by these modes is the
fixed-point space under the D6-action and therefore invariant under the evolution of (4.10).
Thus, we set

Am(r) := a6m(r), |m| ≤ M,

with N = 6M and write (4.10) as the first-order system

∂rAm = Bm,

∂rBm = Cm,

∂rCm = Dm,(4.11)

∂rDm = −2Dm

r
+

Cm

r2
− Bm

r3
+

2(6m)2Cm

r2
− 2(6m)2Bm

r3

+
4(6m)2Am

r4
− (6m)4Am

r4

− 2

(
Cm +

Bm

r
− (6m)2Am

r2

)
− (1 + μ)Am

+ ν

M∑
p=−M

A|p|A|m−p| −
M∑

p=−M

M∑
q=−M

A|p|A|q|A|m−p−q|

with boundary conditions

∂rA0

∣∣
r=0

= D0

∣∣
r=0

= 0,

Am

∣∣
r=0

= Cm

∣∣
r=0

= 0 ∀m �= 0,(4.12)

Am

∣∣
r=R

= Bm

∣∣
r=R

= 0 ∀m,

where R indicates the radial domain (0, R) on which we compute solutions.
Both the domain truncation parameter R and the Fourier truncation parameter M must

be set to suitably large values to ensure that the Neumann boundary conditions at r = R
do not influence the localized patterns and to make sure that the Fourier modes can resolve
the angular dependence of the computed patterns. Close to (μ, ν) = 0, the localized patterns
are small in amplitude but are also well spread out: this requires both R and M to be
large. Specifically, we expect that the number of Fourier modes required to resolve a localized
hexagon patch corresponds roughly to the number of hexagon rings one wishes to interpolate:
if we wish to compute a hexagon patch of radius R, then it will have approximately R hexagons,
or more, located on its interface. To resolve these R hexagons, we need at least M ≈ R Fourier
modes in the angular variable, and this is indeed what we find in our numerical computations.
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A major problem is acquiring good initial data for continuation. We use two different
methods for preparing good initial guesses for the boundary-value problem (4.11)–(4.12). The
first method is to use an initial value problem solver and find a stable stationary localized
hexagon patch by direct numerical simulations: as we can first compute the Maxwell curve,
we do know where to look for stable hexagon patches. Our experience was, however, that
convergence to stationary solutions tends to be very slow. Instead, we have found that it is
better to discretize the boundary-value problem (4.11)–(4.12) in the radial variable using a
Chebyshev decomposition with an infinite mapping in the radial coordinate r that bunches
the collocation points near the origin, as in [57]. We then use MATLAB’s Newton trust-region
solver fsolve starting from initial data of the form

u(x, y) = a sech(b
√
x2 + y2)

[
cos(x) + cos((x +

√
3y)/2) + cos((x−

√
3y)/2)

]
,

where a is chosen to be close to or greater than the maximum height of a single hexagon
cell and b determines the size of the localized hexagon patch. This procedure gives excellent
convergence results and allows us to obtain accurate starting data for subsequent continuation
in parameters.

As already mentioned, initial data for hexagon patches were computed using MATLAB’s
Newton trust-region solver. To continue these solutions, we implemented the boundary-value
problem (4.11)–(4.12) in AUTO-07P [34]. Within AUTO-07P, we computed the L2-norm of
solutions by appending an additional equation together with another parameter that corre-
sponds to the value of the L2-norm of a solution; we exclude this additional equation from the
calculation of the pseudoarclength. The Jacobian of the right-hand side of (4.11) was supplied
in analytic form to speed up the computation. We use standard AUTO-07P tolerances and
choose the collocation mesh size ntst between 200 and 400. The radial domain truncation
parameter R was set to R = 80, 100, 200, while the number of angular Fourier modes was
taken to be M = 20, 30, 40. The computation of the full hexagon snake took up to one day
on phoenix.

Hexagon patches have been computed previously in [63] in the context of nonlinear op-
tics. In fact, the authors there computed and continued several different localized states and
traced out the beginning of the snaking diagram. They discretized the underlying PDE on an
equidistant mesh, used the fast Fourier transform for evaluating the spatial derivatives, and
solved the resulting large system of algebraic equations using Newton’s method. This method
tends to be computationally expensive (their computations required the use of 300 servers
with 500MHz processors) since the mesh requires a large number of modes even in the tails
of the localized pattern.

5. Localized hexagon and rhomboid patches: Numerical results. In this section, we
present our numerical results. We emphasize that the computational domains of numerical
solutions are typically much larger than the domains visible in the figures presented below as
we frequently cropped images to highlight the features of the localized patterns.

5.1. Regular hexagons and Maxwell curves. We first compute regular hexagons of the
planar Swift–Hohenberg equation that satisfy H = 0 as solutions to (4.1)–(4.2) with ν = 1.6.
As discussed in section 3, only these hexagons can be connected to the trivial state by a
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Figure 14. We computed regular hexagons with H = 0 as solutions of (4.1)–(4.2) with ν = 1.6. Stable
hexagons are plotted in solid lines, and unstable ones are plotted in dashed lines. We plot the amplitude u(0, 0)
at the origin in panel (a), the wavelength l = 1/κ of the hexagons in (b), and the energy E(u) along the branch
in (c)–(d). The Maxwell point E(u) = 0 occurs at μ = μM = 0.3224 on the stable branch. Compared with the
trivial state, stable regular hexagons have less energy to the left and higher energy to the right of the Maxwell
point. Panel (e) contains a color plot of the regular hexagons u(x, y) on the domain [0, 4πl] × [0, 4πl/

√
3] at

the Maxwell point.

stationary planar front. The bifurcation diagram shown in Figure 14(a) is qualitatively similar
to that found in section 2.2 in the normal-form analysis for |ν| 	 1: regular hexagons bifurcate
off the trivial solution at μ = 0 and are initially unstable but regain stability in a saddle-node
bifurcation. Figure 14(b) contains a plot of the wavelength l := 1/κ of the hexagons with
H = 0 as μ is varied. The energy E(u) of these hexagons, computed over two hexagons,
is shown in Figure 14(c)–(d) as a function of μ. In particular, the Maxwell point, where
E = 0, occurs at μ = μM = 0.3224, and we plot the computed hexagon at the Maxwell point
in Figure 14(e). We remark that the dependence of the wavelength and the energy on the
parameter μ is qualitatively similar for hexagons and 1D rolls; see Figure 5(iii)–(iv) or [19,
Figure 2] for results on rolls.

Next, we solve (4.1)–(4.3) for (u, μ, ν, κ), which gives the hexagon Maxwell curve along
which hexagons with zero energy E = 0 and zero first integral H = 0 exist. As discussed
in section 3, this curve serves as a guide to where hexagon fronts and pulses as well as fully
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Figure 15. In panel (a), we plot the Maxwell curve along which the regular hexagons of (4.1) satisfy the
constraints H = 0 and E = 0 from (4.2) and (4.3), respectively: The numerical result is dashed, while the
analytic prediction μ = μM = 8ν2/135, valid in the limit ν → 0, is plotted as a solid line. Panel (b) gives the
wavelength l = 1/κ of the corresponding hexagons.

localized hexagon patches can be expected. In Figure 15, we plot both the hexagon Maxwell
curve in (μ, ν)-parameter space and the dependence of the wavelength l = 1/κ of the selected
hexagons on the parameter μ. As predicted by the theory outlined in section 2.3, the Maxwell
curve emerges from the codimension-two point (μ, ν) = (0, 0) and agrees well with the analytic
prediction μM = 8ν2/135 given in (2.12). The wavelength of the hexagons increases along the
Maxwell curve. We remark that, for 0 ≤ μ ≤ 0.6, the Maxwell curve agrees well with the
curve obtained from setting E = 0 and allowing arbitrary values for H while keeping κ = 1
fixed (we do not show a comparison of these curves though).

As shown in Figure 14(d), stable regular hexagons have less energy than the trivial state
to the left of the Maxwell curve and higher energy to its right. Thus, we expect that hexagons
will invade the trivial state for μ sufficiently far to the left of the Maxwell curve, while the
trivial state will invade hexagons for μ sufficiently far to its right.

5.2. Planar hexagon pulses: Bifurcation diagram for ν = 1.6. Throughout this section,
we fix ν = 1.6 and recall that the hexagon Maxwell point is given by μ = 0.3224.

We compute planar hexagon pulses of the Swift–Hohenberg equation with Bravais–Miller
indices 〈10〉 and 〈11〉. Example plots of these solutions for μ = 0.31 are given in Figure 3.
Since we fixed the computational domain in these computations, all hexagons are slightly
compressed by the same fraction in the y-direction instead of being fully D6-symmetric: each
vertical slice u(x, ·) of the planar hexagon pulse u(x, y) must satisfy H = 0 for each x, and
since regular hexagons cannot adjust their wavelength in the y-direction to accommodate this
condition due to the fixed domain dimension, the selected patterns are slightly frustrated
hexagons. The frustrated hexagons are still periodic in both the x- and the y-directions, but
their wavelengths in the x- and y-directions are no longer in a

√
3 : 1 ratio as those of regular

hexagons.

Upon varying μ, we find that planar 〈10〉 hexagon pulses snake as shown in Figure 16.
Upon passing through a pair of fold bifurcations, the pulses acquire an additional full column
of hexagons and thereby widen in the horizontal x-direction. As outlined in section 3.2, we
can consider the planar Swift–Hohenberg equation as a dynamical system in an unbounded
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Figure 16. The left panel contains the bifurcation diagram of planar 〈10〉 hexagon pulses, while two selected
profiles at the labeled parameter values are shown in the right two panels.

Figure 17. Panel (i) contains a color plot of a planar 〈10〉 hexagon pulse. We view x as the evolution
variable which is used to evolve y-slices forward and backward: The left y-slice corresponds to an equilibrium of
the resulting spatial dynamical system in x (the profile in the y-slice does not change when x is varied nearby),
while the y-slice in the hexagon region corresponds to a periodic orbit (the profile changes periodically in x when
the y-slice is moved to the left and right). Thus, we can interpret a planar 〈10〉 hexagon pulse as a homoclinic
orbit that passes close to a periodic orbit which is formed of hexagons, and we therefore expect snaking on
account of the results in sections 2.1 and 3.2. Panel (ii) contains a color plot of an almost-planar hexagon
pulse. Here, we view y as the evolution variable which propagates x-slices up- and downward. The two indicated
x-slices correspond to two different periodic orbits: Their profiles change periodically when y is varied, but the
horizontal extent of the hexagon regions is different for the two profiles. We can therefore interpret an almost-
planar hexagon pulse as a homoclinic orbit in the y-dynamics which connects the periodic orbit at the top and
bottom to itself and which passes near a second periodic orbit. The results in sections 2.1 and 3.2 imply again
that snaking should occur.

direction provided we restrict ourselves to a bounded cross-section in the remaining spatial
variable. To explain the snaking of planar 〈10〉 pulses, we treat the x-variable as our time-like
variable and restrict y to a bounded interval with Neumann boundary conditions. As can
be seen from Figure 17(i), a planar hexagon pulse corresponds to a homoclinic orbit of the
trivial state U = 0 which passes close to a periodic orbit in the x-dynamics that is formed of
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Figure 18. In panel (a), the bifurcation diagrams of planar 〈10〉 hexagon pulses (blue) and the bifurcating
almost-planar pulses (red) are shown, where stable pulses are indicated by solid lines and unstable ones by
dashed lines. Panels (b)–(c) are color plots of two different almost-planar hexagon pulses for μ = 0.3 along the
smaller red snaking diagram. In panel (d), we plot the energy E(u), computed as an integral over the entire
computational domain, along the branches.

hexagons. Thus, we are in the situation discussed in sections 2.1 and 3.2 and expect snaking
to set in [10]. As already alluded to in section 3.2, the scenario we just described persists if
we change the height of the y-interval: the selected hexagons will become slightly frustrated,
and, accordingly, the Maxwell point may change slightly, but the resulting planar hexagon
pulses will continue to snake.

As shown in Figure 18(a), planar 〈10〉 pulses undergo additional pitchfork bifurcations
near each fold. Figure 18(b)–(c) shows that the patterns bifurcating at the pitchfork bi-
furcations are almost-planar hexagon pulses: at onset, either one or two hexagon cells ap-
pear in new columns to the left and right at the center of the 〈10〉 pulse. As we move
along the bifurcating branch, the almost-planar hexagon pulses begin to snake, and, at
each fold, additional pairs of hexagon cells are added symmetrically above and below the
already added hexagon cells until the entire column is filled. At this point, the branch of
almost-planar pulses terminates in a second pitchfork bifurcation at the planar 〈10〉 hexagon
pulses. Almost-planar hexagon pulses undergo only a finite number of folds due to the fi-
nite height of the computational domain. Similar to the case of planar pulses, the left and
right fold bifurcations of almost-planar hexagon pulses line up. To explain the snaking of
almost-planar pulses, we consider the y-variable as our time-like variable and restrict x to a
large bounded interval with Neumann boundary conditions; see Figure 17(ii). In this spatial-
dynamics interpretation, an almost-planar hexagon pulse corresponds to a homoclinic orbit



LOCALIZED HEXAGON PATTERNS 1081

Figure 19. The left panel contains the bifurcation diagram of planar 〈11〉 hexagon pulses. Two selected
profiles are shown on the right.

Figure 20. The bifurcation diagrams of planar 〈11〉 hexagon pulses (blue) and the bifurcating almost-planar
pulses (red) are plotted in panel (a). Panel (b) is a color plot of an almost planar 〈11〉 pulse for μ = 0.309.

of a periodic orbit that passes close to a second periodic orbit as y increases. Each peri-
odic orbit in the y-dynamics consists of a localized hexagon pulse in the x-variable with a
different number of hexagons in its center. Homoclinic orbits between periodic orbits will
snake in the same fashion as the homoclinic orbits between equilibria that we discussed in
section 2.1.

We now turn to a discussion of planar 〈11〉 hexagon pulses which also snake (see Figure 19)
and exhibit pitchfork bifurcations to almost-planar 〈11〉 pulses, as shown in Figure 20. The
almost-planar 〈11〉 hexagon pulses undergo only two folds since the computational domain
allows only eight hexagons in the y-direction: there would be more folds if the height �y of
the computational domain used in Figure 13 were larger.

Figure 21 contains the bifurcation diagrams of both planar 〈10〉 and 〈11〉 hexagon pulses.
This figure shows that the orientation of the hexagon pulse has a significant effect on the width
of the snaking region. The different vertical lines along which the folds line up will play an
important role later when we discuss fully localized hexagon patches. We believe that there
are many other hexagon pulses with orientations different from 〈10〉 and 〈11〉. The other
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Figure 21. The bifurcation diagrams of planar hexagon pulses with Bravais–Miller indices 〈10〉 (in red)
and 〈11〉 (in blue) are shown. The 〈10〉 pulse snakes between the limits μ1 = 0.267 and μ2 = 0.3454, while
the 〈11〉 pulse snakes between μ3 = 0.2964 and μ4 = 0.3364. The stability of the branches alternates between
unstable (dashed) and stable (solid) at each fold.

planar hexagon pulses will have larger Bravais–Miller indices, and we expect heuristically
that these interfaces have higher energy. These pulses can be computed in exactly the same
fashion as the 〈10〉 and 〈11〉 pulses, but we have not carried out these computations at present.
The existence of infinitely many planar hexagon pulses with different orientations can also be
inferred from an energy argument. At the Maxwell point, a single hexagon cell has zero energy,
and so any combination of the hexagon cells that lie on the hexagon lattice can be used to
create differently oriented pulses. We expect the resulting pulses to pin or lock to produce
snaking regions similar to those found for 〈10〉 and 〈11〉 pulses.

Finally, we briefly address the nature of the pitchfork bifurcations to almost-planar hexa-
gon pulses that occur near each fold bifurcation. We begin with the fold bifurcation: the
eigenfunction v0(x, y) associated with the fold eigenvalue λ = 0 is periodic in the y-variable
with minimal period � = 4π/

√
3 for 〈10〉 and � = 4π for 〈11〉 pulses. Now consider the

planar pulse on the entire plane and apply Floquet–Bloch theory (see, for instance, [67, The-
orem 2.1]): we find a one-parameter family λ(γ) of eigenvalues, defined for all γ sufficiently
close to zero, whose eigenfunctions are of the form v(x, y; γ)eiγy, where v(x, y; γ) has period
� in the y-variable. For γ = 0, we recover the fold eigenvalue λ(0) = 0 with eigenfunction
v(x, y; 0) = v0(x, y). Next, we consider domains of height N� in the y-direction for large inte-
gers N � 1 with periodic boundary conditions in y: this is the situation shown in Figure 16.
The eigenfunctions we found on the plane fit into this domain provided γ = γn := 2πn/N�
for integers n ≥ 0. The smallest nonzero value of γ is γ1 = 2π/N�: the associated eigenvalue
λ(γ1) = O(1/N) is close to zero for N � 1, and its eigenfunction

v(x, y; γ1)e
iγ1y = [v0(x, y) + O(1/N)]e2πiy/N�

is a harmonic modulation of the fold eigenfunction in the y-direction. Figure 22 shows a
〈10〉 hexagon pulse and the associated fold and pitchfork eigenfunctions on a domain with
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Figure 22. Shown are color plots of a planar 〈10〉 hexagon pulse at a fold bifurcation in (a), the associated
fold eigenfunction in (b), and the pitchfork eigenmode that leads to almost-planar hexagon pulses in (c).

Figure 23. Localized radial pulses (i), localized hexagon patches (ii), and regular hexagons (iii) with wave-
number κ = 1 of the planar Swift–Hohenberg equation (1.1) with ν = 0.9 are shown in panel (a). Dashed
solutions and regular hexagons with open bullets are unstable, while regular hexagons with filled bullets are
stable. Note that neither branch (i) nor (ii) terminates at the branch (iii) of regular hexagons (see text for
details). Panel (b) contains a color plot of a localized hexagon patch for μ = 0.02.

N = 6: the pitchfork eigenfunction is indeed a cosine modulation of the fold eigenfunction
with maximal period in y, as claimed.

5.3. Localized hexagon patches. In this section, we discuss our results for localized
hexagon patches of the planar Swift–Hohenberg equation (1.1). We shall also report on
numerical results for localized radial pulses.7 We focus first on two different representative
slices ν = 0.9 and ν = 1.6 of the bifurcation diagram in (μ, ν)-parameter space before we
consider the full diagram in (μ, ν)-space and comment on the special value ν = 1.049 that
separates regions of qualitatively similar behavior.

5.3.1. Bifurcation diagram for 0 < ν < 1.049. We first consider the region where
0 < ν < 1.049 and illustrate our results in Figure 23 for ν = 0.9. We find localized radial
pulses, localized hexagon patches, and regular hexagons. All these solutions bifurcate from
u = 0 at μ = 0 and are initially unstable. Regular hexagons stabilize in a fold bifurcation and
later cross into the left half-plane μ < 0. Localized radial pulses gain stability with respect to
radial perturbations at the first fold bifurcation but continue to be unstable with respect to
hexagonal perturbations. They cross with nonzero amplitude into the left half-plane, where

7Existence results for these localized radial solutions are proved in [58].
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Figure 24. Localized radial pulses (i), localized hexagon patches (ii), and regular hexagons (iii) with wave-
number κ = 1 of the planar Swift–Hohenberg equation (1.1) with ν = 1.6 are shown in panel (a); the area near
the origin is enlarged in panel (d). Dashed solutions and regular hexagons with open bullets are unstable, while
solutions along solid lines and regular hexagons with filled bullets are stable. Panels (b) and (c) are color plots
of localized hexagon patches for μ = 0.25 near the bifurcation off the radial pulse (b) and for μ = 0.3 on the
snaking curve (c).

they turn into nonlocalized target patterns. The unstable localized hexagon patches appear
to begin to snake for μ ≈ 0.065, but we were only able to continue through the first fold. The
Maxwell point of regular hexagons for ν = 0.9 is μ = μM ≈ 0.07.

5.3.2. Bifurcation diagram for 1.049 < ν < 2.23. In Figure 24, we summarize the
bifurcation diagram for ν = 1.6, where localized hexagon patches have previously been found
in [78] via direct numerical simulations. The localized hexagon patches that arise in this
parameter region tend to be highly localized, and the numerical methods described in section 4
should therefore work particularly well. Other previous direct numerical simulations have
shown that temporally stable localized radial pulses exist in this region of parameter space:
our numerical continuation methods will corroborate these findings and establish a strong link
between localized radial and hexagonal structures.

As shown in Figure 24, radial pulses bifurcate off the trivial solution at μ = 0 and are
initially unstable with respect to radial and hexagonal perturbations. Also bifurcating at μ = 0
are unstable localized hexagon patches which disappear in a subcritical pitchfork bifurcation
of the radial pulse at μ ≈ 0.015: from this point onward, the radial pulses are unstable only
with respect to radial perturbations. Subsequently, the radial pulses stabilize in a saddle-node
bifurcation at μ ≈ 0.276 and later on, for μ ≈ 0.15, undergo a second subcritical bifurcation
to unstable localized hexagon patches. The radial pulses continue on and begin to snake. The
unstable localized hexagon patches that bifurcate at the second pitchfork bifurcation of the
radial pulses gain stability in a fold bifurcation at μ ≈ 0.325 and begin to snake around the
hexagon Maxwell point μM ≈ 0.3222. While snaking, the localized hexagon patches become
wider until they fill the entire domain. In addition to these localized patterns, unstable regular
hexagons also bifurcate from the trivial solution at μ = 0 and stabilize in a fold bifurcation
at μ ≈ 0.37. As can be seen from Figure 24(a), the localized hexagon patterns snake close to
the regular hexagons.
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Figure 25. The snaking curves of radial pulses (left, in red) and fully localized hexagon patches (right, in
blue) are plotted for ν = 1.6. Radial solutions are computed on a disk of radius R = 100: The fold asymptotes
of 1D rolls are indicated by vertical grey lines, and the Maxwell point of 1D rolls occurs at μM = 0.2. The
localized hexagon patches are computed with M = 19 angular Fourier modes on a domain of radius R = 80:
The fold asymptotes of planar 〈10〉 and 〈11〉 hexagon pulses are plotted as vertical grey lines, and the hexagon
Maxwell point occurs for μM ≈ 0.3222. The hexagon snaking curve and the associated solution profiles can be
viewed in the accompanying animation (70762 01.mpg [10.8MB]).

We focus now on the snaking behavior of localized hexagon patches. The bifurcation
curves of localized radial and hexagon patterns are shown in Figure 25. In particular, we see
that the snaking of localized hexagon patches is qualitatively very different from the snaking
of the radial pulses and, in fact, also from the snaking of planar hexagon fronts, whose diagram
is shown in Figure 21. Indeed, the fold bifurcations of radial pulses and planar hexagon pulses
occur near two well-defined limiting values, while the folds of localized hexagon patches align
themselves along at least three distinct vertical asymptotes.

The spatial shapes of the fully localized hexagon patches along the snaking curve can be
viewed in the accompanying animation (70762 01.mpg [10.8MB]). It is clear from the movie
that the localized hexagon structures change in a complicated fashion as the parameter μ is

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70762_01.mpg
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Figure 26. The center panel contains part of the bifurcation diagram of localized hexagon patches for
ν = 1.6. Stable and unstable solutions are plotted in solid and dashed lines, respectively. The vertical lines in
grey correspond to the fold limits of planar 〈10〉 and 〈11〉 hexagon pulses. The red and green regions indicate
where temporal self-completion, as shown in Figure 31(b) and (c), does or does not occur, respectively. Panels
1–4 contain color plots of the hexagon patches at the inner and outer left folds.

varied, and we shall now discuss some of the features visible in the movie in more detail and
attempt to identify the underlying mechanisms.

In Figure 26, we plot a few selected spatial profiles along a small segment of the bifurcation
curve. We note that localized structures alternately lose and regain stability at consecutive
folds. Moving along the bifurcation branch from panel (1) to panel (4) in Figure 26, we see
that the localized structure acquired an additional ring of hexagons and thus grew from four
to five rings. The process of adding rings is much more complicated than simply adding a new
full ring at each fold. First, as shown in panel (2), a single hexagon is added at the center
of each side: note that the faces of the resulting localized structure resemble the planar 〈11〉
hexagon pulses encountered in section 5.2 and that the addition of the single hexagon occurs at
a fold that aligns itself with the snaking curve of 〈11〉 pulses. Next, in panel (3), hexagons are
added symmetrically to either side of the centered hexagon cell created previously in panel (2):
this happens again near an inner fold. The final step is to add an additional pair of hexagons
symmetrically to either side of the previously created hexagons to complete the row: this
occurs near the fold corresponding to a 〈10〉 pulse. The faces of the “superhexagon” structure
in panels (1) and (4) resemble planar hexagon pulses with 〈10〉 orientation. In summary, as the
snake in Figure 26 is traversed, new hexagon cells emerge symmetrically on each face, starting
at the center of each face. This cellular growth is reminiscent of the bifurcation diagram of
almost-planar 〈10〉 pulses shown in Figure 18.

Figure 27 contains a sequence of pictures of localized hexagon structures further up on the
snaking curve to illustrate the transition from a localized structure with nine hexagon rings to
a pattern with ten rings. Comparing panels (1) and (2), we find that two new hexagon cells
appear in the center of each face: there are two new hexagon cells, rather than just one, as
the number of hexagons in the outermost row in Figure 27(1) is odd, rather than even, as for
the four-ring structure in Figure 26. While cells are added in the center, the corners of the
superhexagon structure recede and disappear, which did not happen for four-ring structures.
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Figure 27. Color plots of localized hexagon patches at the leftmost folds are shown to illustrate the growth
from a 9-ring hexagon patch to a 10-ring patch. The computations are done on a domain of radius R = 100
with M = 40 angular Fourier modes.

In panel (3), the diagonal faces resemble planar 〈11〉 pulses which move forward to complete
the superhexagon visible in panel (7) as we move along the bifurcation curve. The removal
of the six cells in the corners of the superhexagon in panels (1)–(2) leads to a reduction of
the L2-norm of the localized structures, which creates the apparent self-intersections of the
bifurcation curve visible in Figure 25.

The results discussed above indicate that localized hexagon patches expand initially by
adding one or two new hexagon cells at the center of each face. In Figure 28, we compare
the bifurcation curves of almost-planar 〈10〉 hexagon pulses with one and two cells to the
relevant segments of the snaking curve of localized hexagon patches. The parameter values
for the first two folds along the bifurcation curves agree well, but the bifurcation curves of
almost-planar pulses and localized hexagon patches separate soon after. On a heuristic level,
we believe that hexagon patches do not grow by adding full rows because it costs too much
energy to grow hexagons at the corners where two adjacent faces join up. This belief is
supported by the observation that the corner hexagons actually recede, as is visible in panels
(1)–(2) of Figure 27. Thus, even though cells initially emerge at the centers of each face,
the overall growth mechanism is clearly more global, which is why the bifurcation curves of
the almost-planar 〈10〉 hexagon pulses agree with the snaking curve of hexagon patches only
initially.

We believe that infinitely many planar hexagon fronts with different Bravais–Miller indices
play a role in forming the bifurcation diagram shown in Figure 25, though we were not able to
go up far enough on the bifurcation curve to identify additional vertical asymptotes that may
belong to planar hexagons with different indices. It is remarkable, though, that all rightmost
folds seem to line up near the asymptote coming from the planar 〈11〉 hexagon pulse. Most
of these folds seem to involve structures that resemble either planar 〈11〉 or almost-planar
〈10〉 pulses. On a heuristic level, it appears that growing these structures involves the same
mechanism, and we illustrate this further in Figure 29. However, hexagons emerge along the
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Figure 28. In the middle panel, we plot part of the hexagon snake from Figure 25 and overlay the snaking
curves of almost-planar 〈10〉 hexagon pulses for which initially one cell (i) or two cells (ii) emerge at the
center. We rescaled the vertical coordinate of the snaking curves of the almost-planar pulses linearly to allow
a comparison with the hexagon data. The remaining panels show color plots of localized hexagon patches (left)
for parameter values indicated by bullets in the middle panel and representative almost-planar pulses (right) on
the curves (i) and (ii).

Figure 29. We plot a rotated planar 〈11〉 hexagon pulse in panel (i) and an almost-planar 〈10〉 hexagon
pulse in panel (ii). The circles enclose incomplete hexagon structures: Along the next fold in the snaking curve,
the missing hexagon in the circle will be filled in.

entire interface of a planar 〈11〉 pulse, while only a single hexagon is added to an almost-planar
〈10〉 structure.

In section 3.2, we showed that regular hexagon cells in a stationary planar hexagon front
satisfy H = 0 for the conserved quantity H that we defined in (3.8). The condition H = 0
selects the wavenumber of these hexagons. In section 3.2, we stated our belief that this
selection criterion for the wavenumber should also apply to localized hexagon patches. In
Figure 30, we compare the wavenumbers of regular hexagons for which H = 0 with the
wavenumbers of the hexagon cells at the center of localized hexagon patches. We find that
the wavenumbers of the center hexagon cells in localized hexagon patches get closer to the
predicted wavenumbers as we move up on the snaking curve.

The different vertical asymptotes visible in Figure 26 have interesting consequences for



LOCALIZED HEXAGON PATTERNS 1089

Figure 30. Plotted are the wavelengths l = 1/κ of the regular hexagons for which H = 0 (red bullets) and of
the hexagon cells located at the center of the localized hexagon patches (blue dots) as functions of μ for ν = 1.6.
The wavelength l = 1 corresponds to a spatial period of 2π.

Figure 31. We illustrate the temporal evolution of localized hexagon structures in the Swift–Hohenberg
equation (1.1) with ν = 1.6. The initial condition is shown in panel (a). The solutions at time t = 100 are
shown in panel (b) for μ = 0.27 inside the red region of Figure 26 and in panel (c) for μ = 0.3 inside the green
region of Figure 26.

the temporal dynamics of the Swift–Hohenberg equation. As indicated in Figure 26, we divide
the μ-parameter space into two intervals, shown in red and green, depending on whether we
are to the left or right of the folds that are aligned with the leftmost asymptote of the planar
〈11〉 hexagon pulse. These regions seem to be intimately linked with different self-completion
behaviors of localized hexagon patches. We choose the pattern shown in Figure 31(a) as our
initial condition and solve the planar Swift–Hohenberg equation. For μ in the red region, to the
left of the leftmost 〈11〉 fold, the solution evolves in time toward the completed superhexagon
shown in Figure 31(b): since 〈11〉 pulses do not exist in this parameter region, the pattern
evolves in time so that all interfaces are 〈10〉 pulses. In contrast, for μ in the green region to the
right of the leftmost 〈11〉 fold, the solution converges in time to a localized hexagon patch that
is not D6-symmetric: stable 〈11〉 pulses exist in this region, and the interface of the pattern
finds it easier to evolve toward an 〈11〉 pulse rather than a 〈10〉 pulse. Phrased in terms of
the bifurcation diagram of Figure 26, the solution moves upward to the stable D6-symmetric
pattern on the hexagon bifurcation curve for parameters in the red region. In contrast, the
solution evolves to an asymmetric hexagon patch for parameters in the green region: it appears
as if the asymmetric patterns block the evolution toward symmetric patches. We conjecture
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Figure 32. This figure summarizes our numerical results for radial and hexagonal patterns in the planar
Swift–Hohenberg equation (1.1). Dashed grey curves correspond to 1D roll and 2D hexagonal Maxwell curves,
the green curve corresponds to the disappearance of regular hexagons with wavenumber κ = 1 in a fold bifurca-
tion, and red curves correspond to fold bifurcations of localized radial spots. The existence region of stable spots
is shown in yellow in panel (a). Panels (a)–(c) also indicate the snaking regions of spots and localized hexagon
patches that are delimited by the first pair of fold bifurcations of these patterns: As discussed in the main text,
we expect that there is a sequence of fold curves which disappear in a sequence of cusps that accumulate at the
origin, so that the full snaking regions are expected to extend along the two Maxwell curves all the way to the
ν-axis. Panel (c) contains four such fold bifurcation curves of localized hexagon patches that are aligned along
the hexagon Maxwell curve and which disappear at two cusp bifurcations. Panel (c) also contains the pitchfork
bifurcation curves of localized hexagon patches from spots in yellow and the fold bifurcation curve of spots in
red: These curves meet at the mode interaction point (μ, ν2) = (0.048, 1.1) (ν = 1.049).

that these asymmetric hexagon patches may bifurcate from D6-symmetric hexagon patches in
a planar version of ladders, similar to those observed in one space dimension in [19, 20, 22]
which we reproduced in Figure 8.

5.3.3. Bifurcation diagram in (μ, ν)-parameter space. Using numerical continuation,
we have also traced out partial bifurcation diagrams for localized patterns of the planar Swift–
Hohenberg equation in the parameters (μ, ν). These results are summarized in Figure 32 and
presented in schematic form in Figure 33.

Regular hexagons exist above the green curve in Figure 32(a). We find that localized
hexagon patches seem to bifurcate from the trivial state u = 0 along the entire positive ν-axis
into the positive quadrant μ > 0. Hexagon patches also bifurcate from localized radial spots
along a pitchfork bifurcation curve, where symmetry is broken from O(2) to D6. Overall, we
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Figure 33. Schematic illustrations of the bifurcation diagram of localized hexagon patches are shown.
Panel (a) shows the sheet of localized radial spots (i) which undergo pitchfork bifurcations to localized hexagon
patches along the yellow curve (ii). In panel (b), localized hexagon patches (iii) bifurcate from u = 0 at μ = 0
and from spots along the pitchfork bifurcation curve (ii). The hexagon patches begin to snake (iv) near the
hexagonal Maxwell curve (shown in dotted grey) in an infinite sequence of fold bifurcations that disappear
closer to the origin in a sequence of cusps. See Figure 32(c) for the corresponding numerical results.

obtain a connected surface along which localized hexagon patches exist; see Figure 33 for a
schematic picture and Figures 23 and 24 for numerical computations. Localized spots are
stable in a wedge delimited by the fold and pitchfork bifurcation curves that emerge from the
mode interaction point (μ, ν) = (0.048, 1.049) (ν2 = 1.1) in Figure 32(a).

Localized hexagon patches snake in a wedge-like region which is aligned with the hexagon
Maxwell curve and appears to extend all the way to the origin, where the bifurcation to regular
hexagons changes from super- to subcritical, as outlined in Figure 33(b). In Figure 32(c), we
show four numerically continued fold bifurcation curves of localized hexagon patches which
disappear in two cusp bifurcations. For ν ≤ 0.9, localized hexagon patches are spread out so
far and fold bifurcations occur so close to each other that we were not able to continue beyond
the first fold: these numerical difficulties prevented us from further probing the sequence of
fold and cusp bifurcations. Spots also snake, and we show in Figure 32(a) the region delimited
by the first two fold bifurcation curves along their snaking curve together with the cusp at
which the fold curves collide and disappear. Again, we expect that the snaking region of
spots extends along the Maxwell curve associated with 1D rolls to the codimension-two point
(μ, ν) = (0,

√
27/38), where the bifurcations to rolls change from super- to subcritical.

In Figure 26, we observed that the leftmost snaking limit of the hexagon patches coincides
with the leftmost fold of the planar 〈10〉 hexagon pulses. To illuminate this feature further, we
show in Figure 34 the snaking region of fully localized hexagon patches and, for comparison,
the snaking regions of planar 〈10〉 and 〈11〉 hexagon pulses in panels (a) and (b), respectively.
For μ < 0.35, the leftmost fold curve of the 〈10〉 pulses aligns itself with the leftmost boundary
of the hexagon patches, while the rightmost fold curve of the 〈11〉 pulses aligns itself with the
rightmost boundary of the hexagon patches.

We see in Figure 32 that a cusp forms at (μ, ν2) ≈ (0.4205, 5.4173) on the upper fold
curve on the wedge belonging to localized hexagon patches. This upper cusp is similar to that
found in [19, 20, 22] for 1D structures and indicates that a new Maxwell curve crosses into
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Figure 34. Comparison of the snaking region of localized hexagon patches (blue) and the snaking regions of
planar 〈10〉 hexagon pulses (red) in panel (a) and 〈11〉 hexagon pulses (red) in panel (b). The hexagon Maxwell
curve is also shown (dashed grey).

Figure 35. Panels (a) and (b) contain color plots of localized hexagon patches for (μ, ν2) = (0.7, 6.2355)
and (μ, ν2) = (0.0738, 0.8612), respectively.

the snaking region. We plot a localized hexagon patch further up on the upper fold curve for
(μ, ν2) = (0.7, 6.2355) in Figure 35(a): note that the individual hexagon cells on the outer
ring are elongated. For comparison, we plot in Figure 35(b) the localized hexagon patch at
the lower cusp at (μ, ν2) = (0.0738, 0.8612).

5.4. Localized rhomboid patches. We also investigated fully localized rhomboid patches.
These solutions have an interior cellular hexagonal structure, but, as shown in Figure 36(b),
the overall patch does not possess hexagonal symmetry: the underlying cellular pattern is
shifted by half a spatial period so that the center of the localized patch does not coincide
with the center of an interior hexagon. Unlike localized hexagon patches, localized rhomboids
bifurcate from a pair of localized hexagons, which in turn bifurcate from the trivial state.
Hexagon pairs, triplets, and rhomboids consisting of four hexagons have previously been com-
puted in [63]. The snaking diagram of the localized rhomboid patches, shown in Figure 36(a),
appears to be qualitatively similar to the snaking diagram of localized hexagon patches shown
in Figure 25. There seem to be roughly three snaking limits: the leftmost limit corresponds to
the completion of a superrhomboid, shown in Figure 36(b), while the other two snaking limits
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Figure 36. Panel (a) contains the bifurcation diagram of localized rhomboid patches for ν = 1.6, while
the rhomboidal structure itself is shown as a color plot in panel (b) for μ = 0.2817. The vertical lines are the
asymptotes of the fold bifurcations of 〈10〉 and 〈11〉 hexagon pulses shown in Figure 26. The computations
were carried out on a square domain with dimensions 80 × 80.

correspond to the emergence of individual hexagons along the sides of the localized structure,
as in the case of hexagon patches. Further up the snake, the leftmost folds get closer to the
folds of the planar 〈10〉 hexagon pulses. Similar to the case of hexagon patches, the bifurcation
curves of localized rhomboids intersect as individual corner cells are suppressed, leading to a
decrease of the overall L2-norm. We computed the localized rhomboids on a large square box
with Neumann boundary conditions rather than with polar coordinates as we did for localized
hexagon patches: in particular, we are confident that the damping of the corner cells is not
due to boundary conditions or numerical errors.

We believe that the localized hexagon and rhomboid patches are connected in parameter
space by bifurcation curves of asymmetric patterns similar to those found in [19, 21] for
1D structures. These ladders will effectively shift the cellular pattern between the localized
hexagon and rhomboid patches.

6. Conclusions and discussion.
Summary. We briefly summarize our main findings. First, we provided a selection principle

for hexagons that can appear as asymptotic states in planar fronts that connect to the trivial
state u = 0. Any such hexagon must satisfy H = 0, where the function H is a first integral of
the spatial dynamical system that describes solutions u(x, y) of the Swift–Hohenberg equation
that are periodic in the transverse y-direction. The expression (1.6) of H was derived from a
conservation law that arises, via Noether’s theorem, due to the translation symmetry of the
Lagrangian of the energy (1.4) of the Swift–Hohenberg equation. Using a theorem proved
in [9], we also showed that a unique branch of regular hexagons along which H = 0 bifurcates
from the trivial state at μ = 0: these hexagons have a uniquely selected wavelength.

In section 3.2, we gave a spatial-dynamics formulation of solutions of the Swift–Hohenberg
equation that are periodic in one of the two spatial variables. This formulation implies that
planar hexagon pulses, such as those shown in Figures 16 and 19, will exist in open regions
of parameter space provided they are transversely constructed, a condition we expect to hold
generically. This indicates that snaking should occur for planar hexagon pulses, and we found
numerically in section 5.2 that snaking does indeed occur for hexagons pulses with two differ-
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ent orientations, namely, with Bravais–Miller indices 〈10〉 and 〈11〉. We also computed and
continued almost-planar hexagon pulses which bifurcate from the planar hexagon pulses in
pitchfork bifurcations near each fold bifurcation: these almost-planar pulses appear promi-
nently in the snaking diagram of localized hexagon patches.

Heuristically, we expect that the snaking regions are centered around the hexagon Maxwell
curve which corresponds to the curve in (μ, ν)-parameter space along which hexagons exist
that satisfy H = 0 and that have the same energy, E(0) = 0, as the trivial state u = 0. Indeed,
only when the trivial state and the hexagons have roughly the same energy can we expect
that stationary interfaces between them exist; otherwise, one of the states will invade the
other one to reduce the overall energy. Our numerical computations confirmed this heuristic
picture and showed furthermore that the Maxwell curve emerges from the codimension-two
point where the bifurcation to hexagons changes from super- to subcritical, as it is there that
we can expect regions of bistability to exist.

Our main numerical findings consist of the continuation results of localized hexagon and
rhomboid patches in the Swift–Hohenberg equation. Our computations suggest that infinitely
many hexagon and rhomboid patches coexist in open parameter regions. The localized hexa-
gon patches lie on the same solution branch and increase in width as we move along the branch.
Strikingly, the hexagon patches do not grow by adding a full ring of hexagons at each fold
but instead seem to follow, at least initially, the almost-planar hexagon pulses with indices
〈10〉 and 〈11〉 that we computed in section 5.2. Overall, we found a rich snaking structure
with several, possibly infinitely many, vertical asymptotes for fold bifurcations of localized
structures, compared with only two asymptotes for planar hexagon pulses and 1D structures.
We identified three asymptotes as arising from fold bifurcations of planar hexagon pulses with
indices 〈10〉 and 〈11〉. However, we did not identify an overarching mechanism that predicts
how hexagon patches might grow as we move up further along the branch.

We also investigated self-completion of asymmetric hexagon patches and found evidence
that self-completion occurs only to the left of the snaking region of the 〈11〉 fronts. The
self-completion study was motivated by results in [4, 6], where this process was addressed by
using interaction theory for localized spots. The alternative explanation put forward here is
based on the existence regions of planar hexagon fronts with different orientations. Though
we do not have any conclusive evidence, we do not believe that the hexagon structures found
in our paper can be viewed as bound states of localized spots: Figure 24, for instance, shows
that localized hexagon patches can exist well outside the existence region of localized spots.

Finally, we mention that Figure 32 contains various results on localized radial structures.
In particular, the branch of localized hexagon patches that bifurcates from the trivial state
at (μ, ν) = 0 and later begins to snake splits, for larger values of ν, into two branches which
begin or end at pitchfork bifurcations of localized radial structures. We refer the reader to [58]
for a more detailed analytical and numerical study of these radial spots.

Open problems. We now outline what we believe to be interesting questions for further
research on multidimensional localized patterns and refer the reader to [50] for another recent
list of open problems in this area.

A major goal is to uncover the mechanism that underlies the snaking behavior of localized
hexagon patches and to prove that it does occur in the Swift–Hohenberg equation. Currently,
there do not seem to be any methods available that can be used to carry out such a compre-
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hensive analysis. Thus, we discuss first a number of more modest open problems that may
give better insight into certain aspects of hexagon snaking.

Snaking of planar hexagon pulses seems more amenable to an analytic approach. On
a formal level, asymptotics beyond all orders has recently been used in [25, 52] to predict
the snaking width for the 1D structures shown in Figure 2 near the codimension-two point
(μ, ν) = 0. The idea behind this approach is to look more closely into the derivation of
the amplitude equations (2.10) which govern the existence of 1D pulses. In the standard
derivation, anisotropic terms that depend on the small scale x, rather than the large scale
X = εx, are neglected. In [25, 52], these terms and their effect on the remaining modes through
the nonlinearity are taken into account, and an analysis of the resulting exponentially small
coupling terms between rolls and the 1D pulse gave an extremely accurate prediction for the
snaking region in the 1D setting. The same approach may perhaps work in the planar case
to capture the interaction terms between small-scale hexagons and large-scale hexagon pulses
with different Bravais–Miller indices.

The energy functional of the Swift–Hohenberg equation may also help to illuminate snaking
of hexagon pulses. Our numerical results indicate that the widths of the snaking regions of
planar hexagon pulses depend on the orientation of their interfaces, i.e., on their Bravais–
Miller indices, and it may be possible to capture this effect through an appropriate interfacial
energy. Along the same lines, the growth of cells along an interface for almost-planar hexagon
pulses appears qualitatively similar to the growth of interface boundaries in polycrystalline
structures. Numerical studies of polycrystalline structures in [64] via two-dimensional Ising
models have shown that the orientation of interfaces in hexagonal lattices has a significant
effect on the propagation speed of these interfaces. In the context of the Swift–Hohenberg
equation, the speeds of planar 〈10〉 and 〈11〉 fronts outside the pinning region may be similar
to those seen in Ising models.

Another approach to understanding snaking of planar hexagon pulses is to assume that
there exists a generic planar hexagon front for a certain value of μ which disappears, as μ
decreases or increases beyond a certain threshold, via a saddle-node bifurcation as indicated
in Figure 6. Instead of using geometric methods to prove that this results in snaking of planar
hexagon pulses, an analytic result via Lin’s method could be used to generalize the intuitive
picture given in Figure 6 for two-dimensional Poincaré sections to the infinite-dimensional
spatial-dynamics setting of section 3.2. This analysis has recently been carried out in [10],
where it was also shown that it captures asymmetric ladder structures.

While an analysis of snaking of hexagon patches seems currently out of reach, it may be
possible to say more about the underlying mechanisms by carrying out more comprehensive
numerical studies. The numerical methods we have used significantly reduce the computa-
tional cost required to compute fully localized 2D patterns by using an adaptive mesh and by
taking into account the symmetry of localized hexagon patches. However, the computation of
larger patterns requires a less expensive way of computing hexagon patches. We believe that
implementing triangular finite elements in Trilinos should result in a significant speed-up. In
addition, we do not expect that the core region of hexagon patches changes much as the pat-
terns grow. Thus, it might be possible to work with an annular region as the computational
domain where the boundary conditions on the inner boundary are chosen to ensure compati-
bility with previously computed hexagon patches. This should lead to a further reduction of
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the size of the system.
Other localized 2D patterns. Last, we comment on other localized planar structures.
In [78], fully localized stripe patches were observed in the cubic-quintic Swift–Hohenberg

equation

(6.1) ut = −(1 + Δ)2u− μu + νu3 − u5.

These patterns, reproduced in Figure 1(b), are clearly anisotropic. To describe them, one
could use, as in [32], the Newell–Whitehead–Segel equation

4

(
∂X − i

2
∂2
Y Y

)2

A = εA− |A|2A + |A|4A

for the envelope function A(X,Y ) of stripes that are parallel to the y-direction, where (X,Y ) =
(ε1/2x, ε1/4y). This equation admits localized fronts A1(X) and A2(Y ) with different spatial
widths. The front A1(X) occurs at the 1D Maxwell point found in the normal-form anal-
ysis of the 1D cubic-quintic Swift–Hohenberg equation (6.1): this front corresponds to an
“equilibrium to periodic orbit” connection for the associated spatial dynamical system, and
we therefore expect snaking and the growth of additional rolls along the x-direction as an
equation parameter is varied. The front A2(Y ) in the Y -direction, on the other hand, cor-
responds to an “equilibrium to equilibrium” connection, and we do not expect snaking to
occur; instead, we expect that the bifurcation curve converges, in an oscillatory fashion, to a
single vertical asymptote [51]. This latter behavior is precisely what was observed in [78] in
numerical simulations of fully localized stripe patterns.

Another interesting Swift–Hohenberg model is

ut = −(1 + Δ)2u− μu + νu3 − u5 + α∇ · [|∇u|2∇u].

The last term in the above equation gives preference to patterns with square symmetry, and
localized patches of squares have indeed been found in direct numerical simulations [44, 79].
We expect that these patches exhibit snaking and predict that localized square patches of
square shape grow by adding new cells starting from the middle of each face.

Localized pentagonal structures have also been observed numerically in [91, Figure 10(a)–
(b)] in a model of driven optical cavities. Our numerical methods could be extended easily to
compute and continue these structures by expanding u as a Fourier series

u(r, θ) =
∑
n∈Z

an(r)e5niθ

using five-fold symmetric terms. Pentagons do not tile the plane, so the question of snaking
for localized pentagons would be interesting.
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thank José Antonio Medina Hernández, Gregory Kozyreff, and the anonymous referees for
many comments that helped us improve the presentation of this paper. David Lloyd and
Björn Sandstede thank the Newton Institute for its hospitality during the theme programme
“Pattern Formation in Large Domains” in Autumn 2005, and Björn Sandstede gratefully
acknowledges a Royal Society Wolfson Research Merit Award.



LOCALIZED HEXAGON PATTERNS 1097

REFERENCES

[1] E. Ammelt, Y. A. Astrov, and H.-G. Purwins, Hexagon structures in a two-dimensional dc-driven
gas discharge system, Phys. Rev. E, 58 (1998), pp. 7109–7117.

[2] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential
equations I: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), pp.
545–566.

[3] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential
equations II: General treatment, European J. Appl. Math., 13 (2002), pp. 567–585.

[4] I. S. Aranson, K. A. Gorshkov, A. S. Lomov, and M. I. Rabinovich, Stable particle-like solutions
of multidimensional nonlinear fields, Phys. D, 43 (1990), pp. 435–453.

[5] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, New York, 1976.
[6] Y. Astrov and Y. Logvin, Formation of clusters of localized states in a gas discharge system via a

self-completion scenario, Phys. Rev. Lett., 79 (1997), pp. 2983–2986.
[7] D. Avitabile, Computation of Planar Patterns and Their Stability, Ph.D. thesis, University of Surrey,

Guildford, UK, 2008.
[8] O. Batiste, E. Knobloch, A. Alonso, and I. Mercader, Spatially localized binary-fluid convection,

J. Fluid Mech., 560 (2006), pp. 149–158.
[9] R. E. Beardmore, M. A. Peletier, C. J. Budd, and M. Ahmer Wadee, Bifurcations of periodic

solutions satisfying the zero-Hamiltonian constraint in reversible differential equations, SIAM J. Math.
Anal., 36 (2005), pp. 1461–1488.

[10] M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede, and T. Wagenknecht, Snakes, Ladders,
and Isolas of Localised Patterns, preprint, 2008.

[11] C. Bensimon, B. Shraiman, and V. Croquette, Nonadiabatic effects in convection, Phys. Rev. A, 38
(1988), pp. 5461–5464.

[12] S. Blanchflower, Magnetohydrodynamic convectons, Phys. A, 261 (1999), pp. 74–81.
[13] U. Bortolozzo, M. G. Clerc, C. Falcon, S. Residori, and R. Rojas, Localized states in bistable

pattern-forming systems, Phys. Rev. Lett., 96 (2006), 214501.
[14] M. Boughariou, Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces, Dis-

crete Contin. Dyn. Syst., 9 (2003), pp. 603–616.
[15] H. R. Brand, C. Fradin, P. Finn, W. Pesch, and P. Cladis, Electroconvection in nematic liquid

crystals: Comparison between experimental results and the hydrodynamic model, Phys. Lett. A, 235
(1997), pp. 508–514.

[16] C. J. Budd, G. W. Hunt, and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load,
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), pp. 2935–2964.

[17] C. J. Budd and R. Kuske, Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg
equation, Phys. D, 208 (2005), pp. 73–95.

[18] B. Buffoni and J. F. Toland, Global existence of homoclinic and periodic orbits for a class of auton-
omous Hamiltonian systems, J. Differential Equations, 118 (1995), pp. 104–120.

[19] J. Burke and E. Knobloch, Localized states in the generalized Swift-Hohenberg equation, Phys. Rev.
E (3), 73 (2006), 056211.

[20] J. Burke and E. Knobloch, Homoclinic snaking: Structure and stability, Chaos, 17 (2007), 037102.
[21] J. Burke and E. Knobloch, Normal form for spatial dynamics in the Swift-Hohenberg equation, Discrete

Contin. Dyn. Syst. Suppl., (September) (2007), pp. 170–180.
[22] J. Burke and E. Knobloch, Snakes and ladders: Localized states in the Swift-Hohenberg equation,

Phys. Lett. A, 360 (2007), pp. 681–688.
[23] E. Buzano and M. Golubitsky, Bifurcation on the hexagonal lattice and the planar Bénard problem,

Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), pp. 617–667.
[24] B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, Cambridge, UK,

2002.
[25] S. J. Chapman and G. Kozyreff, Exponential Asymptotics of Localised Patterns and Snaking Bifur-

cation Diagrams, preprint, 2008.
[26] P. Coullet, C. Riera, and C. Tresser, Stable static localised structures in one dimension, Phys. Rev.

Lett., 84 (2000), pp. 3069–3072.



1098 LLOYD, SANDSTEDE, AVITABILE, AND CHAMPNEYS

[27] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys.,
176 (2002), pp. 430–455.

[28] S. M. Cox and P. C. Matthews, Instability and localisation of patterns due to a conserved quantity,
Phys. D, 175 (2003), pp. 196–219.

[29] C. Crawford and H. Riecke, Oscillon-type structures and their interaction in a Swift-Hohenberg model,
Phys. D, 129 (1999), pp. 83–92.

[30] M. Cross and P. Hohenberg, Pattern formation outside of equilibrium, Rev. Modern Phys., 65 (1993),
pp. 851–1112.

[31] P. Davies, P. Blanchedeau, E. Dulos, and P. D. Kepper, Dividing blobs, chemical flowers and
patterned islands in a reaction-diffusion system, J. Phys. Chem. A, 102 (1998), pp. 8236–8244.

[32] R. J. Deissler and H. R. Brand, Two-dimensional localized solutions for subcritical bifurcations in
systems with broken rotational symmetry, Phys. Rev. E, 51 (1995), pp. R852–R855.

[33] B. Dionne, M. Silber, and A. C. Skeldon, Stability results for steady, spatially periodic planforms,
Nonlinearity, 10 (1997), pp. 321–353.

[34] E. J. Doedel, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations,
Tech. rep., Concordia University, Montreal, Canada, 2007.

[35] A. Doelman, B. Sandstede, A. Scheel, and G. Schneider, Propagation of hexagonal patterns near
onset, European J. Appl. Math., 14 (2003), pp. 85–110.

[36] J. Eggers and H. Riecke, Continuum description of vibrated sand, Phys. Rev. E, 59 (1999), pp. 4476–
4483.

[37] P. C. Fife, Pattern formation in gradient systems, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler,
ed., North–Holland, Amsterdam, 2002, pp. 677–722.

[38] J. Fineberg, Physics in a jumping sandbox, Nature, 382 (1996), pp. 793–764.
[39] A. A. Golovin, B. J. Matkowsky, and A. A. Nepomnyashchy, A complex Swift-Hohenberg equation

coupled to the Goldstone mode in the nonlinear dynamics of flames, Phys. D, 179 (2003), pp. 183–210.
[40] M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory

II, Springer-Verlag, New York, 1988.
[41] M. Golubitsky, J. W. Swift, and E. Knobloch, Symmetries and pattern selection in Rayleigh-Bénard

convection, Phys. D, 10 (1984), pp. 249–276.
[42] D. Gomila, A. J. Scroggie, and W. J. Firth, Bifurcation structure of dissipative solitons, Phys. D,

227 (2007), pp. 70–77.
[43] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.

Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,

R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the
Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397–423.

[44] M. F. Hilali, S. Metens, P. Borckmans, and G. Dewel, Pattern selection in the generalised Swift-
Hohenberg model, Phys. Rev. E, 51 (1995), pp. 2046–2052.

[45] R. B. Hoyle, Pattern Formation, Cambridge University Press, Cambridge, UK, 2006.
[46] G. W. Hunt, G. J. Lord, and A. R. Champneys, Homoclinic and heteroclinic orbits underlying the

post-buckling of axially-compressed cylindrical shells, in Localization and Solitary Waves in Solid
Mechanics, World Scientific, River Edge, NJ, 1999, pp. 285–297.

[47] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. A. Wadee, C. J. Budd, and

G. J. Lord, Cellular buckling in long structures, Nonlinear Dynam., 21 (2000), pp. 3–29.
[48] H. Jamgotchian, N. Bergeon, D. Benielle, P. Voge, B. Billia, and R. Guerin, Localised micro-

structures induced by fluid flow in directional solidification, Phys. Rev. Lett., 87 (2001), 166105.
[49] E. Knobloch, Pattern selection in long-wavelength convection, Phys. D, 41 (1990), pp. 450–479.
[50] E. Knobloch, Spatially localized structures in dissipative systems: Open problems, Nonlinearity, 21

(2008), pp. T45–T60.
[51] J. Knobloch and T. Wagenknecht, Homoclinic snaking near a heteroclinic cycle in reversible systems,

Phys. D, 206 (2005), pp. 82–93.
[52] G. Kozyreff and S. J. Chapman, Asymptotics of large bound states of localized structures, Phys. Rev.

Lett., 97 (2006), 044502.
[53] B. Krauskopf and T. Riess, A Lin’s method approach to finding and continuing heteroclinic connections

involving periodic orbits, Nonlinearity, 21 (2008), pp. 1655–1690.



LOCALIZED HEXAGON PATTERNS 1099

[54] C. R. Laing and W. C. Troy, PDE methods for nonlocal models, SIAM J. Appl. Dyn. Syst., 2 (2003),
pp. 487–516.

[55] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermentrout, Multiple bumps in a neuronal model
of working memory, SIAM J. Appl. Math., 63 (2002), pp. 62–97.

[56] J. Lega, J. V. Moloney, and A. C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett.,
73 (1994), pp. 2978–2981.

[57] D. J. B. Lloyd and A. R. Champneys, Efficient numerical continuation and stability analysis of
spatiotemporal quadratic optical solitons, SIAM J. Sci. Comput., 27 (2005), pp. 759–773.

[58] D. J. B. Lloyd and B. Sandstede, Localized radial solutions of the Swift–Hohenberg equation, preprint,
2008.

[59] G. J. Lord, A. R. Champneys, and G. W. Hunt, Computation of homoclinic orbits in partial differ-
ential equations: An application to cylindrical shell buckling, SIAM J. Sci. Comput., 21 (1999), pp.
591–619.

[60] B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, Domain boundaries in convection
patterns, Phys. Rev. A, 42 (1990), pp. 7244–7263.

[61] P. C. Matthews, Hexagonal patterns in finite domains, Phys. D, 116 (1998), pp. 81–94.
[62] P. C. Matthews, M. R. E. Proctor, and N. O. Weiss, Compressible magnetoconvection in three

dimensions: Planforms and nonlinear behaviour, J. Fluid Mech., 305 (1995), pp. 281–305.
[63] J. M. McSloy, W. J. Firth, G. K. Harkness, and G.-L. Oppo, Computationally determined existence

and stability of transverse structures II: Multipeaked cavity solitons, Phys. Rev. E, 66 (2002), 046606.
[64] M. Medelev, D. J. Srolovitz, L. Shvindlerman, and G. Gottstein, Interface mobility under

different driving forces, J. Mater. Res., 17 (2002), pp. 234–245.
[65] I. Mercader, A. Alonso, and O. Batiste, Spatiotemporal dynamics near the onset of convection for

binary mixtures in cylindrical containers, Phys. Rev. E, 77 (2008), 036313.
[66] A. Mielke, A spatial center manifold approach to steady state bifurcations from spatially periodic patterns,

in Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability, G.
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Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar
Neuron Models∗
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Abstract. The presence of gap junction coupling among neurons of the central nervous systems has been
appreciated for some time now. In recent years there has been an upsurge of interest from the
mathematical community in understanding the contribution of these direct electrical connections
between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron
models, capable of producing realistic action potential shapes, that can be used as the basis for
understanding dynamics at the network level. This work focuses on planar piecewise linear models
that can mimic the firing response of several different cell types. Under constant current injection the
periodic response and phase response curve (PRC) are calculated in closed form. A simple formula
for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and
the periodic orbit a phase interaction function is constructed that allows the investigation of phase-
locked network states using the theory of weakly coupled oscillators. For large networks with global
gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous,
synchronous, and splay states. For a piecewise linear caricature of the Morris–Lecar model, with
oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the
mean membrane potential are organized around such unstable orbits.
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function
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1. Introduction. Gap junctions allow for direct communication between cells. They are
typically formed from the juxtaposition of two hemichannels (connexin proteins) and allow
the free movement of ions or molecules across the intercellular space separating the plasma
membrane of one cell from another. Gap junction coupling is known to occur between many
cell types, including, for example, pancreatic-β cells [21], heart cells [23], and astrocytes [9].
It is no understatement to say that they are now believed to be ubiquitous throughout the
central nervous system [16]. Indeed it has been appreciated for some time that they exist
between inhibitory neurons of the neocortex [35]. As well as being found in the neocortex
[36, 4, 39, 34], they occur in many other brain regions, including the hippocampus [34],
inferior olivary nucleus in the brain stem [75], the spinal cord [71], and the thalamus [47],
and have recently been shown to form axo-axonic connections between excitatory cells in the
hippocampus (on mossy fibers) [41]. Without the need for receptors to recognize chemical
messengers, gap junctions are much faster than chemical synapses at relaying signals. The

∗Received by the editors November 7, 2007; accepted for publication (in revised form) by B. Ermentrout June 3,
2008; published electronically September 25, 2008.

http://www.siam.org/journals/siads/7-3/70757.html
†Department of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK (stephen.

coombes@nottingham.ac.uk).

1101

http://www.siam.org/journals/siads/7-3/70757.html
mailto:stephen.coombes@nottingham.ac.uk
mailto:stephen.coombes@nottingham.ac.uk


1102 S. COOMBES

synaptic delay for a chemical synapse is typically in the range 1–100 ms, while the synaptic
delay for an electrical synapse may be only about 0.2 ms. There is now little doubt that gap
junctions play a substantial role in the generation of neural rhythms, both functional [3, 46, 8]
and pathological [82, 24], and that they may subserve system level computations [62].

The presence of gap junctional coupling in a neuronal network necessarily means that
neurons directly “feel” the shape of action potentials (APs) from other neurons to which they
are connected. From a modeling perspective one must therefore be careful to work with sin-
gle neuron models that have an accurate representation of an AP shape. To date there is
now a zoo of single neuron models that can accurately reflect these shapes for different neu-
ronal cell types (see, for example, [49]). Typically such models, being based around that of
Hodgkin–Huxley [44], are high dimensional and can often only be analyzed using perturbative
techniques, such as geometric singular perturbation theory (see [72] for a review). When com-
bined with an initial reduction of the model, say, using the techniques in [54], this has proven
a remarkably powerful approach for gaining insight into single neuron behavior. However, it
does not necessarily pave the way for tractable network studies. In this case, starting from
a one-dimensional integrate-and-fire (IF) type model is often advocated [11]. However, since
the IF model does not generate an AP shape, it must be augmented in some way as in [15, 37],
leading one naturally to consider the spike-response model [38]. However, in this case the AP
is considered to have a universal shape, triggered as the voltage reaches a constant voltage
threshold. This does not quite capture the dynamics of a truly excitable system (with gating
variables), where instead one would expect a state-dependent threshold and a variable AP
shape. Thus we are naturally led to a search for planar models possessing one voltage and one
gating variable that can mimic the behavior of high dimensional conductance-based models.
Perhaps the most famous example of such a model is the FitzHugh–Nagumo model [31], which
has many of the same characteristics as the Hodgkin–Huxley model. In this case analytical
progress has been possible with one further step, namely, the introduction of piecewise linear
(PWL) nullclines. This gives rise to the so-called McKean model [64], for which a number of
results about the existence and stability of periodic orbits are now known [83, 84]. In this
paper we introduce a broader class of PWL models that can mimic the behavior of many
common cell types and describe how to analyze periodic orbits explicitly. Importantly we
show that the study of such models does indeed allow for mathematical studies of the rich
dynamical behavior seen in large networks with strong gap junction coupling. In this sense
our work is complementary to many other theoretical studies that focus on weak coupling
[74, 69, 7, 61, 56, 26] as well as computational studies with strong coupling [55, 60, 3, 76].

One of the main motivations for pursuing the work in this paper is that it may underpin
the development of a tractable firing rate model of neural tissue possessing gap junctions.
Necessarily this must require an understanding of strong coupling if gap induced variations
in firing rate are of interest. With the exception of work by van Vreeswijk [81] (for synaptic
interactions), results for strong coupling are rare. Hence, although we focus on the special
case of PWL neuron models, this is useful as it allows us to gain some specific insight into
dynamics in the strong coupling regime. Moreover, some of the techniques we develop here,
notably for determining the stability of the asynchronous state in a strongly gap junction
coupled global network, are valid not just for PWL systems but also for more general limit
cycle oscillator networks. The more detailed structure of this paper is as follows. In section 2
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we introduce the class of PWL models that we study throughout the paper. In particular, we
focus on two distinct examples, one of which is the McKean model and the other a new PWL
model that caricatures the conductance-based Morris–Lecar model with oscillations generated
via a homoclinic bifurcation [68]. Next, in section 3, we show how to analyze periodic orbits
that arise in such models under constant current injection. This includes the construction of
orbits, the determination of their stability, and the calculation of the phase response curve
(PRC) for the orbit. Stability is analyzed using Floquet theory and shown to lead to a
simple formula for the nonzero Floquet exponent. Network studies are pursued in section 4
for two important cases: (i) weak coupling, and (ii) strong coupling. In the former case we
show how to calculate the phase interaction function for a network in closed form using a
Fourier representation. This is used to investigate phase-locked states in both small and large
networks. Focusing on synchronous and splay states in globally coupled networks, we further
show how to treat the case of strong coupling. Our results for existence and stability recover
those of the weak coupling theory in the appropriate limit. In section 5 we use this strong
coupling theory to understand large amplitude oscillations seen in the mean field signal of
networks of Morris–Lecar neurons with gap junction coupling [42]. Finally, in section 6 we
discuss natural extensions of the work in this paper.

2. Piecewise linear neuron models. The excitable properties of neural cells can often be
summarized simply by determining their firing rate response to constant current injection.
Broadly speaking one then classifies a neuron as being either Type I or Type II. Type I
is obtained when repetitive APs are generated with an arbitrarily low frequency, whereas
in Type II APs emerge at a nonzero frequency. In this latter case it is natural to think of
oscillations as arising through a Hopf bifurcation. Indeed, from the seminal experimental
and modeling work of Hodgkin and Huxley, this is known to be the case for the squid giant
axon. Thus, although the original Hodgkin–Huxley model consists of four nonlinear ordinary
differential equations (ODEs), it is not surprising that alternative planar models can also
be invoked to fit at least the firing rate response. The classic example is the FitzHugh–
Nagumo model [31], though others such as those obtained by a systematic reduction of the
Hodgkin–Huxley equations are known [1]. These planar models are described by two coupled
nonlinear ODEs—one for voltage and the other for a single effective gating variable. The
nullcline for the voltage variable has a cubic shape typical of many excitable systems. Although
powerful geometric techniques may be brought to bear on such planar models, their analysis
in closed form is precluded by the presence of the cubic nonlinearity. This has motivated
the introduction and study of PWL caricatures, such as the McKean model [64, 79]. The
equations for a single two-dimensional McKean neuron take the form

Cv̇ = f(v) − w + I,(2.1)

ẇ = g(v, w),(2.2)

where the functions f(v) and g(v, w) are given by

f(v) =

⎧⎪⎨
⎪⎩
−v, v < a/2,

v − a, a/2 ≤ v ≤ (1 + a)/2,

1 − v, v > (1 + a)/2,

(2.3)
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Figure 1. The phase plane for the McKean model has a nullcline with a piecewise linear cubic shape (dashed
green line) corresponding to v̇ = 0 and a linear one associated with ẇ = 0 (dotted blue line). Parameters are
C = 0.1, I = 0.5, γ = 0.5, and a = 0.25. The red line corresponds to a stable periodic orbit.

g(v, w) = v − γw.(2.4)

Here, C > 0, γ > 0, I is a constant drive, and f(v) is a PWL caricature of the cubic FitzHugh–
Nagumo nonlinearity f(v) = v(1−v)(v−a), while g(v, w) describes the linear dynamics of the
gating variable. Another popular choice for f(v) is the function f(v) = −v + Θ(v− a), where
Θ is the Heaviside step function. The analysis of this latter nonlinearity has been pursued in
detail by Tonnelier [78, 80]. A phase-plane plot of the McKean model is shown in Figure 1.
Generating Type I behavior, often associated with either a homoclinic bifurcation or a saddle-
node on an invariant cycle (SNIC) [27], necessarily requires the introduction of a nonlinear
dynamics for the gating variable, as in the Morris–Lecar model or the cortical neuron model of
Wilson [85]. A PWL idealization of the Morris–Lecar model has already been introduced by
Tonnelier and Gerstner [80], and since the nullcline of the gating variable in the Wilson model
has a quadratic shape, it too is easy to caricature. Indeed, many of the shapes for g(v, w)
underlying a Type I response appear to be described with the simple continuous choice

(2.5) g(v, w) =

{
(v − γ1w + b∗γ1 − b)/γ1, v < b,

(v − γ2w + b∗γ2 − b)/γ2, v ≥ b,

with −a/2 < b∗ < (1 − a)/2 and a/2 < b < (1 + a)/2. Here we take γ2 > 0, though
we allow γ1 to take both positive and negative values. Another natural choice, though this
time discontinuous, is g(v, w) = v − γw + Θ(v − b), which has been used to caricature the
Morris–Lecar model in particular [80]. Note that (up to a constant shift) we recover the PWL
McKean model with the choice γ1 = γ = γ2 in (2.5). An example with dynamics that is
bistable between a fixed point and a limit cycle is shown in Figure 2. Here the emergence of
low frequency oscillations is associated with a homoclinic bifurcation, whereby the amplitude
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Figure 2. The phase plane for the piecewise linear Morris–Lecar (PML) model with γ1 = 2, γ2 = 0.25,
C = 0.825, I = 0.1, a = 0.25, b = 0.5, and b∗ = 0.2. The pale blue line passing through the saddle (gray filled
circle) is the separatrix between the stable fixed point (black filled circle) and the stable limit cycle (in red).

of the periodic orbit grows with a decrease in I and collides with a saddle point. We regard
this model as a PWL caricature of the Morris–Lecar neuron, with oscillations arising from a
homoclinic bifurcation, and as such shall refer to it as the PML model. On a technical point
it is important to note that it is not possible to have a smooth SNIC with a PWL model, since
it would not contain any quadratic parts (necessary to define a saddle-node bifurcation). One
such example would be the nonlinear IF neuron, described by Karbowski and Kopell [52] with
subthreshold dynamics v̇ = |v|+ I. Throughout the rest of this paper we shall work with the
PWL model defined by (2.3) and (2.5), though we stress here that the techniques we develop
work for all of the PWL choices for f(v) and g(v, w) that we have discussed above.

3. Periodic orbits. Much can be said about the dynamics of models of PWL planar
systems defined by (2.3) and (2.5). For the special case that f(v) = −v + Θ(v − a) and
g(v, w) = v Tonnelier [78] has shown how to use the method of harmonic balance [2] to obtain
information about periodic orbits. Here we present an alternative approach that can tackle
more general choices for f and g. In essence we solve the system in each of its linear regimes
and demand continuity of solutions to construct orbits of the full nonlinear flow. To see how
we do this it is first convenient to consider a two-dimensional linear system of the form

(3.1) ż = Az + b, z =

[
v
w

]
,

where the 2 × 2 matrix A has components aij , i, j = 1, 2, and b is a constant 2 × 1 input
vector. The solution to (3.1) may be written in the form

(3.2) z(t) = G(t)z(0) + K(t)b, G(t) = eAt, K(t) =

∫ t

0
G(s)ds.
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If A has real eigenvalues λ±, such that Aq± = λ±q± with q± ∈ R
2, given by

(3.3) λ± =
TrA±

√
(TrA)2 − 4 detA

2
,

then we may “diagonalize” and write G(t) in the computationally useful form G(t) = P eΛtP−1,
where Λ = diag(λ+, λ−), P = [q+, q−], and q± = [(λ± − a22)/a21, 1]T . If A has complex
eigenvalues ρ ± iω, then the associated complex eigenvector is q such that Aq = (ρ + iω)q,
q ∈ C

2. In this case G(t) = eρtPRωtP
−1, where

(3.4) Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, P = [Im(q),Re(q)] =

[
0 1
ω̂ ρ̂

]
,

with ω̂ = ω/a12 and ρ̂ = (ρ−a11)/a12. Note that ρ and ω may be written using the invariance
of Tr and det as ρ = (a11 + a22)/2, ω2 = a11a22 − a12a21 − ρ2 > 0. The explicit form for G(t),
necessary for carrying out computations, is given in Appendix A.

To specify a periodic orbit of the PWL model of choice it is convenient to break the
solution into pieces such that on each piece the dynamics is governed by a linear dynamical
system. As a concrete example we will focus on the type of periodic orbits shown in Figures
1 and 2. In both these examples we need only consider four distinct pieces, labeled by
μ = 1, . . . , 4. We denote the time spent in each of these four states as Tμ. For each piece we
write zμ(t) = Gμ(t)zμ(0) + Kμ(t)bμ with the forms for Gμ and Kμ given by (3.2) under the
replacement of A by Aμ. For the McKean model we have that A1 = A3, A2 = A4, where

(3.5) A1 =

[
1/C −1/C
1 −γ

]
, A2 =

[
−1/C −1/C

1 −γ

]
,

with

(3.6) b1 =

[
(I − a)/C

0

]
, b2 =

[
(1 + I)/C

0

]
, b4 =

[
I/C
0

]
,

and b3 = b1. For the PML model defined by (2.5)

(3.7) A1 =

[
1/C −1/C
1/γ2 −1

]
, A2 =

[
−1/C −1/C
1/γ2 −1

]
, A4 =

[
1/C −1/C
1/γ1 −1

]
,

with

(3.8) b1 =

[
(I − a)/C
b∗ − b/γ2

]
, b2 =

[
(1 + I)/C
b∗ − b/γ2

]
, b4 =

[
(I − a)/C
b∗ − b/γ1

]
,

A3 = A1, and b3 = b1. Introducing two voltage thresholds v1
th and v2

th, where (v1
th, v

2
th) =

(a/2, (1+a)/2) for the McKean model and (v1
th, v

2
th) = (b, (1+a)/2) for the PML model, means

that we can parameterize a periodic orbit by choosing initial data such that z1(0) = (v1
th, w

∗)
(with w∗ as yet undetermined) and zμ+1(0) = Gμ(Tμ)zμ(0) + Kμ(Tμ)bμ for μ = 1, 2, 3. The
“times-of-flight” Tμ are determined by solving the threshold crossing conditions v1(T1) = v2

th,
v2(T2) = v2

th, v3(T3) = v1
th, and v4(T4) = v1

th. A periodic solution can then be found by solving
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Figure 3. McKean model. Left: Period of solution as a function of background drive I. Right: Shape of
orbits for I = 0.4, 0.5, 0.6, 0.7, 0.8. Other parameters are as in Figure 1.
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Figure 4. PML model. Left: Period of solution as a function of background drive I. Right: Shape of orbits
for I ranging from 0.17 to 0.09. Other parameters are as in Figure 2.

w4(T4) = w1(0), thus yielding w∗ and the period T =
∑4

μ=1 Tμ. In Figure 3 we plot the period
and orbit shape as a function of the external drive I obtained using the prescription above.
A similar plot for the PML model is shown in Figure 4. In contrast to the McKean model,
the firing rate of the PML model at the onset of repetitive behavior increases from zero, as
expected for a system with a homoclinic bifurcation.

Three other types of periodic solution are also possible. Two of these involve only a
single threshold crossing—namely, one which crosses through the section v = v1

th but not
v = v2

th and another which crosses through v = v2
th but not v = v1

th. Calling these the
sub- and suprathreshold periodic orbits, respectively, we may solve each using the approach
(and notation) above. The subthreshold orbit is specified by the restriction μ = {1, 4} with
z1(0) = (v1

th, w
∗), subject to v1(T1) = v1

th = v4(T4) and w4(T4) = w1(0), so that T = T1 + T4.
The suprathreshold orbit is specified by the restriction μ = {2, 3} with z2(0) = (v2

th, w
∗),

subject to v2(T2) = v2
th = v3(T3) and w3(T3) = w2(0), so that T = T2 + T3. Examples of
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Figure 5. McKean model. Left: Subthreshold orbits with C = 1, γ = 0.4, and I = 0.475, 0.5, 0.525.
All these subthreshold orbits have a common period. Right: Suprathreshold orbits with C = 1, γ = 0.7, and
I = 0.47, 0.49, 0.51. All these suprathreshold orbits have a common period. Other parameters are as in Figure 1.

such orbits are shown in Figure 5. The final type of orbit does not cross any thresholds and
is defined simply by v(T ) = vth and v(T ) = v(0) for some section vth through the orbit. We
shall call such an orbit harmonic, because its shape will be determined by a linear system of
ODEs. Note, however, that it will exist only at an isolated point in parameter space, namely,
where the coefficient matrix A has purely complex eigenvalues (TrA = 0, detA > 0).

3.1. Phase response curve. It is common practice in neuroscience to characterize a neu-
ronal oscillator in terms of its phase response to a perturbation. This gives rise to the notion
of a so-called phase response curve (PRC). For a detailed discussion of PRCs we refer the
reader to [29, 30, 45]. It suffices to say that there are three main ways to calculate PRCs, at-
tributed to Winfree, Kuramoto, and Malkin. A nice comparison of these three approaches can
be found in [50]. For concreteness we shall follow the exposition in [13] for the Malkin adjoint
method. Consider a dynamical system ż = F (z) with a T -periodic solution Z(t) = Z(t + T )
and introduce an infinitesimal perturbation Δz0 to the trajectory Z(t) at time t = 0. This
perturbation evolves according to the linearized equation of motion:

(3.9)
dΔz

dt
= DF (Z(t))Δz, Δz(0) = Δz0.

Here DF (Z) denotes the Jacobian of F evaluated along Z. Introducing a time-independent
phase shift Δθ as θ(Z(t) + Δz(t)) − θ(Z(t)), we have to first order in Δz that

(3.10) Δθ = 〈Q(t),Δz(t)〉,

where 〈·, ·〉 defines the standard inner product, and Q = ∇Zθ is the gradient of θ evaluated
at Z(t). Taking the time-derivative of (3.10) gives

(3.11)

〈
dQ

dt
,Δz

〉
= −

〈
Q,

dΔz

dt

〉
= −〈Q,DF (Z)Δz〉 = −

〈
DF T (Z)Q,Δz

〉
.
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Since the above equation must hold for arbitrary perturbations, we see that the gradient
Q = ∇Zθ satisfies the linear equation

(3.12)
dQ

dt
= D(t)Q, D(t) = −DF T (Z(t)),

subject to the conditions ∇Z(0)θ · F (Z(0)) = 1/T and Q(t) = Q(t + T ). The first condition

simply guarantees that θ̇ = 1/T (at any point on the periodic orbit), and the second enforces
periodicity. The (vector) PRC, R, is related to Q according to the simple scaling R = QT . In
general (3.12) must be solved numerically to obtain the PRC, say, using the adjoint routine
in XPP [25]. However, for PWL models DF (Z) is piecewise constant, and we can obtain
a solution in closed form. Introducing a labeling as for the periodic orbit in section 3, we
rewrite (3.12) in the form Q̇μ = DμQμ, where Dμ = −AT

μ . The solution of each subsystem

is given by Qμ(t) = GT
μ (Tμ − t)Qμ(Tμ) with Qμ(Tμ) = Qμ+1(0) for μ = 1, 2, 3. Denoting

Q4(T4) = (q1, q2), we have the relation

(3.13)
q1
μ

[
f(v1

th) − w∗ + I
]
+ q2g(v

1
th, w

∗) =
1

T
.

Periodicity is ensured by choosing Q1(0) = Q4(T4). After introducing the 2 × 2 matrix
Γ = GT

1 (T1)G
T
2 (T2)G

T
3 (T3)G

T
4 (T4), this periodicity condition takes the form

(3.14) (Γ11 − 1)q1 + Γ12q2 = 0.

Hence (3.13) and (3.14) define a pair of linear equations for (q1, q2) that we may write in the
form

(3.15) Ψ

[
q1
q2

]
=

[
1/T
0

]
, Ψ =

[
(f(v1

th) − w∗ + I)/μ g(v1
th, w

∗)
Γ11 − 1 Γ12

]
.

This is easily solved, with, say, Cramer’s rule, giving qi = det(Ψi)/det(Ψ), where

(3.16) Ψ1 =

[
1/T g(v1

th, w
∗)

0 Γ12

]
, Ψ2 =

[
(f(v1

th) − w∗ + I)/μ 1/T
Γ11 − 1 0

]
.

Similarly we may also construct the PRCs for the sub- and suprathreshold orbits (though we
omit the details here). Note that the discussion above assumes that the underlying dynamical
system is described by a continuous vector field, so that we are free to choose any point on
the orbit to fix the condition θ̇ = 1/T . For discontinuous systems such as would arise in the
singular limit C = 0 or with a discontinuous choice of g(v, w), then conditions (3.13) and
(3.14) are not sufficient. Techniques for tackling relaxation style oscillations that arise in the
former case have been developed in [48, 17], while the latter case can easily be treated by
writing down the matching conditions to fix θ̇ = 1/T at any jump discontinuities in g(v, w).
Plots of two example PRCs constructed using the above approach are shown in Figure 6.
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Figure 6. PRC (first component of Q(t) scaled by T ). The dashed line shows the underlying shape of the
periodic voltage solution. Left: McKean model PRC with parameters as in Figure 1. Right: PML model with
parameters as in Figure 2.

3.2. Stability: Floquet theory. The natural way to determine the stability of a periodic
orbit is to use Floquet theory (see, for example, [14]). The linearized equations describing
the evolution of perturbations around the periodic orbit are given by (3.9). Note that with
the use of a time-ordering operator T we may write the fundamental matrix solution of this
T -periodic system as

(3.17) G(t) = T
{

exp

[∫ t

0
DF (Z(s))ds

]}
,

where T D(t)D(s) = Θ(t−s)D(t)D(s)+Θ(s−t)D(s)D(t). Let μk be the (distinct) eigenvalues
of G(T ), and write σk = ln(μk)/T mod 2πi. It follows that the periodic orbit will be stable
if all the Floquet exponents have negative real part, namely, Reσk < 0 for all k = 1, 2. Note
that one of the Floquet exponents is always zero since it corresponds to perturbations along
the periodic orbit (i.e., Ż is a solution of (3.9) with a Floquet multiplier equal to unity). For
PWL models time-ordering is not an issue (since DF is piecewise constant), and we have that
G(T ) = G4(T4)G3(T3)G2(T2)G1(T1) = ΓT .

We now make use of the well-known result μ1μ2 = exp(
∫ T
0 TrDF (s)ds) to obtain (σ1, σ2)

= (0, σ), where

(3.18) σ =
1

T

∑
μ=1

Tμ TrAμ.

The nonzero exponent for the sub- and suprathreshold orbit is given by (3.18) with T2 = T3 = 0
and T1 = T4 = 0, respectively. For a harmonic splay state we have simply that σ = TrA1.
Periodic solutions are stable if σ < 0. For example, a periodic solution of the McKean model
has a nonzero Floquet exponent σ = (T1 − T2 + T3 − T4)/(CT )− γ. Note that in the singular
limit C → 0 we expect T1,3 → 0, so that σ ≤ 0. Hence, any periodic orbits that persist in this
limit will be stable. For the PML model σ = (T1−T2+T3+T4)/(CT )−1. Some example plots
of the nonzero Floquet exponent as a function of the external drive I are shown in Figure 7.



NEURONAL NETWORKS WITH GAP JUNCTIONS 1111

-7.1

-7.0

-6.9

-6.8

-6.7

0.4 0.5 0.6 0.7 0.8 0.9I

σ

-0.4

-0.3

-0.2

-0.1

0

0.08 0.1 0.12 0.14 0.16

σ

I

Figure 7. Plot of the Floquet exponent σ. Left: Result for the McKean model using the solution branch of
Figure 3 (left). Right: Result for the PML model using the solution branch of Figure 4 (left). Since σ < 0, the
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4. Gap junction coupling. To model the direct gap junction coupling between two cells,
one labeled post and the other pre, we introduce an extra current to the right-hand side of
(2.1) of the form

(4.1) Igap = ggap(vpre − vpost),

where ggap is the conductance of the gap junction. Indexing neurons in a network with the label
i = 1, . . . , N and defining a gap junction conductance strength between neurons i and j as gij
means that neuron i experiences a drive of the form N−1

∑N
j=1 gij(vj−vi). For a phase-locked

state then zi(t) = z(t − φiT ), z(t) = z(t + T ) (for some constant phases φi ∈ [0, 1)), and we
have N equations distinguished by the driving terms N−1

∑N
j=1 gij(v(t + (φi − φj)T ) − v(t)).

In this section we pursue two approaches for studying networks of identical PWL neurons
with such coupling terms. The first is the more familiar coupled-oscillator approach, valid for
weak coupling. The second approach exploits a Fourier representation to obtain closed form
solutions for splay states with arbitrary coupling strength.

4.1. Weak coupling. The theory of weakly coupled oscillators [57, 28] is now a standard
tool of dynamical systems theory and has been invoked by several authors to study networks
with gap junctions [69, 61, 70, 26, 63, 53]. It has also previously been used to study networks
of McKean neurons in the singular limit C → 0 [17, 22]. We introduce a time-dependent phase
along the T -periodic orbit of an uncoupled neuron such that θ̇i(t) = 1/T for i = 1, . . . , N ,
with θi ∈ [0, 1). In the presence of weak coupling (small gij), the dynamics for a gap junction
coupled network then takes the form

(4.2)
dθi
dt

=
1

T
+

1

N

N∑
j=1

gijH(θj − θi), i = 1, . . . , N,

where H(θ) is the so-called phase interaction function. For gap junction coupling this is given
by
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(4.3) H(θ) =
1

T

∫ T

0
QT (t)(v(t + θT ) − v(t), 0)dt,

where v(t) is a periodic solution of (2.1) and (2.2), and Q(t) is the associated adjoint. It is
convenient to introduce Fourier series for the 2 × 1 vectors z and Q and write

(4.4) z(t) =
∑
n

zne2πint/T , Q(t) =
∑
n

Qne2πint/T .

The phase interaction function then has the series representation

(4.5) H(θ) =
∑
n

Rnv−n[e−2πinθ − 1],

where vn denotes the first component of zn and Rn is the first component of Qn. The Fourier
coefficients zn and Qn may be obtained in closed form by taking Fourier transforms of the
solutions for z(t) and Q(t). A straightforward calculation, using the forms of z(t) and Q(t)
derived in sections 3 and 3.1, gives

(4.6) zn =
1

T

4∑
μ=1

[
αn
μzμ(0) + γnμbμ

]
e−2πinνμ , Qn =

1

T

4∑
μ=1

βn
μQμ(Tμ)e−2πinνμ ,

where (ν1, ν2, ν3, ν4) = (0, T1, T1 + T2, T1 + T2 + T3)/T and the coefficients αn
μ, βn

μ , and γnμ are
given explicitly by
(4.7)

αn
μ =

∫ Tμ

0
Gμ(t)e−2πint/Tdt, βn

μ =

∫ Tμ

0
GT

μ (Tμ−t)e−2πint/Tdt, γnμ =

∫ Tμ

0
Kμ(t)e−2πint/Tdt.

Computationally useful forms for these matrix coefficients are given in Appendix B. Writ-
ing H(θ) as the Fourier series

∑
nHne2πinθ, we have that Hn = R−nvn for n 	= 0 and

H0 = −
∑

n�=0 Hn. From the structure of (4.7) given in Appendix B we see that the Fourier
coefficients for the orbit and the response function decay as 1/n, and hence those of the phase
interaction function decay as 1/n2. Examples of phase interaction functions constructed using
the above prescription are shown in Figure 8.

We define a phase-locked solution to be of the form θi(t) = φi +Ωt, where φi is a constant
phase and Ω is the collective frequency of the coupled oscillators. Substitution into the
averaged system (4.2) gives

(4.8) Ω =
1

T
+

1

N

N∑
j=1

gijH(φj − φi), i = 1, . . . , N.

After choosing some reference oscillator, these N equations determine the collective frequency
Ω and N − 1 relative phases. In order to analyze the local stability of a phase-locked solution
Φ = (φ1, . . . , φN ), we linearize the system by setting θi(t) = φi + Ωt + θ̃i(t) and expand to

first order in θ̃i to obtain

(4.9)
dθ̃i
dt

=
1

N

N∑
j=1

Ĥij(Φ)θ̃j , Ĥij(Φ) = gijH
′(φj − φi) − δi,j

N∑
k=1

gikH
′(φk − φi),
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Figure 8. Phase interaction functions corresponding to Figure 6. Left: McKean model. Right: PML model.
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Left: McKean model. Right: PML model.

where H ′(φ) = dH(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always zero, and the
corresponding eigenvector points in the direction of the flow, that is, (1, 1, . . . , 1). The phase-
locked solution will be stable provided that all other eigenvalues have a negative real part.
For two neurons, with gij = g, a phase-locked state is defined by G(φ) = 0, where G(φ) =
g[H(−φ) −H(φ)] and φ is the relative phase between the two. The condition for stability is
simply G′(φ) < 0. By symmetry the phase-locked state (φ = 0) and the antisynchronous state
(φ = 1/2) are guaranteed to exist. In Figure 9 we plot G(φ) for the phase interaction functions
of Figure 8. In this example we see that the McKean model admits a stable synchronous
solution, while the PML model admits a stable antisynchronous solution.

For globally coupled networks with gij = g the system (4.2) is SN × T1 equivariant.
By the equivariant branching lemma maximally symmetric solutions describing synchronous,
splay, and cluster states are expected to be generic [5]. For the synchronous state, defined by
φi(t) = 0, the collective frequency is given simply as Ω = 1/T , and Ĥij(Φ) = gH ′(0)[1−Nδij ].
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Hence, there is a single zero eigenvalue and an eigenvalue λ = −gH ′(0) of multiplicity N − 1.
For the examples in Figure 8 we see that the McKean model has a stable synchronous solution,
while the PML model, with oscillations generated by a homoclinic bifurcation, does not. If
the underlying single neuron model has an oscillation generated by a SNIC bifurcation (for
which the PRC is well known), then synchrony is stable [26, 50]. For a splay state of the
form φi = i/N the eigenvalues of Ĥ are given by λn = g

∑
j H

′(j/N)(e2πinj/N − 1)/N for
n = 0, . . . , N − 1. Such solutions are often called merry-go-round states, since all oscillators
in the network pass through some fixed phase at regularly spaced time intervals of T/N . For
a recent review of the stability of cluster states (in which subsets of the oscillator population
synchronize, with oscillators belonging to different clusters behaving differently) we refer the
reader to [40, 12]. We shall not focus on them further here.

In the limit N → ∞ we have the useful result that (for global coupling) network averages
may be replaced by time averages:

(4.10) lim
N→∞

1

N

N∑
j=1

F (jT/N) =
1

T

∫ T

0
F (t)dt = F0

for some T -periodic function F (t) = F (t + T ). Hence in the large N limit the collective
frequency of a splay state (global coupling) is given by Ω = 1/T + gH0, with eigenvalues

(4.11) λn =
g

T

∫ T

0
H ′(t/T )e2πint/Tdt = −2πingH−n.

Hence a splay state is stable if −ng ImHn < 0, where we have used the fact that since H(θ) is
real, then ImH−n = − ImHn. A numerical examination of the eigenvalues (4.11) (using the
analytical expressions for Hn obtained via (4.6)) for the phase interaction functions shown in
Figure 8 shows that the splay state is unstable for both these examples. One natural way
to stabilize the splay state is to include some synaptic coupling as in the work of [37, 26].
Another mechanism is to include noise, as originally noted by Kuramoto [57]. If we consider
the addition of zero mean white noise with variance σ2 to the voltage dynamics, then the phase-
reduced system also feels an additive zero mean white noise source, though with variance σ2

θ

given by σ2
θ = σ2

∫ T
0 [R(t)]2 dt/T . For a globally coupled network the asynchronous state is

stable if −ng ImHn < σ2
θn

2 for all n 	= 0 [58]. This nicely shows us that if the eigenvalues
associated with the deterministic model stray slightly into the right-hand complex plane, then
a small amount of noise can be used to compensate and restabilize the splay state. However,
since this is an argument that relies upon weak coupling, then it can necessarily work only if
the unstable eigenvalues are sufficiently close to the imaginary axis.

4.2. Beyond weak coupling. Here we develop techniques for the study of the synchronous
and splay states in the strong coupling regime for global coupling (gij = g for all i, j). First,
we show how to construct such solutions, extending techniques used in our weak coupling
analysis, and use this to explore the effect of gap junction strength on network firing rates.
Second, we show how to analyze the stability of the synchronous solution using Floquet theory
and that of the splay state using a phase-density formalism.
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4.2.1. Existence and stability of a synchronous state. A synchronous network solution
exists whenever a periodic orbit for an isolated oscillator exists (g = 0) and has the period of
the uncoupled isolated oscillator. However, stability will depend on the value of coupling g.
For convenience we define a matrix Aμ(g) = Aμ −B(g) with

(4.12) B(g) =
g

C
J, J =

[
1 0
0 0

]
.

Following reasoning similar to that in [40] the 2N Floquet multipliers are given as the eigen-
values of a 2N × 2N matrix G(T ), where G(T ) has the form of (3.17), with DF given by

(4.13) DF =

⎡
⎢⎢⎢⎢⎢⎢⎣

A(g) + 1
NB(g) 1

NB(g) 1
NB(g) . . . 1

NB(g)
1
NB(g) A(g) + 1

NB(g) 1
NB(g) . . . 1

NB(g)
...

. . .
1
NB(g) 1

NB(g) . . . A(g) + 1
NB(g) 1

NB(g)
1
NB(g) 1

NB(g) . . . 1
NB(g) A(g) + 1

NB(g)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where A(g) = Aμ(g). Here μ is chosen according to μ = μ1 if t ∈ [0, T1), μ = μ2 if t ∈ [T1, T2),
μ = μ3 if t ∈ [T2, T3), and μ = μ4 if t ∈ [T3, T4), defining four distinct phases of the orbit.
On each of these four phases DF = DFμ is independent of time. The matrix DFμ is block
circulant, with a generating row given by [Aμ(g) + B(g)/N B(g)/N . . . B(g)/N ], and can be
diagonalized by Fourier transform. Introducing the 2-component vector qn, n = 0, . . . , N − 1,
the components of the eigenvectors of DFμ can be listed as a set of N 2-component vectors
with entries

(4.14) qne2πinm/N , n,m = 0, . . . , N − 1,

where q0 is an eigenvector of Aμ and qn�=0 is an eigenvector of Aμ(g). Hence, we may calculate
G(T ) = G4(T4)G3(T3)G2(T2)G1(T1) using the representation Gμ(Tμ) = Pμ exp(ΛμTμ)P−1

μ ,
where Pμ is the matrix of eigenvectors of DFμ and Λμ is the corresponding diagonal matrix of
eigenvalues, comprising the two eigenvalues of Aμ and N − 1 copies of the two eigenvalues of
Aμ(g). However, motivated by these observations, there is a much simpler way of calculating
the Floquet multipliers that avoids the computation of G(T ) (and its eigenstructure).

We write the N -dimensional linearized system of equations in the form Ż = DF Z. First
consider the two-dimensional system ż = A(g)z. By direct inspection we see that

(4.15) Z =

⎡
⎢⎢⎢⎢⎢⎣

z
−z
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

z
0
−z
...
0

⎤
⎥⎥⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎢⎢⎣

z
0
0
...

−z

⎤
⎥⎥⎥⎥⎥⎦

are linearly independent solutions of Ż = DF Z. Hence the two Floquet multipliers of
ż = A(g)z are also Floquet multipliers of Ż = DF Z, with N − 1 degeneracy. Now con-
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sider the two-dimensional system ż = Az. Again by direct inspection we see that

(4.16) Z =

⎡
⎢⎢⎢⎢⎢⎣
z
z
z
...
z

⎤
⎥⎥⎥⎥⎥⎦

is also a solution of Ż = DF Z, with two Floquet multipliers. Hence we can account
for all the 2N Floquet multipliers (including the one which is unity). Using the analy-
sis of section 3.2 the three relevant Floquet exponents are given by (3.18) and the pair
(σ1, σ2), where σk = ln(μk)/T mod 2πi. Here the μk are the two (distinct) eigenvalues of
G(T ) = G4(T4)G3(T3)G2(T2)G1(T1), where Gμ(Tμ) = exp(Aμ(g)Tμ) is a 2 × 2 matrix. Hence
the synchronous network state is stable if an uncoupled isolated oscillator has a stable peri-
odic orbit (σ < 0, and see (3.18)) and if the absolute values of the eigenvalues of G(T ) are
less than unity. The condition for eigenvalues to cross the unit circle along the real axis is
det[G(T ) ± I] = 0, and off of the real axis we have the condition detG(T ) = 1. This latter
condition is equivalent to

∑
μ Tμ TrAμ(g) = 0. For the examples in section 4.1 we find that the

McKean model supports a stable synchronous state for weak coupling and that this stability
persists with increasing g. For the PML model the synchronous state is unstable for weak g
and can restabilize with increasing g when det[G(T )− I] = 0. For the parameters of Figure 2
this occurs at g ∼ 0.45.

4.2.2. Existence and stability of a splay state. Here we will focus on a globally cou-
pled network in the large N limit. We first rewrite the coupling term for a splay state,
(vi(t), wi(t)) = (v(t− iT/N), w(t− iT/N)) with (v(t), w(t)) = (v(t + T ), w(t + T )), as

(4.17) lim
N→∞

1

N

N∑
j=1

v(t + jT/N) =
1

T

∫ T

0
v(t)dt,

which is independent of both i and t. Hence, for a splay state every neuron in the network is
described by the same dynamical system, namely,

(4.18) Cv̇ = f(v) − gv − w + I + gv0, ẇ = g(v, w),

where v0 = T−1
∫ T
0 v(t)dt. We note that because of the dependence on v0 (4.18) is an

advanced-retarded differential delay equation (see Appendix D for a general numerical method
of solution). In the notation of section 3 we write żμ = Aμ(g)zμ + bμ(g), where bμ(g) = bμ + b,
with

(4.19) b =
g

C
Jz0, z0 =

[
v0

w0

]
.

The same techniques as deployed in section 3 can be invoked to obtain a formal solution
describing a T -periodic orbit. In doing so we see that the generalization of (4.6) expresses the
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Figure 10. Period of the splay state as a function of the coupling strength g. Left: McKean model with
parameters as in Figure 1. Right: Period of PML model with g = 0.1 as a function of drive I and other
parameters as in Figure 2. Note the coexistence of long and short period splay states.

solution in terms of itself via the dependence of bμ(g) on the Fourier component z0. Setting
n = 0 in this equation gives a self-consistent expression for z0 given by

(4.20) z0 =
1

T

4∑
ν=1

{
α0
ν(g)zν(0) + γ0

ν(g)bν(g)
}
,

where αn
μ(g) and γnμ(g) are the natural generalizations of αn

μ and γnμ (obtained under the
replacement of Gμ(t) = exp(Aμt) by exp(Aμ(g)t) in (4.7)). Equation (4.20) may be rearranged
to obtain an explicit equation for z0 in the form z0 = Mz1(0), where the 2 × 2 matrix M
is a function of system parameters and the unknowns w∗ and Tμ. The threshold crossing
conditions may then be solved for as before to determine w∗ and Tμ. The elements of α0

μ are
given explicitly by Kμ(Tμ), and those of γ0

μ are given in Appendix C. The dependence of the
period on the strength of coupling g is shown in Figure 10. Typically we find that if a splay
state exists for g = 0, then with increasing g its period decreases. However, in some parameter
regimes it can also begin to increase again, as originally noted in [26]. Interestingly for the
PML model it is easy to find parameter regimes where there is a coexistence of solutions, as
in Figure 10, right. Note that in this example with I < 0.09 (where there are two solutions)
the splay state does not exist at g = 0 so that weak coupling theory cannot tell us anything
about either existence or stability.

In general the stability of a phase-locked state can be determined by determining the 2N
Floquet exponents of the linearized system. Indeed, pursuing this approach for a splay state,
we would find a similar coefficient matrix as in (4.13) with diagonal entries not equal to each
other, but rather phase shifted, making analytical progress more cumbersome. However, for
large N we may pursue an alternative phase reduction technique for networks of limit cycle
oscillators with synaptic coupling developed by van Vreeswijk [81] and later used to study
resonate-and-fire networks [66]. To do this we first write the coupling term N−1

∑N
j=1 vj(t) in

a more convenient form for studying perturbations of the mean field; namely, we write
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(4.21) lim
N→∞

1

N

N∑
j=1

vj(t) = lim
N→∞

1

N

N∑
j=1

∑
m∈Z

u(t− Tm
j ),

where Tm
j = mT + jT/N . Here u(t) = 0 for t < 0 and is chosen such that v(t) =∑

m∈Z
u(t − mT ), ensuring that v(t) = v(t + T ). For arbitrary values of Tm

j the coupling
term (4.21) is time-dependent, and we may write it in the form

(4.22) E(t) =

∫ ∞

0
f(t− s)u(s)ds, f(t) = lim

N→∞

1

N

∑
j,m

δ(t− Tm
j ),

where we recognize f(t) as a firing rate. We now consider perturbations of the mean field
such that E(t) (the average membrane voltage) is split into a stationary part (arising from
the splay state) and an infinitesimal perturbation. Namely, we write E(t) = v0 + ε(t), with
small ε(t). Since this perturbation to the oscillator defined by (4.18), the splay oscillator, is
small, we may use phase reduction techniques to study the stability of the splay state.

In terms of a phase θ ∈ [0, 1) along the asynchronous state, we may write the evolution of
this phase variable in response to a perturbation in the mean field as

(4.23)
dθ

dt
=

1

T
+ gΓ(θ)ε(t),

where Γ(θ) is the (g-dependent) voltage component of the adjoint for the splay oscillator.
This can again be calculated in closed form using the techniques developed in section 3.1.
Some examples of splay state PRCs are shown in Figure 11. In fact, we need to treat N
phase variables θi, each described by an equation of the form (4.23), which are coupled by the
dependence of ε(t) on these variables. To make this more explicit we write

(4.24) ε(t) =

∫ ∞

0
δf(t− s)u(s)ds

and use a phase-density description to calculate the dependence of the perturbed firing rate
δf on the phases. We define a phase-density function as the fraction of neurons in the interval
[θ, θ + dθ], namely, ρ(θ, t) = N−1

∑
j δ(θj(t) − θ). Introducing the flux J(θ, t) = ρ(θ, t)θ̇, we
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have the continuity equation

(4.25)
∂ρ

∂t
= −∂J

∂θ
,

with boundary condition J(1, t) = J(0, t). The firing rate is the flux through θ = 1, so that
f(t) = J(1, t). Considering perturbations around the splay state, (ρ, J) = (1, T−1), means
writing ρ(θ, t) = 1+δρ(θ, t), with a corresponding perturbation of the flux that takes the form
δJ(θ, t) = δρ(θ, t)/T +gΓ(θ)ε(t). In fact, the analysis that follows applies to the asynchronous
state and not just the splay state. The distinction between the splay and asynchronous states
is subtle; in the splay state, the phases are distributed along a cycle with phase differences
of 1/N between two adjacent phases. In the asynchronous state, the definition is simply
ρ(θ, t) = ρ0(θ), namely, that the phase density function is independent of time.

Differentiation of δJ(θ, t) gives the partial differential equation

(4.26) ∂tδJ(θ, t) = − 1

T
∂θδJ(θ, t) + gΓ(θ)ε′(t),

where

(4.27) ε(t) =

∫ ∞

0
u(s)δJ(1, t− s)ds.

Assuming a solution of the form δJ(θ, t) = eλtδJ(θ) gives

(4.28) ε(t) = δJ(1)eλtũ(λ),

where ũ(λ) =
∫∞
0 u(t)e−λtdt is the Laplace transform of u(t). In this case ε′(t) = λε(t).

Equation (4.26) then reduces to the ODE

(4.29)
d

dθ
δJ(θ)eλTθ = gλTΓ(θ)δJ(1)ũ(λ)eλTθ.

Integrating (4.29) from θ = 0 to θ = 1 and using the fact that δJ(1) = δJ(0) yields an implicit
equation for λ as

(4.30)
1

ũ(λ)
− gλT

eλT − 1

∫ 1

0
Γ(θ)eλθTdθ = 0.

By taking the Laplace transform of v(t) =
∑

m u(t−mT ), we have that

(4.31) ũ(λ) = (1 − e−λT )ṽ(λ).

Hence, we may write λ as the solution to E(λ) = 0, where

(4.32) E(λ) =
eλT

ṽ(λ)
− gλT

∫ 1

0
Γ(θ)eλθTdθ.

Since 1/ṽ(0) = 0, we see that E(0) = 0, as expected. Writing λ = ν + iω, we may find the
pair (ν, ω) by the simultaneous solution of ER(ν, ω) = 0 and EI(ν, ω) = 0, where ER(ν, ω) =
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Figure 12. Spectrum for the splay state in the PML model. Eigenvalues are at the positions where the red
and blue curves intersect. The small circles denote the predictions from weak coupling theory. Parameters are
as in Figure 2. Left: I = 0.1, g = 0.01. Note the unstable mode with ω ∼ ±3.6. As expected, eigenvalues from
the weak coupling theory are close to the zeros of the full stability function. Right: Spectrum for the splay state
with g = 0.1, C = 0.9, I = 0.085. In this case predictions from weak coupling theory break down. Note the
occurrence of a double-zero eigenvalue signaling a bifurcation to a branch of solutions with T2 = 0 (i.e., orbits
tangential to v = v2

th).

Re E(ν + iω) and EI(ν, ω) = Im E(ν + iω). In terms of the Fourier coefficients for Γ(θ) and
v(t), we may obtain a useful representation for (4.32) using∫ 1

0
Γ(θ)eλθTdθ = (eλT − 1)

∑
n

Rn

2πin + λT
,(4.33)

ṽ(λ) = T
∑
n

v−n

2πin + λT
.(4.34)

Examples of the spectrum obtained from the zeros of E(λ), for the PML model, are shown in
Figure 12. In all cases we find the splay state is unstable.

For small g we expect to recover the stability result obtained using weakly coupled oscil-
lator theory (see section 4.1). To check this we consider solutions of the form 2πin + λT =
2πingRnv−nT for n 	= 0 and g � 1. In this case we have that

(4.35)
E(λ)

g
=

1∑
n 1/(2πinRn)

− (λT )2
∑
n

Rn

2πin + λT
.

Using the facts that Rn decays as 1/n (and so is an odd function of n) and λ scales with g,
we may write

(4.36)
∑
n,m

1

2πinRn

Rm

2πim + λT
≈
∑
n

1

2πin(2πin + λT )
=

1

eλT − 1

∫ 1

0
S(θ)eλθTdθ,
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where we introduce the function S(θ) =
∑

n Sne2πinθ, with Sn = 1/(2πin). Recognizing S(θ)
as the Fourier series for the sawtooth function S(θ) = S(θ + 1) with S(θ) = −θ for θ ∈ [0, 1),
we may evaluate (4.36) as 1/(λT )2. Using (4.36) in (4.35) shows that E(λn) = 0, where
λn = 2πin − 2πingH−n, and we recover the stability condition for weak coupling, namely,
−ng ImHn < 0 for n 	= 0.

5. Mean field rhythms. We are now in an ideal position to explore observations of Han,
Kurrer, and Kuramoto [42, 43] concerning large amplitude oscillations seen in the average
membrane potential of globally gap junction coupled Morris–Lecar networks. These novel
rhythms were interpreted as cyclic transitions between coherent and incoherent network states
and described as “bursting.” However, to distinguish this from the type of behavior commonly
associated with fast-slow systems [18], we shall not use this terminology here. For the rest of
this section we focus on the PML model. We begin our discussion by analyzing the homoge-
neous fixed point behavior of the network. Using arguments similar to those in section 4.2.1,
we may easily construct conditions for the stability of the fixed point (vss, wss). Considering
the case b < vss < (1 + a)/2, we have that

(5.1) vss =
a− I + bs − b/γ2

1 − g − 1/γ2
, wss =

vss

γ2
+ bs −

b

γ2
.

If it exists, this homogeneous steady state is independent of C. The conditions for network
stability of this homogeneous state are TrA1 = 1/C−1 < 0 and TrA1(g) = (1−g)/C−1 < 0.
Thus a homogeneous network state (if it exists) is stable only for C > 1 and unstable otherwise.
Note, however, that when TrA1(g) = 0, namely, C = CH = 1 − g, we expect the existence
of a harmonic splay state (since the dynamics is governed by a purely linear system with
imaginary eigenvalues). Generically the results in sections 4.2.1 and 4.2.2 show that both the
synchronous and splay states will be unstable for the PML model. However, knowledge of
these states and the stability of the network steady state can be used to understand the original
observations in [42, 43] regarding oscillations in the mean membrane potential. These authors
suggested that such states could be viewed as being pushed and pulled between the unstable
synchronous state and the unstable fixed point. However, in light of the work presented here,
we now see that such oscillations may also occur as oscillations around an unstable orbit that
can be either a fixed point or a splay state. We illustrate this idea with the aid of Figure 13.
In each of the upper panels we show plots of the unstable orbits that exist for C < CH ,
C = CH , and C > CH , with C < 1. For C < CH there is an unstable splay state that
“sits” between the unstable synchronous state and the unstable homogeneous steady state.
Direct numerical simulations show that the network fluctuates around the splay state, cycling
between the other two unstable states. A similar behavior occurs at C = CH , though the
network can fluctuate around and between three coexisting unstable splay states. For C > CH

the network dynamics fluctuates around the unstable homogeneous steady state. In Figure 14
we show an example of large amplitude oscillations in the mean membrane potential with a
value of C just less than C = 1, beyond which point the homogeneous steady state is stable.

6. Discussion. Motivated by the desire to understand the dynamics of neuronal networks
with gap junction coupling, we have developed a number of results for planar PWL neuron
models. We focus on these as they are minimal models capable of generating AP shapes.
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Figure 13. Top: A family of coexisting unstable orbits in the PML model; synchronous (green), splay (blue),
subthreshold splay (light blue), and harmonic splay (red). Here g = 0.1, I = 0.085, and other parameters are
as in Figure 2. Left: C < 1 − g (C = 0.89). Middle: C = 1 − g (C = 0.9). Right: C > 1 − g (C = 0.91).
Middle: Numerical simulation (after dropping transients) with N = 100 neurons showing a pseudo–color plot
of the triple (θ, vi, wi), where θ = t/Δ mod 1 for some fixed Δ. Initial data is chosen to lie between the splay
and synchronous state. Left: The network cycles between the unstable synchronous state and the unstable splay
state. Δ is chosen as the mean of the synchronous and splay period. Middle: The network cycles between the
unstable synchronous state and the unstable harmonic splay state. Δ is chosen as the mean of the synchronous
and harmonic splay period. Right: The network cycles between the unstable synchronous state and the unstable
fixed point. Δ is chosen as the period of the synchronous state. Bottom: Mean field signal E(t) showing large
amplitude fluctuations. Left: Fluctuations around the splay state (with v0 = 0.52107). Middle: Fluctuations
around the splay state (with v0 = 0.52583). Right: Fluctuations around the fixed point (with v0 = 0.545).
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Figure 14. Time varying mean field behavior organized around the unstable fixed point. Parameters are as
in Figure 13, right, with C = 0.95.

Unlike synaptically coupled networks, the shape of an AP is all-important in a gap junction
coupled network as it is communicated directly between cells. For any PWL planar single
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neuron model we have shown how to build periodic orbits in a self-consistent way, by piecing
together trajectories from neighboring regions of phase space. Moreover, this procedure nat-
urally lends itself to the construction of the associated PRC. The stability of periodic orbits
has been established using Floquet theory, which in this case generates closed form expres-
sions for the nonzero exponent of the orbit. As well as paving the way for the more obvious
weakly coupled network analysis, we have found that the simplicity of the PWL model can
allow for studies in the strong coupling regime, albeit for global coupling. In illustration of the
utility of studying PWL networks, we have further shown how this can underpin a systematic
explanation of the original observations of Han, Kurrer, and Kuramoto [42] on the generation
of exotic mean field signals in networks of Morris–Lecar neurons with gap junction coupling.

Looking forward, it is worth mentioning here a number of possible extensions of the work in
this paper that will lead to a deeper understanding of the role of gap junctions in shaping brain
rhythms. As we have stressed, the techniques in this paper are general and are applicable to
many PWL systems. In particular, it would be valuable to study Type I models which rely on
a SNIC to generate their firing rate response [33, 32]. The cortical neuron model of Wilson [85]
is a classic example of this, and its quadratic recovery variable is easily caricatured by choosing
the parameter γ1 in (2.5) to be negative. For systems with local chain-like coupling it may
also prove possible to adapt techniques in [65] to study both synchronization and transient
dynamics. Another natural step is to endow the purely gap junction coupled networks that
we have described here with synaptic interactions. At the level of weak coupling the coupled
oscillator theory that we have described here is naturally generalized along the lines of [26, 53].
Another mechanism available to neurons for the initiation of a firing event is that of anode
break excitation, whereby a neuron can fire on release from a hyperpolarized state. The
planar models that we have considered here are capable of such behavior, and thus when
connected by inhibitory synapses emergent network periodic orbits might also be analyzed in
a PWL fashion. In the strong coupling regime the challenge of studying phase-locked states
that are neither synchronous nor splay effectively reduces to the problem of studying ODEs
with delays. The techniques for doing this for PWL systems are relatively well developed
in the engineering community, and one may therefore revisit the work in this paper, making
explicit use of Lambert functions to define trajectories [6, 86]. In light of the recent interest
in the analysis of gap junctions between dendritic trees [73], it would be interesting to explore
the possibility of moving away from point neuron models, as studied here, to models with a
spatially extended character [10]. For dendrites without active processes, the tools for doing
this have been partially developed in [19]. However, of all the possible next steps, we regard the
development of a tissue level firing rate model that can properly treat gap junction coupling
as the major challenge facing the mathematical neuroscience community. Although at the
level of fast voltage variables it is natural to think of gap junction coupling between nearest
neighbors as generating a diffusive coupling, it is not clear that it is appropriate to simply
add diffusive terms to existing rate models [77], such as the Wilson–Cowan, Amari, or Liley
models (recently reviewed in [20]), since the state variables in these examples have no direct
interpretation as fast voltage variables. In future work we hope to combine ideas from mean
field dynamics, particularly those in [51, 67], with “equation-free” modeling [59] to tackle this
challenge.
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Appendix A. For real eigenvalues of A, we have the explicit form for G(t) in section 3:

G11(t) =
1

λ+ − λ−

{
λ+eλ+t − λ−eλ−t − a22

[
eλ+t − eλ−t

]}
,

G12(t) = −λ+ − a22

λ+ − λ−

λ− − a22

a21

[
eλ+t − eλ−t

]
,

G21(t) =
a21

λ+ − λ−

[
eλ+t − eλ−t

]
,

G22(t) =
1

λ+ − λ−

{
λ+eλ−t − λ−eλ+t + a22

[
eλ+t − eλ−t

]}
.(A.1)

The matrix K(t) may then be calculated as

K11(t) =
1

λ+ − λ−

{
eλ+t − eλ−t − a22

[
eλ+t − 1

λ+
− eλ−t − 1

λ−

]}
,

K12(t) = −λ+ − a22

λ+ − λ−

λ− − a22

a21

[
eλ+t − 1

λ+
− eλ−t − 1

λ−

]
,

K21(t) =
a21

λ+ − λ−

[
eλ+t − 1

λ+
− eλ−t − 1

λ−

]
,

K22(t) =
1

λ+ − λ−

{
λ+

λ−

[
eλ−t − 1

]
− λ−

λ+

[
eλ+t − 1

]
+ a22

[
eλ+t − 1

λ+
− eλ−t − 1

λ−

]}
.(A.2)

For complex eigenvalues of A, we have the explicit form for G(t):

(A.3) G(t) =
eρt

ω̂

[
ω̂ cosωt− ρ̂ sinωt sinωt
−(ρ̂2 + ω̂2) sinωt ω̂ cosωt + ρ̂ sinωt

]
.

The matrix K(t) may then be calculated as

(A.4) K(t) =
1

ω̂

[
ω̂KR(t) − ρ̂KI(t) KI(t)
−(ρ̂2 + ω̂2)KI(t) ω̂KR(t) + ρ̂KI(t)

]
,

where

KR(t) =
1

ρ2 + ω2

{
ρ
[
eρt cos(ωt) − 1

]
+ ωeρt sin(ωt)

}
,(A.5)

KI(t) =
1

ρ2 + ω2

{
ω
[
1 − eρt cos(ωt)

]
+ ρeρt sin(ωt)

}
.(A.6)

Appendix B. Computationally useful forms for the matrix elements in (4.7) are as follows:

αn
μ = PμΨn

μP
−1
μ ,(B.1)

βn
μ = P̃μΨ−n

μ P̃−1
μ e−2πinTμ/T ,(B.2)

γnμ = PμΨ̃n
μP

−1
μ ,(B.3)
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where

Ψn
μ = diag

(
e(λμ

+−2πin/T )Tμ − 1

λμ
+ − 2πin/T

,
e(λμ

−−2πin/T )Tμ − 1

λμ
− − 2πin/T

)
,(B.4)

Ψ̃n
μ = diag(1/λμ

+, 1/λ
μ
−)

[
Ψn

μ +
e−2πinTμ/T − 1

2πin/T
I

]
, n 	= 0,(B.5)

Ψ̃0
μ = diag(1/λμ

+, 1/λ
μ
−) diag

(
eλ

μ
+Tμ − 1

λμ
+

− Tμ,
eλ

μ
−Tμ − 1

λμ
−

− Tμ

)
,(B.6)

with Pμ and P̃μ as the matrix of eigenvectors of Aμ and AT
μ , respectively, with associated

eigenvalues λμ
±. From the structure of Ψn

μ and Ψ̃n
μ above we see that αn

μ, βn
μ , and γnμ all

decrease as 1/n.

Appendix C. In section 4.2.2 the elements of γ0
μ are calculated explicitly by noting that

γ0
μ =

∫ Tμ

0 Kμ(t)dt. The structure of Kμ(t) for real and imaginary eigenvalues of the associated

matrix Aμ are given by (A.2) and (A.4), respectively. Denoting
∫ t
0 K(s)ds by F (t) gives

F11(t) =
1

λ+ − λ−

{
eλ+t − 1

λ+
− eλ−t − 1

λ−
− a22

[
1

λ+

[
eλ+t − 1

λ+
− t

]
− 1

λ−

[
eλ−t − 1

λ−
− t

]]}
,

F12(t) = −λ+ − a22

λ+ − λ−

λ− − a22

a21

[
1

λ+

[
eλ+t − 1

λ+
− t

]
− 1

λ−

[
eλ−t − 1

λ−
− t

]]
,

F21(t) =
a21

λ+ − λ−

[
1

λ+

[
eλ+t − 1

λ+
− t

]
− 1

λ−

[
eλ−t − 1

λ−
− t

]]
,

F22(t) =
1

λ+ − λ−

{
λ+

λ−

[
eλ−t − 1

λ−
− t

]
− λ−

λ+

[
eλ+t − 1

λ+
− t

]

+ a22

[
1

λ+

[
eλ+t − 1

λ+
− t

]
− 1

λ−

[
eλ−t − 1

λ−
− t

]]}
(C.1)

for real λ± and

(C.2) F (t) =
1

ω̂

[
ω̂FR(t) − ρ̂FI(t) FI(t)
−(ρ̂2 + ω̂2)FI(t) ω̂FR(t) + ρ̂FI(t)

]
,

where

FR(t) =
1

ρ2 + ω2
{ρ [KR(t) − t] + ωKI(t)} ,(C.3)

FI(t) =
1

ρ2 + ω2
{ω [t−KR(t)] + ρKI(t)}(C.4)

for complex λ±. The matrices γ0
μ = Fμ(Tμ) may then be calculated using the above forms for

F (t) (under the replacement of λ± by λμ
±).

Appendix D. For a splay state we may rewrite the advanced-retarded system of equations
(4.18) as a set of ODEs by introducing
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(D.1) X−(t) =
1

T

∫ t

0
v(t)dt, X+(t) =

1

T

∫ T

t
v(t)dt.

After rescaling time as τ = t/T we may write

C

T

dv

dτ
= f(v) − gv − w + I + g(X− + X+),(D.2)

1

T

dw

dτ
= g(v, w),(D.3)

dX−
dτ

= v,(D.4)

dX+

dτ
= −v,(D.5)

subject to the boundary conditions v(0) = vth = v(1), w(0) = w∗ = w(1), X−(0) = 0,
X−(1) = v0, X+(0) = v0, and X+(1) = 0 (for some voltage section vth). We have four ODEs
with seven boundary conditions which we may treat as a boundary value problem for the free
parameters (v0, w

∗, T ). For general choices of f and g it is natural to use numerical shooting
for the solution of this problem. Alternatively, for the PWL models discussed in this paper we
may analytically construct solutions according to the prescription described in section 4.2.2.

Acknowledgments. I would like to thank Bard Ermentrout and three anonymous referees
for useful comments that have improved the presentation of the work in this paper.

REFERENCES

[1] L. F. Abbott and T. B. Kepler, Model neurons: From Hodgkin–Huxley to Hopfield, in Statistical
Mechanics of Neural Networks, Lecture Notes in Phys. 368, L. Garrido, ed., Springer-Verlag, Berlin,
1990, pp. 5–18.

[2] D. J. Allwright, Harmonic balance and the Hopf bifurcation, Math. Proc. Cambridge Philos. Soc., 82
(1977), pp. 453–467.

[3] V. A. Alvarez, C. C. Chow, E. J. Van Bockstaele, and J. T. Williams, Frequency-dependent
synchrony in locus ceruleus: Role of electrotonic coupling, Proc. Natl. Acad. Sci. USA, 99 (2002), pp.
4032–4036.

[4] Y. Amitai, J. R. Gibson, M. B. S. L. Patrick, A. M. Ho, B. W. Connors, and D. Golomb, The
spatial dimensions of electrically coupled networks of interneurons in the neocortex, J. Neurosci., 22
(2002), pp. 4142–4152.

[5] P. Ashwin and J. W. Swift, The dynamics of n weakly coupled identical oscillators, J. Nonlinear Sci.,
2 (1992), pp. 69–108.

[6] F. A. Asl and A. G. Ulsoy, Analysis of a system of linear delay differential equations, J. Dynamic
Systems, Measurement, and Control, 125 (2003), pp. 215–223.

[7] T. Bem and J. Rinzel, Short duty cycle destabilizes a half-center oscillator, but gap junctions can
restabilize, J. Neurophysiology, 91 (2003), pp. 693–703.

[8] M. V. L. Bennet and R. S. Zukin, Electrical coupling and neuronal synchronization in the mammalian
brain, Neuron, 41 (2004), pp. 495–511.

[9] M. Bennett, J. Contreras, F. Bukauskas, and J. Sáez, New roles for astrocytes: Gap junction
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Abstract. This paper is concerned with the geometry of slow manifolds of a dynamical system with one fast
and two slow variables. Specifically, we study the dynamics near a folded-node singularity, which
is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves
of two-dimensional attracting and repelling slow manifolds, and they are a key element of slow-fast
dynamics. For example, canard solutions are associated with mixed-mode oscillations, where they
organize regions with different numbers of small oscillations. We perform a numerical study of the
geometry of two-dimensional slow manifolds in the normal form of a folded node in R

3. Namely, we
view the part of a slow manifold that is of interest as a one-parameter family of orbit segments up to
a suitable cross-section. Hence, it is the solution of a two-point boundary value problem, which we
solve by numerical continuation with the package AUTO. The computed family of orbit segments
is used to obtain a mesh representation of the manifold as a surface. With this approach we show
how the attracting and repelling slow manifolds change in dependence on the eigenvalue ratio μ
associated with the folded-node singularity. At μ = 1 two primary canards bifurcate and secondary
canards are created at odd integer values of μ. We compute 24 secondary canards to investigate how
they spiral more and more around one of the primary canards. The first sixteen secondary canards
are continued in μ to obtain a numerical bifurcation diagram.
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1. Introduction. Multiple time scale systems are characterized by the property that cer-
tain variables evolve on vastly different time scales, which means that the systems may display
dynamics that is composed of slow and fast elements. The occurrence of different time scales is
quite natural in many applications, including chemical reaction dynamics [10, 33, 35, 37, 39],
cell modeling [15, 43, 44], electronic circuits [13, 48, 49], and laser dynamics [16, 21]. The
first example of slow-fast dynamics was discovered by Van der Pol [48, 49] in the 1920s. He
considered an electrical circuit with a triode valve where the current is a cubic function of
the voltage. The mathematical model of this circuit is known today as the Van der Pol equa-
tions. It shows sustained, very nonharmonic oscillations when the nonlinear damping is large.
In this case the periodic solution is composed of slow motion that closely follows attracting
segments of the underlying cubic curve (which forms one of the nullclines), followed by fast
jumps as the trajectory reaches either of the two folds of this curve. At the jumps one of
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the variables barely changes until the trajectory reaches another attracting segment of cubic
curve. Van der Pol called these periodic solutions relaxation oscillations. Models showing
relaxation oscillations quite similar to that of the Van der Pol equations have been found in
other application areas. A well-known example is the FitzHugh–Nagumo system, which also
has two time scales and a cubic nonlinearity. It was derived independently by FitzHugh [24]
and Nagumo [38] as a simplified planar version of the famous Hodgkin–Huxley equations for
the action potential of the giant axon of a squid in terms of transmembrane currents [31].

At the end of the 1970s, Benôıt et al. [5] found and analyzed even more unusual periodic
solutions in the Van der Pol equations with an added external constant forcing term; they
called these periodic solutions canards. A canard orbit has the special property that it follows
at least one unstable segment of the underlying cubic nullcline. In other words, the trajectory
does not jump at the respective fold. Canard orbits account for a sudden increase in the
amplitude of the attracting periodic orbit in the transition from harmonic oscillations to
relaxation oscillations. This change is known as a canard explosion, a term that was first
introduced by Brøns and Bar-Eli [7]. A canard explosion and the associated canards are
extremely difficult to observe in two-dimensional slow-fast systems, because the transition
happens in an exponentially small parameter interval.

In three-dimensional slow-fast systems canards may exist in much larger regions of the
system parameters. They have been found in numerous slow-fast systems. For example, ca-
nards explain sudden changes in amplitude and period of oscillatory behavior in chemical
reactions [10, 33, 35, 37, 39]; they organize the dynamics in models of coupled neurons and
also play an important role in intracellular activities [15, 43, 44]; canards have been studied
for their role in diffusion-induced instabilities [10, 41]; and Guckenheimer et al. [6, 29] re-
cently performed an extensive study of a reduced hybrid model of the (periodically) forced
Van der Pol equations which revealed relaxation oscillations and canard orbits of different
types. A related phenomenon in slow-fast systems are mixed-mode oscillations, which con-
sist of large-amplitude excursions followed by small-amplitude motions that are typically of
(relatively) high frequency. This type of oscillation has been found in chemical and biological
systems, and the connection between mixed-mode oscillations and canards has been clarified
recently [9, 35, 44, 50]; see also the special issue [8].

For the theoretical study of canards in three-dimensional phase space, one considers a
dynamical system with two slow and one fast variable of the form

(1.1)

⎧⎨
⎩

u̇1 = g1(u1, u2, v, ε),
u̇2 = g2(u1, u2, v, ε),
εv̇ = f(u1, u2, v, ε).

Here g1, g2, and f are sufficiently smooth functions, and ε > 0 is a small parameter that
separates the different time scales. Since ε is small, the variables u1 and u2 move on a slower
time scale than the fast variable v. The equivalent of the cubic nullcline of the Van der Pol
equations is now the surface—called the critical manifold—that is given as the v-nullcline of
(1.1). The critical manifold has repelling parts and attracting parts, which meet along one-
dimensional fold curves. As for the Van der Pol equations, the slow dynamics takes place close
to the critical manifold. When a fold is reached two things can happen. The trajectory may
jump at the fold curve toward another attracting sheet of the critical manifold. If a global
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Figure 1. Sketch of a folded critical manifold S consisting of an attracting sheet Sa (red) and a repelling
sheet Sr (blue) that meet at a fold curve F . The sketched flow on S is the generic slow flow near a folded node
(black dot); shown are two singular canards γ̂s and γ̂w and some other trajectories of the slow flow. The action
of the fast flow is shown along one fast fiber.

return mechanism is present, e.g., the critical manifold is S-shaped with two fold curves, such
jumps give rise to classical relaxation oscillations [36, 46]. The other possibility is that the
trajectory is a canard solution that does not jump at the fold curve but instead stays near
the repelling part of the critical manifold for a certain amount of time.

Since the beginning of the 1980s different analytical techniques have been applied to the
study of canard solutions. Initially, nonstandard analysis [3, 4, 5] and matched asymptotic
expansions [19, 36] were used. Dumortier and Roussarie showed in their seminal work [17, 18,
42] that (standard) nonlinear analysis can be applied to the study of canards. Underlying this
approach is the realization that canards can be understood via the dynamics of the system
near folds of the critical manifold. Of specific interest here are (isolated) points on fold curves
where the direction of flow changes from pointing toward the fold to pointing away from the
fold. These points, called folded singularities, are key to the understanding of canard solutions.

We are concerned here with the case of a folded node, which is a type of folded singularity
that has been identified as an organizing center for the creation of canard solutions. Figure 1
shows the dynamics for ε = 0 near a folded node on a regular fold curve F along which the
attracting sheet Sa and the repelling sheet Sr of the critical manifold join. At the folded
node (black dot), the direction of the flow on the critical manifold changes. This allows for
the existence of canard solutions on the critical manifold that cross F at the folded node with
nonzero speed and then follow the repelling sheet Sr. These canards for ε = 0 are referred to
as singular canards, and they occur in an entire region that is bounded by the repelling part of
the fold curve F (to the left of the folded node) and the special canard solution γ̂s in Figure 1.
The main question now is: What can be said about the dynamics near a folded node when
ε > 0? According to a well-known result by Fenichel [22, 23], away from the fold curve F the
attracting and repelling sheets give rise to an attracting slow manifold Sa

ε and a repelling slow
manifold Sr

ε for ε > 0, respectively. Importantly, for ε > 0 the two surfaces Sa
ε and Sr

ε do not
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connect along the fold curve, but rather intersect, generically transversely, in one-dimensional
solution curves. These curves are referred to as maximal canards, as they stay close to the
repelling part of the critical manifold for a certain amount of time. In other words, finding the
structure of canard solutions near the folded node is equivalent to understanding the geometry
of the two-dimensional surfaces Sa

ε and Sr
ε .

Canards near a folded node are best analyzed in a normal form setting. Normal forms
for all types of folded singularities, including the folded node, were derived by Il’yashenko;
see Arnol′d et al. [2, part I, chapter 4] and also the topological classification of Takens [47].
Benôıt [4] completely analyzed the case of a folded saddle and also considered the case of a
folded node. He proved the existence of two maximal canards under a nonresonance condition
with tools of nonstandard analysis and found secondary canards with spiraling behavior by
numerical integration. Szmolyan and Wechselberger [45] considered all cases of folded singu-
larities. For the folded node they proved the existence of primary canards by using geometric
singular perturbation theory in combination with blow-up transformations. The existence of
secondary canards depends on the eigenvalue ratio of the Jacobian at the folded node, which
we denote μ with 1 ≤ μ < ∞; precise details are given in section 2. Guckenheimer and
Haiduc [28] proved that for any fixed μ there is a finite number of secondary canards near a
folded node, and this number goes to infinity as both μ → ∞ and ε → 0. Wechselberger [50]
studied how secondary canards bifurcate from the weak primary canard, and he sketched the
underlying bifurcation structure. Both Guckenheimer and Haiduc [28] and Wechselberger [50]
find canards numerically by computing the one-dimensional intersection curves of the attract-
ing and repelling slow manifolds in a two-dimensional cross-section with a shooting approach
(integration from a line of initial conditions far from the fold curve); the canards are then
identified as crossings of the two curves.

Our goal is to compute and visualize the slow manifolds as surfaces and the canards as
trajectories in R

3 to obtain additional geometric insight into the dynamics near a folded node.
To this end, we consider the normal form as used in [50], which is given as the three-dimensional
vector field

(1.2)

⎧⎨
⎩

ẋ = 1
2μy − (μ + 1)z,

ẏ = 1,
ż = x + z2.

In (1.2) the folded node is at the origin and the parameter μ is the ratio of the eigenvalues
of the Jacobian matrix of the so-called desingularized reduced flow evaluated at the folded
node. Note that, as a result of a parameter dependent blow-up procedure, (1.2) does not
depend on ε. Nevertheless, this normal form describes how the attracting and repelling slow
manifolds intersect near a folded node. Specifically, for any μ system (1.2) has an attracting
slow manifold C− and a repelling slow manifold C+ that intersect in the maximal canards
one wants to study; see section 2 for more information on the derivation and meaning of the
normal form.

Specifically, we compute in this paper the slow manifolds C− and C+ of (1.2) as surfaces
in R

3. This is achieved by representing a piece of interest of a slow manifold as a one-
parameter family of orbit segments that satisfy suitably chosen boundary conditions. The
resulting boundary value problem is solved with the continuation and collocation routines of
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the package AUTO [14]. This setup is very flexible and accurate, because it is based on the
continuation of two-point boundary value problems [34]. It allows us to adjust the boundary
conditions to emphasize certain local features of the underlying dynamics in the vicinity of
the folded node. With our method we obtain a very precise visualization of the behavior of
the slow manifolds. In particular, we are able to capture in detail the complexity of their
intersections, that is, the canards. For increasing μ, the two surfaces rotate more and more
around the weak primary canard (the perturbation of γ̂w in Figure 1), which leads to the
creation of secondary canards at odd integer values of μ. Our method allows us to detect
canards and to continue them as solutions of a boundary value problem in the parameter μ.
We compute up to 24 secondary canards and show how they spiral around the weak primary
canard. Furthermore, we continue sixteen secondary canards in μ to obtain a numerical
bifurcation diagram.

Note that very few attempts have been made so far to produce accurate computations of
slow manifolds as surfaces. Milik et al. [35] visualize slow manifolds in the normal form of a
folded saddle-node; in this special case (of codimension one) the system decouples into a one-
parameter family of two-dimensional systems, so that the slow manifolds can be built up from
individual one-dimensional stable and unstable manifolds (which can be found by integration).
Ginoux and Rossetto derive an implicit equation that provides local approximations of slow
manifolds as the locus where the torsion vanishes [25, 26]. Both methods are quite different
from our approach. Our boundary value problem formulation allows one not only to compute
slow manifolds as global objects in a specified region of interest but also to detect canards
and follow them in system parameters. More generally, computing invariant manifolds by
continuation and collocation as solution families subject to suitable boundary conditions is
a very flexible method [34] which is particularly well suited for slow-fast systems [20]. Our
method is not restricted to the normal form setting but can be used more widely, for example,
for the study of canards in the self-coupled FitzHugh–Nagumo system [11].

The outline of this paper is as follows. In the next section we present some technical
background material. We briefly review slow-fast systems in section 2.1, explain the blow-
up method in section 2.2, and then discuss some known properties of the normal form (1.2)
in section 2.3. Section 3 explains in detail how to compute slow manifolds as collections of
orbit segments. In section 4 we show how the slow manifolds change with μ, and section 5
is devoted to the detection and continuation of the secondary canards. In section 6 we show
that the geometry of the slow manifolds does not change topologically when the normal form
is perturbed. We conclude with a summary and outlook in section 7.

2. Background on the folded node. In this section we recall some basic facts about
singularly perturbed dynamical systems, folded singularities, and the blow-up method to
analyze them. We consider the three-dimensional normal form (1.2), as studied, for example,
by Benôıt [3, 4], Guckenheimer and Haiduc [28], and Wechselberger [50]. Following [50], we
show how the normal form is derived from a generic three-dimensional system with a folded
node at the origin and present some useful properties of (1.2).

2.1. Slow-fast dynamical systems. The slow-time system (1.1) defines a vector field using
the slow time t. An alternative way of writing (1.1) is to introduce the fast time τ = t

ε , which
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gives the fast-time system

(2.1)

⎧⎨
⎩

u′1 = εg1(u1, u2, v, ε),
u′2 = εg2(u1, u2, v, ε),
v′ = f(u1, u2, v, ε),

where the prime indicates the derivative with respect to the fast time τ . This rescaling of
time is valid only for ε > 0 and does not modify the geometry of the trajectories. The main
question is whether it is possible to understand the dynamics for small ε > 0 by considering
the two limits of (1.1) and (2.1) given by ε = 0.

The limit of the slow-time system (1.1) for ε = 0 is known as the reduced system or slow
subsystem

(2.2)

⎧⎨
⎩

u̇1 = g1(u1, u2, v, 0),
u̇2 = g2(u1, u2, v, 0),
0 = f(u1, u2, v, 0).

System (2.2) is a set of differential algebraic equations on the slow time scale, namely, two
differential equations constrained by the algebraic equation f = 0. This condition defines the
critical manifold

(2.3) S :=
{
(u1, u2, v) ∈ R

3 | f(u1, u2, v, 0) = 0
}
,

on which the dynamics of the reduced system (2.2) takes place. Typically, it is not possible
to solve for S as a function of u1 and u2, but we may assume that S is locally a graph over,
say, u2 and v. Then we can describe the flow of the reduced system (2.2) on S as a projection
onto the (u2, v)-plane. Namely, by differentiating the algebraic equation f = 0 with respect
to time, we obtain

(2.4)

{
u̇2 = g2(u1, u2, v, 0),

−fvv̇ = fu1g1 + fu2g2,

where u1 = s(u2, v) is uniquely defined by the condition (u1, u2, v) ∈ S. We then rescale (2.4)
by −fv to obtain the vector field

(2.5)

{
u̇2 = −fvg2(u1, u2, v, 0),
v̇ = fu1g1 + fu2g2,

with u1 = s(u2, v), which generates a slow flow on S.
The limit of the fast-time system (2.1) for ε = 0 is known as the layer system or fast

subsystem

(2.6)

⎧⎨
⎩

u′1 = 0,
u′2 = 0,
v′ = f(u1, u2, v, 0).

The variables u1 and u2 are constants in system (2.6) and enter the equation for v as param-
eters. Hence, the layer system is a two-parameter family of differential equations on the fast
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time scale. The critical manifold S also plays a key role in the layer system, namely, as a
manifold of equilibria.

The idea of geometric singular perturbation theory [23, 32] is to understand the dynamics
of system (1.1) with ε > 0 sufficiently small by splitting the motion into its fast and slow
components. The fast dynamics of (1.1) is described by the layer system (2.6), meaning
that trajectories behave like solutions of (2.6) until they get close to S. On the slow time
scale, solutions are well approximated by the reduced system (2.2); in particular, trajectories
remain confined to an ε-neighborhood of S. The overall dynamics can indeed be understood
in this way if the critical manifold S is normally hyperbolic. This means that the dynamics
in the direction normal to the manifold dominates the dynamics in the tangent direction [30].
Due to results by Fenichel [22, 23], a normally hyperbolic critical manifold S persists under
small perturbations as a nearby normally hyperbolic invariant manifold Sε for the singularly
perturbed system (1.1). Since S is a manifold of equilibria for (2.6), the normally hyperbolic
points on S are those points for which all eigenvalues associated with the directions normal
to S do not lie on the imaginary axis.

In the vicinity of points where normal hyperbolicity fails, the singularly perturbed problem
can give rise to very complex dynamics. In order to study what happens when S is not
normally hyperbolic, we consider the projection of S onto the (u1, u2)-plane of slow variables.
The critical manifold S consists of regular points where fv �= 0 and critical points of the
projection where fv = 0. According to singularity theory [1], regular points are generic and
they correspond to points where S is normally hyperbolic. Moreover, a generic critical point
is a fold point, and together the fold points form a codimension-one submanifold F of S.
Along F two sheets of S meet. In R

3 there may be cusp points (degenerate folds), but they
are generically isolated. We focus here on fold points and their influence on the dynamics of
system (1.1).

Specifically, we consider a critical manifold S with (locally) a nonempty fold curve that
does not contain cusp points. Therefore, S can be written as S = Sa ∪ F ∪ Sr, where Sa and
Sr refer to the attracting and repelling sheets of S, respectively, that meet at F ; formally

(2.7)
Sa = {(u1, u2, v) ∈ S | fv(u1, u2, v) < 0},
F = {(u1, u2, v) ∈ S | fv(u1, u2, v) = 0},
Sr = {(u1, u2, v) ∈ S | fv(u1, u2, v) > 0}.

System (2.4) is singular along F , while the desingularized system (2.5) governs the dynamics
in the vicinity of the critical manifold S. Note that the rescaling by −fv that achieves this
desingularization changes the direction of time where fv > 0, that is, on the repelling sheet
Sr of the critical manifold S.

Roughly speaking, the original system (1.1) is governed by system (2.5) when it evolves
almost on the attracting sheet Sa. The situation changes when a trajectory reaches the fold
curve F , that is, when fv becomes zero. In the generic situation, that is, if v̇ �= 0, the
prominent dynamics switches to the fast dynamics (2.6) and the trajectory escapes from S
along a fast fiber parallel to the v-axis. The condition v̇ = fu1g1 + fu2v2 �= 0 is called the
normal switching condition [36] and means geometrically that the reduced flow projected onto
the (u1, u2)-plane is not tangent to the fold curve F . The point on the fold curve F where
the change of dynamics occurs is called a jump point. If S is S-shaped, that is, there are
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two separate attracting sheets and two fold curves connected to a repelling sheet, then the
presence of jump points typically leads to the existence of relaxation oscillations [36, 46]; a
detailed discussion of this phenomenon is given in [29] for the forced Van der Pol system.

A point on F with fu1g1 + fu2v2 = 0 is called a folded singularity. At such a point it is
possible for a trajectory to pass through F and not escape along a fast fiber. According to the
topological type of the singularity as an equilibrium of system (2.6), one has generically folded
nodes, folded saddles, and folded foci. Locally, the dynamics near a folded singularity can be
described by normal forms. The case of a folded-node singularity is sketched in Figure 1, and
several trajectories of the slow flow associated with the normal form (1.2) are shown. Notice
the change of direction of the slow flow across the fold curve F . As a result, some initial
conditions on Sa are attracted to regular points on F , which leads to a jump. However, an
entire wedge exists, bounded by the singular canard γ̂s and a half-line on F that ends at the
folded node, where trajectories converge to the folded node and pass through to follow the
repelling sheet Sr. This wedge is called the funnel region [47], and it is responsible for the
generic existence of canard solutions in systems with ε > 0.

2.2. Blow-up of the folded node. One can apply the method of blow-up in the setting
of geometric singular perturbation theory [17, 18, 42]. The general idea is to rescale the
variables of the original problem together with the singular parameter ε. In this way, one can
transform a singularly perturbed system into a regularly perturbed system that is defined on
a higher-dimensional phase space. In what follows we assume that the fold curve F is the
u2-axis, which can be achieved by a (nonlinear) coordinate transformation.

The slow manifolds Sa
ε and Sr

ε correspond to ε-leaves of three-dimensional attracting and
repelling center manifolds Ma and Mr of the extended system

(2.8)

⎧⎪⎪⎨
⎪⎪⎩

u′1 = εg1(u1, u2, v, ε),
u′2 = εg2(u1, u2, v, ε),
v′ = f(u1, u2, v, ε),
ε′ = 0.

The linearization of the extended system (2.8) has all eigenvalues equal to zero at the folded
node. Hence, one cannot apply center manifold theory at points on F and describe the
behavior of the slow manifolds in a neighborhood of F . A good way of overcoming this
difficulty is to apply a blow-up transformation at the folded node, which is a degenerate
singularity of system (2.8). Roughly speaking, the blow-up method is a well-chosen coordinate
transformation that desingularizes such a degenerate singularity. It was originally developed
for planar vector fields [18] but has been adapted to the case of three-dimensional singularly
perturbed systems [45, 50]. The change of coordinates transforms the degenerate singularity
at the origin into a sphere S

3 that contains points with (at least) one nonzero eigenvalue.
Then the general methods of dynamical systems are applicable—in particular, center manifold
theory; see [45] for a detailed exposition of the blow-up in this specific context.

In the case of a three-dimensional singularly perturbed system with a folded node at the
origin, the desingularizing transformation is defined by

u1 = ρ2x, u2 = ρy, v = ρz, ε = ρ2ε̄,
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where (x, y, z, ε̄) ∈ S
3 and ρ ∈ [0, ρ0] is a new radial parameter. The analysis on the sphere

is now done using charts that yield so-called directional rescalings obtained by setting one
coordinate in S

3 equal to ±1 and desingularizing the vector field in these charts. As is explained
in [50], the possible intersections between the slow manifolds, that is, the existence of maximal
canards, are best studied using the chart ε̄ = 1, denoted κ2, which describes the situation on
the blown-up locus. As a main result, the blow-up extends the normal hyperbolicity of the
slow manifolds Sa

ε and Sr
ε to the blown-up sphere. After desingularization, the system in κ2

is given by

(2.9)

⎧⎨
⎩

ẋ = 1
2μy − (μ + 1)z + O(ρ),

ẏ = 1,
ż = x + z2 + O(ρ).

By definition of the directional rescaling in chart κ2 we have ρ =
√
ε.

The role of (2.9) is as follows. By Fenichel’s theorems, for any fixed ε > 0 sufficiently
small, the slow manifolds Sa

ε and Sr
ε exist outside a neighborhood of the fold curve F . These

manifolds have extensions into the neighborhood of F , that is, into the blown-up locus; see
[9, 45, 50] for the technical details. The great benefit of the blow-up transformation in chart
κ2 is that for ε → 0 the extensions on the blown-up locus tend to invariant manifolds C± of
(2.9) for ρ = 0, which is the normal form (1.2). Therefore, the normal form acts as a “germ”
in the sense that intersections of C+ and C− are “seeds” that give rise to actual canards of
(1.1) for ε > 0. Consequently, the geometry of the manifolds C± contains all the relevant
information regarding the corresponding “true” slow manifolds Sr

ε and Sa
ε of system (1.1),

respectively. Indeed, the study of the geometry of C± is the main topic of this paper. Note
that from now on we refer to C± simply as repelling and attracting slow manifolds and to
their intersections as canards (rather than their seeds).

2.3. Properties of the normal form. An important property of the normal form (1.2) is
its invariance under the time-reversing symmetry (x, y, z, t) 	→ (x,−y,−z,−t). Therefore, it
suffices to concentrate on the attracting slow manifold C−; the repelling slow manifold C+ is
given by the symmetry. The manifolds C± connect at infinity (the boundary of the blown-up
locus) with the respective sheets of the critical manifold of the underlying slow-fast system
(1.1). Therefore, in the limit x → −∞, the manifold C− converges to the upper sheet of the
parabolic cylinder

(2.10) S := {(x, y, z) ∈ R
3 | x + z2 = 0}.

Furthermore, the interactions of C+ with C− take place in the vicinity of the origin, that is,
near the fold curve F := {(0, y, 0) ∈ R

3} of S.
A main advantage of (1.2) is that it possesses two explicit canard solutions of algebraic

growth, γs and γw, given as

(2.11)

γs(t) =

(
−μ2

4
t2 +

μ

2
, t,

μ

2
t

)
,

γw(t) =

(
−1

4
t2 +

1

2
, t,

1

2
t

)
.
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We refer to γs as the strong canard and to γw as the weak canard, because they correspond
to the strong and the weak eigendirections of the linearization of system (1.2) at the folded
node, respectively. The maximal canards γs and γw are extensions on the blown-up locus of
the singular canards γ̂s and γ̂w shown in Figure 1, respectively. Note that the geometry of
C± for μ > 1 and for 1/μ ∈ [0, 1] is topologically the same (where the roles of γs and γw are
interchanged); recall that μ denotes the ratio of the eigenvalues of system (2.5) projected onto
the (y, z)-plane and linearized at the origin. Therefore, we consider here the changes of the
slow manifolds C± as a function of μ only for μ ≥ 1.

It has been proved that C± intersect transversely along γs and γw when μ is not an integer
[4, 45]. For integer values of μ the manifolds C+ and C− intersect transversely along γs and
tangentially along γw. A new canard is created from the weak canard γw at every odd integer
value of the parameter μ (for μ ≥ 3) [50]. The bifurcating canards ηi are called secondary
canards. It was analytically proved in [45] that the slow manifolds C− and C+ spiral �μ�
times around the weak canard γw (here �q� denotes the integer part of the real number q).
Due to the time-reversing symmetry of the normal form, this implies that C− and C+ make
�μ−1

2 � full rotations around each other. Each one of these full rotations ends in a transverse
intersection along a secondary canard. Hence, away from the resonances μ ∈ N, there are
�μ−1

2 � secondary canards that successively make one additional complete revolution around
γw. More precisely, ηi makes i + 1

2 rotations around γw; see section 5. Geometrically, we can
think of the strong canard γs as the secondary canard η0, because γs makes a half-rotation
around γw. The order is such that γw is always located between η�μ−1

2
� and η�μ−1

2
�−1.

3. Computing slow manifolds. The main underlying idea of our approach is that one
can compute (a finite part of) a two-dimensional invariant manifold of a system of ordinary
differential equations as a collection of orbit segments by numerical continuation of a one-
parameter family of two-point boundary value problems. This approach can be applied in a
wide variety of contexts [34]. Below we explain how we use it to compute C± for the normal
form; see [11] for details on how to compute C± for systems not in the normal form.

3.1. Slow manifolds as collections of orbit segments. As is common in numerical con-
tinuation, we consider a vector field of the form

(3.1) u̇ = Tg(u, λ),

where g : R
n × R

p → R
n is sufficiently smooth and T ∈ R and λ ∈ R

p are parameters. The
parameter T is the total integration time. It appears explicitly as a free parameter on the
right-hand side of (3.1), so that an orbit segment u(t) is always represented over the interval
[0, 1]. By imposing suitable boundary conditions on solutions of (3.1) we can characterize
any k-dimensional invariant submanifold in R

n × R
p. To be more precise, we consider the

boundary conditions

(3.2)

{
u(0) ∈ L,
u(1) ∈ Σ,

where L is a one-dimensional submanifold and Σ is a codimension-one submanifold of R
n.

One needs (n − 1) boundary conditions to restrict u(0) to the curve L and one boundary



THE GEOMETRY OF SLOW MANIFOLDS NEAR A FOLDED NODE 1141

condition to restrict u(1) to the (n− 1)-dimensional manifold Σ. Hence, the total number of
boundary conditions in (3.2) is n. That is, with T as a free parameter, (3.1)–(3.2) define a
one-parameter family of well-posed two-point boundary value problems that represent orbit
segments starting at L and ending in the section Σ; see, for example, [12]. The family is
parametrized by the position of u(0) on L, and T is the integration time to reach Σ from
L. Depending on the choice of L and Σ, this general setup can be used to compute different
types of dynamical objects, including two-dimensional invariant manifolds [34] and their one-
dimensional intersection curves with the section Σ [20].

In the present setting the phase space is three-dimensional, and our goal is to find appro-
priate definitions for L and Σ so that (3.1)–(3.2) define C± as surfaces in a region of interest.
Since C+ can be found from C− by symmetry in (1.2), we explain here only the computation
of C−. The family of orbit segments obtained by continuation of (3.1)–(3.2) defines (part
of) the two-dimensional manifold C−, provided the one-dimensional submanifold L satisfies
L ⊂ C− [23, 50]. We do not know C−, but we do know that in the half-space {x ≤ −ξ} with
ξ > 0 sufficiently large, C− is well approximated by

Sa = {(x, y, z) ∈ R
3 | x + z2 = 0, z < 0},

that is, by the lower sheet of the parabolic cylinder S given in (2.10). Therefore, we define

(3.3) L = L−
ξ := {(−ξ, s,−

√
ξ) | s ∈ R},

which is the line on Sa with x = −ξ. The interesting dynamics takes place near the origin on
the fold curve F of S, so a suitable choice for Σ is a plane transverse to F . We define

(3.4) Σ = Σα := {y = α},

where α ≥ 0. The two-point boundary value problem (3.1)–(3.2) for the choices (3.3) and
(3.4) defines a one-parameter family of orbit segments that lie on C− in good approximation,
provided ξ is large enough.

3.2. Finding a first orbit segment on the slow manifold. To start the continuation we
must provide a first orbit segment that solves (3.1) subject to the boundary conditions (3.2).
For the normal form (1.2) two explicit canard solutions are known, which we can use to start
a computation. Note that neither one of the two explicit solutions has a point in common
with the lower sheet Sa of the parabolic cylinder S, which means that it is not possible to
choose ξ such that the two explicit canard solutions contain segments that start on L−

ξ and
solve the boundary value problem (3.1)–(3.2). However, we use the explicit solutions only to
start the Newton iteration; that is, we select a suitable explicit solution segment such that
Newton’s method converges to a solution of (3.1)–(3.2).

To be concrete, we start from the strong canard γs given in (2.11) and consider the initial
orbit segment

(3.5) u(t) = γs(tT + t0), 0 ≤ t ≤ 1,

for some start time t0 and total integration time T . We choose t0 < 0 such that the x-
coordinate of γs(t0) is equal to −ξ, that is,

−μ2

4
t20 +

μ

2
= −ξ.
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In order to satisfy the second boundary condition u(1) ∈ Σα, we need

γs(T + t0) ∈ Σα ⇔ T + t0 = α.

Note that the start time t0 must be negative, because the y-coordinate acts as time in the
normal form (1.2), and we wish to preserve the direction of time. Therefore, we have

(3.6) t0 = −

√
2μ + 4ξ

μ2
and T = α +

√
2μ + 4ξ

μ2
.

The solution segment (3.5) only approximately satisfies the boundary condition u(0) ∈ L−
ξ ;

namely, the difference between the z-coordinates of u(0) = γs(t0) and the point on L−
ξ at

s = t0 is

(3.7)
μ

2

√
2μ + 4ξ

μ2
−

√
ξ =

μ

2
(√

μ
2 + ξ +

√
ξ
) .

This difference is small, provided ξ � μ, and decreases as ξ → ∞. Hence, if ξ is large enough,
we expect that Newton’s method converges, and the first correction step of the continuation
leads to a solution of (3.1)–(3.2). We remark that for a slow-fast system that is not in normal
form an explicit solution is generally not known. This difficulty can be overcome with a
homotopy approach, as is demonstrated in [11].

3.3. Computation of C− from L−
ξ to Σα. The computed part of C− depends on the

two user-specified parameters ξ and α that define L−
ξ and Σα, respectively. The parameter

ξ controls the accuracy of the computation in that it determines the initial distance between
C− and Sa. By construction, an orbit segment satisfying (3.1)–(3.2) converges to an actual
orbit segment on C− in the limit ξ → ∞. It is a very difficult task beyond the scope of this
paper to find an explicit ξ-dependent error bound for the approximation of C− and how it
depends on μ. To derive a practical measure for the accuracy of the computations presented
here, we make use of the fact that the strong canard γs is given as an explicit solution (2.11).
As mentioned in section 3.2, the orbit segment (3.5) of γs is the start solution for Newton’s
method, and we use the difference between γs(tT + t0) and the approximate solution u∗(t) as
an indication of the overall approximation error. Namely, we consider the pointwise difference
between γs(tT + t0) and u∗(t) with 0 ≤ t ≤ 1 and ensure that it is sufficiently small. At
t = 0 this difference is given by (3.7), and it decreases exponentially for t > 0; this decrease
is particularly fast due to the difference in time scales. Specifically, we consider only the
difference in the z-coordinate and require that

| γs(tT + t0) − u∗(t) |z < 10−5

for all t with u∗
x(t) > −1

2ξ. In other words, this condition ensures the accuracy of the second
and relevant part of the orbit segment, and we found that it is satisfied with ξ = 100 for all
μ ≤ 8.5 that we consider in this paper. For larger μ, also ξ needs to be increased; namely, we
use ξ = 200 for μ = 14.5, ξ = 400 for μ = 25.5, and ξ = 1000 for μ = 49.5.
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The parameter α determines the location of the section Σα. Its choice depends on which
aspect of C± is of interest. A natural choice is α = 0, such that the folded node (the
origin) is contained in Σα. This means that C− and C+ are computed both up to Σ0, which
emphasizes their intersection curves C±

0 = C± ∩Σ0. Note that these intersection curves have
been computed before by shooting methods (numerical integration of initial values of Sa); see,
for example, [28, 27, 50]. By contrast, we compute the curves C±

0 as well as the surfaces C±

themselves with the collocation and continuation routines of the package AUTO [14]. The
main advantage of using collocation, as opposed to a shooting method, is that the size of
the continuation step is determined by taking the entire orbit segment into account instead
of the initial condition alone. This feature is particularly useful for slow-fast systems, which
are extremely sensitive to changes of the initial condition [20]. Specifically, we compute the
one-dimensional curves C±

0 with an adaptation of the software ManBVP [20], where orbit
segments are generated according to the local curvature of C−

0 . The two-dimensional surfaces
C± are computed with an AUTO run with a fixed continuation step size, which ensures a
uniform distribution of mesh points on the surface.

In order to investigate how C− and C+ intersect near the folded node at the origin, we
consider orbit segments computed up to Σα with α > 0. By symmetry, C+ ends in Σ−α,
so that the two slow manifolds are seen to interact in the region −α ≤ y ≤ α. To visualize
the geometry of this interaction it is convenient to show only the “ribbons” of C− and C+

in between the planes Σ−α and Σα. To this end, we clip each orbit segment of the computed
manifold C− where it intersects Σ−α. We then determine a mesh with a fixed number of mesh
points that are uniformly distributed according to arclength along clipped orbit segments.
The resulting ribbons of C± can readily be visualized; see section 4.

3.4. Illustration of the method. Figure 2 illustrates our method for the normal form
(1.2) with μ = 1.2. Figure 2(a) shows an approximation of the attracting slow manifold C−

for α = 0; that is, we computed a collection of orbit segments that start on L−
100, the straight

red line in Figure 2(a), and end in Σ0, the (x, z)-plane shown in green. The bold red curve
in Σ0 is the intersection C−

0 of C− with Σ0, and a small segment of its symmetrical image
C+

0 (blue curve, not labeled) is also shown. We started the continuation from the solution
segment (bold black curve) γs(tT + t0), t ∈ [0, 1], of the explicitly known strong canard γs
with t0 and T as defined in (3.6). The continuation is done in two directions parametrized by
the y-coordinate along L−

100, where we start at y = t0 < 0.
Let us first focus on the continuation run where y increases, because this part generates

most of the intersection curve C−
0 . Note that it is natural to stop the continuation when y = 0

is reached. (This is detected by a user-defined function in AUTO; the solution family exists
for y > 0, but then T becomes negative.) Notice from Figure 2(a) that the curve C−

0 is very
close to the lower branch of the parabola S ∩ Σ0 = {x + z2 = 0}. At the scale of Figure 2(a)
it is difficult to see what happens near the folded node; an enlarged view of C±

0 is presented
in the next section.

During the second continuation run, when y is decreasing, we encounter the orbit segment
between L−

100 and Σ0 that corresponds to the weak canard γw, for which we have an explicit
expression given in (2.11). Note that, due to the symmetry of the normal form, any intersection
of the curve C−

0 with the line z = 0 in the section Σ0 corresponds to a canard. Hence, by
imposing the user-defined function uz(1) = 0 as part of the continuation of the one-parameter
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Figure 2. Global overview of the slow manifolds for μ = 1.2. Panel (a) shows the attracting slow manifold
C− (red surface) computed from the line of initial conditions L−

100 (red line) up to section Σ0; panel (b) shows
the parts of C− and C+ (red and blue surfaces, respectively) in between the sections Σ−1 and Σ1. The two
primary canards γs and γw have been highlighted as bold black curves; the red bold curve (panel (a) only) is
the orbit starting at the intersection point yLP between L−

100 and the x-nullcline. We also show the intersection
curves C±

α of the slow manifolds C± with the sections Σ0 and Σ±1. See also the accompanying animation
(70881 01.gif [5.9MB]) of the computation of C− for μ = 8.5.

family that solves (3.1)–(3.2), AUTO [14] automatically detects these canard solutions of the
normal form (1.2); a more detailed discussion is provided in section 5. The actual canard
solutions are obtained by concatenating the detected orbit segment on C−, which ends in Σ0

on the line z = 0, with its symmetrical copy on C+ on the other side of Σ0.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70881_01.gif
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As y decreases further, we encounter another special solution during the continuation,
which is shown as the bold red curve in Figure 2(a) that starts at the point labeled yLP on
L−

100. The point

yLP = −2(μ + 1)

μ

√
ξ

is the unique point where the x-direction of the vector field (1.2) vanishes on L−
100; that is,

yLP ≈ 36.777 is the intersection of L−
100 with the x-nullcline for μ = 1.2. If L−

100 were exactly
on C−, then all initial conditions on L−

100 beyond yLP, that is, with y-coordinates less than
yLP, would lie on (backward-extended) orbit segments that intersect L−

100 at y-coordinates
larger than yLP. This behavior corresponds exactly to the case that an (un)stable manifold in
a Poincaré section crosses the locus where the flow is tangent to the section; see [20] for more
details.

In practice L−
100 lies only approximately on C− and solutions beyond yLP do not lie exactly

on the computed approximation of C− but still very close to it. Hence, it appears as though
a new part of C− is obtained, which manifests itself as a very sharp fold, or “crease,” on the
approximation of C−. From a computational point of view, the continuation makes sense only
for u(0) ∈ [0, yLP], because continuation beyond yLP produces a second approximation of the
same part of C−. Figure 2(a) does show a computation of C− past yLP to illustrate what
happens. Note that yLP → −∞ as ξ → ∞, that is, in the limit where L−

ξ converges to a line

on C−, the point yLP no longer exists.
Figure 2(b) demonstrates how the ribbons of C± in between Σ1 and Σ−1 can be used as a

means of visualizing the interaction of the two manifolds. For clarity, the intersection curves
C±

1 and C±
−1 are shown as well. The geometry of C± is further enhanced by including the

strong and weak canards γs and γw, respectively.

4. Geometry of the slow manifolds. We now study the slow manifolds C± for different
values of the parameter μ. We use both α = 0 and α > 0 in the method from section 3 to
illustrate not only the intersection curves C±

0 of C± with Σ0, as was done in [50], but also
the geometry of the two-dimensional slow manifolds C± themselves. A main goal is to see
how maximal canards arise as new intersection curves between C− and C+. In all figures the
attracting slow manifold C− is colored red, the repelling slow manifold C+ is blue, the section
Σα is green, and the strong canard γs and the weak canard γw are black. As μ is increased,
secondary canards appear, which we label successively as ηi. We adopted a particular color
coding for these secondary canards: η1 is orange, η2 is magenta, η3 is cyan, and we repeat
these successive colors for each group of three consecutive secondary canards after η3.

4.1. Geometry of C± up to Σ0. We begin with a series of images for μ = 1, μ = 1.2,
μ = 2.5, μ = 3.5, and μ = 8.5 that illustrate the behavior of C± up to the section Σ0;
see Figures 3(a),(b), 4(a),(b), and 5(a), respectively. Each figure shows a three-dimensional
view in a neighborhood of the folded node of C+ and C−, computed up to Σ0, together with
the corresponding intersections in the plane Σ0. To facilitate comparison and analysis, the
viewpoint and aspect ratio are identical for all three-dimensional pictures, although the ranges
along the axes vary.

Figure 3(a) shows the case μ = 1, which acts as the starting point where C± have a
nontransverse, tangent intersection along a single orbit. The first two (maximal) canards γs
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Figure 3. Local three-dimensional views of the slow manifolds C± computed up to section Σ0; the inset
panels show their intersections C±

0 with Σ0. Panels (a) are for μ = 1 and panels (b) are for μ = 1.2. The weak
canard γw and the strong canard γs are shown as black curves and their intersections with Σ0 are denoted by
black dots. See also Figures 4 and 5.

and γw are created as μ is increased. They are shown in Figure 3(b) for μ = 1.2; see also
Figure 2. Note that γs and γw are now two distinct orbits of the normal form (1.2) in which
the slow manifolds C± intersect transversely. The case μ = 1.2 is representative of all values
1 < μ < 2. Notice in Figure 3 the parts of C±

0 to the left of γw, which correspond to the
part of C± between γw and the orbit of the point yLP. We remark that these parts, which we
call the tips of C±

0 , exist for all values of μ, but they rapidly become so small that they are
invisible in Figures 4 and 5(a).
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Figure 4. Local three-dimensional views of the slow manifolds C± computed up to section Σ0; the inset
panels show their intersections C±

0 with Σ0. Panels (a) are for μ = 2.5 and panels (b) are for μ = 3.5. Note the
existence of the first secondary canard η1 (orange dot) in panel (b2), which appears in a transcritical bifurcation
at μ = 3. See also Figures 3 and 5.

A qualitative change occurs at μ = 2. Figure 4(a) shows the situation for μ = 2.5. As can
be observed particularly in panel (a2), the tips of C±

0 have rotated around so that they now
point inside the region delimited by γs and γw. Indeed, these tips rotate continuously with μ.
At μ = 2 the tangent bundles TγwC

± coincide and the directions in Σ are parallel to the z-axis;
that is, C±

0 both have a vertical tangency vector at γw(0). Numerical evidence in [50] suggests
that near μ = 2, and indeed near all even μ, there are (very) short branches of canards that
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correspond to intersection points of the tip of C−
0 with C+

0 and vice versa. For μ = 3 the
tips have rotated so that the tangent bundles TγwC

± coincide again, but C±
0 now both have

a tangency vector parallel to the x-axis, and a transcritical bifurcation occurs that results in
a secondary canard (again, there are very short branches associated with intersections of the
tips of C±

0 ). As shown in [50], transcritical bifurcations occur for all odd integer values of
μ ≥ 3. Figure 4(b) shows a phase portrait for μ = 3.5 with the first secondary canard η1

(orange curve). As can be seen clearly in Figure 4(b2), there are now three intersection points
of C±

0 in Σ0. Note that γw is located between η1 and γs on the x-axis.
Figure 5(a) shows the situation for μ = 8.5, where we have three secondary canards,

denoted η1 (orange), η2 (magenta), and η3 (cyan). It gives an idea of how the secondary
canards appear as a result of the spiraling motion of C± around the weak canard γw; this is
particularly visible for C±

0 in Σ0, shown in Figure 5(a2) and in the accompanying animation
(70881 02.gif [3.7MB]). The figure also illustrates the fact that C± make �μ−1

2 � full rotations
around γw.

4.2. Ribbons of C± near the folded singularity. Figures 3, 4, and 5(a) give a good insight
into the topological changes of the geometry of C±. After the bifurcation of maximal canards
at μ = 1, all secondary maximal canards bifurcate from γw in transcritical bifurcations at odd
integer values of μ. To bring out this behavior more clearly, we also compute ribbons of C±

in between Σ−α and Σα for suitable α > 0. Figure 5(b) shows C± in between Σ−1 and Σ1,
along with the intersection curves γs, γw (black curves), η1 (orange), and η2 (magenta); note
that η3 is not shown in this picture, because it cannot be distinguished from γw at this scale.
The intersection curves C±

−1 and C±
1 in the bounding sections Σ−1 and Σ1 give an idea of how

C− and C+ spiral out past the origin in forward and backward time, respectively.
Figure 6 shows C± for much larger values of μ, namely, for μ = 25.5 and μ = 49.5 in

panels (a) and (b), respectively. The slow manifolds spiral out faster as μ increases; hence,
we now show ribbons of C± only in between Σ−0.5 and Σ0.5. The figure shows the increased
complexity of C± with many more intersection curves that form additional secondary canards.
For μ = 25.5 there are twelve secondary canards that wind around γw; only the first four are
labeled in Figure 6(a). For μ = 49.5 there are 24 secondary canards, but again only η1, η2, η3,
and η4 are labeled in Figure 6(b). Due to the increased spiraling amplitude of the intersection
curves C±

−0.5 and C±
0.5, the strong canard and the secondary canards now lie further away from

the weak canard than for μ = 25.5 (or any μ < 49.5); see also the accompanying animation
(70881 03.gif [1.3MB]).

Figure 7 illustrates the increasing complexity with μ by showing C± for μ = 8.5, μ = 14.5,
μ = 25.5, and μ = 49.5. Here we rotated the slow manifolds C± about the z-axis with the
visualization package Geomview [40] to generate common enlarged views centered around the
weak canard γw. In this way, one obtains a good impression of the spiraling behavior of the
secondary canards around γw and how their positions and distances to γw change with μ.
Figure 7(a) shows that for μ = 8.5 the manifolds C− and C+ intersect in the two secondary
canards η1 and η2. For μ = 14.5 there are a total of six secondary canards, four of which, η1

to η4, are shown in Figure 7(b). Note how the distance of η1 and η2 from the central weak
canard γw (black curve) is now much larger for μ = 14.5; in a way, this creates space for
η3 and η4 to spiral around γw as well. For μ = 25.5 there are twelve secondary canards in
total, but only η1 to η4 are labeled in Figure 7(c). Similarly, for μ = 49.5 in Figure 7(d) there

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70881_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70881_03.gif
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Figure 5. Local three-dimensional views of the slow manifolds C± for μ = 8.5 computed up to section Σ0

in panels (a); the inset panel (a2) shows their intersections C±
0 with Σ0. See also Figures 3 and 4 and the

accompanying animation (70881 02.gif [3.7MB]). Panel (b) shows the ribbons of C± in between Σ−1 and Σ1

along with the corresponding intersection curves C±
−1 and C±

1 . There are three secondary canards η1, η2, and
η3, indicated by colored dots in Σ0 in panel (a2).

are 24 secondary canards, of which the first nine are clearly visible, while only η1 to η4 are
labeled.

5. Geometric study of the secondary canards. As we have seen, the secondary canards
arise as intersections of the slow manifolds C− and C+. We now find them directly as special
orbits within the boundary value problem setup in section 3. This allows us to visualize and

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70881_02.gif
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Figure 6. Three-dimensional views of the ribbons of C± in between Σ−0.5 and Σ0.5, together with all
maximal canards and the intersection curves C±

±0.5. Panel (a) is for μ = 25.5, with twelve secondary canards,
and panel (b) is for μ = 49.5, with 24 secondary canards. See also Figures 2(a) and 5(b) and the accompanying
animation (70881 03.gif [1.3MB]).

discuss their spiraling behavior with respect to the weak canard γw. Furthermore, we continue
the secondary canards in the parameter μ to reveal an overall bifurcation diagram.

5.1. Detection of secondary canards. During the continuation of (3.1)–(3.2) for fixed μ,
the end points u(1) ∈ Σ0 of the computed orbit segments oscillate about the z-axis; see, for
example, Figure 5(a2). Secondary canards are detected by the condition that the z-coordinate
uz(1) satisfies uz(1) = 0, which is done during the continuation by monitoring a user-defined
function in AUTO. Recall that the point uz(1) is a function of the y-coordinate uy(0) of the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70881_03.gif
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Figure 7. Different views of the attracting and repelling slow manifolds C− and C+, respectively, to
illustrate the spiraling dynamics of the secondary canards around the weak canard γw (black curve). The
parameter μ is 8.5 in panel (a), μ = 14.5 in panel (b), μ = 25.5 in panel (c), and μ = 49.5 in panel (d).

point u(0) that varies along L−
ξ .

Figure 8 shows the graph of uz(1) as a function of uy(0) for μ = 49.5, where we show data
for the run that starts from the strong canard γs for which we have uy(0) = t0 ≈ −1.29. Due to
the spiraling nature of C−

0 , the graph oscillates with a rapidly decreasing amplitude; note that
the continuation is in the direction of negative uy(0). The enlargement in the inset of Figure 8
shows the oscillation of uz(1) in the region where η12 to η15 are detected and the oscillation
amplitude has decreased to values of order 10−4. Numerically it becomes increasingly difficult
to detect where uz(1) changes sign when the oscillation amplitude becomes very small. In
other words, for large μ, as in Figure 8, for μ = 49.5, it is quite a challenge to detect the
secondary canards that lie very close to γw.

For all values of μ in this paper we start the continuation with the AUTO accuracy settings
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Figure 8. Graph of the z-coordinate uz(1) of the end point u(1) ∈ Σ0 of the computed orbit segments on
C− for μ = 49.5 as a function of the y-coordinate uy(0) of the point u(0) ∈ L−

ξ , where we used ξ = 1000. The
continuation starts from the strong canard γs, and secondary canards ηi are detected when uz(1) = 0.

Table 1
AUTO accuracy parameters as used during the detecting the secondary canards of (1.2). Row (a) is our

regular accuracy setting, and row (b) is the increased accuracy as used for μ = 49.5. Here NTST is the number
of mesh points, NCOL the number of collocation points, DSMIN and DSMAX are the minimal and maximal
stepsizes for the continuation, and EPSS is the relative arclength convergence criterion for the detection of
special solutions; all other AUTO accuracy parameters are set to their default values.

NTST NCOL DS DSMIN DSMAX EPSS

(a) 200 4 0.001 5 × 10−4 0.01 10−4

(b) 400 6 0.001 10−7 0.01 10−7

as shown in row (a) of Table 1. This is sufficient for the reliable detection of the ηi even for
μ = 25.5, but for the case μ = 49.5 shown in Figure 8 the detection stops when extrema of
uz(1) are less than 10−9 in modulus. At this stage the secondary canards η1 to η17 have been
detected reliably. The next four secondary canards η18 to η21 are found in a second run, where
we increase the accuracy parameters to the settings given in row (b) of Table 1. Nevertheless,
the detection of η22 to η24 is very difficult even with the increased accuracy settings, because
uz(1) is now consistently below 10−15 in modulus. Since we are reaching the limit of machine
precision, spurious roots of uz(1) are reported, out of which we need to select η22 to η24. This
can be done by taking into consideration the distance between roots in uy(0), which leads to
a selection that is consistent with the detected secondary canards η1 to η21; see Figure 11(d).

Once a secondary canard has been detected for a fixed value of μ as a zero of uz(1),
it can be continued in the parameter μ by imposing uz(1) = 0 as an additional boundary
condition. In this way, we can compute μ-dependent families of detected secondary canards.
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Figure 9. Spiraling behavior of the secondary canards of (1.2) with μ = 8.5. Panel (a) shows the primary
canards γs and γw (black) and the three secondary canards η1, η2, and η3; also shown for orientation is the
parabolic cylinder S with its fold curve F . Panels (b) and (c) show the projections onto the (x, z)- and (y, z)-
planes, respectively.

We remark here that the oscillations of uz(1) near a fixed canard increase as μ is increased.
Hence, canards ηi for large i can be detected reliably for larger μ and then continued back
into the range of lower values of μ.

5.2. Spiraling behavior of the secondary canards. To explain the spiraling of the sec-
ondary canards around the weak canard, we concentrate on the case μ = 8.5, for which there
are three secondary canards, η1 to η3. They are shown in Figure 9 together with the primary
canards γs and γw (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the parabolic cylinder S (grey) with its fold curve F (thick
grey line). The secondary canards ηi lie seemingly parallel to γs for |x| large but follow γw
near F . With increasing i the ηi lie closer to γw as they spiral increasingly around it. Figures



1154 M. DESROCHES, B. KRAUSKOPF, AND H. M. OSINGA

η1

η2

η3

γw

Σw

Σ⊥
w

.

.

Figure 10. Detailed view of the three secondary canards and γw for μ = 8.5. The weak canard γw lies in
the plane Σw and the three secondary canards start and end in a suitable plane Σ⊥

w perpendicular to Σw. The
intersections of the secondary canards with Σw are marked by dots to emphasize the rotations around γw.

9(b) and (c) are projections of the primary and secondary canards onto the (x, z)- and (y, z)-
planes, respectively. Figure 9(b) illustrates how each new secondary canard makes one more
full rotation around the weak canard γw. Figure 9(c) focuses on the (slow) dynamics of the
secondary canards in the neighborhood of the fold.

Figure 10 is a visualization with the package Geomview [40] in the spirit of a wire and
cardboard model to bring out the spiraling of the secondary canards η1 to η3 around γw.
Namely, shown are the plane Σw = {y = 2z} that contains γw and the plane Σ⊥

w = {x = −10}
that is perpendicular to Σw chosen so that all spiraling behavior is captured. The secondary
canards η1 to η3 start on Σ⊥

w below Σw and return to Σ⊥
w above Σw. Notice that η1 has three

intersection points (yellow dots), η2 has five intersection points (magenta dots), and η3 has
seven intersection points (blue dots) with Σw. This illustrates the theoretical results that ηi
makes �μ−1

2 � rotations around γw. Figure 10 also illustrates that the secondary canards ηi lie
successively closer to γw in the region of the fold.

The spiraling character of a secondary canard ηi does not depend on the value of μ. When
a secondary canard is created in a transcritical bifurcation closest to γw at an odd integer
value of μ, its rotating property is fixed. This is illustrated in Figure 11 with projections onto
the (y, x)-plane of all canards for μ = 8.5, μ = 14.5, μ = 25.5, and μ = 49.5, respectively.
For each case we chose a region of the (y, x)-plane that allows for a comparison between the
panels; specifically, the x-maximum of γs is fixed, and the y-range is adjusted so that the last
secondary canard is seen to “leave” γw. Figure 11(a) for μ = 8.5 should be compared directly
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Figure 11. Representation in the (y, x)-plane of the primary and secondary canards for four different values
of μ. From panel (a) to panel (d) μ = 8.5, μ = 14.5, μ = 25.5, and μ = 49.5, respectively; the shown parts
of the (y, x)-plane are chosen so that the maximum of γs appears in the same location and all the computed
canards are covered.

with Figure 9. There are six secondary canards in Figure 11(b), twelve in Figure 11(c), and
24 in Figure 11(d). Overall, the secondary canards run parallel to (have the same slope as)
the strong canard γs for large |x| and then spiral around γw. Observe that the maxima of
the ηi appear to line up along a curve that connects γw to the maximum of γs; an initial
investigation showed that this curve is not a straight line. It would be an interesting challenge
to study limiting features of the canards in a suitably rescaled (y, x)-plane for μ tending to ∞.

5.3. Continuation of the secondary canards in μ. It is a particular advantage of our
boundary value problem setup that secondary canards can be continued in the parameter μ.
Figure 12 shows the result of the continuation of the secondary canards η1 to η16, where we plot
the x-coordinate ux(1) of the end point in Σ0. Also shown in this bifurcation diagram are the
primary canards γw and γs. They are determined from (2.11) as the straight lines ux(1) = 1

2
and ux(1) = μ

2 , respectively, which intersect transversely at μ = 1. The continuation was
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Figure 12. Continuation in μ of ηi for 1 ≤ i ≤ 16. Shown are the projections of ηi onto the (μ, x)-plane
with γs and γw included for reference. Panel (a) shows how the first twelve secondary canards bifurcate from
γw at odd integer values of μ; the bifurcation points for η1 to η12 are indicated by thick colored dots. Panel (b)
shows a larger view of the continuation up to μ = 500.

started by detecting all twelve secondary canards for μ = 25.5, where we used ξ = 1000 to
ensure sufficient accuracy for their continuation for μ > 25.5. Figure 12(a) shows how η1 to
η12 bifurcate from γw at odd integer values. Figure 12(b) shows all sixteen branches ηi for the
much larger μ-range up to μ = 500.

The computed Figure 12 should be compared with the sketch provided in [50, Fig. 17].
Wechselberger showed in [50] that the bifurcation diagram is organized by transcritical bifur-
cations at odd μ-values. Notice that, on the scale of Figure 12(a), the branches ηi for i > 3
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appear to be tangent to the branch γw, rather than making an angle with it as one would
expect in a transcritical bifurcation. This illustrates the fact that the angle of the branch ηi
with the branch γw decreases extremely rapidly with i; see the proofs of [50, Propositions 3.2
and 3.3]. It may be of interest to note that on the scale of Figure 12(b) the branches ηi for
even i appear to have the same slope for large μ as the branch γs. By contrast, on this scale
one cannot conjecture any convergence of the slopes of the branches ηi for odd i.

According to [50], there are two quite subtle features of the bifurcation diagram whose
computation is beyond the scope of this paper. First, there are very short branches ηi that
exist for μ just before the transcritical bifurcations. We found that the numerical calculation
becomes so sensitive that it already stops before the associated transcritical bifurcation point
is reached. Second, numerical evidence in [50] suggests that there are also very small branches
of secondary canards associated with pitchfork bifurcations at even μ-values. In contrast to
all other canards, these secondary canards occur in symmetric pairs and do not intersect the
x-axis in Σ0. Hence, they would need to be detected directly as an intersection of C−

0 and C+
0 .

6. Beyond the normal form. It is in the nature of a normal form that (1.2) has special
properties. Specifically C− and C+ are each other’s images under a symmetry operation. From
a computational point of view, this means that only C− needs to be computed. Furthermore,
secondary canards can be detected and continued by considering the condition uz(1) = 0.
However, for a system that is not in normal form the symmetry of the normal form is typi-
cally lost. Hence, in general the attracting and repelling slow manifolds must be computed
separately as the solution families of two different two-point boundary value problems. As a
consequence, the primary and the secondary canards must be detected as intersection points
of the curves C−

0 and C+
0 .

As an example, we show here what the slow manifolds look like in the perturbation of the
normal form (1.2) that is given by (2.9) for small nonzero ρ, that is,

(6.1)

⎧⎨
⎩

ẋ = 1
2μy − (μ + 1)z + ρ,

ẏ = 1,
ż = x + z2 + ρ.

Note that the slow manifolds of (6.1) can be computed with the same boundary conditions
as those of (1.2). As before, we require that the orbit segments start on the line L−

ξ defined
by (3.3). For the computation of the repelling slow manifold, we reverse time in (6.1) and
consider

L+
ξ := {(−ξ, s,

√
ξ) | s ∈ R},

which lies on the upper sheet of the parabolic cylinder S. Furthermore, we require the orbit
segments to end in a transverse section Σα given by (3.4) with α = 0 or α = ±1.

We consider here the case μ = 8.5 and ρ = 0.316 and fix ξ = 100 as before. For this value
of ρ, the explicitly known solution γs of the unperturbed system (1.2) is not a suitable start
solution for Newton’s method. Therefore, starting from γs, we first compute the ρ-dependent
family of orbit segments that solve (6.1) subject to the boundary conditions (3.2). Here we
fix the parameter s that defines the position on L−

ξ to the value (given by γs) of

s = t0 = −

√
2μ + 4ξ

μ2
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Figure 13. Slow manifolds and canard solutions of (2.9) with μ = 8.5 and ρ = 0.316. The manifolds are
smooth deformations of the equivalent manifolds for ρ = 0, but the attracting and repelling slow manifolds are
no longer related by symmetry; compare with Figure 5.

as defined in (3.6). When ρ = 0.316 is reached, a first orbit segment on C− has been found;
a first orbit segment on C+ is found similarly by starting a continuation in ρ from the part
of γs that connects L+

ξ to Σα. We now fix ρ and continue in s to sweep out C− and C+,
respectively.

Figure 13 shows the slow manifolds of (6.1) for μ = 8.5 and ρ = 0.316. This figure should
be compared with Figure 5 for ρ = 0; for ease of comparison we use the same viewpoints in
both figures. In Figure 13 the slow manifolds C− and C+ have deformed and are no longer
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each other’s images under a symmetry operation. Nevertheless, the situation is topologically
the same as that for ρ = 0 in Figure 5. Namely, C− and C+ intersect in the same way in the
primary canards γs and γw and the secondary canards η1 to η3; see Figure 13(a2) and (b). In
particular, the rotating behavior of η1 to η3 around γw is preserved. The canards are found
by detecting orbit segments on C− and C+ that end at the same point in Σ0 (within the
accuracy of the computation). Concatenation of the two respective orbit segments results
in the representation of the secondary canard as a solution that starts on L−

ξ and ends at

L+
ξ . After applying a Newton step to get an exact solution to this boundary value problem,

detected canards can be continued in a system parameter.

7. Conclusion. We performed a study of slow manifolds and associated canard solutions
in a three-dimensional normal form of a slow-fast system with a folded node. Specifically,
we computed the two-dimensional attracting and repelling slow manifolds as one-parameter
families of orbit segments that satisfy appropriate boundary conditions. This approach also
allows us to detect and continue the canard solutions themselves. The visualization of these
geometric objects for different values of the normal form parameter μ (the ratio of eigenvalues
at the folded node) provided unprecedented insight into the geometry of the dynamics near
a folded node. We discussed in detail how the secondary canards spiral around the weak
primary canard and presented the first computed bifurcation diagram showing branches of
the secondary canards as a function of μ.

The numerical continuation of solution families of a well-posed boundary value problem
can be performed very accurately. In our computations we use the continuation and bound-
ary value solver routines of AUTO, which uses pseudoarclength continuation and collocation
with piecewise-polynomial approximations. Hence, the boundary value problems we define
are solved subject to established error bounds. Therefore, the accuracy of our calculations of
slow manifolds and canard solutions comes down to determining how the choice of boundary
condition influences the distance of the approximation from the real object. In our setup
we define approximating orbit segments by requiring that they start on a suitable line (suf-
ficiently far away from the origin) on a parabolic cylinder. Numerical checks ensured that
the pointwise distance to the true slow manifolds along selected orbit segments is sufficiently
small. The detection and continuation of canard solutions generally works very well with our
method, but there remain numerical difficulties near bifurcation points. A more detailed error
analysis, which would be very useful in this context, remains a challenging subject for further
investigation.

While this paper concentrates on the normal form of a folded node, our boundary value
problem approach to computing slow manifolds and canard solutions can be applied more
widely. This was demonstrated with the example of a perturbation of the normal form that
breaks the underlying symmetry. In [11] we computed slow manifolds and canard solutions in
the self-coupled FitzHugh–Nagumo model, which required the implementation of a homotopy
approach to generating initial approximate orbits on the attracting and repelling slow mani-
folds. In this way, we were able to identify sectors between different secondary canards that
correspond to mixed-mode oscillations with different numbers of small oscillations.

In the near future we plan to use our computational approach to investigate other slow-
fast systems arising in applications, especially those showing mixed-mode oscillations. This
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is relatively straightforward for the case of three-dimensional vector field models with a clear
splitting of the phase space into slow and fast variables, such as the self-coupled FitzHugh–
Nagumo model [11] or the forced Van der Pol system [6, 29]. However, we believe that the
computation of invariant manifolds would also be a very helpful tool in situations where there
is no obvious split of the system into slow and fast variables. The goal here would be to
identify slow and fast components of the dynamics numerically and to use this knowledge to
unravel the geometry of slow manifolds and associated canard solutions.

Acknowledgments. The authors thank John Guckenheimer and Martin Wechselberger
for helpful discussions.
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[3] E. Benôit, Systèmes lents-rapides dans R
3 et leurs canards, in Troisième rencontre du Schnepfenried,
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Asymptotics of a Slow Manifold∗

J. Vanneste†

Abstract. Approximately invariant elliptic slow manifolds are constructed for the Lorenz–Krishnamurthy
model of fast-slow interactions in the atmosphere. As is the case for many other two-time-scale
systems, the various asymptotic procedures that may be used for this construction diverge, and
there are no exactly invariant slow manifolds. Valuable information can however be gained by cap-
turing the details of the divergence: this makes it possible to define exponentially accurate slow
manifolds, identify one of these as optimal, and predict the amplitude and phase of the fast oscilla-
tions that appear for trajectories started on it. We demonstrate this for the Lorenz–Krishnamurthy
model by studying the slow manifolds obtained using a power-series expansion procedure. We de-
velop two distinct methods to derive the leading-order asymptotics of the late coefficients in this
expansion. Borel summation is then used to define a unique slow manifold, regarded as optimal,
which is piecewise analytic in the slow variables. This slow manifold is not analytic on a Stokes
surface: when slow solutions cross this surface, they switch on exponentially small fast oscillations
through a Stokes phenomenon. We show that the form of these oscillations can be recovered from
the Borel summation. The approach that we develop for the Lorenz–Krishnamurthy model has a
general applicability; we sketch how it generalizes to a broad class of two-time-scale systems.

Key words. slow manifold, exponential asymptotics, atmospheric waves
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1. Introduction. Dynamical systems with two time scales appear in a wide variety of
applications, particularly in physics and chemistry. A central concept in their analysis is that
of a slow manifold [28, 18, 19]. Slow manifolds are nearly invariant submanifolds of the state
space of these systems near which the dynamics is slow; their dimension is the number of slow
variables, and they are defined by constraints slaving fast variables to slow ones (see, e.g., [25]).
The advantages of identifying slow manifolds in two-time-scale systems are obvious: projecting
the dynamics onto a slow manifold leads to a dynamical system of reduced dimensionality;
this system approximates the full dynamics while filtering out the fast behavior, and it can
therefore be integrated efficiently.

The fast behavior we are concerned with in this paper consists of rapid undamped oscil-
lations. In this case, the slow manifolds are elliptic and hence fragile. Specifically, if ε � 1 is
the small parameter characterizing the separation between fast and slow time scales, the slow
manifold that exists for ε = 0 cannot be expected to persist as an invariant object when ε �= 0.
This is of course in contrast to the normally hyperbolic case, for which persistence can be
established [13]. Even though elliptic slow manifolds are generally not exactly invariant, they
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can be approximately so to a very high degree of accuracy. Indeed, systematic asymptotic
procedures make it possible to improve this accuracy, estimated by the angle between the
vector field and the manifold, systematically order-by-order in ε. For analytic vector fields, it
is possible to construct slow manifolds with O(εn) accuracy for arbitrary n ∈ N and even, by
optimal truncation, to achieve exponential accuracy [15, 11, 35, 25, 12, 27].

The nonexistence of exactly invariant slow manifolds reflects the fact that fast activity
cannot be completely filtered out by a suitable projection of the initial conditions. In other
words, in the elliptic situation, fast oscillations are typically generated by the slow dynamics,
however well the initial data are prepared. The noninvariance is also manifested by the
divergence of the asymptotic procedures used in the construction of slow manifolds. The two
aspects are related: the nature of the divergence—the manner in which the coefficients of εn

in the power-series expansions defining slow manifolds grow with n—encodes the generation
of (exponentially small) oscillations. Thus, capturing the details of the divergence provides a
means of describing these oscillations. It also gives a way of analyzing the differences between
the various slow manifolds that are obtained near optimal truncation. One of the motivations
here is to distinguish, among these slow manifolds differing by exponentially small terms, a
unique one, enjoying special properties.

The exponential accuracy of elliptic slow manifolds, the divergence of the asymptotic
procedures used in their construction, and the connection between this divergence and the
generation of fast oscillations are the themes of this paper. Although these have a general
appeal for a broad class of two-time-scale systems, we mainly explore them in a specific
context, and for a specific model. The context is geophysical fluid dynamics. Because of the
fast rotation of the earth, the midlatitude atmosphere and oceans are typical two-time-scale
systems, with the corresponding small parameter—the Rossby number—taking values of the
order of 0.1 and 0.01 in the atmosphere and the oceans, respectively. Furthermore, the nature
of the forcing is such that the fast degrees of freedom, consisting of inertia-gravity waves, are
often only weakly excited. As a result, the notion of a slow manifold is eminently relevant.
(See, e.g., [34, 31] and references therein for more background.)

The specific model that we analyze is the Lorenz five-component model [21], often referred
to as the Lorenz–Krishnamurthy (LK) model [23]. This model, governed by five ordinary
differential equations, was devised by Lorenz in order to explore the concept of slow manifolds
and study their invariance. Since it was proposed, it has become one of the main testbeds
for the study of slow manifolds, reduced models (termed “balanced models” in this context),
spontaneous wave generation, etc., in geophysical fluid dynamics [21, 22, 23, 9, 10, 14, 32, 6,
7, 8, 17, 29, 30].

Several asymptotic procedures have been proposed for the derivation of slow manifolds in
the LK model (e.g., [20, 32]). Since their divergence properties are identical, we concentrate
here on a particularly simple one (see [34] for a detailed discussion). Specifically, a slaving
relation, which defines the slow manifold by relating the fast variables to the slow ones, is
postulated and introduced into the dynamical equations. An approximate solution of the
resulting partial differential equation is then sought as a series expansion in powers of the
small parameter ε. The coefficients in this series, which we term “slaving coefficients,” are
functions of the slow variables. Our main aim is to capture their late form, that is, to
obtain the asymptotics of the coefficient of εn as n → ∞. Two alternative approaches are
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discussed. These are interchangeable in the case of the LK model, but one or the other may
be preferable for more complicated models. Remarkably, the leading-order asymptotics of the
slaving coefficients can be determined in closed form, up to a single constant which is readily
estimated by solving a recurrence relation numerically. The accuracy of the asymptotic result
is established by a comparison with the slaving coefficients computed numerically for a range
of values of the slow variables.

We emphasize that our asymptotic results give a precise description of the manner in
which the power-series expansion defining the slow manifolds diverges as n → ∞. This makes
it possible to go beyond the standard optimal truncation arguments (e.g., [11, 35]), which
only provide bounds on the accuracy of the slow manifold, and delve into the dynamics of
the exponentially small terms. Specifically, we use the Borel summation of the divergent
power series [3, 2] to define a unique manifold, which we term the “optimal slow manifold.”
This is defined in a piecewise manner, with discontinuities across codimension-one surfaces.
Trajectories started on the optimal slow manifold move away from it by an exponentially small
distance when they cross these surfaces, and fast oscillations develop. The amplitude and
phase of these oscillations can be determined from the late behavior of the slaving coefficients.
In previous work [29], we derived this amplitude and phase by considering the dynamics along
specific trajectories. The present approach recovers these results by taking a more geometric
perspective, which views the slow manifold as a single object rather that a collection of slow
trajectories.

The analysis we carry out for the LK model is representative of a more general treatment
applicable to more complicated two-time-scale systems. We make this plain by also considering
a broad class of such systems and sketching how the theory developed for the LK model
generalizes to this class. The results presented are largely formal, and they make a number of
simplifying assumptions, in particular about the nature of the singularities of slow trajectories
in the complex time plane. Nevertheless, they provide a first glimpse into the relationship
between these singularities, the divergence of the asymptotic procedures used for constructing
slow manifolds, and the generation of fast oscillations.

This paper is organized as follows. The LK model is introduced in section 2. There we
discuss a systematic approach for the construction of slow manifolds of increasing accuracy.
As mentioned, this approach relies on expanding in power-series of ε the relations which define
the slow manifolds by slaving fast variables to slow variables. The coefficients of εn in this
expansion—the slaving coefficients—satisfy recurrence relations involving partial derivatives
with respect to the slow variables. The nonlinearity of the LK model, involving only quadratic
terms, is simple enough that the slaving coefficients are homogeneous polynomials in the slow
variables. It is therefore easy to derive them by solving simple algebraic recurrences for the
coefficients of these polynomials. Section 3 focuses on these coefficients, which we refer to as
polynomial coefficients to distinguish them from the slaving coefficients. Specifically, we ex-
amine the form of the polynomial coefficients for large n. Two asymptotic results are obtained.
The first result gives a Gaussian approximation to the slaving coefficients. The second, more
general, result improves on this approximation in the same manner as the large-deviation
theory, for the probability density of sums of random numbers improves on the central-limit
theorem. Section 4 then considers the large-n asymptotics of the slaving coefficients them-
selves. The asymptotic behavior is obtained using two different approaches, one based on
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the polynomial coefficients and the other directly considering the partial differential equation
satisfied by the slaving coefficients. The results are exploited in section 5, where we discuss
the resummation of the divergent series defining the slow manifolds. There, we use Borel
summation (e.g., [3, 2]) to define a unique slow manifold which we regard as optimal. The
slaving relation for this slow manifold is given as an integral which is clearly discontinuous
across certain surfaces in the slow space. Examining the dynamics across these surfaces, we
demonstrate that it is characterized by the generation of exponentially small fast oscillations
whose form is encoded in the Borel sum. General two-time-scale systems with elliptic slow
manifolds are considered in section 6. The paper concludes with a discussion in section 7.

2. Formulation.

2.1. Model. We consider the model devised by Lorenz [21] and variously referred to as
the Lorenz five-component model or as the LK model [23]. In its conservative form, on which
we will focus, it can be written as the set of five ordinary differential equations

u̇ = −vw + εbvy,(2.1)

v̇ = uw − εbuy,(2.2)

ẇ = −uv,(2.3)

εẋ = −y,(2.4)

εẏ = x + buv(2.5)

for the five dependent variables (u, v, w, x, y). This model, obtained by truncation of the
rotating shallow-water equations, governs the dynamics of a triad of vortical modes, with
amplitudes (u, v, w), coupled to a gravity mode described by (x, y). The two parameters
b and ε of the model control the strength of the coupling and the gravity-wave frequency,
respectively.

Following Camassa [9] and Bokhove and Shepherd [6], we note that the constancy of the
u2 + v2, obvious from (2.1)–(2.2), can be used to reduce the dimension of the LK model from
5 to 4. Specifically, letting

(2.6) u = u0 cosφ and v = u0 sinφ

reduces (2.1)–(2.5) to the two degree-of-freedom Hamiltonian system

φ̇ = w − εby,(2.7)

ẇ = −u2
0 sin(2φ)/2,(2.8)

εẋ = −y,(2.9)

εẏ = x + bu2
0 sin(2φ)/2.(2.10)

Here, u2
0 = u2 + v2 is a constant which could be set to 1 by scaling.

In the form (2.7)–(2.10), the LK model can be recognized as describing the dynamics
of a pendulum (making an angle 2φ with the vertical), coupled in some way to a spring of
extension x. This interpretation is useful in developing some intuition about the dynamics of
the model; it also makes transparent the relationship between the LK model and mechanical
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models such as the swinging spring (or elastic pendulum; see, e.g., [24]). In what follows, we
mostly use the original formulation (2.1)–(2.5), which gives a more compact form to various
mathematical expressions; however, we often use the variable φ in place of (u, v) to display
functions of (u, v, w) in the reduced, two-dimensional space (φ,w).

We are interested in the dynamics of the LK model when ε � 1. In this regime, there is a
large separation between the O(1) time scale of evolution of the slow variables (u, v, w) and the
O(ε) time scale of the fast variables (x, y). We also assume that b = O(1). In the geophysical
context, these assumptions correspond to the quasi-geostrophic regime, in which fast gravity
waves interact only weakly with the much slower vortical motion, termed “balanced motion.”
In the mechanical interpretation of the LK model, ε � 1 indicates that the spring is stiff, so
that its frequency ε−1 far exceeds that of the pendulum.

The large time-scale separation implies the existence of slow manifolds. For the LK model,
these are three-dimensional submanifolds of the state space, parameterized by (u, v, w), which
are nearly invariant and near which the motion is slow. The dynamics in the neighborhood
of such slow manifolds is approximately devoid of the fast oscillations which characterize
the dynamics elsewhere in the state space. The slow manifolds are elliptic, since linearizing
the fast dynamics gives the purely imaginary eigenvalues ±iε−1. Therefore, they cannot be
expected to be invariant when ε �= 0. Nevertheless, their accuracy, measured by the difference
between the angle made by the vector field (u̇, v̇, ẇ, ẋ, ẏ) and the slow manifold, can be very
high indeed: systematic improvement procedures make it possible to define slow manifolds
with exponentially small errors.

The main interest of slow manifolds is that they allow a simplified description of the
dynamics. Projecting the vector field onto a slow manifold leads to a reduced system of slow
equations for (u, v, w) which approximates well the full dynamics for initial conditions near
the slow manifold. Reduced models obtained in this manner are termed “balanced models”
in the geophysical context, where they have proved highly successful.

It is clear from (2.4)–(2.5) that a slow manifold for the LK model can be defined as the
graph

(2.11) x = −buv and y = 0.

The corresponding balanced model is then given by (2.1)–(2.3) with y = 0. The slow manifold
(2.11) is only a leading-order approximation; starting with Lorenz [21], many authors have
considered how this can be improved. In the next sections, we examine in detail a simple
asymptotic procedure of the type described by Warn et al. [34] which leads to an arbitrary
O(εn) accuracy. Our aim is to capture the manner in which this procedure diverges so as to
define a slow manifold with a better-than-exponential accuracy.

2.2. Slow manifolds. Slow manifolds can be sought by introducing the so-called slaving
relations

(2.12) x = X(u, v, w; ε) and y = Y (u, v, w; ε)

for unknown functions X and Y into (2.4)–(2.5). Eliminating the time derivatives by means
of (2.1)–(2.3) gives what Lorenz [20] termed the “superbalance equation,” namely,
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ε

[
∂X

∂u
(−vw + εbvy) +

∂X

∂v
(uw − εbuy) − ∂X

∂w
uv

]
= −Y,(2.13)

ε

[
∂Y

∂u
(−vw + εbvy) +

∂Y

∂v
(uw − εbuy) − ∂Y

∂w
uv

]
= X + buv.(2.14)

These are two coupled partial differential equations for X and Y for which approximate
solutions can be found using iteration or expansion in powers of ε. Here we employ the latter
method which is more suited to deriving explicit results. To some extent the method used is
irrelevant, since the slow manifolds obtained by different means coincide up to terms smaller
than the accuracy of the methods. Nevertheless, specific methods may have some advantage:
for instance, the iterative procedure proposed in [25] guarantees that all equilibria of the
system near the slow manifold lie exactly on it. The expansion used here does not have this
property.

Inspection of (2.13)–(2.14) indicates that power-series expansions of the slaving relations
(2.12) take the form

(2.15) x =
N∑

n=0

ε2nXn(u, v, w) and y =

N∑
n=0

ε2n+1Yn(u, v, w),

where the functions of the slow variables Xn and Yn are termed slaving coefficients. These are
homogenous polynomials in u, v, and w of degree 2n + 2 and 2n + 3, respectively. We make
their specific form explicit by writing

(2.16) Xn(u, v, w) = (2n)!
∑
i,j=0

Cn
ij u

2i+1v2j+1w2k,

with k = n− i− j ≥ 0, and

(2.17) Yn(u, v, w) = (2n + 1)!
∑
i,j=0

Dn
ij u

2iv2jw2k+1,

with k = n + 1 − i − j ≥ 0. In defining the coefficients Cn
ij and Dn

ij , we have introduced the
normalization factors (2n)! and (2n + 1)! which roughly capture the dominant growth of Xn

and Yn with n. We refer to Cn
ij and Dn

ij as polynomial coefficients and emphasize that, unlike
the slaving coefficients Xn and Yn which they generate, they are simply numbers (for fixed b).

Substituting (2.15)–(2.17) into (2.13)–(2.14) leads to the following recurrence relations for
Cn
ij and Dn

ij :

(2n + 1)Dn
ij = (2i + 1)Cn

i(j−1) − (2j + 1)Cn
(i−1)j + (2k + 2)Cn

(i−1)(j−1)

− b

n−1∑
m=0

m∑
p,q=0

(2m)!(2n− 2m− 1)!

(2n)!
Cm
pq(2.18)

×
[
(2p + 1)Dn−m−1

(i−p)(j−q−1) − (2q + 1)Dn−m−1
(i−p−1)(j−q)

]
,
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Figure 1. Approximate slow manifold with O(ε3) accuracy: The slaving functions X(u, v, w) and Y (u, v, w)
are plotted as functions of φ (with u = cosφ and v = sinφ) and w for ε = 0.2 and b = 0.5. Approximate slow
trajectories are plotted in the (φ,w)-plane.

where k = n + 1 − i− j, and

2nCn
ij = −2(i + 1)Dn−1

(i+1)j + 2(j + 1)Dn−1
i(j+1) − (2k + 1)Dn−1

ij

+ b

n−2∑
m=0

m+1∑
p,q=0

(2m + 1)!(2n− 2m− 3)!

(2n− 1)!
Dm

pq(2.19)

×
[
2pDn−m−2

(i−p+1)(j−q) − 2qDn−m−2
(i−p)(j−q+1)

]
,

where k = n − i − j. The initial condition for this iteration is provided by the leading-order
slow manifold (2.11) which gives

(2.20) C0
00 = −b.

The successive Dn
ij and Cn

ij are then calculated from (2.18)–(2.19), with the convention that
Dn

ij = 0 for i < 0, j < 0, or i+ j > n+ 1, and Cn
ij = 0 for i < 0, j < 0, or i+ j > n. The first

few coefficients are

(2.21) D0
00 = 0, D0

10 = b, D0
01 = −b

and

(2.22) C1
00 = −2b, C1

10 = −b/2, C1
01 = b/2.

For larger n, the coefficients are easily computed numerically for fixed b. The numerical results
presented in this paper rely on such computations carried out for n up to 100.

The slow manifold corresponding to (2.20)–(2.22), for which the superbalance equation is
approximated within an O(ε3) error, is shown in Figure 1. The approximations to X and Y
are shown as a function of φ and w, with u0 = 1 in (2.6), ε = 0.2, and b = 0.5. The figure
also shows approximate trajectories in the plane of the slow variables (φ,w); lifting them to
the slow manifold gives an approximation to full trajectories.
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The series (2.15) diverge as N → ∞. In this paper we examine more precisely the nature
of this divergence by considering the late behavior of the slaving coefficients Xn and Yn as
n → ∞. A possible approach, attempted by Warn [33] for a simplifed model, consists in
deriving approximations for the polynomial coefficients Cn

ij and Dn
ij as n → ∞ from the

recurrence relations (2.18)–(2.19). This is carried out in the next section.

3. Late behavior of Cn
ij and Dn

ij. We consider the behavior of Cn
ij and Dn

ij for large n.
Numerical computations of these coefficients suggest the asymptotic forms

(3.1) Cn
ij ∼ (−1)j+1f(ξ, η) and Dn

ij ∼ (−1)jg(ξ, η),

where

(3.2) ξ = n−1/2(i− n/3) and η = n−1/2(j − n/3).

The two functions f(ξ, η) and g(ξ, η) introduced in (3.1) are smooth and localized, peaking
at (ξ, η) = (0, 0) and decreasing rapidly for |ξ| → ∞ and |η| → ∞. Thus, the coefficients
Cn
ij and Dn

ij are maximum for i ≈ n/3 and j ≈ n/3, and O(1) only in a “core” region where
ξ, η = O(1). As we now show, it is not difficult to derive explicit expressions for f(ξ, η) and
g(ξ, η) in this core region.

3.1. Core: ξ, η = O(1). We first note that the nonlinear terms in the recurrence relations
(2.18)–(2.19) (the last two lines in each of these equations) can be neglected in the limit
n → ∞; provided that Cn

ij and Dn
ij remain O(1) as n → ∞, this is a valid approximation

because of the rapid decrease of the ratios of factorials. Neglecting the nonlinear terms, we
obtain two sets of first-order linear recurrence relations and, by elimination of Dn

ij , a single
set of second-order recurrence relations for Cn

ij . Substituting the form (3.1) and using Taylor
expansions to write, for instance,

Cn
(i+1)j ∼ (−1)j+1f(ξ + n−1/2, η)

∼ (−1)j+1

[
f(ξ, η) + n−1/2∂f

∂ξ
(ξ, η) +

1

2n

∂2f

∂ξ2
(ξ, η) + · · ·

]
leads to a partial differential equation for f(ξ, η). The first nontrivial term appears at order
O(n−1) and is given by

4

(
∂2f

∂ξ2
+

∂2f

∂η2
− ∂2f

∂ξ∂η

)
+ 45

(
ξ
∂f

∂ξ
+ η

∂f

∂η

)
+ 90f = 0.

Separating variables, it is easily verified that the only solution decreasing to 0 for large |ξ|
and |η| is the Gaussian

(3.3) f(ξ, η) = Λe−15(ξ2+ξη+η2)/2,

where the constant Λ remains to be determined. From the linearization of (2.18) and from
(3.1), we also deduce that

(3.4) g(ξ, η) = f(ξ, η).
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With these results, the form of Cn
ij and Dn

ij for large n is known up to the single number
Λ which depends solely on b and needs to be determined numerically. This is conveniently
done by considering the behavior of the solutions (u(t), v(t), w(t), x(t), y(t)) of the LK model
near their poles in the complex t-plane. This approach makes contact with the exponential-
asymptotics treatment of solutions of the LK models in [29].

Let t∗ ∈ C be one of the poles of the solutions (as discussed below, these are poles of
Jacobi elliptic functions, but their location is unimportant at this point). At a distance from
such a pole, the dependent variables can be expanded in inverse powers of t− t∗ as

u =

∞∑
n=0

ε2nÛn

(t− t∗)2n+1
, v =

∞∑
n=0

ε2nV̂n

(t− t∗)2n+1
, w =

∞∑
n=0

ε2nŴn

(t− t∗)2n+1
,(3.5)

x =

∞∑
n=0

ε2nX̂n

(t− t∗)2n+2
, and y =

∞∑
n=0

ε2n+1Ŷn
(t− t∗)2n+3

.(3.6)

Note that the coefficients X̂n and Ŷn are just (complex) numbers, unlike Xn and Yn, which
are functions of (u, v, w). Substituting (3.5)–(3.6) into (2.1)–(2.5) gives a set of five first-order
recurrence relations for the coefficients (Ûn, V̂n, Ŵn, X̂n, Ŷn). Observing that

(3.7) u ∼ −i/(t− t∗), v ∼ 1/(t− t∗), w ∼ −i/(t− t∗)

is a possible leading-order behavior near t∗, we find the initial conditions

(3.8) Û0 = −i, V̂0 = 1, Ŵ0 = −i, X̂0 = ib, and Ŷ0 = 2ib

for these recurrence relations. There are other possible behaviors near the poles that are
alternatives to (3.7). These are obtained by changing the signs of a pair of (u, v, w) and hence
of (Û0, V̂0, Ŵ0) and correcting the signs of (X̂0, Ŷ0) accordingly. (Such an alternative choice is
made in [29].)

With the initial conditions (3.8) and for fixed b, it is straightforward to compute (Ûn, V̂n,
Ŵn, X̂n, Ŷn) numerically. The value of Λ can then be inferred from their behavior for n 
 1.
Specifically, the late form of X̂n can be verified to be

(3.9) X̂n ∼ i(−1)n(2n + 1)!κ

for some constant κ. This constant is easily estimated from the X̂n obtained numerically by
approximating the relation

κ = lim
n→∞

i(−1)n+1X̂n

(2n + 1)!

for a large but finite n (cf. [29]).
Now, the asymptotic form (3.1)–(3.3) of Cn

ij provides an alternative expression for the
right-hand side of (3.9). To obtain it, we substitute the leading-order behavior of u, v, and w
near t∗ given in (3.7) into the expansion (2.15)–(2.16) of the slaving relation x = X(u, v, w; ε).
This reduces to

x ∼ i

∞∑
n=0

(−1)n+1(2n)!ε2n

(t− t∗)2n+2

n∑
i,j=0

(−1)jCn
ij .



1172 J. VANNESTE

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

b

Λ

Figure 2. Prefactor Λ in the asymptotics (3.1)–(3.3) of Cn
ij as a function of b.

Comparing with (3.6) then gives

X̂n ∼ i(−1)n+1(2n)!

n∑
i,j=0

(−1)jCn
ij .

The right-hand side can now be evaluated using the form (3.1)–(3.3) of Cn
ij . Approximating

the sums by integrals, we obtain

X̂n ∼ i(−1)n(2n)!nΛ

∫ ∞

−∞

∫ ∞

−∞
e−15(ξ2+η2+ξη)/2 dξ dη

∼ i(−1)n(2n + 1)!
2πΛ

15
√

3
.

This is a second expression for the late behavior of X̂n. Identifying with (3.9) leads to the
relation

(3.10) Λ =
15

√
3

2π
κ.

Thus, like κ, Λ can be obtained numerically by computing the coefficients X̂n for n 
 1 from
the five recurrence relations for (Ûn, V̂n, Ŵn, X̂n, Ŷn). The results of this computation carried
out for values of b in the range (0, 5) are shown in Figure 2. For the value b = 0.5 which
we use often in what follows, we find that Λ = 1.6858 · · · . Note that Λ vanishes for certain
values of b; for these, the growth of the functions Xn and Yn is slower than in the generic case
Λ �= 0, and it can be captured only by continuing the expansion beyond the leading-order
term considered here.

With our estimate for the prefactor Λ, we now have the complete form of the leading-order
asymptotics of Cn

ij and Dn
ij for n 
 1 in the core region ξ, η = O(1). This is compared in

Figure 3 with the values of (−1)j+1Cn
ij computed numerically from the recurrence relations

(2.16)–(2.19) for n = 40, 70, and 100. The figure confirms the asymptotic results and illus-
trates how the discrete dependence of Cn

ij on i and j asymptotes to the continuous dependence
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Figure 3. Coefficients (−1)j+1Cn
ij as functions of ξ = n−1/2(i− n/3) and η = n−1/2(j − n/3) for n = 40,

70, and 100, and for b = 0.5. The last panel shows the asymptotic form for n → ∞.
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Figure 4. Scatter plot of (−1)j+1Cn
ij/Λ, with Λ estimated numerically, against exp[−15(ξ2 + ξη + η2)/2]

for b = 0.5, and n = 40 (×) and n = 100 ( ◦). The same data are plotted in linear coordinates (left panel) and
in logarithmic coordinates (right panel).

on ξ and η as n → ∞. To give a more precise comparison between numerical and asymp-
totic results than afforded by the color-scale Figure 3, we show in Figure 4 scatter plots of
(−1)j+1Cn

ij , normalized by Λ, against its asymptotic limit exp[−15(ξ2 +ξη+η2)/2]. This con-
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firms the match between asymptotic and numerical results. It also shows that the convergence
toward the asymptotic behavior is rather slow.

A noticeable feature of Figure 4 is the cloud of points for small values of Cn
ij . These

correspond to indices i and j far from the core values i, j ≈ n/3 or, in other words, to
|ξ|, |η| 
 1. In this tail region, we cannot expect the asymptotics (3.1)–(3.3) to be valid.
Even though Cn

ij and Dn
ij are exponentially small there, the tail region is important for the

evaluation of the coefficients Xn and Yn from the sums (2.16)–(2.17). Indeed, for u, v, w ∈ R,
the largest terms in these sums are not those for which ξ, η = O(1) but rather those for which
ξ, η = O(n1/2). This is because the factors u2i+1v2j+1)w2k in the sum (2.16), for instance,
depend exponentially on n in the core region, since i, j, k = O(n) there. Thus the asymptotic
results derived so far, although providing valid estimates for the coefficients Cn

ij and Dn
ij where

they are O(1), are not sufficiently accurate to estimate Xn and Yn from (2.16)–(2.17).
The situation is analogous to that encountered in probability theory when studying the

distribution of the sum of random variables. The central-limit theorem provides a Gaussian
approximation for the core of the distribution, but this approximation fails in the tails. These
can be essential, however, for instance, if the expectation of the exponential of the sum is
to be estimated. It is therefore necessary to go beyond the central-limit theorem and use
the theory of large deviations, which gives an estimate of the distribution valid in the tails.
Here, similarly, it is necessary to derive an approximation for Cn

ij and Dn
ij for n 
 1 when

ξ, η = O(n1/2). This is done next.

3.2. Tail: ξ, η = O(n1/2). We start with the “large-deviation” ansatz

(3.11) Cn
ij = (−1)j+1A(a, b, n)e−nG(a,b),

where

a =
i

n
− 1

3
and b =

j

n
− 1

3
.

Here the functions A and G need to be determined to satisfy the recurrence relations (2.18)–
(2.19). The dependence of A on n is assumed to be such that its partial derivatives (denoted
by subscripts) satisfy Aa, Ab = O(1) as n → ∞. We will be concerned only with determining
the function G which governs the dominant, or controlling, behavior of Cn

ij . This function
satisfies

G(0, 0) = Ga(0, 0) = Gb(0, 0) = 0.

This is necessary to recover the Gaussian form given in (3.1) and (3.3)–(3.4) when a =
n−1/2ξ = O(n−1/2) and b = n−1/2η = O(n−1/2). More specifically,

(3.12) G(a, b) ∼ 15

2

(
a2 + ab + b2

)
as a, b → 0.

Introducing (3.11) into (2.18)–(2.19) and retaining only the leading-order term yields a
nonlinear differential equation for G which is too lengthy to reproduce here. It can, however,
be much simplified by introducing the Legendre transform

(3.13) S(p, q) = sup
a,b

(ap + bq −G(a, b)) ,



ASYMPTOTICS OF A SLOW MANIFOLD 1175

with p = Ga(a, b) and q = Gb(a, b). In terms of S, with p and q as independent variables, the
equation satisfied by G takes the form[

(1 − e−p)Sp + (1 − e−q)Sq −
1

3
(1 + e−p + e−q)

]2

= eS−2p/3−2q/3.

Taking the square root, we obtain

(3.14) (1 − e−p)Sp + (1 − e−q)Sq =
1

3
(1 + e−p + e−q) − eS/2−p/3−q/3.

The sign choice is justified by considering this equation for small p and q. Assuming that S
is quadratic, (3.14) reduces to

pSp + qSq +
S

2
=

1

9

(
p2 − pq + q2

)
+ · · · ,

where · · · denotes cubic- and higher-order terms. Solving gives

(3.15) S(p, q) ∼ 2

45

(
p2 − pq + q2

)
as p, q → 0,

which is the Legendre transform of (3.12), as expected.
The nonlinear equation (3.14) can be solved explicitly. Let

(3.16) P =
1

2
log [(ep − 1)(eq − 1)] , Q =

1

2
log

(
ep − 1

eq − 1

)
,

and

(3.17) S(p, q) = Ŝ(P,Q) + P − 1

3
(p + q).

We note that the branches of the logarithms in (3.16) need to be specified: a suitable choice
takes −π/2 < arg(ep−1) ≤ 3π/2 and −3π/2 < arg(eq−1) ≤ π/2 so that P (−p,−q) = P (p, q)
and Q(−p,−q) = Q(p, q) + iπ for p, q > 0. Introducing the variable transformation (3.16)–
(3.17) into (3.14) leads to the simpler equation

ŜP = − e(Ŝ+P )/2

[(1 + eP+Q) (1 + eP−Q)]1/2

involving a P -derivative only. Integrating gives the solution

(3.18) Ŝ(P,Q) = −2 log

(
1

2

∫ P eP
′/2

[(1 + eP ′+Q) (1 + eP ′−Q)]
1/2

dP ′ + C(Q)

)
,

where the function C(Q) remains to be determined. It can be shown that C(Q) = 0 if the
lower limit of integration in (3.18) is taken as −∞ so that

(3.19) Ŝ(P,Q) = −2 log

(
1

2

∫ P

−∞

eP
′/2

[(1 + eP ′+Q) (1 + eP ′−Q)]
1/2

dP ′
)
.
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Indeed, this choice ensures that the limiting behavior (3.15) is recovered for p, q → 0. To
verify this, note that P → −∞ and hence exp(P ) → 0 as p, q → 0. The denominator of the
integrand in (3.19) can then be expanded, leading to

Ŝ(P,Q) = −2 log

(
1

2

∫ P

−∞
eP

′/2

[
1 − eP

′
coshQ + e2P ′

(
1

4
+

3

4
cosh(2Q)

)
+ · · ·

]
dP ′

)

= −P +
2

3
eP coshQ− 2

5
e2P

(
1

4
+

3

4
cosh(2Q)

)
+

1

9
e2P cosh2 Q + · · · .

On using the approximations exp(P + Q) = p + p2/2 + · · · , exp(P − Q) = q + q2/2 + · · · ,
exp(2P ) = pq + · · · , and exp(2Q) = p/q + · · · , this further simplifies to

Ŝ(P,Q) = −P +
1

3
(p + q) +

2

45

(
p2 − pq + q2

)
+ · · · .

Introducing this result into (3.17) reduces S(p, q) to the form (3.15), as required.
With (3.19) established, the derivation of the large-n behavior of Cn

ij for ξ, η = O(n−1/2) is
complete: S(p, q) can be calculated from (3.17), and the function G(a, b) follows by inverting
the Legendre transform (3.13). If the asymptotic form of Cn

ij is used only to approximate
the coefficients Xn(u, v, w), as is done in the next section, the inversion step is in fact not
necessary since the Xn can be expressed directly in terms of S(p, q).

4. Late behavior of Xn and Yn. In this section, we present two approaches for the
derivation of the asymptotic form of the slaving coefficients Xn and Yn for n 
 1. One
approach relies on our approximation (3.11) for Cn

ij ; the other considers the superbalance
equation (2.13)–(2.14) directly. We start with the latter approach, which turns out to be
somewhat simpler.

4.1. From the superbalance equation. From (2.13)–(2.14), and assuming that the linear
terms dominate for large n, we have that

(4.1) Xn+1 ∼ −
(
vw

∂

∂u
+ uw

∂

∂v
− uv

∂

∂w

)2

Xn

as n → ∞. This recurrence relation can be solved using characteristics: let (U, V,W )(t) be
the solutions of the leading-order slow equations, namely,

U̇ = −VW,(4.2)

V̇ = UW,(4.3)

Ẇ = −UV,(4.4)

with initial conditions (U, V,W )(0) = (u, v, w). Then the solution of (4.1) can be written as

(4.5) Xn(u, v, w) ∼ (−1)n
d2n

dt2n

∣∣∣∣
t=0

X̃0(U(t), V (t),W (t)).

Here X̃0 is an unknown polynomial, determined by the early iterations when the nonlinear
terms neglected in (4.1) are significant. The details of X̃0 do not matter: what controls the
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right-hand side of (4.5) for large n are the singularities of (U, V,W )(t) nearest the origin of
the complex t-plane (e.g., [5]). Let t∗ and t̄∗, where the overbar denotes complex conjugation,
be these singularities, and assume they are poles of order r. These poles should be thought
of as functions of the slow variables: t∗ = t∗(u, v, w). Then, as t → t∗,

(4.6) X̃0 ∼ C

(t− t∗)r
,

where C is a constant which may depend on t∗. The complex conjugate behavior holds as
t → t̄∗. These behaviors control the late asymptotics of Xn. From (4.5)–(4.6), we obtain the
asymptotics in the explicit form

Xn ∼ (−1)n(2n + r − 1)!C

(r − 1)!(−t∗)2n+r
+ c.c.

Comparison with (3.6) and (3.9) then shows that

r = 2 and C = iκ

for trajectories (U(t), V (t),W (t)) consistent with (3.7). It follows that

(4.7) Xn ∼ (−1)n(2n + 1)!iκ

t2n+2
∗

+ c.c.

The relationship t∗ = t∗(u, v, w) can be made completely explicit using the solution of
(4.2)–(4.4). In what follows, we assume that |w| ≥ |u|. This means that we consider the open
trajectories in the (φ,w)-plane represented in Figure 1. (The case |w| < |u|, corresponding to
closed trajectories, is treated similarly, by swapping the roles of u and w.) Defining

u0 = ±
√

u2 + v2 and w0 = ±
√

v2 + w2,

with the signs those of u and w, respectively, the solution of (4.2)–(4.4) can be written in
terms of Jacobi elliptic functions as

U(t) = u0 cn(w0(t− t0); k),(4.8)

V (t) = u0 sn(w0(t− t0); k),(4.9)

W (t) = w0 dn(w0(t− t0); k),(4.10)

where the modulus k = u0/w0 ≤ 1 (e.g., [1, Ch. 16]). The constant t0 is determined by
the initial conditions (U, V,W )(0) = (u, v, w). With φ(u, v) defined as in (2.6) and taken in
(−π, π), we find that

(4.11) t0 = − 1

w0
F (φ(u, v); k),

where F denotes the elliptic integral of the first kind, defined as

F (φ; k) =

∫ φ

0
(1 − k2 sin2 σ)−1/2 dσ
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(e.g., [1, Ch. 17]).

Now, the poles of the elliptic functions in (4.8)–(4.10) are located on the lattice

(4.12) t∗ = t0 + 2r
K(k)

w0
+ i(2s + 1)

K(k′)

w0
, r, s ∈ Z,

where k′2 = 1 − k2 and K(k) = F (π/2; k) denotes the complete elliptic integral of the first
kind ([1, Ch. 17]). The poles nearest the origin clearly have s = 0 or s = −1. We choose to
denote by t∗ the pole corresponding to s = 0; the pole corresponding to s = −1 is its complex
conjugate t̄∗. With this convention, the poles nearest the origin are given by t∗ and t̄∗, with

(4.13) t∗ = t0 + 2r
K(k)

w0
+ i

K(k′)

w0
.

Here,

r =

⎧⎨
⎩

−1 for φ ∈ (−π,−π/2),
0 for φ ∈ (−π/2, π/2),
1 for φ ∈ (π/2, π),

since, according to (4.11), t0 is a monotonic function of φ in (−π,−π/2), (−π/2, π/2), and
(π/2, π), which satisfies t0 = ∓K(k)/w0 for φ = ±π/2 and t0 = ∓2K(k)/w0 for φ = ±π.
Substituting (4.13) into (4.7) gives the completely explicit form

(4.14) Xn ∼ (−1)n(2n + 1)!iκw2n
0

(F (φ(u, v); k) − 2rK(k) − iK(k′))2n+2 + c.c.

for the late asymptotics of Xn. An analogous expression can be derived for Yn.

Three remarks are in order. The first concerns the sign of the right-hand side of (4.14).
Near the pole with r = 0, the behavior of the solution (4.8)–(4.10) is consistent with (3.7),
as assumed in the derivation. Near the poles with r = ±1, the signs of U(t) and V (t) are
opposite those in (3.7), but the sign of Xn remains unchanged because the transformation
(u, v, w, x, y) �→ (−u,−v, w, x, y) leaves (2.1)–(2.5) invariant. The second remark concerns
the discontinuous behavior of Xn at φ(u, v) = ±π/2, that is, for u = 0. This is immediately
remedied by noting that the two pairs of complex-conjugate poles with r = 0 and r = ∓1
both contribute to Xn at the same order in a neighborhood of size O(n−1) of φ = ±π/2.
Adding the two contributions then leads to an approximation for Xn that is continuous at
φ = ±π/2. The third remark is that the factorial growth of Xn described by (4.14) means
that the asymptotic series (2.15) defining the slow manifold is of Gevrey type of order 1; the
divergence of this type of series and their resummability is well understood (e.g., [2]).

The asymptotic result (4.14) is illustrated by Figure 5, which compares the asymptotic
and numerical estimates of Xn/(2n)! as a function of φ for fixed u0 = 1, w = 2, and b = 0.5.
Since Xn is a π-periodic function of φ, it is plotted only for φ ∈ [0, π). The upper panel
of the figure corresponds to n = 5 and the lower panel to n = 20. For n = 5, we show
two asymptotic estimates: the first takes into account only the pair of complex-conjugate
poles nearest the origin; the second takes into account the two nearest pairs. As remarked
above, the latter approximation eliminates the discontinuity at φ = π/2; it also matches the
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0

2

4

φ

X5

10!

0 ππ/2 −1.5

0

1.5

φ

X20

40!

0 ππ/2

Figure 5. Estimates of Xn(u, v, w) as a function of φ for w = 2 and b = 0.5: Numerical results (solid
curves) are compared with asymptotic results (dashed curve) for n = 5 and n = 20. For n = 5 the asymptotic
result obtained by taking into account two poles is also shown (dotted curve).

Figure 6. X20 as a function of φ and w for u0 = 1 and b = 0.5. (X20 has been normalized by w23 for the
clarity of the picture.)

numerical results remarkably well. For n = 20, the match is already excellent with a single
pair of complex-conjugate poles, and the curves are indistinguishable.

To illustrate further the manner in which the coefficients Xn depend on φ and w, we
show in Figure 6 results of the numerical computation of X20 for φ ∈ [0, π) and w ∈ [1, 3).
The values of X20 increase rapidly with w; in order to make the dependence on φ visible
in the color scale for the smaller values of w, we have plotted Xn/w

α rather than Xn, with
the parameter α chosen as α = 23 to minimize the variations in color in the w direction. A
completely indistinguishable picture would have been produced had we used the asymptotic
estimate for X20 in place of the numerical results.
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4.2. From the coefficients Cn
ij. We now present a derivation of the asymptotics (4.14)

alternative to that of the previous section. This relies on the results of section 3 provid-
ing the asymptotics of the polynomial coefficients Cn

ij with sufficient accuracy that the sums
(2.16)–(2.17) can be estimated. A possible advantage of this approach is that it is less depen-
dent on the exact solution of the leading-order balanced model (4.2)–(4.4) and hence on the
integrability of that model.

To obtain the asymptotics of Xn from that of Cn
ij , we introduce (3.11) into (2.16) to find

that

(4.15) Xn(u, v, w) � (2n)!
∑
i,j=0

A(a, b)(−1)j+1e−nG(a,b)u2i+1v2j+1w2k,

with k = n − i − j. In this section, we concentrate on the controlling behavior of Xn for
n 
 1 and ignore order-one prefactors. This is indicated by the symbol �. The oscillations
introduced by the factor (−1)j+1 in the sum make the validity of the expression questionable
for v ∈ R. However, one can use it safely, for instance, if ν = iv ∈ R, and then use an analytic
continuation argument for v ∈ R. We proceed in this formal manner. Approximating the
sums in (4.15) by integrals over a and b gives

(4.16) Xn � (2n)!n2(uνw)2n/3
∫ ∞

−∞

∫ ∞

−∞
A(a, b)en[2a log(u/w)+2b log(ν/w)−G(a,b)] dadb.

The integrals can be approximated by Laplace’s method to obtain

(4.17) Xn � (2n)!n(uνw)2n/3eS(p,q),

where S is the Legendre transform of G defined in (3.13),

p = log
( u

w

)2
and q = log

( ν

w

)2
.

Several simplifications occur upon using the variable transformation (3.16)–(3.17): this re-
duces (4.17) to the form

(4.18) Xn � (2n + 1)!
[
(w2 − u2)(w2 − ν2)

]n/2
enŜ(P,Q),

where

(4.19) P =
1

2
log

(w2 − u2)(w2 − ν2)

w4
and Q =

1

2
log

w2 − u2

w2 − ν2
.

At this point, we can reintroduce iv in place of ν and take v ∈ R. Doing so, we analytically
continue the function given by the integral in (4.16) for v ∈ iR to v ∈ R. This provides
an approximation to at least one branch of (4.15) thought of as an analytic function of v in
the complex plane minus possible branch cuts. Note that the arguments of the logarithm
in P and Q are both positive if we assume, as in section 4.1, that |w| ≥ |u|. However,
for our choice of branch for the definition of P and Q, arg(ep − 1) = arg(u2/w2 − 1) = π,
arg(eq − 1) = arg(−v2/w2 − 1) = −π, and hence

(4.20) P =
1

2
log

(w2 − u2)(w2 + v2)

w4
and Q =

1

2
log

w2 − u2

w2 + v2
+ iπ.
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We now consider the integral appearing in the expression (3.18) for Ŝ, namely,

(4.21) I =

∫ P

−∞

eP
′/2

[(1 + eP ′+Q) (1 + eP ′−Q)]
1/2

dP ′,

and note that the factor 1 + eP
′−Q in the denominator changes sign in the integration range

for P ′ = Q− iπ < P . We introduce the change integration variable from P ′ to z′, with

z′
2

=
1 + eQ−P ′

1 − e2Q
,

which maps P ′ = −∞ to z′ = ∞, P ′ = Q− iπ to z′ = 0, and P ′ = P to z′ = z, where

(4.22) z2 =
1 + eQ−P

1 − e2Q
= (v/u0)

2,

with the last equality following from (4.20). The change of variables makes it possible to
express I in terms of elliptic integrals as

I =

(∫ P

Q−iπ
+

∫ Q−iπ

−∞

)
eP

′/2

[(1 + eP ′+Q) (1 + eP ′−Q)]
1/2

dP ′

= −eQ/2
[
F (φ(u, v); k) ± iK ′(k)

]
,

where the ± sign depends on a branch choice and φ(u, v) = sin−1(v/u0) is assumed to be in
(−π/2, π/2). In writing this expression we recover the parameter k appearing in section 4.1
from the computation

(4.23) 1 − e2Q =
u2 + v2

v2 + w2
=

u2
0

w2
0

= k2

using (4.20). Similarly, we compute eQ/2 = i(w2−u2)1/4(w2+v2)−1/4 and finally reduce (4.18)
to

(4.24) Xn � (2n + 1)!(−1)nw2n
0

[F (φ(u, v); k) ± iK ′(k)]2n
.

Once the two complex-conjugate contributions are taken into account, this is consistent with
(4.14) when −π/2 < φ < π/2. For −π < φ < −π/2 and π/2 < φ < π, other branch choices
must be made in (4.21) to recover (4.14).

5. Resummation. Our main aim for examining the late asymptotics of the coefficients Xn

and Yn is to control the divergence of the power-series expansion of the slaving relation (2.12)
defining the slow manifold. This makes it possible to ascertain how a unique slow manifold
can be defined, which, although not invariant, is optimal in a certain sense. A natural way
of achieving this is by using Borel resummation. As we now show, the Borel summation [2]
of the divergent series (2.15) provides a natural definition of a unique, piecewise-continuous
slow manifold, with discontinuities across what might be termed Stokes surface.
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We define the Borel transform of X(u, v, w; ε) by the series

(5.1) BX(u, v, w; ξ) =

∞∑
n=0

Xn(u, v, w)

(2n + 1)!
ξ2n+1.

The asymptotics (4.7) of Xn ensures that this series converges for |ξ| < |t∗|. Analytic contin-
uation can then be used to define BX for larger |ξ|. Formally, X can be recovered from its
Borel transform by Laplace transform, according to

(5.2) X(u, v, w; ε) = ε−2

∫ ∞

0
e−ξ/εBX(u, v, w; ξ) dξ,

as a term-by-term integration indicates. We now propose to define the optimal slow manifold
for the LK model by this relation and its counterpart for Y (u, v, w; ε). A crucial point is that
we choose the integration contour in (5.2) to be the positive real line for all values of (u, v, w).
A consequence is that the optimal slow manifold defined in this manner is not analytic and
indeed is not even continuous in (u, v, w). This is unavoidable since the analytic continuation
of (5.2) that may be obtained by suitably deforming the contour of integration in the complex
plane picks up fast oscillations across certain surfaces in the (u, v, w)-space. We discuss this
next.

The loss of analyticity in X arises when singularities of BX in the ξ-plane cross the positive
real axis. The singularities of BX are, in turn, controlled by the asymptotics of Xn for n 
 1.
Taking (4.7) into account, we observe that BX has poles for ξ = ±it∗, with the behavior

(5.3) BX(u, v, w; ξ) ∼ ±
∞∑
n=0

(−1)niκ
ξ2n+1

t2n+2
∗

= ± iκξ

ξ2 + t2∗

near these. Here, as in section 4, t∗ is a function of the slow variables: t∗ = t∗(u, v, w). The
sign in (5.3) should be taken as + if the behavior of x near the pole is in agreement with (3.7)
and as − if the sign of x is opposite. (Note that all poles t∗ of (u(t), v(t), w(t), x(t), y(t)), not
only those nearest the origin, lead to contributions of this form, although the latter have a
dominant role.) Thus, we conclude from (5.3) that the optimal slow manifold is discontinous
for values of (u, v, w) such that there are poles t∗ with Re t∗ = 0. Taking the location (4.12)
of the poles t∗ into account, this is seen to occur for φ = −π, 0, π, that is, when v = 0. A
simple picture therefore emerges of an optimal slow manifold analytic everywhere in (u, v, w)
except on the surface v = 0, which can be termed Stokes surface. Across this surface, a Stokes
phenomenon occurs, and X(u, v, w; ε) and Y (u, v, w; ε) jump. Not surprisingly, the jumps are
associated with the generation of fast oscillations.

Let us examine this more closely by considering a trajectory of the slow system crossing
the Stokes surface v = 0. For definiteness, we consider the crossing corresponding to v̇ > 0,
i.e., φ = 0 (the crossing with v̇ < 0, i.e., φ = ±π, is identical modulo a few sign changes).
For v < 0, the relevant poles of the slow solution (4.8)–(4.10) have Re t∗ > 0. Considering
only the poles closest to the real axis, and taking Im t∗ > 0 by convention, the location of the
poles of the function BX in the ξ-plane (the Borel plane) is as represented on the left panel of
Figure 7, with four poles at ±it∗ and ±it̄∗. As v increases toward 0, Re t∗ decreases, and the
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Figure 7. Location of the poles of BX in the complex ξ-plane for v < 0 (left panel), and for v > 0 (right
panel). The optimal slow manifold, defined by as the integral of exp(−ξ/ε)BX along the positive real axis of
ξ, is not analytic for v = 0: The optimal slow manifold for v > 0 differs from the analytic continuation of the
manifold defined for v < 0 by the contributions of the two poles encircled in the right panel.

poles move toward the real line, which they cross when v = 0. Thereafter, there is a difference
between the function X defined by (5.2) for v > 0 and the function obtained by analytically
continuing X from v < 0. The difference is the contribution of the two poles −it∗ and it̄∗ that
have crossed the integration contour. This contribution, computed from (5.2)–(5.3) (with the
+ sign) as the residue

(5.4) Xpole(u, v, w; ε) =
πκ

ε2
eit∗/ε + c.c. =

2πκ

ε2
e− Im t∗/ε cos(Re t∗/ε),

corresponds to fast gravity oscillations. This is made obvious by evaluating (5.4) along the
slow trajectory. To leading order in ε, the slow trajectory is given by

(5.5) u(t) ∼ u0 cn(w0t; k), v(t) ∼ u0 sn(w0t; k), w(t) ∼ w0 dn(w0t; k).

Introducing this into (5.4) leads to

(5.6) xpole(t) = Xpole(u(t), v(t), w(t); ε) =
2πκ

ε2
e−K(k′)/(εw0) cos(t/ε),

since −π/2 < φ < π/2 and t∗ = −t + iK(k′)/w0, in the simple case considered with
v̇ > 0. This pole contribution clearly corresponds to fast oscillations that appear when v
goes through 0 and have exponentially small amplitudes, proportional to exp(−K(k′)/(εw0)).
The expression (5.6) coincides with that obtained in [29] using a different approach (up to a
sign change arising from a different sign combination in (5.5)). The computations carried out
in that paper, comparing (5.6) with results of the numerical integration of the LK system,
confirms the validity of this expression.

Physically, the pole contribution represents gravity waves that are generated spontaneously
by the slow balanced motion and cause the exact trajectories to move away from the optimal
slow manifold by an exponentially small amount. Note that we have considered only the
leading-order contribution associated with the pole t∗. In the full problem, there are not only
corrections to the amplitude and phase in (5.6), but also terms with higher frequencies n/ε,
n > 1, which appear as a result of the nonlinearities of the LK model.
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6. General slow manifold. In this section, we briefly discuss how some of the results
obtained above for the LK model generalize to a broad class of two-time-scale systems. The
systems that we consider can be written in the form

∂s

∂t
= Ns(s, f),(6.1)

∂f

∂t
+

1

ε
L(s)f = Nf(s, f),(6.2)

where s denotes the vector of slow variables and f the vector of fast variables. Here Ns(s, f)
and Nf(s, f) are vector-valued functions of s and f, analytic in finite regions around Im s = 0
and Im f = 0. They are assumed to be of order one, and could depend on ε, but we have
ignored this dependence. The matrix L(s) governs the linear dynamics of the fast variables;
it is assumed to be analytic in s and skew symmetric. The eigenvalues ±iωk(s), k = 1, 2, . . . ,
of L(s) are assumed to satisfy

1 < ω1(s) < ω2(s) < · · · < ωn(s).

The boundedness from below by a constant, which can be set to 1 by suitably defining ε, is
crucial to ensure the time-scale separation between the variables s and f. Note that the fact
that ωk �= 0 implies that the dimension of f is even. The LK model is of the form (6.1)–(6.2),
with s = (u, v, w), f = ε(x, y), and L(s) given by the 2 × 2 canonical symplectic matrix.

The system (6.1)–(6.2) clearly has an elliptic slow manifold which, to leading order, is
simply given by f = 0. More accurate slow manifolds can be obtained by seeking a relationship

(6.3) f = F(s; ε)

slaving the fast variables to the slow ones. Introducing (6.3) into (6.2) and using (6.1) to
eliminate the time derivative leads to the superbalance equation

(6.4) εNs(s,F(s)) · ∂sF(s) + L(s)F(s) = εNf(s,F(s)),

where · denotes summation over the components of s. An approximation solution F can be
derived by iteration or expansion in powers of ε. Here we use the latter procedure and write
F as the formal series

(6.5) F(s; ε) =
∞∑
n=0

εn+1F(n)(s).

The successive F(n) are then determined from a recurrence relation, starting with F(0)(s) =
L(s)−1Nf(s, 0).

6.1. Late behavior of F(n). We now consider the asymptotics of F(n) for n 
 1. In the
absence of detailed information on the nature of the terms Ns and Nf in (6.1)–(6.2), we cannot
write F(n) as polynomials in s, as is the case for the LK model (and, more generally, for any
model where Ns and Nf are polynomials in s and f). However, it remains possible to infer
the late behavior of F(n) directly from the superbalance equation (6.4) following the approach
taken for the LK model in section 4.1.
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Introducing the expansion (6.5) into (6.4) and considering the coefficient of εn+2, say,
leads to a recurrence relation for F(n). It would be very tedious to write down this recurrence
explicitly; however, our interest is in the behavior of the solution F(n) for n 
 1 only. It is
therefore sufficient to consider the dominant terms in the recurrence relation; these correspond
to the balance

(6.6) L(s)F(n+1)(s) ∼ Ns(s, 0) · ∂sF
(n)(s).

To see this, assume that F(n) depends on n like (n + r − 1)!/an for some n-independent
parameters r ≥ 0 and a(s), as is confirmed below. The controlling behavior of the terms
retained in (6.6) (i.e., the fastest dependence on n) is then proportional to (n − r)!. One of
the terms neglected in (6.6) is F(n)(s) · ∂fNf(s, 0), with controlling behavior (n + r − 1)!, and
hence smaller by a factor 1/n than the terms retained. All the other terms are nonlinear in
F(n) and give contributions also behaving like (n+ r− 1)! or smaller. We demonstrate this for
the quadratic terms that arise in the expansion of the first term in (6.4). Ignoring irrelevant
constants, these give a contribution at O(εn+2) of the form

n−1∑
k=0

F(n−1−j)(s)∂sF
(j)(s) = F(0)(s)∂sF

(n−1)(s) +

n−2∑
k=0

F(n−1−j)(s)∂sF
(j)(s).

The first term on the right-hand side behaves like (n + r − 1)!. The controlling behavior of
each of the terms in the remaining sum can be bounded by (n + r − 2)!, so that, together,
they also yield a contribution bounded by (a multiple of) (n+ r−1)!. All the nonlinear terms
neglected in (6.6) can be treated using a similar argument relying on the fact that multiple
sums of powers of F(j) are dominated by the terms involving the coefficients F(j) with the
largest possible indices j.

Now, the late behavior of F(n) can be captured by solving the approximate recurrence
relation (6.6). To do this, we define

(6.7) v = Ns(s, 0) · ∂s,

which we will think of either as a differential operator or as a vector field in the space of
the slow variables s. The dynamics associated with this vector field is that of the simplest
balanced model, obtained by substituting the lowest-order slaving relation f = 0 into (6.1).
The approximate recurrence relation (6.6) can be rewritten in terms of v as

(6.8) L(s)F(n+1)(s) ∼ −vF(n)(s).

This can be solved using the method of characteristics. We denote by

S(t) = exp(tv)s

the solution of

Ṡ = v(S) with S(0) = s.
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Thus exp(tv) gives the approximate slow trajectory obtained on the leading-order slow man-
ifold f = 0. In terms of this trajectory, we integrate (6.8) as

F(n+1)(s) ∼ −L(s)−1 d

dt

∣∣∣∣
t=0

F(n)(etvs).

This gives the general solution of (6.6) and hence the leading-order form of the late coefficients
as

(6.9) F(n)(s) ∼ (−1)nL(s)−n dn

dtn

∣∣∣∣
t=0

F̃(0)(etvs; s),

where F̃0 is an unknown (vector) function, determined by the early behavior of the recurrence,
when the approximation (6.6) does not hold.

As in the case of the LK model, the large-n behavior of F(n) is controlled by the singularities
of the function ψ(t; s) = F̃(0)(etvs; s) nearest the origin of the complex t-plane. It is difficult to
make general statements about the nature of these singularities, since etvs is the solution of
a nonlinear, typically nonintegrable system of ordinary differential equations. Poles, branch
points, essential singularities, but also more complicated behavior such as natural boundaries
are all possible. Here, we restrict our attention to the simplest situation, where the singularities
nearest the real t-axis are a pair of complex-conjugate poles t∗ and t̄∗. It should be emphasized
that these poles depend on s, though we do not make this explicit. Near t∗, ψ takes the form

(6.10) ψ(t; s) = F̃(0)(etvs; s) ∼ g

(t− t∗)r
,

where g is a time-independent vector, depending on s only through t∗. In a manner similar to
that used to determine κ (or Λ) for the LK model, it should be relatively easy to determine g
by considering solutions of (6.1)–(6.2) in the limit t → t∗ as expansions in powers of (t− t∗)−1.

Introducing (6.10) into (6.9) and taking the complex-conjugate pole into account give

(6.11) F(n)(s) ∼ (n + r − 1)!

(r − 1)!(−t∗)n+r
L(s)−ng + c.c.

Now, for generic g,

(6.12) L(s)−ng ∼ αe1

(iω1)n
+

βē1

(−iω1)n
.

Here ±iω1 are the lowest eigenvalues of L(s), and e1 and its complex conjugate ē1 are the
associated eigenvectors, normalized so that ē1 · e1 = 1, where · denotes the (non-Hermitian)
scalar product. The constants α and β are given by α = ē1 · g and β = e1 · g. Taking (6.12)
into account reduces (6.11) to

(6.13) F(n)(s) ∼ (i)n(−1)r(n + r − 1)!

(r − 1)!ωn
1 t

n+r
∗

(αe1 + (−1)nβē1) + c.c.

In this expression, the dependence on s of the right-hand side is through that of t∗, α, β, ω1,
and e1. If L is independent of s, however, ω1 and e1 are constant, and α and β depend on s
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through t∗ only. This is the situation of the LK model. Note that (6.13) indicates that the
slow manifold is again determined by an asymptotic series of Gevrey type of order 1. Note
also that (6.13) has the form (n + r − 1)!/an assumed to obtain the approximate recurrence
relation (6.6).

6.2. Resummation. Once the asymptotic behavior (6.13) is determined, it is possible to
use the Borel summation of the divergent series (6.5) to define a unique optimal slow manifold
piecewise. Specifically, we define

(6.14) BF(s; ξ) =

∞∑
n=0

F(n)(s)

(n + r − 1)!
ξn+r−1,

which, according to (6.13), converges for |ξ| < |ω1t∗|. The formal inversion is given by

(6.15) F(s; ε) =
1

εr

∫ ∞

0
e−ξ/εBF(s; ξ) dξ,

as is readily verified. Like for the LK model, we can choose to define an optimal slow manifold
by this expression, insisting that the contour of integration be the positive real line. This slow
manifold is discontinuous for the values of s such that the poles of BF(s; ξ) in ξ lie on the
positive real line. The poles of BF(s; ξ) are found from (6.13) to be located at ±it∗ and ±it̄∗.
Thus the Stokes surfaces, across which the optimal slow manifold is discontinuous, are simply
defined by the condition Re t∗ = 0.

The analytic continuation of (6.15) across the Stokes surface includes fast oscillations, as
we now demonstrate. From (6.13), we obtain that the behavior of BF(s; ξ) near the poles
ξ = ±it∗ is of the form

(6.16) BF(s, ξ) ∼ (−1)riω1

(r − 1)!

(
ξ

t∗

)r−1 ( α

ξ + iω1t∗
e1 −

β

ξ − iω1t∗
ē1

)
.

A similar expression gives the behavior near the complex-conjugate poles ξ = ±it̄∗. When a
Stokes surface is crossed, the difference between the value of F on the optimal slow manifold
and that on the full trajectory is given by the contribution of the poles which cross the positive
real axis when Re t∗ = 0. Taking ω1 Im t∗ > 0 for definiteness, these poles are −iω1t∗ and
iω1t̄∗. Computing their contribution using the residue theorem gives

(6.17) Fpole(s; ε) = ± 2πi(iω1)
r

εr(r − 1)!
eiω1t∗/εαe1 + c.c.,

where the sign depends on the direction in which −it∗ crosses the positive real axis when
Re t∗ = 0. Evaluating this expression along the approximate slow solutions s(t) = evts(0)
confirms that the pole contribution corresponds to fast oscillations. Their amplitude is the
exponentially small ε−r exp(−ω1 Im t∗), their frequency is the lowest frequency ω1/ε, and their
polarization (relative size of the various components of f) is fixed by the eigenvector of L(s)
associated with the eigenvalue iω1. The other frequencies ωk > 0, k �= 1, give contributions
that are smaller than (6.17) by the exponentially small factors exp[(ω1 − ωk) Im t∗/ε].
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7. Discussion. In this paper, we have examined in detail the divergence of the asymptotic
procedures leading to approximately invariant slow manifolds for the Lorenz–Krishnamurthy
(LK) model. This divergence was initially observed by Lorenz [20] and was considered in some
of the subsequent literature [32, 33]. Here we derive an explicit expression for the leading-
order behavior of the slaving coefficients Xn as n → ∞. This makes it possible to employ
Borel summation to define a unique slow manifold. In this manner, we resolve the ambiguity
that exists for finite-accuracy slow manifolds which are not uniquely defined even for fixed
accuracy εn. The Borel summation requires a choice of integration contour in the Laplace
integral that defines it. Our choice is the obvious one which minimizes the oscillations that
appear in the slaved fast variables along slow trajectories. The oscillations are not completely
eliminated, however: as the trajectories approach the Stokes surface, oscillations appear with
the characteristic error-function switching on, which characterizes the Stokes phenomenon [4].
The definition of the slow manifold that we propose ensures that the oscillations are reduced
to subexponential levels away from the Stokes surfaces.

We emphasize that our optimal slow manifold differs from Lorenz’s slowest invariant man-
ifold [20]. The latter is a truly invariant manifold consisting of periodic orbits. These periodic
orbits exist because the slow system with ε = 0 is integrable: its phase space is foliated by
periodic orbits, most of which persist when ε �= 0 (see [6, 25, 16]). The periodic orbits with
ε �= 0 contain exponentially small fast oscillations, with the same amplitude as the oscillations
switched on by the Stokes phenomenon that we consider here. In fact, it is easy to obtain
an approximation for these orbits from our results. This is achieved by adding oscillations
to a solution which starts on the optimal slow manifold. The amplitude and phase of these
oscillations are chosen such that after a period of the slow solution, when extra oscillations
have been switched on by (two) Stokes phenomena, the complete solution returns to its initial
value. This is a consistent approximation because, to leading order, the added oscillations
are an approximate solution of the LK equations, and because their (exponentially) small
amplitudes make their superposition possible.

We have limited our computations to the leading asymptotics of the slaving coefficients
Xn and Yn for n 
 1. As a result, our estimate for the pole contributions associated with
the spontaneous generation of oscillations approximates only the leading-order part of these
oscillations. In other words, our computations are carried out to an exponential accuracy
that is sufficient to capture the dominant part of the oscillations only. Higher accuracy would
require obtaining several terms in the large-n expansion of Xn. A complete expansion for
Xn includes terms of different origins. In particular, it includes contributions from all the
poles t∗ associated with the slow dynamics rather than from those nearest the real axis only.
Furthermore, because of the nonlinearity of the recurrence relations for Xn, contributions
mixing the different poles arise.

We present two approaches for the determination of the asymptotics of the slaving coeffi-
cients. The first, which applies the method of characteristics to the superbalance equation, is
readily generalized formally to a large class of two-time-scale systems. This approach makes
plain the connection between the exponential asymptotics carried out in [29] for solutions of
the LK model and that carried out here for the slow manifold as a whole. In essence, it treats
slow manifolds as unions of slow trajectories; in doing so, it turns the problem of exponen-
tial asymptotics for the partial differential equation that is the superbalance equation into a
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problem of exponential asymptotics for ordinary differential equations. Practical use of this
approach requires computing the location of the poles of the leading-order slow trajectories
in the complex time plane. For integrable systems such as the LK model, this is possible
very explicitly; however, this can be much more problematic for more complex, nonintegrable
models. Our second approach relies on the observation that the slaving coefficients Xn and
Yn are polynomials in the slow variables; it concentrates then on first obtaining the asymp-
totics for the corresponding polynomial coefficients and then summing these. It is clear that
the integrability of the LK model underlies the fact that the polynomial coefficients can be
obtained in quite an explicit form. It is however possible that this type of approach remains
useful in nonintegrable problems, provided that the slaving coefficients continue to take poly-
nomial forms. Of course, some numerical work may be required—for instance, evaluating the
function G (or its Legendre transform) governing the asymptotics.

We conclude by noting that the control of late coefficients together with Borel summation
have been used for two-time-scale systems in the context of averaging [26]. Slow manifolds
are of course closely related to averaging, and averaging order-by-order provides a means
of constructing slow manifolds, at least for single-frequency systems, when the difficulties
associated with resonances do not arise [15]. In this context, the control of the divergence
of asymptotics series can be used as an alternative to the more standard iterative approach,
with an incomplete Laplace transform in the Borel summation used in place of the optimal
truncation argument to bound error terms by exponentially small quantities. In this paper, we
use Borel summation as a practical tool in situations simple enough that the late coefficients in
the asymptotic expansions not only can be bounded but also can be approximated accurately.

Acknowledgments. The author thanks J. G. Byatt-Smith, T. N. Bailey, A. M. Davie, and
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Steering Control∗
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Abstract. We consider a model for vehicle motion coordination for three vehicles that uses coupled oscillator
steering control. Prior work on such models has focused primarily on sinusoidal coupling functions,
which typically give behavior in which individual vehicles move either in straight lines or in circles.
We show that other, more exotic trajectories are possible when more general coupling functions
are considered. Such trajectories are associated with periodic orbits in the steering control sub-
system. The proximity of these periodic orbits to heteroclinic bifurcations allows for a detailed
characterization of the properties of the vehicular trajectories.
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1. Introduction. Many organisms display ordered collective motion [7], such as geese
flying in a Chevron-shaped formation [22], wildebeests herding on the Serengeti plains of
Africa [32], locusts swarming in sub-Saharan Africa [34], and fish schooling [28]. Collective
motion is also of great interest and importance for engineering applications such as forma-
tion control of unmanned vehicles and spacecraft [18, 29, 31], cooperative robotics [8], and
sensor networks [9]. Much recent work in the engineering community involves formulating
and studying interaction rules which allow a population to operate in a particular collective
motion state; e.g., [10, 14, 17, 18, 21, 24, 31].

In the present paper, we consider the “LPS model” for vehicle motion coordination de-
veloped by Leonard, Paley, and Sepulchre [25, 26, 27, 29, 30, 31]; cf. [19]. This considers N
Dubins-type vehicles [11] which are identical, move with constant unit speed, and are globally
(all-to-all) coupled:

ṙn = eiθn ,

θ̇n = un(r, θ), n = 1, . . . , N.
(1.1)

Here the complex vector rn denotes the position of vehicle n with respect to the origin, while
the angle θn denotes the orientation of its (unit) velocity vector with respect to the positive
real axis. Since rn = xn+iyn, with (xn, yn) ∈ R

2, we will hereafter use the following equivalent
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equations for the velocity of each vehicle:

ẋn = cos(θn),
ẏn = sin(θn).

(1.2)

It can be shown that the system in (1.1) is invariant to rigid group rotation and translation
for controllers un(r, θ) that are functions of only the relative positions and headings of the
vehicles, defined as rm − rn and θm − θn, respectively [25, 26, 27, 29, 30, 31]; cf. [19].

The steering control un(r, θ) of the vehicles can be decomposed as

(1.3) un(r, θ) = ω0 + uhead
n (θ)︸ ︷︷ ︸

uphase
n (θ)

+ uspac
n (r, θ), n = 1, . . . , N,

where ω0 ∈ R is a constant, the heading controller uhead
n depends only on the relative orienta-

tion of the vehicles and governs the relative directions, and the spacing controller uspac
n is used

to attract the vehicles to a given spatial formation. Following [27, 29, 31], we call uphase
n (θ)

the phase controller. When the phase controller depends only on the differences θm − θn, a
useful connection with the coupled oscillator literature (e.g., [5, 6, 33]) is possible.

Constructing the spacing controller is more challenging in general, since it must be de-
signed to stabilize a specific formation. In [26, 27, 29, 30, 31], a controller that stabilizes a
circular formation and a proof of stabilization are given. The basic idea is to design a po-
tential function which is minimized when the vehicles are in the desired configuration. Then,
for uhead

n = 0, it is possible to construct a Lyapunov function to demonstrate that the de-
sired formation is asymptotically stable. For the overall system, one can use a composite
Lyapunov function, made up of a linear combination of the Lyapunov functions used for
the spacing and heading controls, to prove the stability of the overall desired configuration
[25, 26, 27, 29, 30, 31].

The benefits of this type of model for controlling the motion of a group of vehicles are
clear: the model takes advantage of results from research on coupled oscillators and translates
them into a simple but robust law governing individual vehicle motion that produces the
desired overall group motion.

Most of the previous work on the LPS model has assumed a sinusoidal coupling function
for the phase controller:

(1.4) uphase
n = ω0 +

k

N

N∑
j=1

sin(θm − θn).

With this phase controller alone (i.e., uspac
n = 0), the system converges asymptotically to a

synchronized phase arrangement for k > 0, and a phase-balanced solution for k < 0 [23, 25, 27,
29]. Both of these phase-space solutions lead to vehicular trajectories that are either straight
lines or circles, depending on the value of ω0: for ω0 �= 0, the trajectories converge to circles,
and for ω0 = 0, the trajectories converge to straight lines.

In this paper, we explore the effects of more general coupling functions to see what other
types of coordinated motion are possible for this model using the phase controller alone. We
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will show that one can get trajectories that are much more exotic than straight lines or cir-
cles, and which may be advantageous in situations where one wants a relatively complicated
trajectory that is a natural result of the phase controller, rather than having to piece a sim-
ilar trajectory together with existing methods. The trajectories from our phase controller
are characterized by almost regular, Spirograph-like shapes, where the vehicles spend some
time circling one section of space before moving on to another area, eventually tracing out
an annulus, which may be useful in applications where one wants a robot to patrol an appro-
priately shaped space while periodically doing a more careful search of a subsection of that
space. These trajectories are related to heteroclinic cycles for the coupled oscillator system;
see [3, 16] for related heteroclinic orbits in systems of N coupled identical oscillators; cf. [4, 5].
To simplify our analysis, we will restrict the system to three vehicles. (A discussion of more
general coupling functions for two vehicles is given in [20].)

We begin with an analysis of the general phase control and then present a detailed analysis
of the resulting trajectories for a specific coupling function. Sections 2 and 3 consider the case
of all-to-all coupling, while section 4 considers a different coupling topology. Our conclusion
is given in section 5.

2. Identical all-to-all coupling: Phase dynamics.

2.1. Equations and symmetry. A system of three identical oscillators with all-to-all iden-
tical phase-difference coupling is given by

(2.1) θ̇n = ω0 + k
∑
m�=n

f(θm − θn), n = 1, 2, 3,

where θn ∈ [0, 2π) and the coupling function f is 2π-periodic. This system of equations is
equivariant with respect to the group S3 ×T 1, where S3 is the six-element permutation group
generated by

σ1 : (θ1, θ2, θ3) → (θ2, θ1, θ3),
σ2 : (θ1, θ2, θ3) → (θ2, θ3, θ1),

(2.2)

and T 1 is the circle group with action

(2.3) τφ : (θ1, θ2, θ3) → (θ1 + φ, θ2 + φ, θ3 + φ)

for all φ ∈ [0, 2π). This means that if (θ1(t), θ2(t), θ3(t)) is a solution to (2.1), then, for any
γ ∈ S3 × T 1, so is γ · (θ1(t), θ2(t), θ3(t)).

Equation (2.1) can be reduced to a two-dimensional system by introducing the 2π-periodic
variables ψ1 = θ1 − θ2 and ψ2 = θ1 − θ3:

ψ̇1 = θ̇1 − θ̇2 = k[f(−ψ1) + f(−ψ2) − f(ψ1) − f(ψ1 − ψ2)],

ψ̇2 = θ̇1 − θ̇3 = k[f(−ψ1) + f(−ψ2) − f(ψ2) − f(ψ2 − ψ1)].
(2.4)

Equation (2.4) inherits equivariance with respect to the actions obtained from (2.2) and (2.3)
on the ψ variables:

σ̂1 : (ψ1, ψ2) → (−ψ1, ψ2 − ψ1),
σ̂2 : (ψ1, ψ2) → (ψ2 − ψ1, −ψ1).

(2.5)
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(a) S3 Solution (b) S2 × S1 Solution (c) Z3 Solution

Figure 1. Phase-locked solutions guaranteed to exist for any coupling function f . The locations of the dots
on the phase circle are determined by the values of θ for the oscillators, with the number indicating how many
oscillators share the same phase. These solutions are labeled according to their isotropy subgroup, as described
in the text.

Note that τ̂φ : (ψ1, ψ2) → (ψ1, ψ2) acts as the identity for all φ. The actions σ̂1 and σ̂2 generate
the permutation group S3. We will sometimes find it convenient to think of ψ1 and ψ2 as
being restricted to [0, 2π), and other times it will be useful to allow them to take any real
value.

2.2. Solutions and bifurcations. Phase-locked solutions are characterized by each pair of
θ variables always differing by a fixed value. Thus in the ψ variables, phase-locked solutions
correspond to fixed points. The symmetry and stability properties of phase-locked solutions
are discussed below. As convenient, we will discuss these solutions in either the θ or the ψ
variables. The three types of phase-locked solutions shown in Figure 1 are guaranteed to
exist for any coupling function f of the form of (2.1), given a simple nondegeneracy condition
[4, 5, 6]. These are labeled according to their isotropy subgroup, which is the set of elements
of S3 × T 1 that leave the solution unchanged [15]. We note that the existence of a fixed point
at (ψ∗

1 , ψ
∗
2) implies the existence of fixed points at (ψ∗

1 + 2πj, ψ∗
2 + 2πm) for all j ∈ Z and

m ∈ Z.
The S3 solutions: Fixed points at (ψ∗

1 , ψ
∗
2) = (0, 0).

Symmetry. This phase-locked solution is invariant under the symmetry S3 = 〈σ1, σ2〉
in the θ variables, and S3 = 〈σ̂1, σ̂2〉 in the ψ variables; hence it has the name “S3

solution.” Since it corresponds to θ1 = θ2 = θ3, it is also sometimes referred to as the
“in-phase” or “synchronous” solution.
Stability analysis and bifurcations. The Jacobian for (2.4) at the fixed point (ψ∗

1 , ψ
∗
2) =

(0, 0) has a double eigenvalue λ1,2 = −3kf ′(0). Thus, the stability of the fixed point
depends solely on the sign of the real part of kf ′(0): if kf ′(0) is positive (resp.,
negative), then the S3 solution is stable (resp., unstable).

Suppose that there is a bifurcation parameter which causes the shape of the coupling
function f to change. It is immediately evident that the stability of the S3 fixed point changes
if the value kf ′(0) passes through zero as this parameter is varied. Because the fixed point
at (ψ∗

1 , ψ
∗
2) = (0, 0) will persist for all f , this corresponds to an S3-symmetric transcritical
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bifurcation. Assuming that there are no fixed points on the invariant lines ψ1 = 0, ψ2 = 0,
or ψ1 = ψ2, for (ψ1, ψ2) ∈ [0, 2π), at this bifurcation, a triangular heteroclinic connection
appears between the fixed points at (ψ∗

1 , ψ
∗
2) = (0, 0), (2π, 0), and (0, 2π). Since these points

are identified by the 2π-periodicity of ψ1 and ψ2, this can also be referred to as a homoclinic
connection. Thus, the authors of [4] call this an S3 transcritical/homoclinic bifurcation, or
S3THB. If the heteroclinic loop is attracting at the bifurcation, the system will have a stable
limit cycle very close to the triangle on the side of the bifurcation where the S3 solution is
unstable. Such a bifurcation will occur in the example below.

The S2 × S1 solutions: Fixed points at (ψ∗
1 , ψ

∗
2) = (0, 2π − δ), (2π − δ, 0), and (δ, δ) for

δ ∈ (0, 2π).
Symmetry. Arguments in [5, 6] imply that, provided f ′(0) �= 0, there must exist a
δ ∈ (0, 2π) such that there is a phase-locked solution with two oscillators in phase
and one oscillator shifted by the phase δ. The phase-locked solution corresponding to
(ψ∗

1 , ψ
∗
2) = (0, 2π − δ) is invariant under the group S2 = 〈σ1〉 in the θ variables, and

S2 = 〈σ̂1〉 in the ψ variables. Following [5], this is referred to as an S2 × S1 solution:
the S2 corresponds to the permutation just mentioned, and the S1 refers to the iden-
tity permutation acting on the other oscillator. The other phase-locked solutions are
related to this one by symmetry and are invariant under conjugate subgroups.
Stability analysis and bifurcations. The Jacobian at the fixed point (2π − δ, 0) has
eigenvalues λ1 = k[−f ′(δ) − 2f ′(−δ)] and λ2 = k[−2f ′(0) − f ′(δ)]. Note that the
symmetry-related fixed points at (2π − δ, 0) and (δ, δ) have the same stability. These
points can be sinks, sources, or saddles.

Bifurcations occur when either f ′(δ) + 2f ′(−δ) = 0 or f ′(δ) + 2f ′(0) = 0. Depending
on the relative values of f ′(δ), f ′(−δ), and f ′(0) for different parameters of f , the fixed
points’ stability can change to or from a sink, source, or saddle in a pitchfork or saddle-node
bifurcation; cf. [4]. Such solutions are involved in the S3THB bifurcation described above, and
can also be involved in the related global saddle-node heteroclinic bifurcation identified in [2].

The Z3 solutions: Fixed points at (ψ∗
1 , ψ

∗
2) = (2π

3 ,
4π
3 ) and (4π

3 ,
2π
3 ).

Symmetry. The fixed point (ψ∗
1 , ψ

∗
2) = (2π

3 ,
4π
3 ) corresponds to a solution for which

θ1 = θ2 + 2π
3 and θ2 = θ3 + 2π

3 . This is typically called the “splay state” because θ1,
θ2, and θ3 are equally spaced around the unit circle. This solution is invariant under
the three-element cyclic group Z3 generated by

(2.6) (θ1, θ2, θ3) →
(
θ2 +

2π
3
, θ3 +

2π
3
, θ1 +

2π
3

)
and hence is called the “Z3 solution.” In terms of the ψ variables, this solution is
invariant under 〈σ̂2〉, which is isomorphic to the group Z3. The fixed point (ψ∗

1 , ψ
∗
2) =

(4π
3 ,

2π
3 ) is invariant under the group Z3 generated by

(2.7) (θ1, θ2, θ3) →
(
θ3 +

2π
3
, θ1 +

2π
3
, θ2 +

2π
3

)
in the θ variables and 〈σ̂2σ̂1〉 in the ψ variables.
Stability analysis and bifurcations. The Jacobian at this fixed point (2π

3 ,
4π
3 ) has eigen-

values λ1,2 = k[−3
2(f ′(2π

3 )+f ′(4π
3 ))± 3i

2 |f ′(
4π
3 )−f ′(2π

3 )|]. Thus, unless f ′(4π
3 ) = f ′(2π

3 ),
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this fixed point will be either a spiral sink or a spiral source. At f ′(2π
3 )+f ′(4π

3 ) = 0, the
fixed point switches between a spiral sink and a spiral source, which is an indication
of a Hopf bifurcation, as found in [4].

2.3. An example. As an example, we now consider the coupling function

(2.8) f(ϕ) = μ1 sin(ϕ) + μ2 cos(ϕ) + μ3 sin(2ϕ),

which will provide a spectrum of novel trajectories when applied to vehicle motion coordination
using the LPS model. While the coupling function given by (2.8) provides a nice example for
our analysis of these interesting trajectories, the phenomena that produce the trajectories we
consider are fairly generic, and so we expect to see similar bifurcations in the phase space and
trajectories for the vehicles for other appropriate coupling functions [3, 16].

The above analysis predicts that both a S3THB bifurcation involving the S3 and S2 × S1

solutions and, independently, a Hopf bifurcation involving the Z3 solutions will occur at
μ1 +2μ3 = 0 for the system (1.1) with coupling function (2.8). Numerical bifurcation analysis
using XPPAUT [12] shows that for μ2 = 1, μ3 = −0.06, and k = 1 and when treating μ1 as
the bifurcation parameter, the Hopf bifurcation is subcritical, and that the branch of unstable
periodic orbits turns around in a saddle-node bifurcation of periodic orbits to give stable
periodic orbits; see Figure 2. This figure also illustrates that the phase space for the system
can be divided into two triangles bounded by the invariant lines ψ1 = 0, ψ1 = 2π, ψ2 = 0,
ψ2 = 2π, and ψ1 = ψ2. Trajectories in these triangles are related by symmetry, and the
resulting vehicular trajectories are identical. Thus, without loss of generality, we will assume
that all initial conditions are chosen such that the system moves in the lower right triangle.

3. Identical all-to-all coupling: Vehicular trajectories. We now illustrate the richness of
possible vehicular trajectories for (1.1) with identical all-to-all phase-difference steering control
by considering the coupling function given in (2.8) with parameters μ1 = 0.1, μ2 = 1, and
μ3 = −0.06; see Figure 2(c) for the corresponding reduced phase-space system. If the system
converges to the stable Z3 solution, then the vehicles will move either in circles or in straight
lines, depending on the value of ω0, with each instantaneously moving in a direction at an
angle of ±2π

3 with respect to the others. Such motion has been found for the LPS model with
the coupling function f(θ) = sin(θ) [25, 26, 27, 29, 30, 31]. However, if the system converges
to the stable limit cycle, then the vehicles can display more exotic trajectories, such as the
trajectory shown in Figure 3. Thus, we will focus our analysis on the solutions that converge
to the stable limit cycle. As we will demonstrate later, these exotic trajectories are products
of a stable limit cycle in the reduced phase system, so one can expect to see qualitatively
similar trajectories for other appropriate coupling functions and coupling topologies.

Motion along the limit cycle is not uniform: the system slows near each of the fixed points
and moves quickly in regions away from a fixed point. As will be explained in the following, it
is from this nonuniform motion that the trajectories get their peculiar shapes. We first present
an explanation of the vehicular motion in an intuitive way, and then validate the intuition with
results from numerical simulations, which were done using a fourth-order variable-timestep
Runge–Kutta algorithm. Without loss of generality, we will restrict discussion to the motion
of vehicle 1 (denoted v1) only. The motion of vehicle 2 (v2) and vehicle 3 (v3) is identical to
but out of phase with the motion of v1; this is summarized in Table 1.



NOVEL VEHICULAR TRAJECTORIES 1197

Z3

p.o.

μ1

(c) μ1 = 0.1

ψ2 ψ2ψ2

ψ1 ψ1 ψ1

ψ1,Max

(a) μ1 = 0.03

Spiral Sink

Source
S3

Z3

Saddle Point

ψ1

ψ2

S2 × S1

Sink

Spiral Source

Saddle Point

Z3

S3S2 × S1

ψ1

ψ2

(e) μ1 = 0.13

S3

S2 × S1

(b) μ1 = 0.04 (d) μ1 = 0.12

Figure 2. The bifurcation diagram in terms of μ1, showing the phase portraits at several values of μ1 of
interest for μ2 = 1 and μ3 = −0.06. In the (ψ1, ψ2) plane, yellow dots represent saddle points, red shows
sources or unstable periodic orbits, and blue represents sinks or stable periodic orbits. Solid (resp., dashed)
lines in the bifurcation diagram indicate stable (resp., unstable) solutions.

3.1. The intuitive description. The overall vehicle motion in Figure 3 can be decom-
posed into identical units, each of which contains a cluster and a tail. We will name the tail
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Figure 3. An example trajectory for vehicle 1 (v1) with parameters μ1 = 0.1, μ2 = 1, μ3 = −0.06,
ω0 = k = 1. This trajectory is taken over many cycles of the periodic orbit in the (ψ1, ψ2) plane.

Table 1
Relative phase and resulting behavior of all three vehicles in terms of position in the (ψ1, ψ2) plane. Here,

↑ means “increase(s),” and ↓ means “decrease(s).” The definition of “excursion” is given in the text.

Box ψ behavior θ behavior Vehicle motion

1 ψ1 ↑ to ≈ 2π θ1 & θ3 ↑ at the same rate v1 & v3: short excursion
ψ2 ≈ 0 θ2 temporarily ↓ v2: long excursion

2 ψ2 ↑ to ≈ 2π θ1 & θ2 ↑ at the same rate v1 & v2: short excursion
ψ1 ≈ 2π θ3 temporarily ↓ v3: long excursion

3 ψ1 ≈ ψ2 ↓ θ2 & θ3 ↑ at the same rate v2 & v3: short excursion
together to ≈ 0 θ1 temporarily ↓ v1: long excursion

connecting the units a long excursion. Each cluster can be further broken down to show two
general types of behavior: small approximately circular orbits, which we will call small orbits,
and the roughly semicircular excursions that connect the small orbits, which we will refer to
as short excursions. The vehicle path in a single unit can be described as a cycle through a
small orbit followed by a short excursion to another small orbit, followed by a second short
excursion to a third small orbit, followed by a long excursion to the next cluster. This is
illustrated in Figure 4.

We can understand this behavior by dividing the periodic orbit into six boxes, as labeled
in Figure 4. Simulations show that when the system in the (ψ1, ψ2) plane is in a lettered
box (i.e., near a fixed point), the vehicles move in a small orbit, and when the system is
in a numbered box, the vehicles undergo an excursion. This is expected, since the vehicles
would move in a circle if the system were actually at the fixed point (i.e., generically, at a
fixed point, θ̇j = constant �= 0). Therefore, one can intuitively expect the vehicles to show
switching behavior between small orbits and excursions as the system moves in the (ψ1, ψ2)
plane.
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Three units: one full circuit

Corresponding motion of the system

Boxes: B → 2

in the (ψ1, ψ2) plane
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of a small orbit

Boxes: 1 → B
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One unit ψ2

Short excursion to Small orbit to another
short excursion

Small orbit to long
another small orbit excursion

Transition in and out

Figure 4. Behavior of v1 in the (x, y) plane with corresponding position of the system in the (ψ1, ψ2) plane.
The top explains the motion of v1 within one unit: Follow the ordered arrows in the time-series of pictures.
The bottom-left panel shows one full circuit of vehicle motion, and the bottom-right panel shows the various
boxes in the (ψ1, ψ2) plane.

3.2. Numerical analysis and validation.

3.2.1. Box definition. To validate the above intuition, we need to be more precise about
the boundaries of the boxes. Since the vehicles are always moving in a smooth and roughly
circular trajectory, it is natural to define the boxes in terms of the instantaneous radius of
curvature of the vehicles’ trajectories. This was calculated from simulation data for each point
by finding the radius of the circle defined by that point and its two neighboring points; see
Figure 5.

The lettered boxes were chosen by calculating where the radius of curvature for v1 was
within 0.01 of the minima of each trough, as seen in Figure 6. Boxes 1, 2, and 3 are then
defined as the intervening lengths of the periodic orbit in the (ψ1, ψ2) plane.

3.2.2. Approximate solutions. Within each box, we present an approximate solution with
a few simplifying assumptions.

Near a fixed point (i.e., in a lettered box), the behavior of the system is approximately
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Figure 5. Measurements of the radius of curvature for v1 moving in the trajectory shown in Figure 3
with the approximations at each nearby fixed point. It is evident from the periodic flat troughs that the radius
of curvature of the vehicles’ motion spends a significant amount of time at an approximately constant value.
Moreover, the value of that constant value is very close to the radius of curvature the vehicles’ motion would
have if the system were at the S2 × S1 solution. See Figure 6 for an enlargement.

the same as if the system were actually at the fixed point. At a fixed point, we have θ̇1 =
θ̇2 = θ̇3 ≡ , where  is a constant. This is easily integrated, giving

θi(t) = t+ θ0i.

This corresponds to the following equations in the (x, y) plane:

ẋi = cos(t+ θ0i),
ẏi = sin(t+ θ0i).

These equations can also be integrated, yielding

xi = 1
� sin(t+ θ0i),

yi = − 1
� cos(t+ θ0i),

corresponding to motion in a circle of radius 1
� .

For the particular coupling function discussed in the example above,  = ω0 + 2kμ2.
Plugging in ω0 = k = μ2 = 1, we find that the vehicles move in circles with radius 1

3 if the
system is at an S3 solution. When the system is at one of the S2 × S1 solutions, found for
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Figure 6. An enlargement of Figure 5, showing how close the actual instantaneous radius of curvature
of v1 comes to the approximated values, and how the radius of curvature defines the location of the lettered
boxes. The dotted line represents what the radius of curvature would be at the S3 solution, and the red solid
line represents the radius at the S2 × S1 solution. The line segments show where the radius of curvature of v1
is within 0.01 of its minimum for each box. The edges of the boxes correspond to the intersections of these line
segments with the radius of curvature of v1. The numbered boxes are then assigned as the intervening spaces
between lettered boxes.

these parameters to be at (0.11511, 0.11511), (0, 2π−0.11511), or (2π−0.11511, 0), the radius
of the motion of v1 is approximately 0.334317. As one can see in Figure 6, the approximation
that the system is at an S2 × S1 fixed point is very close to the results obtained from the
actual simulation.

In the numbered boxes, we can approximate the behavior of the system by noting that in
Box 1, ψ2 ≈ 0, in Box 2, ψ1 ≈ 0, and in Box 3, ψ1 ≈ ψ2 and both decrease from a value close
to 2π to a value close to 0 at about the same rate.

Taking ψ2 = 0 (which is approximately true in Box 1) in (2.4), we obtain ψ̇2 = 0 and

(3.1) ψ̇1 = θ̇1 − θ̇2 = k[f(−ψ1) + f(0) − 2f(ψ1)],

a one-dimensional differential equation. Similarly, taking ψ1 = 2π = 0 (which is approximately
true in Box 2) in (2.4) gives the same formula as (3.1) but with ψ1 → ψ2. Finally, taking
ψ1 = ψ2 ≡ ψ (which is approximately true in Box 3), we obtain

(3.2) ψ̇1 = ψ̇2 = ψ̇ = k[2f(−ψ) − f(0) − f(ψ)],

which is related to (3.1) through ψ1 → −ψ.
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Figure 7. Demonstration of the validity of the approximation leading to (3.1): The graphs of the approxi-
mate solutions in Box 1 and actual simulation data show that the assumptions made are reasonable.

Numerical integration of the approximate equations very closely matches the data from
simulation in all three boxes; see Figures 7 and 8 for Boxes 1 and 3, respectively. (The
approximate solutions are nearly identical in Boxes 1 and 2, so only the simulation for Box 1
is shown.)

3.2.3. The Spirograph kaleidoscope. The ω0 and k terms effectively control the curvature
of the individual trajectories and the speed at which the system moves through the (ψ1, ψ2)
plane, respectively. The shape of the vehicular trajectories, even in transients, depends only
on the ratio ω0

k , as can be seen most easily in an equivalent form of (2.1):

(3.3) θ̇n = k

(
ω0

k
+
∑
m�=n

f(θm − θn)

)
, n = 1, 2, 3.

In this form, it is clear that the variable k simply scales time, while the actual dynamics depend
only on the constant ω0

k , which can be thought of as the effective natural frequency. Since we
have constrained our vehicles to have constant unit velocity, the only way that the vehicles
can compensate for a larger (resp., smaller) k (with appropriately scaled ω0), which would
make the vehicles move more quickly (resp., slowly), is to produce a smaller (resp., larger),
scaled, version of the exact same pattern, even in transients. This effect is demonstrated in
Figure 9.

There are many possible trajectories found by varying the ω0
k ratio, which have a base shape
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Figure 8. Demonstration of the validity of the approximation leading to (3.2): The graphs of the approxi-
mate solutions in Box 3 and actual simulation data show that the assumptions made are reasonable.

resembling a pattern from a Spirograph.1 It is possible to obtain a regular overall trajectory
(global) shape with any number of sides that either passes through the approximate center of
the polygon, or travels exclusively along the edges. In other words, the radius of the global
shape can be made to be anywhere between zero and infinity. Moreover, as one steps through
the possible values of ω0

k , the radius runs continuously from zero through infinity and back
to zero again, providing a kaleidoscope-like effect. Recognition of this trend allows one to
look at a trajectory for a given set of parameters, and to be able to expect roughly what the
trajectories will look like for neighboring values of ω0

k .
To sample over the different types of trajectories possible for ω0 > 0 and k > 0, we first

held ω0 = 1 and varied k from 0 to 1, and then held k = 1 and varied ω0 from 0 to 1. Some
example trajectories are shown in Figures 10 and 11. From simulations, we have found that
the global radius goes to infinity when ω0

k ≈ 0.1292 + 0.1189n, where n is an integer.

4. The Arbiter configuration. We have also found interesting phase dynamics and vehic-
ular trajectories for coupling topologies other than all-to-all. Here we focus on the coupling
topology shown in Figure 12, which we have nicknamed the “Arbiter” configuration.

1A “Spirograph” is a toy invented by Denys Fisher and was first introduced to the United States in 1966
by Kenner, Inc. The name “Spirograph” is a trademark of Hasbro, Inc. The toy allows the user to create
intricate designs: The user puts a pen on a point within a circle, which rotates around the inside or outside
of another shape, typically also a circle. The geometric curves produced by a Spirograph are mathematically
known as hypotrochoids and epitrochoids [1]. An interactive applet demonstrating what patterns are possible
with a Spirograph can be found at [13].
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Figure 9. Five trajectories with the same initial conditions in (x, y) and (ψ1, ψ2), and with the same ratio
ω0
k

, but with different values of k (and appropriately scaled ω0).

The equations for the Arbiter configuration for N = 3 are

θ̇1 = ω0 + k[f(θ2 − θ1) + f(θ3 − θ1)],

θ̇2 = ω0 + kf(θ1 − θ2),

θ̇3 = ω0 + kf(θ1 − θ3).

(4.1)

Transforming (4.1) into the ψ coordinates as in section 2.3 gives

ψ̇1 = k[f(−ψ1) + f(−ψ2) − f(ψ1)],

ψ̇2 = k[f(−ψ1) + f(−ψ2) − f(ψ2)].
(4.2)

It is evident that the (ψ1, ψ2) equations are equivariant under permutation of ψ1 and ψ2, and
that the lines ψ1 = 2πn and ψ2 = 2πn, where n is an integer, are no longer invariant. The
system does have an invariant line at ψ1 = ψ2. Along this line, ψ1 = ψ2 ≡ ψ, and we see that
if there exists a δ∗ such that 2f(−δ∗) − f(δ∗) = 0, then there will be at least one fixed point
on the invariant line at (ψ1, ψ2) = (δ∗, δ∗). An argument for the existence of such a δ∗ under
quite general conditions follows.

4.1. Existence of S2 × S1 solutions with ψ1 = ψ2. Letting

(4.3) c1(δ) = 2f(−δ), c2(δ) = f(δ),
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Figure 10. A few examples of vehicular trajectories for v1 from coupling function (2.8) with μ1 = 0.1,
μ2 = 1, and μ3 = −0.06, while holding ω0 = 1 and varying k from 0 to a value close to 1.

a valid δ∗ will satisfy

(4.4) c1(δ∗) = c2(δ∗).

If |f(δ)| ≥ 0 for all δ, it is possible that no such δ exists: for example, take f(δ) = 1. Therefore,
we assume that there exists a φ1 �= 0 such that f(φ1) = 0, but f ′(φ1) �= 0. Then, by periodicity
of f , there must be a φ2 �= 0 such that f(φ2) = 0 but f ′(φ2) �= 0.

If f(0) �= 0, without loss of generality, we can assume that c1(0) > c2(0) > 0. This implies
that c1(2π) > c2(2π) > 0. Now,

min[c2(δ)] = min[f(δ)] ≡ β,

min[c1(δ)] = min[2f(−δ)] = min[2f(δ)] = 2[min f(δ)] = 2β,

where β < 0, as shown in Figure 13. This implies that there exists a δ∗∗ such that c1(δ∗∗) <
c2(δ∗∗). Therefore, by the intermediate value theorem, there must be at least two valid values
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Figure 11. A continuation of Figure 10: A few example vehicular trajectories for v1 holding k = 1 and
varying ω0 from 1 to 0.

δ∗1,2 such that c1(δ∗1) = c2(δ∗1) and c1(δ∗2) = c2(δ∗2). Furthermore, all further viable values for
δ∗ will occur in pairs.

A similar argument can be made to prove the existence of a δ∗ ∈ (0, 2π) if f(0) = 0
(corresponding to the existence of an S3-symmetric fixed point) provided that there exists a
φ1 �= 0 such that f(φ1) = 0 and f ′(φ1) �= 0.

4.2. Example. Using the example coupling function (2.8) with μ1 = 0.1, μ2 = 1, μ3 =
−0.06, and k = 1, we find that the system has saddle points at (ψ∗

1 , ψ
∗
2) = (4.29213, 4.29213)
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Figure 12. The Arbiter configuration. Here the arrows indicate the coupling between agents.
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Figure 13. Illustration of the argument that given the constraints mentioned in the text, there must be at
least two possible values for δ∗. Without loss of generality, we can set c1(0) > c2(0) > 0, which gives c1(2π) >
c2(2π) > 0 by periodicity. However, by noting that min[f(−δ)] = min[f(δ)], it is clear that min[c1(δ)] =
2min[c2(δ)]. Therefore, c1(δ) and c2(δ) must cross in at least two points. The points where the two functions
cross are viable values for δ∗, and this proves the existence of the S2 × S1 solutions.

and (1.35235, 1.35235), which are guaranteed to exist from the above argument, and spiral
sinks at (ψ∗

1 , ψ
∗
2) = (4.8432, 1.63105) and (1.63105, 4.8432). For these parameters, there are

also two symmetry-related stable periodic orbits in the (ψ1, ψ2) coordinates; see Figure 14. The
vehicular trajectories corresponding to motion along several cycles of one of the stable periodic
orbits is shown in Figure 15, which is reminiscent of the trajectories found in section 2.3. For
the same reasons as in section 3.2.3, one can also produce a variety of trajectories by varying
the values of ω0 and k, as shown in Figure 16.

We find that at least one stable periodic orbit exists in the (ψ1, ψ2) system between the
saddle-node bifurcations of limit cycles at μ1 = ±0.115681. (For some parameters, there are
two symmetry-related periodic orbits.) Within this range, there are several global bifurcations
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ψ1

ψ2

Figure 14. The (ψ1, ψ2) plane for the Arbiter coupling topology with N = 3, and coupling function (2.8)
with μ1 = 0.1, μ2 = 1, μ3 = −0.06, ω0 = 1, k = 1. The existence of stable periodic orbits suggests that this
system may provide interesting patterns of vehicular motion.

involving the S2 × S1 fixed points on the line ψ1 = ψ2. The details of these bifurcations are
outside of the scope of our present study, but we do note that it would be possible to interpret
the vehicular motion in terms of visits near and between the fixed points, as was done in
section 3.

5. Conclusion. In this paper, we considered a model for vehicle motion coordination
developed by Leonard, Paley, and Sepulchre which uses coupled oscillator steering control.
We showed that novel trajectories are possible using only the phase controller when coupling
functions more general than sinusoidal are considered. Such trajectories are associated with
periodic orbits in the steering control subsystem, and the proximity of these periodic orbits to
heteroclinic bifurcations allowed a detailed characterization of the properties of the vehicular
trajectories.

Similar trajectories are expected to be possible for such systems with N > 3 vehicles.
An attempt to understand the details of such trajectories would likely benefit from previous
studies of phase-locked solutions for coupled oscillator systems with phase-difference coupling
[5, 6, 33] and heteroclinic orbits for such systems [3, 16].

The trajectories described in this paper may have applications in sensor area covering
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Figure 15. Motion of v1 using the Arbiter coupling topology with N = 3 corresponding to the motion of
the system along a stable periodic orbit in Figure 14.

problems in which one is particularly interested in certain regions of an annulus in the plane,
with the option of either passing through the center or moving along the circumference of the
area to be covered. For example, the trajectory shown in 1c of Figure 10 may be useful for
the case where one wants agents to carefully patrol four evenly distributed areas as well as
check the area in the center of those four areas periodically. If one desires to check sections of
a circular area but is not interested in the area in the center of the sections, a trajectory such
as 2e of Figure 11 may be appropriate. Should the areas inside the circular area be of higher
interest than the perimeter, then a trajectory such as 2n of Figure 16 may be of interest. If
one desires to patrol an annulus evenly in sections, a trajectory similar to 4e or 2f of Figure 11
may be useful. Most parameter values provide trajectories where an almost regular polygon-
like global trajectory drifts around the center of pattern; thus, over time, the trajectories
eventually cover an annulus. An example of this can be found in plot 3e of Figure 11—this
is a “polygon” with slightly more than 2 sides, that is drifting around, and will eventually fill
out an annulus. These patterns may be useful for applications where it is desirable for a robot
patrolling an annulus-shaped space to not only periodically thoroughly investigate subregions
of the space, but to also be relatively difficult to predict.

Despite the fact that the system is very stable in the reduced phase space, the trajectories
described here are quite sensitive to variations in the parameters of the coupling equations.
Should these trajectories prove to be potentially useful for a particular area coverage problem,
it may be worthwhile to investigate the use of spacing control, and to make the global behavior
robust to uncertainty and perturbations in the parameters.
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Figure 16. Various vehicular trajectories generated using the Arbiter coupling topology and the example
coupling function (2.8) with μ1 = 0.1, μ2 = 1, μ3 = −0.06, while varying the values of ω0 and k, as was done
in Figures 10 and 11.
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A Hamiltonian Analogue of the Meandering Transition∗
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Abstract. In this paper a Hamiltonian analogue of the well-known meandering transition from rotating waves
to modulated rotating and modulated traveling waves in systems with the Euclidean symmetry
of the plane is presented. In non-Hamiltonian systems, for example, in spiral wave dynamics,
this transition is a Hopf bifurcation in a corotating frame, as external parameters are varied, and
modulated traveling waves occur only at certain resonances. In Hamiltonian systems, for example,
in systems of point vortices in the plane, the conserved quantities of the system, angular and linear
momentum, are natural bifurcation parameters. Depending on the symmetry properties of the
momentum map, either modulated traveling waves do not occur, or, in contrast to the dissipative
case, modulated traveling waves are the typical scenario near rotating waves, as momentum is
varied. Systems with the symmetry group of a sphere and with the Euclidean symmetry group of
three-dimensional space are also treated.
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1. Introduction. The meandering transition in spiral wave dynamics is a transition from
rigidly rotating to meandering and drifting spiral waves. In symmetry terms, it is a bifurcation
from rotating waves to modulated rotating and modulated traveling waves in systems with
SE(2)-symmetry. Here SE(2) is the special Euclidean group of motions of the plane. Rotating
waves are solutions which become stationary in a corotating frame and are examples of relative
equilibria. Modulated rotating and modulated traveling waves are solutions which become
periodic in a corotating/comoving frame and are examples of relative periodic orbits (RPOs).
In non-Hamiltonian systems, the meandering bifurcation corresponds, in a rotating frame,
to a Hopf bifurcation induced by changing an external parameter. Typically the bifurcating
relative periodic orbits are modulated rotating waves, and modulated traveling waves occur
only at certain resonances. See, for example, [3, 8, 10, 27, 30, 31] and the references therein.

In this paper the first ever analysis of the Hamiltonian analogue of this meandering tran-
sition is presented. Examples of Hamiltonian systems where such a transition occurs are
rotating point vortices on the plane [1, 2, 21, 25, 29] or rotating rigid bodies in ideal flu-
ids [15]. In a Hamiltonian system it is natural to study the persistence and bifurcation of the
rotating wave to nearby momentum levels since the momentum map is a conserved quantity
and hence an internal parameter of the system.

The differential equations near Hamiltonian relative equilibria in symmetry-adapted local
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coordinates from [26] are used to study the transition from rotating waves to modulated
rotating and modulated traveling waves on nearby momentum levels in Hamiltonian systems
with SE(2)-symmetry. Thereby a Hamiltonian analogue of the meandering transition of spiral
waves is obtained.

It is shown that, depending on the symmetry properties of the momentum map, either
modulated traveling waves are typical near rotating waves, as momentum is varied (cf. sections
4.2 and 4.3), or modulated traveling waves do not occur; see section 4.4 and in particular
Proposition 4.10. As far as I am aware, for the first time, rotating waves and transitions to
relative periodic orbits are continued in the cocycle parameter which determines the symmetry
properties of the momentum map. These results hold under conditions which are generically
satisfied.

The transition from rotating waves to modulated traveling waves occurring in the mean-
dering transition is an example of resonance drift, as analyzed in [31]; see also [4] and [6].
Resonance drift occurs if there is a discontinuity of the average drift velocities of the bifurcat-
ing relative periodic orbits at the relative equilibrium. In the case of the meandering transition
it is a discontinuous jump between a rotational and a translational velocity. This phenomenon
is also discussed in systems with spherical symmetry SO(3) and in systems with the Euclidean
symmetry SE(3) of motions in three-dimensional space; see sections 5.1 and 5.2.

The meandering transition is a transition from relative equilibria to relative periodic orbits.
In non-Hamiltonian systems it is a Hopf bifurcation of the symmetry reduced dynamics. The
Hamiltonian analogue of a Hopf bifurcation is a Lyapunov center bifurcation. In this paper
Lyapunov center bifurcations for the reduced Hamiltonian system on the symplectic slice
are proved to obtain families of RPOs nearby elliptic relative equilibria; see Proposition 4.6,
Theorems 4.11 (a), 5.1 (b), and 5.2 (c), and Propositions 5.3 (b) and 5.6.

The technically most complicated parts of the paper are the results on bifurcation from
relative equilibria to RPOs which lie outside the symplectic leaf of the original equilibrium
of the reduced dynamics; see Theorems 4.3, 5.2 (b), and 5.5. Here Lyapunov center type
theorems are proved for the symmetry reduced system which is a Poisson system and not a
Hamiltonian system. It is shown that in this case resonance drift occurs.

Related results in the literature are the following: Persistence results for generic Hamil-
tonian relative equilibria and relative periodic orbits of noncompact group actions, extending
earlier results for compact symmetry groups, can be found in [32, 33]. See also Ortega and
Ratiu [23] and Montaldi and Tokieda [20] and references therein for results on bifurcations of
Hamiltonian relative equilibria.

Relative Lyapunov center bifurcations from Hamiltonian relative equilibria with isotropy
to RPOs, which lie on nearby energy level sets, have been obtained by Ginzburg and Lerman [9]
(see also references therein). Ortega [22] studies persistence of the bifurcating RPOs to nearby
energy level sets and to those nearby momentum values which correspond to the isotropy
subgroup of the relative equilibrium. Instead, in this article, the group is assumed to act
freely, and the main focus is the bifurcation of relative equilibria to RPOs on all nearby
momentum level sets.

The paper is organized as follows: In section 2 the meandering transition for dissipative
systems is reviewed. In section 3 symmetric Hamiltonian systems are introduced and the
equations near relative equilibria from [26] are reviewed. In section 4 a Hamiltonian analogue
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of the meandering transition is presented using the equations near Hamiltonian relative equi-
libria from section 3. First Euclidean symmetric Hamiltonian systems with an equivariant
momentum map for the standard coadjoint action are studied. Then systems with Euclidean
symmetry for which the momentum map has a cocycle are considered. Finally, in section 5,
the Hamiltonian analogue of the meandering transition is discussed for systems with spherical
symmetry and for systems with the Euclidean symmetry group of three-dimensional space.

2. Meandering transition for dissipative systems. In this section the notions of relative
equilibria and relative periodic orbits of general symmetric differential equations are defined.
Suitable symmetry-adapted coordinates near relative equilibria are introduced, and the dif-
ferential equations are given in these coordinates. Then the results are applied to dissipative
systems with the Euclidean symmetry of the plane, and the meandering transition for dissi-
pative systems is reviewed. Note that in this paper the terms “dissipative systems,” “non-
Hamiltonian systems,” and “general systems” are used interchangeably. Most of the material
of this section is basically contained in [8, 10, 31]. Only Remark 2.2 (c) is a new result.

2.1. Relative equilibria and relative periodic orbits of general systems. Let us consider
an ordinary differential equation on a finite-dimensional manifold M

(2.1) ẋ(t) = f(x(t))

with flow Φt(x0) = x(t;x0), x(0) = x0. Let a finite-dimensional Lie group Γ act properly and
smoothly on M. For simplicity it is assumed that the Γ-action is free, that is,

Γx = {γ ∈ Γ, γx = x} = {id}

for all x ∈ M. The vectorfield (2.1) is taken to be Γ-equivariant, i.e.,

γf(x) = f(γx) for all γ ∈ Γ.

A solution x(t) with initial condition x(0) = x0 lies on a relative equilibrium Γx0 whenever
the group orbit Γx0 is invariant under the flow of (2.1), i.e., if x(t;x0) ∈ Γx0 for all t. This
means that

f(x0) = ξ0x0 :=
(

d
ds

exp(sξ0).x0

)∣∣∣∣
s=0

for some ξ0 ∈ g. Here g = TidΓ is the Lie algebra of Γ. The element ξ0 is called the drift
velocity of the relative equilibrium at x0. Note that the trajectory through x0 becomes an
equilibium in a frame moving with velocity ξ0. If ξ0 is an infinitesimal rotation, then the
relative equilibrium is called a rotating wave (RW). Note that at the point γx0 of the relative
equilibrium Γx0 the drift velocity is determined by the equation

f(γx0) = γf(x0) = γξ0x0 = (Adγξ0)x0

and is therefore given by Adγξ0. Here Adγ : g → g and

(2.2) Adγη = γηγ−1, adξη =
d
dt

Adexp(tξ)η|t=0 = [ξ, η], γ ∈ Γ, η, ξ ∈ g,
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are the adjoint action of Γ and g and the infinitesimal adjoint action of g on g.
An example of such a finite-dimensional manifold M with SE(2)-equivariant vectorfield

(2.1) on it is the center manifold near a rotating spiral SE(2)x0 in a reaction-diffusion system;
see, e.g., [27]. Here SE(2) = SO(2) � R

2 is the special Euclidean symmetry of rotations and
translations in the plane with group multiplication defined in (2.5) below.

By the slice theorem of Palais [24] sufficiently small neighborhoods U of the group orbit
Γx0 have the bundle structure U = Γ × N . Here N ⊆ Tx0M is a local section, also called
slice, transversal to Γx0 at x0; see Figure 1.

x

γ

v Nx0

Γx0

Figure 1. Palais coordinates near Γx0.

To analyze the dynamics near, and bifurcations from, relative equilibria, it has proved
very useful to model the flow in a Γ-invariant neighborhood U of the relative equilibrium by
differential equations on the space Γ ×N :

(2.3) γ̇ = γfΓ(v), v̇ = fN (v),

where fΓ : N → g and fN : N → N . Any x ∈ U takes the form x � (γ, v) ∈ Γ ×N , and the
point x0 corresponds to x0 � (id, 0). Then fN (0) = 0; i.e., the relative equilibrium Γx0 of (2.1)
becomes an equilibrium of the v̇-equation. Moreover, fΓ(0) = ξ0. Note that the equations
(2.3) have skew-product form: the v̇-equation, which is called the slice equation, does not
depend on the group variable γ. It describes the symmetry-reduced dynamics, whereas the
γ̇-equation describes the drift dynamics on the group Γ. These results are due to Krupa [14]
for compact Lie groups and to Fiedler et al. [8] for noncompact Lie groups. For later use, the
linearization L0 = Df(x0)− ξ0 of the relative equilibrium Γx0 at x0 in the frame moving with
the velocity ξ0 in symmetry-adapted coordinates is

(2.4) L0 =
(

adξ0 DvfΓ(0)
0 DvfN (0)

)
.

The point x0 ∈ M lies on a relative periodic orbit P of (2.1) if x(t;x0) = Φt(x0) is periodic
in the space of group orbits M/Γ. This means that there exist T0 > 0 and γ0 ∈ Γ such that
ΦT0(x0) = γ0x0; see Figure 2. The infimum of the numbers T0 with this property is the
relative period of the RPO. The corresponding group element γ0 is called the drift symmetry
of the RPO with respect to x0; cf. [33, 34]. The relative periodic orbit itself is defined to be
the submanifold of M given by

P = {γΦt(x0) | γ ∈ Γ, t ∈ R}.
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x0

Γx0

γ0x0

Φt(x0)

Figure 2. A relative periodic orbit.

If γ0 is a translation, the RPO is called a modulated traveling wave (MTW); if γ0 is a nonvan-
ishing translation, it is a proper modulated traveling wave. If γ0 is a (nonvanishing) rotation,
the RPO is called a (proper) modulated rotating wave (MRW); see Figure 3. Any ξ0 ∈ g
such that γ0 = exp(T0ξ0) is called an average drift velocity of the RPO at x0. Note that the
trajectory through x0 becomes T0-periodic in a frame moving with velocity ξ0.

γ0 Rx0

MTWγ0

MRW

SO(2)x0

Figure 3. Drift symmetries of modulated rotating and modulated traveling waves.

2.2. The meandering transition for dissipative systems. Let Γ be the Euclidean sym-
metry of the plane consisting of rotations and translations

Γ = SE(2) = SO(2) � R
2,

where the semidirect product is defined as

(2.5) (φ1, a1)(φ2, a2) = (φ1 + φ2, a1 +Rφ1a2), φi ∈ SO(2), ai ∈ R
2, i = 1, 2.

Here Rφ is a rotation by φ in R
2. Let us assume that the relative equilibrium SE(2)x0 is a

rotating wave with rotation frequency ωrot
0 . Then the γ̇-equation in (2.3), which models the

drift dynamics near the rotating wave, takes the following form:

(2.6) φ̇ = fφ(v), ȧ = Rφfa(v).

Moreover, fφ(0) = ωrot
0 is the rotation frequency of the rotating wave and fa(0) = 0. As

in the general case, the rotating wave SE(2)x0 becomes an equilibrium of the slice equation:
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fN (0) = 0. These equations were first formulated by Barkley [3] and then derived by Fiedler
et al. [8] and Golubitsky, LeBlanc, and Melbourne [10].

Let us now assume that both fN (·, μ) and fΓ(·, μ) = (fφ(·, μ), fa(·, μ)) depend on an ex-
ternal parameter μ ∈ R. In a meandering transition the symmetry-reduced system undergoes
a Hopf bifurcation. Suppose that this bifurcation occurs for μ = 0; let ±iωHopf

0 be the Hopf
eigenvalues of DvfN (0, 0). Assume that ±iωHopf

0 are simple eigenvalues and that DfN (0, 0) has
no other eigenvalues in iωHopf

0 Z. Let vRW(μ) ≈ 0 be the equilibrium of fN (·, μ), μ ≈ 0, such
that vRW(μ) is smooth in μ and vRW(0) = 0. Then xRW(μ) � (id, vRW(μ)) lies on a rotating
wave of (2.1). Let λ(μ) be the eigenvalue of DvfN (vRW(μ), μ) such that λ(μ) is smooth in μ

and λ(0) = iωHopf
0 . Assume that the usual transversality condition

(2.7)
(

Re
∂

∂μ
λ(μ)

)∣∣∣∣
μ=0

�= 0

for a Hopf bifurcation is satisfied. Then there is a smooth path v(s), s ≥ 0, of points on
periodic solutions of the v̇-equation with period T (s) ≈ THopf

0 = 2π/ωHopf
0 and parameter

μ(s) such that v(0) = 0, T (0) = THopf
0 , μ(0) = 0.

The periodic orbit through v(s) of the slice equation corresponds to a relative periodic
orbit P(s) through x(s) � (id, v(s)) of the original ODE (2.1) with drift symmetry γ(s) =
(φ(s), a(s)). Here φ(s) and a(s) are obtained by integrating (2.6) from 0 to T (s). There are
two cases:

(a) If φ(s) �= 0 mod 2π, then x(s) lies on a modulated rotating wave, and this is the typical
case.

(b) If φ(s) = 0 mod 2π, then x(s) lies on a modulated traveling wave.
Note that

φ(s) ≈ ωrot
0 THopf

0 =
ωrot

0

ωHopf
0

2π.

Hence case (b) occurs if ωrot
0 /ωHopf

0 ∈ Z, i.e., if there is a resonance between the rotation
frequency ωrot

0 and the Hopf frequency ωHopf
0 of the rotating wave Γx0; see [3, 8, 10, 31]. In

the case of two real parameters μ ∈ R
2 the following proposition holds true; see also Figure 4.

Proposition 2.1 (see [31, Example 3.6]). Let μ ∈ R
2, and let SE(2)x0 be a rotating wave

at μ = 0 at which a resonant Hopf bifurcation occurs: ωrot
0 /ωHopf

0 ∈ Z. Then under some
nondegeneracy conditions (detailed in the proof below) a path PMTW(s), s ≥ 0, of modulated
traveling waves at parameters μMTW(s) bifurcates from the rotating wave SE(2)x0.

Proof. Denote the rotation frequency of the rotating wave SE(2)xRW(μ) at parameter μ
by ωrot(μ). The transversality condition (2.7) for Hopf bifurcation ensures that coordinates
in parameter space μ ∈ R

2 can be chosen such that μ1 = 0 is the Hopf line near μ = 0,
i.e., such that λ(0, μ2) = iωHopf(μ2) for some smooth function ωHopf(μ2) with ωHopf(0) =
ωHopf

0 . Periodic orbits bifurcating from this Hopf line are then parametrized by μ2 and s ≥ 0.
Let v(s, μ2) lie on a periodic orbit with parameters s, μ2 such that v(s, μ2) is smooth in its
parameters and v(0, μ2) = vRW(0, μ2). Let T (s, μ2) be the period of the periodic orbit through
v(s, μ2). Modulated traveling waves satisfy F (s, μ2) = φ(T (s, μ2)) = 0. This equation can be
solved near 0 for μ2(s) by the implicit function theorem if ∂F

∂μ2
(0) �= 0. This condition holds
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Figure 4. Phase diagram for the spiral wave dynamics for a reaction-diffusion system depending on the
parameters a, b. Reprinted Figure 1 from [3] with permission, copyright 1994 by the American Physical Society.1

Shown are regions containing N: no spiral waves; RW: stable rigidly rotating waves; MRW: modulated rotating
waves; MTW: modulated traveling waves (dashed curve). Spiral tip paths illustrate states at six points. Small
portions of spiral waves are shown for the two rotating wave cases.

true if the nondegeneracy condition

(2.8)
∂

∂μ2

(
ωrot(μ2)
ωHopf(μ2)

)∣∣∣∣
μ2=0

�= 0

is satisfied. Then v(s, μ2(s)) lies on modulated traveling wave PMTW(s).
Remarks 2.2. (a) In [31] (see also [6] for compact groups) resonances of the form ωΓ/ωN =

k ∈ Z\{0} between a nonvanishing imaginary eigenvalue ±iωΓ of adξ0 and an eigenvalue ±iωN
of DvfN (0) are shown to be necessary for resonance drift to occur. Resonance drift means
that RPOs P(s) bifurcate with average drift velocities ξ(s) at x(s) ∈ P(s) which cannot be
chosen to converge to the drift velocity ξ0 of the relative equilibrium, i.e., x(s) → x0 as s→ 0,
but lims→0 ξ(s) �= ξ0. From the form of the linearization L0 = Df(x0) − ξ0 about a relative
equilibrium Γx0 in a corotating frame (see (2.4)), it follows that resonance drift is caused by
resonances between drift dynamics and the symmetry-reduced dynamics. In Proposition 2.1
above, resonance drift occurs with ωΓ = ωrot

0 and ωN = ωHopf
0 . Proposition 2.1 is a special

case of [31, Proposition 3.4], which treats resonance drift for general Lie groups Γ.
(b) In the case of spherical symmetry Γ = SO(3) modeling, for example, rotating spiral

waves of reaction-diffusion systems on the sphere, resonance drift caused by resonant Hopf

1Readers may view, browse, and/or download material for temporary copying purposes only, provided these
uses are for noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or
part, without prior written permission from the American Physical Society.
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bifurcation has been studied in [31, 7, 4]. In this case generically there is a path (x(s), μ(s))
in two-dimensional parameter space μ(s) ∈ R

2 such that SO(3)x(s) is a modulated rotating
wave at parameter μ(s) with an average drift velocity ξ(s) at x(s) which is orthogonal to the
drift velocity ξ0 ∈ so(3) ∈ TidSO(3) of the rotating wave SO(3)x0 at x0 = lims→0 x(s). The
proof of this result is very similar to the proof of Proposition 2.1: For any R ∈ SO(3) write

(2.9) R = exp

(
3∑

i=1

φiξi

)
.

Here ξi, i = 1, 2, 3, are infinitesimal rotations such that exp(φiξi), i = 1, 2, 3, is a rotation by
the angle φi around the ei axis (often so(3) is identified with R

3 and ξi with ei, i = 1, 2, 3).
Assume, as before, that the Hopf line is at μ1 = 0. Let R(s, μ2) be the drift symmetry of the
modulated rotating wave at x(s, μ2). Assume, without loss of generality, that the rotating
wave through xRW(μ) has a rotation velocity ξRW(μ)||ξ3 so that ξRW(μ) = ωrot(μ)e3. Then
the modulated rotating waves to be found satisfy the equation F (s, μ2) = φ3(s, μ2) = 0. This
equation can be solved if (2.8) holds. The bifurcating modulated rotating waves P(s) have
average drift velocities in the (x1, x2)-plane. For a Hamiltonian analogue see section 5.1.

(c) Resonance drift also occurs for relative equilibria of systems with the Euclidean sym-
metry group Γ = SE(3) = SO(3)�R

3 of rotations and translations in three-dimensional space;
cf. [5]. An example would be a Hopf bifurcation from a rigidly rotating and translating scroll
wave SE(3)x0 of a reaction-diffusion system on R

3; see, e.g., [30]. The group multiplication
on Γ = SE(3) = SO(3) � R

3 is analogous to (2.5): For (R1, a1), (R2, a2) ∈ SO(3) � R
3 it is

given by

(R1, a1)(R2, a2) = (R1R2, a1 +R1a2), R1, R2 ∈ SO(3), a1, a2 ∈ R
3.

Note that (R, a) is a rotation around the rotation axis of R about the point

c = (id −R)+a ∈ R
3

combined with a translation along the axis of R. Here A+ denotes the Moore–Penrose pseudo-
inverse of A; i.e., x = A+b satisfies ‖Ax− b‖2 = min, A ∈ Mat(n), x, b ∈ R

n. Let ξ0 = (ξr
0, ξ

a
0 )

be the drift velocity of the relative equilibrium SE(3)x0 at x0 and assume that ξr
0 �= 0. Without

loss of generality, choose x0 in its group orbit such that ξr
0 ∈ so(3) � R

3 (see part (b) for this
identification) is parallel to ξa

0 and to e3, and write ξr
0 = ωrot

0 e3, where ωrot
0 �= 0. Align the fam-

ily of relative equilibria SE(3)xRE(μ) with xRE(0) = x0 such that their drift velocity ξRE(μ) at
xRE(μ) also satisfies ξr

RE(μ) = ωrot(μ)e3. If the Hopf frequency ωHopf
0 satisfies ωrot

0 /ωHopf
0 ∈ Z

and this resonance is passed transversely as in (2.8), then, as in part (b), there is a curve P(s)
of relative periodic orbits through x(s) ≈ x0 with drift symmetry γ(s) = (R(s), a(s)) at x(s)
satisfying φ3(s) = 0 mod 2π. Here R(s) is determined by φi(s), i = 1, 2, 3, as in (2.9). These
RPOs rotate and translate along a vector in the (x1, x2)-plane. The point around which they
rotate approaches infinity as s→ 0.

(d) Note that for the groups Γ = SE(2), Γ = SO(3), and Γ = SE(3) considered above,
resonance drift can occur only near relative equilibria with nonvanishing rotational velocity.
Otherwise, the linear map adξ0 has no eigenvalues in iR\{0}, but this is necessary for resonance
drift; cf. part (a) and [31].
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3. Dynamics near Hamiltonian relative equilibria. As in the dissipative case, the mean-
dering transition in Hamiltonian systems is studied by analyzing the equations near relative
equilibria (2.3). Therefore, in this section symmetric Hamiltonian systems and the structure
of the equations (2.3) for Hamiltonian systems are reviewed. Then these results are applied to
Hamiltonian systems with Euclidean symmetry for later use in the analysis of the Hamiltonian
meandering transition. Most of the material of this section is taken from [12, 18, 26, 28].

3.1. Symmetric Hamiltonian systems. In this section a brief introduction to symmetric
Hamiltonian differential equations is given (see, e.g., [12, 18] for more details). The starting
point is a Hamiltonian ordinary differential equation on a smooth finite-dimensional symplectic
manifold M with a symplectic form (i.e., a nondegenerate, closed 2-form) Ωx, x ∈ M. A
Hamiltonian vector field

(3.1) ẋ = fH(x)

is generated by a smooth function (the Hamiltonian) H : M 
→ R via the relationship

(3.2) Ωx(fH(x), v) = DH(x)v, x ∈ M, v ∈ TxM.

Example 3.1. The simplest example is a Hamiltonian system

ẋ = JDxH(x)

on M = R
2n, where

J =
(

0 id
−id 0

)
and H : M → R is a smooth Hamiltonian. Then the symplectic form Ω is the standard
symplectic form given by Ω(u, v) = 〈J−1u, v〉, and J is called the symplectic structure matrix.
By the Darboux theorem (see, e.g., [18]), locally every Hamiltonian system has this form in
suitable coordinates.

Let us assume that a finite-dimensional Lie group Γ acts symplectically on M, i.e., that

Ωγx(γu, γv) = Ωx(u, v) for all x ∈ M, γ ∈ Γ, u, v ∈ TxM.

If H is invariant under the action of Γ, then the vector field fH is Γ-equivariant.
Let g∗ denote the dual of the Lie algebra g of Γ. By Noether’s theorem, for each continuous

symmetry ξ ∈ g locally there is a conserved quantity J(ξ)(·) of (3.1). The function J(ξ) is
linear in ξ, so that J maps into g∗ (see, e.g., [18]). It is assumed that J exists globally on M.

Example 3.2. The dynamics of N point vortices (z1, . . . , zN ) ∈ R
2N , zj = (xj , yj), j =

1, . . . , N , on the plane is given by the following Hamiltonian system [1, 2, 21]:

(3.3) kiẋi =
∂H

∂yi
, kiẏi = −∂H

∂xi
, i = 1, . . . , N,

where ki �= 0, k = 1, . . . , N . The Hamiltonian H

H(z1, . . . , zN ) = − 1
π

N∑
i,j=0
i<j

kikj ln |zi − zj |
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of (3.3) is invariant under the action of the special Euclidean group of the plane Γ = SE(2) =
SO(2) � R

2 on R
2N , given by

(Rϕ, a) · (z1, . . . , zN ) := (Rϕz1 + a, . . . , RϕzN + a)

for Rϕ ∈ SO(2) and a ∈ R
2. The symplectic form

Ω(z1, . . . , zN ) =
N∑

i=1

kidxi ∧ dyi

is SE(2)-invariant. The Hamiltonian system (3.3) can be obtained from Euler’s equations for
ideal fluids by modeling the point vortices as δ-distributions; see, e.g., [2]. In this example
the space of momenta is g∗ = se(2)∗ = so(2)∗ ⊕ (R2)∗. By Noether’s theorem, J(x) =
(Jφ(x),Ja(x)) is conserved. Here the angular momentum Jφ and linear momentum Ja =
(Ja1 ,Ja2) are given by

(3.4) Jφ(x) = −1
2

N∑
i=1

ki|zi|2, Ja1 =
N∑

i=1

kiyi, Ja2 = −
N∑

i=1

kixi.

In the following transitions from relative equilibria to relative periodic orbits are studied
when the conserved quantities angular and linear momentums are varied. In contrast to
dissipative systems, external parameters are not needed for the study of bifurcations. These
transitions are studied by analyzing the symmetry-reduced equations (2.3) for Hamiltonian
systems. As in the general case (see section 2.1), the reduction by the symmetry group
is achieved by transforming the dynamics into a comoving frame. As a consequence, in
the symmetry-reduced system the momentum is moving with the velocity of the comoving
frame and might not be conserved anymore. Therefore, to compute the reduced system in
the Hamiltonian case, first the action of the symmetry group on the space of momenta is
investigated.

3.2. Symmetries of momentum maps. Let us assume that J commutes with γ ∈ Γ,

(3.5) J(γx) = γJ(x), γ ∈ Γ,

and, unless otherwise stated, that the action on momentum space g∗ is the coadjoint action,
so that the momentum map is Ad∗-equivariant:

(3.6) γJ(x) = (Ad∗
γ)−1J(x), γ ∈ Γ.

The coadjoint action of Γ on g∗ is given by γμ := (Ad∗
γ)−1μ, where Adγ : g → g from (2.2) is

the adjoint action. The infinitesimal coadjoint action of g on g∗ is defined by

(3.7) ξμ = −ad∗
ξμ,

with adξ as in (2.2). The isotropy subgroup of μ ∈ g∗ is denoted by

Γμ = {γ ∈ Γ, Ad∗
γμ = μ}
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and its Lie algebra by gμ.
Example 3.3. As an example the adjoint and coadjoint action for the Euclidean group are

computed. They are needed later for the computation of the drift dynamics near Hamiltonian
rotating waves.

Let γ = (φ, a), γ̂ = (φ̂, â). Then

γγ̂γ−1 = (φ, a)(φ̂, â)(φ, a)−1 = (φ+ φ̂, Rφâ+ a)(φ, a)−1

= (φ+ φ̂, Rφâ+ a)(−φ,−R−φa) = (φ̂,−Rφ̂a+Rφâ+ a)

= (φ̂, Rφâ+ (id −Rφ̂)a).

Letting φ̂ = ξφε and â = ξaε and differentiating with respect to ε at ε = 0, one gets, with
ξ = (ξφ, ξa) = (ξφ, ξa

1 , ξ
a
2 ) ∈ R

3,

Adγξ = γξγ−1 = (φ, a)(ξφ, ξa)(φ, a)−1 = (ξφ, (Rφξ
a)1 + ξφa2, (Rφξ

a)2 − ξφa1).

Using adξ = d
dtAdexp(tξ)|t=0, the adjoint actions of SE(2) on se(2) and the infinitesimal adjoint

action of se(2) on se(2) are obtained:

(3.8) Adγ =

⎛
⎝ 1 0 0

a2 cosφ − sinφ
−a1 sinφ cosφ

⎞
⎠ , adξ =

⎛
⎝ 0 0 0

ξa
2 0 −ξφ

−ξa
1 ξφ 0

⎞
⎠ .

The coadjoint action of SE(2) and se(2) and the infinitesimal coadjoint action of se(2) on
se(2)∗ are obtained by transposing and inverting Adγ and by transposition and multiplication
by −1 of adξ:

(3.9) (Ad∗
γ)−1 =

⎛
⎝ 1 −(R−φa)2 (R−φa)1

0 cosφ − sinφ
0 sinφ cosφ

⎞
⎠ , −ad∗

ξ =

⎛
⎝ 0 −ξa

2 ξa
1

0 0 −ξφ

0 ξφ 0

⎞
⎠ .

From these equations it can be seen that the isotropy subgroup Γμ of μ ∈ se(2)∗ is Γμ = Γ =
SE(2) if and only if μa = 0 and that Γμ � R for μa �= 0.

Remark 3.4. In the case of zero total circulation K :=
∑N

i=1 ki = 0 the momentum map
J for the planar vortex dynamics from (3.4) is Ad∗-equivariant (see [2]); but, if K �= 0, then,
instead of (3.6), the equivariance condition (3.5) now holds for the action

(3.10) γ ·κ μ := Ad∗
γ−1μ+ κ(γ)

of Γ on g∗. Here

(3.11) κ(φ, a) = K(−1
2 |a|

2, a2,−a1) ∈ se(2)∗

is called a cocycle; see [18]. In other words, (3.5) now becomes

(3.12) J(γx) = γ ·κ J(x) for all γ ∈ Γ.
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The infinitesimal cocycle K : g × g → R corresponding to the cocycle κ is defined as

K(ξ) =
d
dt
κ(etξ)|t=0 ∈ g∗,

and in this case it is given by

(3.13) K(ξ, η) = K
〈
ξa,
(

0 −1
1 0

)
ηa

〉
= K(−ξa

1η
a
2 + ξa

2η
a
1).

The infinitesimal action of the Lie algebra g of Γ on g∗ is defined as

(3.14) ξ ·K μ =
d
dt

exp(tξ) ·κ μ|t=0 = −ad∗
ξμ+K(ξ).

The isotropy subgroup of μ ∈ g∗ with respect to the cocycle action (3.10) is denoted by Γκ
μ. Its

Lie algebra is denoted by gK
μ = TidΓκ

μ. For later use, note that γ = (φ, a) ∈ Γκ
μ for μ ∈ se(2)∗

if and only if

(3.15) (Rφ − id)μa = K
(
−a2

a1

)
.

Hence for a nonvanishing cocycle the isotropy subgroup of every μ ∈ g∗ is conjugate to SO(2).
Let x0 lie on a relative equilibrium Γx0 with drift velocity ξ0 ∈ g at x0, so that Φt(x0) =

exp(tξ0)x0. Since momentum is conserved,

μ0 = J(x0) = J(Φt(x0)) = J(exp(tξ0)x0) = exp(tξ0)μ0,

and therefore μ0 is fixed by ξ0:

(3.16) ξ0μ0 = 0.

Such pairs (ξ, μ) ∈ g ⊕ g∗ are called velocity-momentum pairs. Note that the action of ξ0 on
μ0 in (3.16) is the infinitesimal coadjoint action (3.7), or the infinitesimal action with cocycle
(3.14), depending on the symmetry property of the momentum map.

Similarly, if x0 = γ−1
0 ΦT0(x0) lies on a relative periodic orbit with drift symmetry γ0 and

momentum μ0 = J(x0), then μ0 is fixed by γ0:

(3.17) γ0μ0 = μ0.

Such pairs (γ, μ) ∈ Γ × g∗ are called drift-momentum pairs.

3.3. Dynamics near Hamiltonian relative equilibria. For a symplectic manifold M with
Ad∗-equivariant momentum map the normal space N to the group orbit Γx0 at x0 ∈ M from
section 2.1 can be decomposed as

M/Γ � N = N0 ⊕N1
∼= g∗

μ0
⊕N1.

Here
gμ0 = TidΓμ0 = {ξ ∈ g : ad∗

ξμ0 = 0}
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μ0 = J(x0)

·J

in g∗
Γμ0

μ0

N0
∼= g∗

μ0

in J−1(μ0)

x0

N1

Γμ0x0

vx0

in M:
x = (γ, v)

Γx0

N

Figure 5. Symplectic slice theorem.

is the isotropy subalgebra of the momentum μ0 = J(x0) of x0. The space N0 is isomorphic
to a section transverse to the momentum group orbit Γμ0 at μ0. To see that N0 � g∗

μ0
,

let nμ0 be a complement to gμ0 in g and let ann(nμ0) denote the annihilator of nμ0 in g∗.
Then Tμ0Γμ0 = gμ0 = ann(gμ0), and so ann(nμ0) ∼= g∗

μ0
is a section transverse to Γμ0 at

μ0. The symplectic normal space or symplectic slice N1 at x0 is a slice to the Γμ0 orbit of
x0 in the momentum level set J−1(μ0); cf. Figure 5. Moreover, there is a choice of slice N
such that the coordinate transformation x → (γ, ν, w) ∈ Γ × N0 ⊕ N1, where x lies in some
Γ-invariant neighborhood U of Γx0, is symplectic with symplectic form ΩΓ×N on Γ×N given
by ΩΓ×N = ΩΓ×g∗

μ0
+ΩN1. Here ΩN1 is the symplectic form on N1 and ΩΓ×g∗

μ0
the symplectic

form on Γ × g∗
μ0

, obtained by restriction of the symplectic form on T ∗Γ � Γ × g∗. In these
coordinates the momentum map becomes

(3.18) J(γ, ν, w) = γ(μ0 + ν);

see [11, 17] and also [26]. Let JN1 be the structure matrix of the symplectic form on N1.
One more technical assumption is needed: In this paper, unless otherwise stated, it is

assumed that μ0 is split ; i.e., there is a Γid
μ0

-invariant complement to gμ0 in g. Here Γid
μ0

is the
identity component of Γμ0 . This condition is always satisfied for compact groups and also for
the special Euclidean group of the plane; see [26]. For the general case see [26].

Theorem 3.5 (see [26, Theorem 3.1]). Let, as above, (γ, v), v = (ν,w) ∈ N , γ ∈ Γ, parame-
trize a Γ-invariant neighborhood U of the relative equilibrium Γx0 with momentum μ0 = J(x0).
Let h(ν,w) be the restriction of the Hamiltonian H to the slice N = g∗

μ0
⊕ N1, and let μ0

be split. Assume that the momentum map is Ad∗-equivariant. Then γ(t) ∈ Γ, ν(t) ∈ g∗
μ0

,
w(t) ∈ N1, where x(t) � (γ(t), ν(t), w(t)) ∈ U solves (3.1), satisfy the differential equations

(3.19) γ̇ = γ Dνh(ν,w), ν̇ = ad∗
Dνh(ν,w)ν, ẇ = JN1Dwh(ν,w).

As in the non-Hamiltonian case, the relative equilibrium Γx0 corresponds to the equilib-
rium v = (0, 0) ∈ N of the slice equation on N . The first equation describes the motion of
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the body frame. Here Dνh is the velocity of the body frame, and Dνh(0, 0) = ξ0 is the drift
velocity of the relative equilibrium Γx0 at x0. The second equation describes the motion of
the momenta in body coordinates, and the last equation models the shape dynamics.

From a comparison of (3.19) with the equations near relative equilibria in the general case
(2.3), it becomes apparent that in the Hamiltonian case v = (ν,w) and

fΓ(v) = Dνh(ν,w), fN (v) =
(

ad∗
Dνh(ν)

JN1Dwh(ν,w)

)
.

So the slice equation v̇ = fN (v) now consists of the two differential equations for ν̇ and ẇ.
Moreover,

(3.20) DfN (0) =

(
ad∗

ξ0 |g∗
μ0

0
JN1D

2
νwh(0) JN1D

2
wh(0)

)
.

The energy h(ν,w) is a conserved quantity of the slice equation which is a Poisson system;
see [18]. Any function C(ν,w) which is a conserved quantity of the slice equation for all choices
of Hamiltonians h(ν,w) is called a Casimir of the slice equation. Note that the flow-invariant
symplectic leaves of the slice equation are given by Γid

μ0
ν0 ×N1, where ν0 ∈ N0.

Note for later reference that (3.20) is true for nonsplit μ as well if the infinitesimal coadjoint
action ad∗

ξ restricted to ann(nμ0) � g∗
μ0

in ad∗
ξ0 |g∗

μ0
is replaced by the corresponding action on

gμ0 . For split μ0, both these actions coincide; see [26].
Remark 3.6. With the notation from (3.7), the ν̇-equation can be rewritten as

ν̇ = −Dνh(ν,w)ν.

As shown in [28], Theorem 3.5 remains true in the case of a momentum map which is symmetric
with respect to a cocycle action if the infinitesimal coadjoint action in the ν̇-equation is
replaced by the corresponding action (3.14) with a cocycle. Then the ν̇-equation becomes

(3.21) ν̇ = −Dνh(ν,w) ·K ν

provided that μ0 is split for the action of Γκ on g, i.e., if there is a (Γκ
μ0

)id-invariant complement
nK

μ0
to gK

μ0
in g, where (Γκ

μ0
)id is the identity component of Γκ

μ0
. Moreover, as before, N0 �

ann(nK
μ0

) � (gK
μ0

)∗.
Remark 3.7. For later use, let us consider parameter dependent Hamiltonian systems

(3.22) ẋ = f(x,K),

where f is defined by

Ω(x,K)(f(x,K), v) = DxH(x,K)v, x ∈ M, v ∈ TxM.

Assume that the symplectic form Ω(K), the Hamiltonian H(·,K), and the momentum map
J(·,K) depend smoothly on a parameter K. Then Theorem 3.5 still applies, and the sections
N0(K), N1(K), as well as the Hamiltonian h(ν,w,K), depend smoothly on K, as long as the
dimensions of N0(K) and N1(K) are constant. See the proofs in [11, 17] and [26].
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Example 3.8. For later use, let us derive the differential equations (3.19) near rotating
waves of Hamiltonian systems (3.1) with symmetry group Γ = SE(2), in the case of an Ad∗-
equivariant momentum map. Let x0 lie on a rotating wave so that Φt(x0) = exp(tξ0)x0,
ξ0 ∈ so(2), μ0 = J(x0). From (3.16) it follows that 0 = −ad∗

ξ0μ0, with ad∗
ξ0 from (3.9).

Therefore, μa
0 = 0, so that the rotating wave through x0 has vanishing linear momentum.

Then Γμ0 = SE(2); see Example 3.3. Hence N0 � g∗
μ0

� se(2)∗, and so the equations (3.19)
for SE(2)-equivariant Hamiltonian systems are

(3.23)

φ̇ = Dνφh, ȧ = RφDνah, ⇔ γ̇ = γDνh(ν,w),
ν̇φ = νa

1Dνa
2
h(ν,w) − νa

2Dνa
1
h(ν,w)

ν̇a
1 = νa

2Dνφh(ν,w)
ν̇a
2 = −νa

1Dνφh(ν,w)

⎫⎬
⎭ ⇔ ν̇ = ad∗

Dνhν,

ẇ = JN1Dwh(ν,w).

Example 3.9. Also, for later use, let us consider the equations (3.21) for Hamiltonian
systems (3.22) which have a momentum map J(·,K) with cocycle (3.11), K �= 0. From (3.10)
and (3.11) it follows that the momentum μ0 can always be translated such that μa

0 = 0. For
μa

0 = 0 one has ξ = (ξφ, ξa) ∈ gK
μ0

if and only if ξa = 0, and so

Γκ
μ0

= SO(2) × {0} ⊆ SE(2).

For ξa = 0 the infinitesimal cocycle (3.13) vanishes. Hence {(0, ξa) ∈ se(2), ξa ∈ R
2} is a Γκ

μ0
-

invariant complement to gK
μ0

= so(2) in se(2), and μ0 is split. Consequently, N0 � (gK
μ0

)∗ =
so(2)∗, and ν̇ = 0 in (3.21).

4. The meandering transition in Hamiltonian systems. In this section a Hamiltonian
analogue of the meandering transition for dissipative systems, which was described in sec-
tion 2.2 above, is presented, using the equations near Hamiltonian relative equilibria (3.19)
from section 3. First Euclidean symmetric Hamiltonian systems with an Ad∗-equivariant
momentum map are studied (sections 4.1–4.3). Then systems with Euclidean symmetry for
which the momentum map has a cocycle are considered (section 4.4).

4.1. Persistence of rotating waves. In this section and in sections 4.2–4.3 it is assumed
that (3.1) has the symmetry group Γ = SE(2) and an Ad∗-equivariant momentum map.

As a prerequisite for the analysis of the transition from rotating waves to modulated
rotating waves and modulated traveling waves, the persistence of nondegenerate rotating
waves to nearby momentum values is studied.

Definition 4.1. A relative equilibrium Γx0 of (3.1) is called nondegenerate if D2
wh(0) is

invertible. Here h(ν,w) is the Hamiltonian in the symmetry-adapted coordinates near x0 from
(3.19).

Note that a relative equilibrium is typically nondegenerate. The next proposition shows
that nondegenerate rotating waves persist to nearby angular momentum.

Proposition 4.2. Let SE(2)x0 be a nondegenerate rotating wave of an SE(2)-equivariant
Hamiltonian system (3.1) with Ad∗-equivariant momentum map J(·), and let μ0 = J(x0).
Then there is a one-parameter family SE(2)xRW(νφ) of rotating waves nearby parametrized
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by angular momentum μφ = μφ
0 + νφ with vanishing linear momentum such that xRW(νφ) �

(id, (νφ, 0, 0)T , wRW(νφ)) is smooth in νφ and x(0) = x0, wRW(0) = 0.
Proof. Rotating waves are equilibria of the slice equation, i.e., of the (ν,w)-system of (3.23).

Using the nondegeneracy assumption, the equation 0 = ẇ = JN1Dwh(ν,w) can be solved by
the implicit function theorem for wRW(ν) such that wRW(0) = 0. For rotating waves the linear
momentum has to vanish; see Example 3.8. Hence νa = 0 in any rotating wave. From the ν̇-
equation of (3.23) then ν̇φ = 0, ν̇a = 0 follows. Hence xRW(νφ) � (id, (νφ, 0, 0)T , wRW(νφ)) lies
on a rotating wave of (3.1) for all νφ ≈ 0. By (3.18), J(xRW(νφ)) = μ0+ν = (μφ

0 +νφ, 0).
A persistence theory for generic nondegenerate relative equilibria of Hamiltonian systems

with general noncompact symmetry group has been developed in [32]; see also [20] for an
example of nonpersistence of rotating waves to nonvanishing linear momentum in point vortex
dynamics. The above proposition could also be proved by applying the results of [32] to the
example Γ = SE(2). However, the direct proof given above is more elementary.

4.2. Bifurcation of modulated traveling waves. The following theorem states that typi-
cally rotating waves of Euclidean equivariant Hamiltonian systems with Ad∗-equivariant mo-
mentum map persist to modulated traveling waves at nearby linear momenta μa �= 0. Conse-
quently resonance drift occurs generically.

Theorem 4.3. Let SE(2)x0 be a nondegenerate rotating wave of an SE(2)-equivariant Ham-
iltonian system (3.1) with Ad∗-equivariant momentum map. Denote its rotation frequency by
ωrot

0 = ξφ
0 and assume that ωrot

0 �= 0. If all eigenvalues iω0 of JN1D
2
wh(0) satisfy

(4.1) ω0/ω
rot
0 /∈ Z,

then the rotating wave SE(2)x0 persists as a modulated traveling wave PMTW(νφ, ra) to all
nearby momentum values μ = (μφ

0 + νφ, νa), ra = ‖νa‖. Moreover, there is a smooth function
xMTW(νφ, ra) ∈ PMTW(νφ, ra) such that xMTW(νφ, 0) = xRW(νφ). Here SE(2)xRW(νφ) is
the family of rotating waves from Proposition 4.2. The relative period TMTW(νφ, ra) of the
modulated traveling wave PMTW(νφ, ra) is close to TMTW(0) = 2π

|ωrot
0 | , and the translation drift

γMTW(νφ, ra) = (0, aMTW(νφ, ra)) of the modulated traveling wave at xMTW(νφ, ra) satisfies
aMTW(νφ, 0) = 0.

Proof. The rotating wave SE(2)x0 is treated as a periodic orbit of period T0 = 2π
ωrot

0
.

Introduce polar coordinates νa = (ra cosφa, ra sinφa). Then (3.23) implies that ra = ‖νa‖2 is
a conserved quantity (Casimir) of the slice equation. Since the slice equation also conserves
energy, the set

NE,ra = {(ν,w) ∈ N , h(ν,w) = E, ‖νa‖2 = ra}
is flow-invariant. From φ̇a = Dνφh(ν,w) ≈ ωrot

0 �= 0 for (ν,w) ≈ 0 it can be deduced that for
E ≈ E0 = H(x0), ra > 0, ra ≈ 0, the section

SE,ra = {(ν,w) ∈ NE,ra, φa = 0, (ν,w) ≈ 0}

is tranversal to the flow in NE,ra. Let Π(E, ra, ·) : SE,ra → SE,ra be the Poincaré map to
the Poincaré section SE,ra. Since D(ν,w)h(0) = (ξ0, 0) with ξφ

0 = ωrot
0 �= 0, the sections SE,ra,

E ≈ E0, ra ≈ 0, can be parametrized as

SE,ra = {(νφ, w), νφ = νφ(E, ra, w), w ∈ N1}.
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Hence Π(E, ra, ·) can be considered as a map from N1 to itself. By assumption kiωrot
0 , k ∈ Z,

is not an eigenvalue of JN1D
2
wh(0). Therefore,

DwΠ(E0, 0, 0) − id = exp
(

2π
|ωrot

0 |JN1D
2
wh(0)

)
− id

is invertible, and so there is a fixed point w(E, ra) of Π(E.ra, ·) for each E ≈ E0, ra ≈ 0. As
Dνφh(0) = ωrot

0 �= 0, this family of fixed points can be parametrized by νφ and ra instead of
E and ra.

The periodic orbits of the slice equation through v(νφ, ra) = (ν(νφ, ra), w(νφ, ra)), where
ν(νφ, ra) = (νφ, ra, 0), correspond to relative periodic orbits PMTW(νφ, ra) of (3.1) through
xMTW(νφ, ra) � (id, v(νφ, ra)) with momentum

J(xMTW(νφ, ra)) = μ0 + ν(νφ, ra) = (μφ
0 + νφ, ra, 0);

see (3.18). For vanishing linear momentum ra = 0 they reduce to the rotating waves
SE(2)xRW(νφ) from Proposition 4.2.

By (3.17), any RPO with drift γ = (φ, a) and momentum μ satisfies (Ad∗
γ)−1μ = μ, with

(Ad∗
γ)−1 as in (3.9). Because of (3.9), the condition μa �= 0 implies φ = 0 so that the RPOs

PMTW(νφ, ra) are modulated traveling waves for ra �= 0.

4.3. Bifurcation of modulated rotating waves. In this section the existence of modulated
rotating waves near elliptic rotating waves is proved by the Lyapunov center theorem.

Definition 4.4. A relative equilibrium Γx0, x0 � (id, (ν,w) = (0, 0)), of a Γ-equivariant
Hamiltonian system (3.1) is called elliptic if all eigenvalues of the linearization JN1D

2
wh(0)

of the ẇ-dynamics of (3.19) lie in iR \ {0} and nonresonant if all its eigenvalues are simple
and no eigenvalue iωj is an integer multiple of another eigenvalue iωk for ωj �= ωk.

Note that any stable relative equilibrium is elliptic and that relative equilibria are elliptic
for an open range of parameters (until a Hamiltonian Hopf bifurcation of the ẇ-equation of
(3.19) occurs).

Definition 4.5. Let Γx0, x0 � (id, (ν,w) = (0, 0)), be an elliptic relative equilibrium of
(3.1), and denote the eigenvalues of JN1D

2
wh(0) by ±iωj, j = 1, . . . , d, d := 1

2 dimN1. The
signs of the normal frequencies ωj are chosen such that

(4.2) h(0, w) =
d∑

j=1

ωj

2
〈wj , wj〉 +O(‖w‖3).

Here w = (w1, . . . , wd), wj ∈ R
2, are suitable coordinates on N1. The sign of ωj is called the

Krein signature of ωj. There is an m : n-resonance between the normal frequencies ωj and ωk

if mωj = nωk, m,n ∈ Z.
Proposition 4.6. Let SE(2)x0 be a nonresonant elliptic rotating wave of an SE(2)-equivariant

Hamiltonian system (3.1) with Ad∗-equivariant momentum map. Let ωrot
0 be its rotation fre-

quency, let H(x0) = E0 be its energy, and let μ0 = J(x0) be its momentum at x0. Denote the
eigenvalues of JN1D

2
wh(0) by ±iωj, j = 1, . . . , 1

2 dimM− 3. Then there are (1
2 dimM− 3)-

many two-dimensional families Pj(νφ, s) of RPOs, j = 1, . . . , 1
2 dimM − 3, of (3.1), where
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s ≥ 0, νφ ≈ 0, with angular momentum μφ
0 + νφ, with vanishing linear momentum, with

energy E = H(xRW(νφ)) ± s2 (depending on the Krein signature of ωj), and with relative
periods Tj(νφ, s) such that Tj(0, 0) = 2π/|ωj |. Moreover, there are smooth functions xj(νφ, s)
with xj(νφ, s) ∈ Pj(νφ, s), xj(νφ, 0) = xRW(νφ). If ωrot

0 /ωj /∈ Z for all normal frequencies ωj,
then all these RPOs are proper modulated rotating waves for (νφ, s) ≈ 0. Proper modulated
rotating waves do not persist to nonzero linear momenta.

Proof. First note that proper modulated rotating waves have a drift symmetry γ = (φ, a)
with φ �= 0 mod 2π. This implies, because of (3.17) and (3.9), that the linear momentum νa

of a proper modulated rotating wave vanishes. Equation (3.23) implies that ν̇φ ≡ 0, ν̇a ≡ 0 at
νa = 0. So proper modulated rotating waves near x0 correspond to nonlinear normal modes
of the νφ-dependent ẇ-equation of (3.23) at νa = 0. Note that N1 has dimension

dimN1 = dimM− 2 dim SE(2) = dimM− 6.

By the Lyapunov center theorem (see, e.g., [19]) there are d = dimN1
2 families of periodic

orbits wj(νφ, s), j = 1, . . . , d, of the ẇ-equation of (3.23) such that wj(νφ, 0) = wRW(νφ), with
wRW(νφ) from Proposition 4.2. Let iωj(νφ) be the eigenvalue of JN1D

2
wh((νφ, 0, 0), wRW(νφ))

such that ωj(0) = ωj. Since ∂swj(νφ, 0) lies in the real eigenspace of JN1D
2
wh((νφ, 0, 0),

wRW(νφ)) to the eigenvalue iωj(νφ) (see, e.g., [19]), and since Dwh((νφ, 0, 0), wRW(νφ)) = 0,
the energy of the periodic orbits is

h((νφ, 0, 0), wj(νφ, s)) = H(xRW(νφ)) + ωj(νφ)s2 +O(s3).

Therefore, s can be rescaled to achieve that the periodic orbit wj(νφ, s) has energyH(xRW(νφ))
± s2 depending on the sign of ωj; see (4.2). Then xj(νφ, s) = (id, (νφ, 0, 0), wj(νφ, s)) lies on
an RPO Pj(νφ, s) of (3.1). Its momentum is

J(xj(νφ, s)) = (μφ
0 + νφ, 0, 0)

by (3.18). The drift symmetry γj(νφ, s) = (φj(νφ, s), aj(νφ, s)) of the RPO at xj(νφ, s) satisfies
φj(0, 0) = 2πωrot

0 /ωj , and so φj(0, 0) �= 0 mod 2π if ωrot
0 /ωj /∈ Z. In this case φj(νφ, s) �=

0 mod 2π for (νφ, s) ≈ 0, and the RPOs Pj(νφ, s) are indeed proper modulated rotating waves
for (νφ, s) ≈ 0.

Example 4.7. Let us now study a Hamiltonian analogue of the meandering transition for
point vortices with vanishing total circulation K = 0. In this case the momentum map of the
point vortex system (3.3) is Ad∗-equivariant; cf. Remark 3.4. Let us start with a configuration
of rigidly rotating point vortices. Such a configuration is a rotating wave of (3.3). Synge [29]
and later Aref [1] showed the existence of rotating waves of 3 vortices with vanishing total
circulation. Patrick [25] constructed rotating wave solutions with vanishing total circulation
for N ≥ 3 vortices. Let us assume that the rotating wave is nondegenerate and that the
nonresonance condition (4.1) is satisfied (this assumption is trivially satisfied for 3 vortices,
since then N1 = {0}). Then it persists as a translating and precessing configuration, i.e.,
as a modulated traveling wave, to nonzero linear momentum. Moreover if the rotating wave
is elliptic and nonresonant, then there are (1

2 dimM − 3) = (N − 3) different 2-parameter
families of rotating and precessing configurations of vortices nearby, which are modulated
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μφ

MRW,RW

MTW

|μa|

MTW

Figure 6. Bifurcation diagram for the Hamiltonian meandering transition of point vortex dynamics in
the case of vanishing circulation. RW: Rotating waves. MRW: Modulated rotating waves. MTW: Modulated
traveling waves.

rotating waves (Patrick [25] shows stability of the rotating waves of 4 vortices with vanishing
total circulation, which he constructed. This implies that these rotating waves are elliptic,
and, since N1 is 2-dimensional, they are also nonresonant).

Figure 6 shows the bifurcation diagram of the Hamiltonian meandering transition for point
vortex dynamics in the case of an Ad∗-equivariant momentum map (for momentum maps with
cocycle see section 4.4). This diagram should be compared with the corresponding bifurcation
diagram of the dissipative meandering transition, Figure 4.

Note that, in contrast to the meandering/drifting transition in dissipative systems, here
modulated traveling waves are the typical scenario as momentum is varied. Modulated rotat-
ing waves occur only for zero-linear momentum and so are a codimension two phenomenon in
the three parameters’ angular and linear momentums.

Example 4.8. Another example where a Hamiltonian meandering transition occurs is the
Kirchhoff model of an underwater vehicle; see [13, 15]. In this case the configuration space is
the Euclidean group SE(3) = SO(3) � R

3 of three-dimensional space modeling the angle and
position of the underwater vehicle, and the phase space M = T ∗SE(3) is 12-dimensional. In
the case of noncoincident centers of gravity and buoyancy the symmetry group is

Γ = SO3(2) � R
3 = SE(2) × R3.

Here SO3(2) denotes the group of rotations around the axis of gravity, which is chosen as
the third coordinate axis (i.e., as the e3-axis), and R3 is the group of translations along the
e3-axis. Near a vertically falling and spinning relative equilibrium the dynamics is given by
the slice equations near a rotating wave of a Euclidean equivariant system (3.23), but now
there is an additional equation

ν̇a
3 ≡ 0

in the slice and a corresponding equation

ȧ3 = Dνa
3
h(ν,w)
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for the group dynamics, where ν = (νφ, νa), νa = (νa
1 , ν

a
2 , ν

a
3 ). Assume that this relative

equilibrium is nondegenerate and satisfies the nonresonance condition (4.1). Then it persists
as translating RPO with nonvertical linear drift to horizontal linear momentum. Let the
relative equilibrium be elliptic and nonresonant (from [15, section 4.4.2] it follows that these
conditions are satisfied at least for an open range of parameters). Then there are two 3-
parameter families of RPOs, parametrized by (νφ, νa

3 , s), which fall, rotate, and precess.

4.4. Hamiltonian meandering transition for momentum maps with cocycle. In this
section the analogue of the meandering transition of dissipative systems is considered for
Hamiltonian systems where the momentum map has a nonvanishing cocycle of the form that
occurs in point vortex dynamics. The limiting behavior for a vanishing cocycle is studied,
and in this way the meandering transition for momentum maps with cocycle is related to
the results of sections 4.1–4.3 on the meandering transition for Hamiltonian systems with
Ad∗-equivariant momentum map.

Let us consider a parameter dependent SE(2)-symmetric Hamiltonian system (3.22). As-
sume that the symplectic form Ω(K), the Hamiltonian H(·,K), and the momentum map
J(·,K) : M → se(2)∗ depend smoothly on a parameter K. Moreover, assume that the mo-
mentum map is Ad∗-equivariant for K = 0 and has the cocycle (3.11) for K �= 0; see (3.10),
(3.12). An example of such a momentum map is the momentum map (3.4) for the point vortex
dynamics (3.3).

As in the analysis of the Hamiltonian meandering transition for Ad∗-equivariant momen-
tum maps (see section 4.1), first the persistence of rotating waves to nearby momentum values
is studied. Moreover, the behavior of the rotating waves in the limit of vanishing cocycle is
analyzed in the following theorem.

Theorem 4.9. Consider a Hamiltonian system with SE(2)-symmetry for which the momen-
tum map J(·,K) has a nonvanishing cocycle satisfying (3.11), (3.12). Then the following hold:

(a) For K �= 0 all relative equilibria are rotating waves. Any nondegenerate rotating
wave SE(2)x0 persists to all nearby momentum values as a one-parameter family
SE(2)xRW(ν), ν ∈ (gK

μ0
)∗, xRW(0) = x0.

(b) The center of rotation c(K) of any smooth family SE(2)xRW(K), K �= 0, K ≈ 0, of
rotating waves with fixed linear momentum μa �= 0 and rotation frequency ωrot(K),
such that limK→0 ω

rot(K) = ωrot
0 �= 0, tends to infinity, as K → 0, according to

‖c(K)‖ =
‖μa‖
K .

(c) Assume that there is a nondegenerate rotating wave SE(2)x0 at K = 0 with momen-
tum μ0 = (μφ

0 , 0) and rotation frequency ωrot
0 �= 0. Then this rotating wave can be

continued to a rotating wave SE(2)xRW(νφ,K) for small K �= 0, νφ �= 0, such that
Jφ(xRW(νφ,K),K) = μφ

0 + νφ and Ja(xRW(νφ,K),K) = 0.
Part (b) of this theorem implies that for K = 0 rotating waves exist only for vanishing

linear momentum; see Proposition 4.2.
Proof of Theorem 4.9. (a) If the momentum map for a Hamiltonian system with SE(2)-

symmetry has a nonvanishing cocycle, then Γκ
μ � SO(2) for all μ ∈ se(2)∗, as shown in

Remark 3.4. Hence gK
μ � so(2) for all μ ∈ se(2)∗, and by (3.16) all relative equilibria are
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rotating waves. Moreover, in Example 3.9 it was shown that ν̇ ≡ 0 in (3.21), ν ∈ (gK
μ )∗. For

a nondegenerate rotating wave SE(2)x0 the matrix D2
wh(0) is invertible. Therefore, there is a

path wRW(ν) of equilibria of the ẇ-equation near wRW(0) = 0. These equilibria correspond
to rotating waves SE(2)xRW(ν), xRW(ν) � (id, ν, wRW(ν)), of (3.1) for all nearby momenta
SE(2)J(xRW(ν),K) = SE(2)(μ0 + ν), where μ0 = J(x0,K).

(b) Let SE(2)xRW(K) be an rotating wave with momentum μ and drift velocity ξ = ξ(K) =
(ξφ, ξa)(K). Differentiating (3.15) and identifying R

2 with C and so(2) with R, one obtains
that

(4.3) (ξφ, ξa) ∈ gK
μ ⇔ Kξa = ξφμa.

Let (φ, a)x = eiφx + a, x ∈ R
2 � C. Then x(t) = exp(t(ξφ, ξa))x0 satisfies the differential

equation ẋ(t) = iξφx(t) + ξa. Solving this and setting t = 1, one gets

exp(ξφ, ξa)x0 = eiξ
φ
x0 +

1
iξφ

(eiξ
φ − 1)ξa.

Therefore, exp(ξφ, ξa) is a rotation with center

(4.4) c = i
ξa

ξφ
= i

μa

K =
1
K (−μa

2, μ
a
1)

T .

This proves (b).
(c) Let us reduce only by the SO(2) × {0}-symmetry. Then the system

˙̃ν = 0, ˙̃w = JÑ1
Dw̃h̃(ν̃, w̃,K)

is obtained on the slice Ñ transverse to the SO(2)-orbit SO(2)x0 at x0, with ν̃ = νφ. By
(3.8), (3.9) the matrix adξ0 = −ad∗

ξ0 has simple eigenvalues 0 and ±iωrot
0 . By (2.4) and

(3.20), at K = 0 the linearization of the slice equation DfÑ (0, 0) has one simple eigenvalue 0
corresponding to the equation ˙̃ν = 0. Therefore, D2

w̃h̃(0, 0, 0) is invertible, and so the rotating
wave SO(2)x0 is nondegenerate. By Remark 3.7 the ˙̃w-equation is smooth in K. So there
is a smooth two-parameter family w̃RW(ν̃,K) of equilibria of the ˙̃w-equation. This gives a
family SE(2)xRW(νφ,K), xRW(νφ,K) � (id, νφ, w̃RW(νφ,K)), of rotating waves of (3.1). By
(3.18) their angular momentum is Jφ(xRW(νφ,K),K) = μφ

0 + νφ. Since only a reduction by
the SO(2)-symmetry has been carried out, the rotating waves through xRW(νφ,K) have drift
velocities ξRW(νφ,K) with ξa

RW(νφ,K) = 0. Moreover, ξφ
RW(νφ,K) ≈ ωrot

0 �= 0 for K ≈ 0.
Therefore, (4.3) implies that Ja(xRW(νφ,K),K) = 0.

The next proposition shows that in the case of a momentum map with cocycle (3.11) all
RPOs are modulated rotating waves.

Proposition 4.10. Consider a Hamiltonian system with SE(2)-symmetry for which the mo-
mentum map J(·,K) has a nonvanishing cocycle satisfying (3.11), (3.12). Then the following
hold:

(a) For K �= 0 all RPOs are modulated rotating waves.



1234 CLAUDIA WULFF

(b) Any smooth family P(K) of proper modulated rotating waves of (3.1), i.e., of RPOs
with drift symmetry γ(K) = (φ(K), a(K)), where φ(K) �= 0 mod 2π for all K �= 0,
K ≈ 0, with fixed linear momentum μa �= 0 has a center of rotation c(K) diverging to
∞ for K → 0 according to ‖c(K)‖ = ‖μa‖

K .
Proof. (a) Similarly as in the proof of Theorem 4.9 (a), this follows from the fact that

Γκ
μ � SO(2) for all μ ∈ se(2)∗, as shown in Remark 3.4. This, together with (3.17), implies

that all RPOs are modulated rotating waves.
(b) This statement is proved similarly as Theorem 4.9 (b). By (3.15), the center of rotation

c(K) = Rφ(K)c(K) + a(K) of the drift symmetry γ(K) = (φ(K), a(K)), φ(K) �= 0 mod 2π, of
the RPO is given by (4.4), and so c(K) → ∞ as K → 0 for μa �= 0.

In the next theorem the transition from rotating waves to modulated rotating waves and
modulated traveling waves is studied in the limit K → 0.

Theorem 4.11. Let SE(2)xRW(K) be a nondegenerate rotating wave of a Hamiltonian sys-
tem (3.1) which has a momentum map J(·,K) with cocycle satisfying (3.10), (3.11). Fix the
momentum μ0 = J(xRW(K),K) of xRW(K) independent of K. Then the following hold true.

(a) Fix K �= 0. Assume that the rotating wave SE(2)xRW(K) is elliptic and nonresonant
in the sense of Definition 4.4, with normal frequencies ωj, j = 1, . . . , 1

2 dimM − 2. Then
there are (1

2 dimM − 2) many two-dimensional families Pj(ν, s,K) of modulated rotating
waves such that there are functions xj(ν, s,K) ∈ Pj(ν, s,K) which are smooth in s ≥ 0, K,
and ν ∈ (gK

μ0
)∗ � so(2)∗ with xj(ν, 0,K) = xRW(ν,K). Here xRW(ν,K) lies on a rotating

wave with momentum μ0 + ν. The modulated rotating wave through xj(ν, s,K) has relative
period Tj(ν, s,K) with Tj(0, 0,K) = 2π/|ωj |, energy H(xj(ν, s,K),K) = H(xRW(ν,K),K) ± s2

(depending on the Krein signature of ωj), and momentum J(xj(ν, s,K),K) = μ0 + ν, j =
1, . . . , 1

2 dimM− 2.
(b) Assume that there is a rotating wave SE(2)x0 at K = 0 with rotation frequency ωrot

0

which is elliptic and nonresonant in the sense of Definition 4.4, and that ωrot
0 /ωj /∈ Z for all

eigenvalues iωj of JN1D
2
wh(0, 0, 0). Then the (1

2 dimM− 3) families Pj(νφ, s) of modulated
rotating waves near SE(2)x0 from Proposition 4.6 at K = 0 can be continued to small K �= 0
and correspond to families Pj(ν, s,K) from part (a) with ν = νφ.

(c) Assume that the rotating wave SE(2)x0 at K = 0 is elliptic and nonresonant and that
ωj/ω

rot
0 /∈ Z for all eigenvalues iωj of JN1D

2
wh(0, 0, 0). Then for K �= 0, K ≈ 0, one of the fam-

ilies P(ν, s,K) from (a) corresponds to an eigenvalue iω(K) of JN1(K)D2
wh(0, wRW(0,K),K)

which depends smoothly on K such that ω(0) = ωrot
0 . Here ωrot

0 is the rotation frequency of
the rotating wave SE(2)x0 at K = 0, N1(K) is the symplectic normal space at the rotating
wave through xRW(0,K) � (id, 0, wRW(0,K)) ∈ Γ × N0(K) ⊕ N1(K), N0(K) � (gK

μ0
)∗, and

h(ν,w,K) is the Hamiltonian in symmetry-adapted coordinates at xRW(0,K) for the cocycle
parameter K. As K → 0, this family converges to the family of modulated traveling waves
from Theorem 4.3.

Proof. (a) Fix K �= 0. Then, as shown in Example 3.9, N0 = N0(K) is one-dimensional,
and so N1 = N1(K) has dimension dimM−4. By the Lyapunov center theorem (see, e.g., [19])
applied to the ν-dependent ẇ-equation on N1 = N1(K), there are 1

2 dimN1 = (dimM− 4)/2
many families of nonlinear normal modes through wj(ν, s,K). These give families of RPOs
Pj(ν, s,K) of (3.22) through xj(ν, s,K) � (id, ν, wj(ν, s,K)) with momentum J(xj(ν, s,K)) =
μ0+ν; see (3.18). The statement about the energy of the RPOs is proved as in Proposition 4.6.
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It was shown in Remark 3.4 that Γκ
μ � SO(2) for all μ ∈ se(2)∗. Hence (3.17) implies that all

these RPOs are modulated rotating waves. This proves part (a).
(b) Let us reduce by SO(2)-symmetry only. The dynamics on the slice Ñ (K) is then

˙̃ν ≡ 0, ν̃ = νφ ∈ so(2)∗, and ˙̃w = JÑ1(K)Dw̃h̃(ν̃, w̃,K). Because of (3.8), (3.9), the matrix
adξ0 = −ad∗

ξ0 has simple eigenvalues 0,±iωrot
0 . Therefore, by (2.4) and (3.20), the equilibrium

w̃ = 0 of the ˙̃w-equation at ν̃ = 0, K = 0, is elliptic; moreover, its linearization has, in addition
to the eigenvalues ±iωj, j = 1, . . . , 1

2 dimN1, double eigenvalues ±iωrot
0 . Let us apply the

Lyapunov center theorem to the ˙̃w-equation. This gives relative normal modes w̃j(ν̃, s,K) for
all nonresonant normal frequencies. These correspond to all imaginary eigenvalues ±iωj with
eigenvectors in the original symplectic normal space N1 for the full SE(2)-group action. Since
by Remark 3.7 the ˙̃w-equation is smooth in K, this gives 1

2 dimN1 = (dimM− 6)/2 smooth
families Pj(νφ, s,K) of RPOs through xj(νφ, s,K) � (id, ν̃, w̃j(νφ, s,K)), j = 1, . . . 1

2 dimN1,
with momentum J(xj(νφ, s,K)) = (μφ

0 +νφ, 0); see (3.18). These RPOs are modulated rotating
waves, since the system was reduced only by SO(2)-symmetry.

(c) Let K = 0. Then (3.20) and (3.9) imply that the linearization of the ν̇-equation
has eigenvalues ±iωrot

0 and 0, where the real eigenspace of ±iωrot
0 is given by {ν = (0, νa),

νa ∈ R
2} ⊆ se(2)∗. Compared to the slice equation (3.23) near rotating waves of momen-

tum maps without cocycle, for K �= 0 the N0(K) component of the slice N (K) is only one-
dimensional instead of three-dimensional. Since μa

0 = Ja(x0, 0) = 0 and μ0 = J(xRW(K),K)
is fixed, Remark 3.9 implies that ν = νφ for K �= 0 and that then ν̇ ≡ 0. For K �= 0
the eigenvalue ±iωrot

0 of DfN (0) perturbs into eigenvalues ±iω(K) of DfN (K)(vRW(K)). Here
vRW(K) is the equilibrium of the slice equation at momentum μ0 and cocycle parameter K
corresponding to the relative equilibrium xRW(νφ,K) at νφ = 0 from Theorem 4.9 (c). Since
DfN (K)(vRW(K)) vanishes when restricted to N0(K), it follows that ±iω(K) are eigenvalues of
DfN1(K)(vRW(K)). By the Lyapunov center theorem and due to the nonresonance condition
ωj/ω

rot
0 /∈ Z, this gives one more family of nonlinear relative normal modes for K �= 0, K ≈ 0.

It will now be shown that this additional family of RPOs converges to the family P(νφ, ra) of
modulated traveling waves from Theorem 4.3 as K → 0.

The proof of Theorem 4.3 can be extended to the case K ≈ 0, K �= 0. It is convenient to
work in the slice coordinates (ν,w) ∈ N = N0 ⊕ N1 at K = 0, even when perturbations to
cocycle parameters K �= 0 are considered. For any K ≈ 0 the dynamics on the slice N does
not depend on γ and the energy h(ν,w,K) is still a conserved quantity. But note that the
Poisson structure on N changes, and in particular |νa|2 is not a conserved quantity anymore.
By (3.9), for K = 0 the momentum group orbits SE(2)μ are cylinders around the μφ-axis.
For K �= 0, due to (3.10) and (3.11), they are paraboloids, centered along the μφ-axis. A
Casimir, i.e., a function satisfying C(γ ·κ μ) = C(μ), where γ ·κ μ is defined in (3.10), is given
by C(μφ, μa) = ‖μa‖2 + 2Kμφ. Let Ja(ν,w,K) and Jφ(ν,w,K) be the linear and angular
momenta on the slice N . Since the momentum map depends smoothly on K, these maps are
smooth in all variables. Then

(4.5) C(ν,w,K) = ‖Ja(ν,w,K)‖2 + 2KJφ(ν,w,K)

is a conserved quantity for the slice equation. For K = 0 one has Ja(ν,w,K = 0) = νa,
Jφ(ν,w,K = 0) = νφ. Therefore, for K ≈ 0 the Casimir C(ν,w,K) is a small perturbation
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of C(ν,w,K)|K=0 = ‖νa‖2. The rotating waves through xRW(νφ,K) from Theorem 4.9 (c)
have energy ERW(νφ,K) = H(xRW(νφ,K)) with ∂ERW

∂νφ (0, 0) = ωrot
0 �= 0. So they can be

parametrized by (E,K) instead of (νφ,K) for E ≈ E0 = H(x0) and K ≈ 0. Let xRW(E,K) =
(id, νRW(E,K), wRW(E,K)) ∈ Γ × N be the family of rotating waves near x0 � (id, 0, 0).
Then νa

RW,1(E, 0) = 0, νa
RW,2(E, 0) = 0 by Proposition 4.2. Since the slice equation conserves

energy, the energy level sets NE,K of the slice N at cocycle parameter K are flow-invariant.
Moreover, as Dνφh(0) = ωrot

0 , ωrot
0 �= 0, they can be parametrized by

NE,K = {(ν,w) ∈ N , h(ν,w,K) = E}
= {(ν,w) ∈ N , νφ = νφ(E, νa, w,K)},

where E ≈ E0 = H(x0), νa ≈ 0, K ≈ 0, w ≈ 0. As in the proof of Theorem 4.3,

SE,K = {(ν,w) ∈ N , νa
2 = νa

RW,2(E,K), νa
1 > νa

RW,1(E,K),

νφ = νφ(E, νa, w,K), w ∈ N1, w ≈ 0, νa ≈ 0}

is a Poincaré section in NE,K for E ≈ E0, K ≈ 0. Denote s = νa
1 − νa

RW,1(E,K). Let us now
look for fixed points of the Poincaré map Π(E, s,w,K) which maps SE,K to itself.

Decompose Π(E, s,w,K) = (Π0(E, s,w,K),Π1(E, s,w,K)), where Π1(·) is the w-com-
ponent (w ∈ N1) and Π0(·) the s-component of Π. Due to the nonresonance condition,
Π1(E, s,w,K) = w can be solved for K ≈ 0, s ≈ 0, E ≈ E0 = H(x0), by the implicit function
theorem to obtain w(E, s,K). Inserting this into Π0, one obtains one scalar fixed point
equation s = Π̂(E, s,K). This equation is satisfied due to the existence of the Casimir (4.5):
Let ŝ = Π̂(E, s,K). Inserting w = w(E, s,K) into (4.5), a function C(E, s,K) = s2 +O(K) is
obtained. Any equilibrium (ν,w) of the slice equation on N satisfies

DC(ν,w) || Dh(ν,w)

or
D(C|h=E) = 0,

where E = h(ν,w). The equilibria corresponding to rotating waves of (3.1) are at s = 0,
and therefore DsC(E, 0,K) ≡ 0. Moreover, D2

sC(E0, 0, 0) = 2, where E0 = H(x0). So
s → C(E, s,K) is monotonically increasing for s ≥ 0, E ≈ E0, K ≈ 0, and one can
solve for s(E,C,K). Hence ŝ = s, and a family (ν,w)(E,C,K) of periodic orbits of the
slice equation is obtained. This gives a family P(E,C,K) of RPOs of (3.22). Chang-
ing the parametrization of the RPOs P(E,C,K) from (E,C) back to (νφ, s), the nota-
tion of the theorem is recovered. Let (φ, a)(νφ, s,K) by the drift symmetry of the RPO
P(νφ, s,K) at x(νφ, s,K) � (id, (ν,w)(νφ, s,K)). Note that for K = 0, (3.18) gives s = ra and
J(x(νφ, ra, 0)) = (μφ

0 + νφ, ra, 0). By (3.17) and (3.9) for ra �= 0 and K = 0 all RPOs are
modulated traveling waves. Therefore, φ(νφ, s,K) → 0 as K → 0 and the RPOs P(νφ, s,K)
become modulated traveling waves in the limit of vanishing cocycle.

5. Extensions to systems with other symmetry groups. In this section the Hamiltonian
analogue of the meandering transition is discussed for systems with spherical symmetry and
for systems with the Euclidean symmetry group of three-dimensional space. See Remarks
2.2 (b) and (c) for the corresponding dissipative case.
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5.1. Hamiltonian meandering transition with spherical symmetry. In this section it
is assumed that the Hamiltonian system (3.1) has spherical symmetry Γ = SO(3). Then
persistence of rotating waves to modulated rotating waves at nearby momentum values is
studied. Thereby the analogue of Remark 2.2 (b) is studied in the Hamiltonian context. The
results can be applied to rotating point vortices on the sphere; see, e.g., [16].

For μ0 = 0 the momentum isotropy subalgebra is gμ0 = so(3) and for μ0 �= 0 (the typical
case) it is gμ0 = so(2). Let us first consider the generic case of a rotating wave with momentum
μ0 �= 0.

Theorem 5.1. Let SO(3)x0 be a nondegenerate rotating wave with nonvanishing momentum
μ0 and drift velocity ξ0. Align x0 such that μ0 = (0, 0, μ0,3), ξ0 = (0, 0, ωrot

0 )T . Then the
following hold true:

(a) The rotating wave SO(3)x0 persists to every nearby momentum. Moreover, there is
a one-dimensional family of rotating waves SO(3)xRW(ν), ν ≈ 0, such that xRW(ν)
is smooth and xRW(0) = x0. The rotating wave through xRW(ν) has drift velocity
ξRW(ν)||e3, with ξRW(0) = ξ0, and momentum J(xRW(ν)) = (0, 0, μ0,3 + ν).

(b) Let the rotating wave SO(3)x0 be elliptic and nonresonant in the sense of Defini-
tion 4.4 and denote its normal frequencies by ωj. Then there are (1

2 dimM − 2)
two-dimensional families Pj(ν, s), j = 1, . . . 1

2 dimM− 2, ν ≈ 0, s ≥ 0, of modulated
rotating waves nearby such that there are smooth functions xj(ν, s) ∈ Pj(ν, s) with
xj(ν, 0) = xRW(ν) (where xRW(ν) is from (a)). These modulated rotating waves have
energy H(xj(ν, s)) = H(xRW(ν)) ± s2 (depending on the Krein signature of ωj), mo-
mentum J(xj(ν, s)) = (0, 0, μ0,3 + ν), relative period Tj(ν, s), such that Tj(0, 0) = 2π

|ωj | ,
and average drift velocity ξj(ν, s)||e3 at xj(ν, s), with ξj(0, 0) = ξ0.

So resonance drift cannot occur near rotating waves of SO(3)-symmetric Hamiltonian
systems with nonvanishing angular momentum.

Proof of Theorem 5.1. If μ0 �= 0, then N0 � g∗
μ0

� so3(2)∗ is one-dimensional. Here so3(2)
corresponds to infinitesimal rotations around the e3-axis. So the ν̇-equation of (3.19) just
becomes ν̇ = 0.

(a) A nondegenerate rotating wave SO(3)x0 persists as equilibrium wRW(ν) of the ẇ-
equation for ν ≈ 0. This gives a rotating wave of (3.1) through xRW(ν) � (id, ν, wRW(ν))
with nonvanishing momentum J(xRW(ν)) = (0, 0, μ0,3 + ν), ν ≈ 0; cf. (3.18). Due to SO(3)-
equivariance the rotating wave persists to all nearby momenta.

(b) By the Lyapunov center theorem there are 1
2 dim(N1) families wj(ν, s) of periodic

orbits of the ẇ-equation, parametrized by ν and s. Here dimN1 = dimM − 4. These give
points xj(ν, s) = (id, ν, wj(ν, s)) on modulated rotating waves Pj(ν, s) with xj(ν, 0) = xRW(ν)
and with momentum J(xj(ν, s)) = μ0 + ν = (0, 0, μ0,3 + ν3); see (3.18). Let SO3(2) be the
group of rotations around e3 with Lie algebra so3(2). Since J(xj(ν, s)) �= 0 and J(xj(ν, s))||e3,
by (3.17) the drift symmetry Rj(ν, s) of the RPO at xj(ν, s) lies in SO2(3), and so the average
drift velocity ξj(ν, s) at xj(ν, s) is in so3(2).

Next let us consider the case that the rotating wave SO(3)x0 has zero angular momentum
μ0 = 0. In this case resonance drift typically occurs, as the following theorem shows.

Theorem 5.2. Consider a nondegenerate rotating wave SO(3)x0 with momentum μ0 =
J(x0) = 0 and nonvanishing drift velocity ξ0 �= 0. Choose x0 such that ξ0 = (0, 0, ωrot

0 )T ,
where ωrot

0 is the rotation frequency of the rotating wave at x0. Then the following hold true.



1238 CLAUDIA WULFF

(a) There is a one-parameter family SO(3)xRW(ν3) of rotating waves nearby, ν3 ≈ 0,
with momentum J(xRW(ν3)) = (0, 0, ν3) and drift velocity ξRW(ν3)||e3 at xRW(ν3), such that
ξRW(0) = ξ0. Moreover, the rotating wave SO(3)x0 persists to all nearby momentum values.

(b) Assume that JN1D
2
wh(0) has no eigenvalues in iωrot

0 Z. Then there is a two-parameter
family PMRW(ν2, ν3), ν2 ≥ 0, ν3 ≈ 0, of modulated rotating waves of (3.1) such that xMRW(ν2, ν3) ∈
PMRW(ν2, ν3) is smooth in (ν2, ν3) and xMRW(0, ν3) = xRW(ν3). The modulated rotating wave
at xMRW(ν2, ν3) has drift symmetry γMRW(ν2, ν3), relative period T (ν2, ν3), and momentum
J(xMRW(ν2, ν3)) = (0, ν2, ν3), and xMRW(0, 0) = x0, T (0, 0) = 2π/|ωrot

0 |, γMRW(0) = id. This
family contains a one-parameter family P(ν2, 0) of modulated rotating waves which have an
average drift velocity ξ(ν2, 0) at xMRW(ν2, 0) parallel to the e2-axis.

(c) Assume that the rotating wave SO(3)x0 is elliptic and nonresonant in the sense of
Definition 4.4 and that JN1D

2
wh(0) has no eigenvalues iωj with ωrot

0 /ωj ∈ Z. Then there are
(1
2 dimM − 3) more two-parameter families Pj(ν3, s), j = 1, . . . 1

2 dimM − 3, of modulated
rotating waves near the rotating wave and there are smooth functions xj(ν3, s) ∈ Pj(ν3, s) with
xj(ν3, 0) = xRW(ν3) (where xRW(ν3) is from part (a)). The modulated rotating wave Pj(ν3, s)
has momentum J(xj(ν3, s)) = (0, 0, ν3) at xj(ν3, s), energy H(xj(ν3, s)) = H(xRW(ν3)) ± s2

(depending on the Krein signature of ωj), relative period Tj(ν3, s) such that Tj(0, 0) = 2π/|ωj |,
and average drift velocity ξj(ν3, s)||e3, s ≥ 0, with ξj(0, 0) = ξ0, j = 1, . . . 1

2 dimM− 3.
Proof. If the rotating wave SO(3)x0 has momentum μ0 = 0, then gμ0 = so(3). In this case

ν ∈ so(3)∗ � R
3 and the ν̇-equation from (3.19) becomes

(5.1) ν̇ = ν × Dνh(ν,w).

(a) Since the ν̇ equation has nontrivial dynamics, let us reduce only by the symmetry
group

Γ̃ = {γ ∈ SO(3), Adγξ0 = ξ0} = SO3(2),

which is the group of rotations around the e3-axis. The corresponding slice is denoted by
Ñ = Ñ0 ⊕ Ñ1. Then ν̃ ∈ Ñ0 is given by ν̃ = ν3 and ˙̃ν = 0. Note that dim Ñ1 = dimN1 + 4.
Let h̃(ν̃, w̃) be the Hamiltonian in the bundle coordinates (γ̃, ν̃, w̃) ∈ Γ̃ × Ñ0 ⊕ Ñ1. The
matrix ad∗

ξ0 has eigenvalues ±iωrot
0 with real eigenspace {ν = (ν1, ν2, 0) ∈ so(3)∗} and a simple

eigenvalue 0. Because of (2.4) and (3.20), the eigenvalues of the linearization JÑ1
D2

w̃h̃(0) of the

equilibrium 0 ∈ Ñ1 corresponding to the rotating wave SO(3)x0 are given by the eigenvalues
of JN1D

2
wh(0) and by the eigenvalues ±iωrot

0 of multiplicity two. Hence the rotating wave
is nondegenerate when considered as a rotating wave of a Hamiltonian system with SO3(2)-
symmetry. Therefore, ˙̃w = 0 for w̃(ν̃) can be solved using the nondegeneracy condition. This
gives rotating waves SO(3)xRW(ν̃), xRW(ν̃) � (id, ν̃, w̃(ν̃)) for the original SO(3)-equivariant
Hamiltonian system (3.1). Since only a reduction by SO3(2)-symmetry was carried out, these
rotating waves have drift velocities ξRW(ν3)||e3, where ξ(0) = ξ0 �= 0. Then (3.16) implies
that also J(x(ν3))||e3. This proves part (a).

(b) The rotating waves through xRW(ν3) � (γRW(ν3), νRW(ν3), wRW(ν3)) from part (a)
have, by (3.18), momentum

J(xRW(ν3)) = (0, 0, ν3) = γRW(ν3)νRW(ν3)
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and energy ERW(ν3) = h(νRW(ν3), wRW(ν3)), where

E′
RW(0) = Dνh(0)ν ′RW(0) = ωrot

0 �= 0.

Therefore, they can be parametrized by energy E instead of ν3. Let xRW(E) � (γRW(E),
νRW(E), wRW(E)) again denote the corresponding path of rotating waves. Let ωrot(E) be
the rotation frequency of the rotating wave SO(3)xRW(E). Since the slice equation conserves
the energy h(ν,w) the energy level sets NE of N are flow-invariant. Because of Dνh(0) =
(0, 0, ωrot

0 ), ωrot
0 �= 0, and Dwh(0) = 0, they can be parametrized for E ≈ E0 = h(0), similarly

as in the proof of Theorem 4.3, by

NE = {(ν,w) ∈ N , h(ν,w) = E} = {(ν,w) ∈ N , ν3 = ν3(ν1, ν2, w,E)}.

Then ν3(νRW,1(E), νRW,2(E), wRW(E), E) = νRW,3(E). Let us now consider the equilibrium
vRW(E) := (νRW(E), wRW(E)) of the slice equation as periodic orbit with period T rot(E) =

2π
|ωrot(E)| . The matrix ad∗

ξ0 has a pair ±iωrot
0 of nonvanishing imaginary eigenvalues with real

eigenspace spanned by the vectors {(ν1, ν2, 0), ν1, ν2 ∈ R} ⊆ so(3)∗. By (3.20), the lineariza-
tion of the slice equation DvfN (vRW(E)) at E = E0 also has this pair of eigenvalues which
perturbs to the eigenvalues ±iωrot(E) of DvfN (vRW(E)) for E ≈ E0. Consequently,

SE = {(ν,w) ∈ NE , ν1 = νRW,1(E), ν2 > νRW,2(E), ν2 ≈ νRW,2(E),
ν3 = ν3(νRW,1(E), ν2, w,E), w ≈ wRW(E)}

is a section transverse to the flow of the slice equation at vRW(E) inside the energy level set
NE to the energy E ≈ E0. Let s := ν2 − νRW,2(E). The corresponding Poincaré map is
denoted by Π(·, E) : SE → SE . Decompose Π(·, E) = (Π0(·, E),Π1(·, E)), where Π0 maps
into the ray s ≥ 0 and Π1 into N1. By assumption there is no k : 1-resonance between
ωrot

0 and any normal frequency on N1. Therefore, the equation Π1(s,w,E) = w can be
solved for w(s,E), such that w(0, E) = wRW(E) for E ≈ E0. Plugging this into Π0 a map
Π̃(·, E) from the ray s ≥ 0 into itself is obtained. The ν̇-equation (5.1) conserves the Casimir
CR(ν,w) = ‖ν‖2

2. Define ν3(s,E) := ν3(νRW,1(E), s+νRW,2(E), w(s,E), E). Then ŝ = Π̂(s,E)
satisfies C(ŝ, E) = C(s,E), where

C(s,E) = (νRW,1(E))2 + (νRW,2(E) + s)2 + (ν3(s,E))2.

The path of relative equilibria SO(3)xRW(E) corresponds to (s,E) = (0, E). Note that

Dh(vRW(E)) || DCR(vRW(E))

and that DCR|h(v)=E = 0 at v = vRW(E). As a result of this, DsC(0, E) ≡ 0. Moreover, from
Dνh(0) = ωrot

0 e3 and Dwh(0) = 0, it follows that Dsν3(0, E0) = 0, and therefore D2
sC(0, E0) =

2. Hence s→ C(s,E) is injective for s ≥ 0, s ≈ 0, for any fixed E ≈ E0. Consequently ŝ = s,
and so v(s,E) := (ν(s,E), w(s,E)), with ν(s,E) = (νRW,1(E), s + νRW,2(E), ν3(s,E))T , lies
on a periodic orbit of the slice equation with period T (s,E) ≈ T (0, E) = 2π

|ωrot(E)| .
Changing the parametrization back from E to ν3, a two-parameter family v(s, ν3) =

(ν(s, ν3), w(s, ν3)) of periodic orbits of the slice equation with periods T (s, ν3) is obtained, sat-
isfying T (0, ν3) = T rot(0, ν3). These give points x̂(s, ν3) � (γRW(ν3), v(s, ν3)) on modulated ro-
tating waves of the full Hamiltonian system (3.1) with momentum μ̂(s, ν3) = γRW(ν3)ν(s, ν3);
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see (3.18). At the rotating waves μ̂(0, ν3) = ν3 and hence Dν3 μ̂(0, ν3) ≡ e3. Moreover,
γRW(0) = id implies that Dsμ̂(0, 0) ≡ e2. So smooth functions φ̂2(s, ν3), φ̂3(s, ν3) can be
found such that γ̂(s, ν3) = exp(φ̂2(s, ν3)ξ2+φ̂3(s, ν3)ξ3) (with the notation from (2.9)) satisfies
(γ̂(s, ν3)μ̂(s, ν3))1 = 0 and φ̂2(0, ν3) = 0, φ̂3(0, ν3) = 0. Let γ(s, ν3) = γ̂(s, ν3)γRW(ν3). Then
x(s, ν3) � (γ(s, ν3), v(s, ν3)) lies on an RPO with momentum μ(s, ν3) such that μ1(s, ν3) = 0.
Then s can be replaced by ν2 and (ν2, ν3) can be tranformed such that x(ν2, ν3) has momentum
μ(ν2, ν3) = J(x(ν2, ν3)) = (0, ν2, ν3), ν2 ≥ 0.

The condition (3.17) implies that the drift symmetry γ(ν2, ν3) at the RPO through
x(ν2, ν3) satisfies γ(ν2, ν3)μ(ν2, ν3) = μ(ν2, ν3), where γ(0) = id. Therefore, γ(ν2, ν3) is a
rotation around the vector μ(ν2, ν3) in the (x2, x3)-plane. Moreover, for ν3 = 0 the modu-
lated rotating wave P(ν2, 0) rotates around the e2-axis with momentum μ(ν2) = (0, ν2, 0) at
x(ν2, 0).

(c) By assumption there is no k : 1-resonance between any of the eigenvalues of JN1D
2
wh(0)

and between the eigenvalues of JN1D
2
wh(0) and iωrot

0 . Hence for all normal frequencies on N1,
part (c) follows from the Lyapunov center theorem applied on the space Ñ1, after symmetry
reduction by SO3(2) as in part (a).

5.2. Hamiltonian meandering transition with the Euclidean symmetry of three-dimen-
sional space. In this section the Hamiltonian analogue of the resonance drift of Remark 2.2 (c)
is studied. The symmetry group is again Γ = SE(3) = SO(3)�R

3. Similarly as in (3.8), (3.9),
the adjoint and coadjoint actions for Γ = SE(3) are

(5.2)
Ad(R,a)ξ = ( Rξr , Rξa −Rξr × a ) ,

Ad∗
(R,a)−1μ = ( Rμr + a×Rμa , Rμa ) ,

where (R, a) ∈ SO(3)�R
3; see, e.g., [15, 26]. So typically, when μa �= 0, then Γμ � SO(2)×R.

In this case resonance drift is not possible.
Proposition 5.3. Let SE(3)x0 be a nondegenerate relative equilibrium with generic momen-

tum value μ0 satisfying μa
0 �= 0 and with drift velocity ξ0. Align x0 such that ξa

0 ||e3, ξr
0||e3.

Then the following hold true.
(a) There is a two-parameter family SE(3)xRE(νr

3 , ν
a
3 ) of relative equilibria of (3.1) with

xRE(0, 0) = x0. The relative equilibrium at xRE(νr
3 , ν

a
3 ) has angular momentum Jr(xRE(νr

3 , ν
a
3 ))

= (0, 0, μr
0,3 + νr

3), linear momentum Jr(xRE(νr
3 , ν

a
3 )) = (0, 0, μa

0,3 + νa
3 ), and drift velocity

ξRE(νr
3 , ν

a
3 ), which satisfies ξr

RE(νr
3 , ν

a
3 )||e3, ξa

RE(νr
3 , ν

a
3 )||e3.

(b) Let the relative equilibrium SE(3)x0 be elliptic and nonresonant in the sense of Defi-
nition 4.4 and denote its normal frequencies by ωj, j = 1, . . . , 1

2 dimM− 4. Then there are
(1
2 dimM − 4) families of RPOs Pj(νr

3 , ν
a
3 , s), s ≥ 0, and smooth functions xj(νr

3 , ν
a
3 , s) ∈

Pj(νr
3 , ν

a
3 , s) such that xj(νr

3 , ν
a
3 , 0) = xRE(νr

3 , ν
a
3 ). The RPO at xj(νr

3 , ν
a
3 , s) has momentum

Jr(xj(νr
3 , ν

a
3 , s)) = (0, 0, μr

0,3 + νr
3), Ja(xj(νr

3 , ν
a
3 , s)) = (0, 0, μa

0,3 + νa
3 ),

energy H(xj(νr
3 , ν

a
3 , s)) = HRE(νr

3 , ν
a
3 ))± s2 (depending on the Krein signature of ωj), relative

period Tj(νr
3 , ν

a
3 , s), such that Tj(0, 0, 0) = 2π/|ωj |, and average drift velocity ξj(νr

3 , ν
a
3 , s) at

xj(νr
3 , ν

a
3 , s), which satisfies ξr

j (ν
r
3 , ν

a
3 , s)||e3, ξa

j (νr
3 , ν

a
3 , s)||e3, ξj(0, 0) = ξ0.

Proof. (a) Note that, by (5.2), ξa
0 ||e3, ξr

0||e3 implies μa
0||e3, μr

0||e3. The Lie-group Γμ0 �
SO3(2)×R3 is abelian; therefore, ν̇ ≡ 0 holds in the equations (3.19) near a relative equilibrium
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SE(3)x0 with generic momentum value. By the nondegeneracy condition, ẇ = 0 can be solved
for wRE(ν) to obtain relative equilibria through xRE(ν) � (id, ν, wRE(ν)). The statement
about the momentum of xRE(ν) follows from (3.18), and the statement about the velocity
ξRE(ν) from (3.16) and (5.2).

(b) The Lyapounov center theorem can be applied on the ν-dependent ẇ-equation. The
statements about the momentum of the families of RPOs follows from (3.18). The fact that
their drift symmetry lies in SO3(2)×R3, and hence their average drift velocity in so3(2)×R3,
follows from (3.17) and the fact that Γμ0 � SO3(2) × R3; see part (a).

The situation is different if the relative equilibrium SE(3)x0 has a nongeneric momentum
value μ0 = J(x0). In what follows, it is shown that in this case resonance drift occurs
generically.

If μa
0 = 0, then (5.2) implies that Γμ0 � SO(2) � R

3. Let us assume, without loss of
generality, that μr

0||e3. Then the drift velocity ξ0 = (ξr
0, ξ

a
0 ) of the relative equilibrium at x0

satisfies ξr
0||e3. Choose x0 in its SE(3) orbit such that also ξa

0 ||e3. The momentum value μ0 is
nonsplit, and the ν̇-equation of (3.19) for ν = (νr, νa) ∈ so(2)∗ ⊕ (R3)∗ is nontrivial; see [26].
It can be easily checked that the functions

(5.3) Ca(μ) = ‖μa‖2 and Cr(μ) = 〈μa, μr〉

are invariant under the coadjoint action (5.2). These restrict to the functions Ca(ν) = ‖νa‖2

and Cr(ν) = νa
3 (μr

3 + νr) on the slice N0 � so(2)∗ ⊕ (R3)∗ and are Casimirs, i.e., conserved
quantities of the ν̇-equation.

In the following proposition persistence of a relative equilibrium with vanishing linear
momentum is studied, as a prerequisite for the analysis of the Hamiltonian meandering tran-
sition.

Proposition 5.4. Let SE(3)x0 be a nondegenerate relative equilibrium with momentum value
μ0 = (μr

0, 0), μ
r
0||e3, and with drift velocity ξ0 = (ξr

0 , ξ
a
0 ), where ξr

0 �= 0, ξr
0||e3, ξa

0 ||e3. Then
there exists a two-dimensional family of relative equilibria SE(3)xRE(νr, νa

3 ) of (3.1) such that
xRE(νr, νa

3 ) is smooth in its parameters and xRE(0) = x0, ξRE(0, 0) = ξ0. The relative equilib-
rium through xRE(νr, νa

3 ) has angular momentum Jr(xRE(νr, νa
3 )) = μr

0 +νre3, linear momen-
tum Ja(xRE(νr, νa

3 )) = νa
3e3, and drift velocity ξRE(νr, νa

3 ), where ξr
RE(νr, νa

3 ) = ωrot(νr, νa
3 )e3,

ξa
RE(νr, νa

3 )||e3.
Proof. This proposition is an application of a persistence result for general noncompact

symmetry groups; see [32, Example 5.3(a)]. But it can also be proved in an elementary way:
Because of (2.4), (3.20), the linearization L0 at x0 has, by our nondegeneracy condition and
the form of adξ0 from (5.2), a four-dimensional kernel corresponding to two zero eigenvalues
of adξ0 . Therefore, let us reduce only by the abelian symmetry group Γ̃ = SO3(2) × R3 of
rotations around and translations along the e3-axis. This gives the reduced system

(5.4) ˙̃ν = 0, ˙̃w = JÑ1
Dw̃h̃(ν̃, w̃)

on the slice Ñ = Ñ0⊕Ñ1, where ν̃ = (νr, νa
3 ) ∈ Ñ0 � so3(2)∗⊕R

∗
3. Since JÑ1

D2
w̃h̃(0) is invert-

ible, the equation 0 = JÑ1
Dw̃h(ν̃, w̃) can be solved for w̃(ν̃) by the implicit function theorem.

This gives relative equilibria SE(3)xRE(νr, νa
3 ) of (3.1), where xRE(νr, νa

3 ) � (id, ν̃, w̃(ν̃)). The
drift velocity ξRE(νr, νa

3 ) of the relative equilibrium at xRE(νr, νa
3 ) lies in the Lie algebra of Γ̃
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and therefore satisfies ξr
RE(νr, νa

3 ) = ωrot
RE(νr, νa

3 )e3 and ξa
RE(νr, νa

3 )||e3. The statement about
the momentum of xRE(νr, νa

3 ) follows from (3.18).
In this case resonance drift occurs as the following theorem shows.
Theorem 5.5. Let, as before, SE(3)x0 be a nondegenerate relative equilibrium with momen-

tum μ0 = (μr
0, 0), μ

r
0||e3, μr

0 �= 0, and with nonvanishing rotational velocity vector ξr
0 �= 0

such that ξr
0 = ωrot

0 e3, ξa
0 ||e3. Assume that JN1D

2
wh(0) has no eigenvalue in iωrot

0 Z. Then the
following hold:

(a) There is a three-dimensional manifold P(νr, νa
2 , ν

a
3 ) of RPOs such that x(νr, νa

2 , ν
a
3 )

∈ P(νr, νa
2 , ν

a
3 ) is a smooth function of its parameters, νa

2 ≥ 0, νr ≈ 0, νa
3 ≈ 0, and

x(νr, 0, νa
3 ) = xRE(νr, νa

3 ). The RPO through x(νr, νa
2 , ν

a
3 ) has angular momentum

Jr(x(νr, νa
2 , ν

a
3 )) = μr

0+νre3, linear momentum Ja(x(νr, νa
2 , ν

a
3 )) = (0, νa

2 , ν
a
3 ), and rel-

ative period T (νr, νa
2 , ν

a
3 ) with T (νr, 0, νa

3 ) = 2π/|ωrot(νr, νa
3 )|. Here ωrot(νr, νa

3 ) is the
rotation frequency of the relative equilibrium SE(3)xRE(νr, νa

3 ) from Proposition 5.4.
(b) This family contains a two-dimensional submanifold x(νr, νa

2 , 0) at νa
3 = 0 which has

an average rotational drift velocity ξr(νr, νa
2 , 0) with ξr

3(ν
r, νa

2 , 0) = 0.
Note that the RPO through x(νr, νa

2 , 0) rotates around and translates along a vector par-
allel to e2, whereas the original relative equilibrium through x0 rotates around and translates
along the e3 direction.

Proof of Theorem 5.5. Let νr ≈ 0, νa
3 ≈ 0. Near the relative equilibria through xRE(νr, νa

3 )
� (γRE(νr, νa

3 ), νRE(νr, νa
3 ), wRE(νr, νa

3 )) from Proposition 5.4, let us change coordinates on
the slice N = N0 ⊕N1, N0 � so(2)∗ ⊕ (R3)∗, from v = (νr, νa

1 , ν
a
2 , ν

a
3 , w) to (E,Cr, νa

1 , ν
a
2 , w)

as follows: first let
νa
3 (νr, Cr) =

Cr

νr + μr
0,3

.

Here Cr(μ+ ν) = 〈νa, μr
0 + νre3) is the Casimir from (5.3) restricted to elements of the form

μ0 + ν, where ν ∈ N0 � so3(2)∗ ⊕ (R3)∗. Then, by the implicit function theorem, using that
Dνrh(0) = ωrot

0 �= 0, Dwh(0) = 0, Dνah(0)||e3, and Dνrνa
3 (0, 0) = 0, one obtains

νr = νr(E,Cr, νa
1 , ν

a
2 , w)

for E ≈ E0 = H(x0), Cr ≈ 0, where E = h((νr, νa
1 , ν

a
2 , ν

a
3 (νr, Cr)), w). Solving E =

h(νRE(νr, νa
3 (νr, Cr)), wRE(νr, νa

3 (νr, Cr))) by the implicit function theorem for νr, the family
of relative equilibria SE(3)xRE(E,Cr), xRE(E,Cr) � (γRE(E,Cr), vRE(E,Cr)), vRE(E,Cr) =
(νRE(E,Cr), wRE(E,Cr)) is obtained, parametrized by the conserved quantities (E,Cr).
Then, since ωrot

0 �= 0 and ξr
0 = ωrot

0 e3, by (3.20) and (5.2), for Cr ≈ 0, E ≈ E0, the sec-
tion

SE,Cr = {(ν,w) ∈ N , νa
3 = νa

3 (νr, Cr), νr = νr(E,Cr, νa
1 , ν

a
2 , w),

νa
1 = νa

RE,1(E,C
r), νa

2 > νa
RE,2(E,C

r),

νa
2 ≈ νa

RE,2(E,C
r), w ≈ wRE(E,Cr)}

is transversal to the flow of (3.1) in the flow-invariant manifold

NE,Cr := {(ν,w) ∈ N , h(ν,w) = E, Cr(ν) = Cr}.
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Consider the Poincaré map (s,w) → Π(E,Cr, s, w) from SE,Cr to itself, where s = νa
2 −

νRE,2(E,Cr). At (E,Cr, s, w) = (E0, 0, 0, 0) the Poincaré return time is T (0) = 2π
|ωrot

0 | . Due to
the nonresonance assumption the equation Π1(E,Cr, s, w) = w can be solved for w(E,Cr, s)
such that w(E,Cr, 0) = wRE(E,Cr). Here Π1 is the N1 component of Π. What follows is a
proof that x̂(E,Cr, s) = (γRE(E,Cr), ν(E,Cr, s), w(E,Cr , s)) lies on an RPO. Here

(5.5)

ν(E,Cr, s) = (νr(E,Cr, s), νa(E,Cr, s)),
νr(E,Cr, s) = νr(E,Cr, νa

RE,1(E,C
r), s + νa

RE,2(E,C
r), w(E,Cr , s)),

νa
3 (E,Cr, s) = νa

3 (νr(E,Cr, s), Cr),
νa(E,Cr, s) = (νa

RE,1(E,C
r), s+ νa

RE,2(E,C
r), νa

3 (E,Cr, s)).

By construction, x̂(E,Cr, 0) = xRE(E,Cr). Define

Ca(E,Cr, s) = ‖νa(E,Cr, s)‖2.

The equilibria vRE(E,Cr) of the slice equation are at s = 0. The fact that D(ν,w)h is a linear
combination of D(ν,w)C

a and D(ν,w)C
r at any equilibrium of the slice equation then implies

that
DsC

a(E,Cr, 0) = 0.

Moreover, Dsν
a
3 (0, 0, 0) = 0 since νa

3 (νr, Cr = 0) ≡ 0. This together with (5.5) gives

D2
sC

a(E0, 0, 0) = 2.

So for small positive s and fixed E ≈ E0, Cr ≈ 0, the function s → Ca(E,Cr, s) is injective.
This proves that there is a coordinate transformation from (E,Cr, s) to the conserved quan-
tities (E,Cr, Ca). Therefore, x̂(E,Cr, s) lies on an RPO P(E,Cr, s) of (3.1), as claimed. Let
us now change coordinates back from (E,Cr, s) to (νr, s, νa

3 ) and denote the corresponding
function again by x̂(νr, s, νa

3 ) � (γRE(νr, νa
3 ), ν(νr, s, νa

3 ), w(νr, s, νa
3 )) ∈ P(νr, s, νa

3 ).
It is now shown that a smooth function γ̂(νr, s, νa

3 ) can be found such that

x(νr, s, νa
3 ) � (γ(νr, s, νa

3 ), v(νr, s, νa
3 )),

where

γ(νr, s, νa
3 ) = γ̂(νr, s, νa

3 )γRE(νr, νa
3 ) and v(νr, s, νa

3 ) = (ν(νr, s, νa
3 ), w(νr, s, νa

3 )),

satisfies

(5.6) Ja
1(x(ν

r, s, νa
3 )) = 0, Jr

1(x(ν
r, s, νa

3 )) = 0, Jr
2(x(ν

r, s, νa
3 )) = 0,

and γ̂(νr, 0, νa
3 ) = id. First note that this holds true at s = 0 by Proposition 5.4. For s �= 0,

let
γ̂(νr, s, νa

3 ) = (R̂(νr, s, νa
3 ), â(νr, s, νa

3 )),

and μ̂(νr, s, νa
3 ) = J(x̂(νr, s, νa

3 )). Then Ja(xRE(νr, νa
3 )) = νa

3e3 implies that Dνa
3
μ̂a(0, 0, 0) =

e3. From γRE(0, 0) = id one further gets Dsμ̂
a(0, 0, 0) = e2. Therefore, smooth functions

φ̂2(νr, s, νa
3 ), φ̂3(νr, s, νa

3 ) can be found such that φ̂j(νr, 0, νa
3 ) = 0, j = 2, 3, and

(R̂(νr, s, νa
3 )μ̂a(νr, s, νa

3 ))1 = 0,
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where, as in (2.9),

R̂(νr, s, νa
3 ) = exp(φ̂2(νr, s, νa

3 )ξ2 + φ̂3(νr, s, νa
3 )ξ3).

In this way the first equation of (5.6) is satisfied. Then νa
3 and νa

2 = s can be rescaled such
that

Ja(x(νr, νa
2 , ν

a
3 )) = (0, νa

2 , ν
a
3 ).

Let
μ̃(νr, νa

2 , ν
a
3 ) = Ad∗

(R̂(νr ,νa
2 ,νa

3 ),0)−1 μ̂(νr, νa
2 , ν

a
3 ).

Note that μ̃a(νr, νa
2 , ν

a
3 ) = (0, νa

2 , ν
a
3 )T has been achieved by choosing R̂(νr, νa

2 , ν
a
3 ). Moreover,

(5.2) gives
Ad(0,â)−1 μ̃r = μ̃r + (νa

3 â2 − νa
2 â3,−νa

3 â1, ν
a
2 â1)T .

Let â2 ≡ 0. When νa
2 �= 0, then â3 = â3(νr, νa

2 , ν
a
3 ) can be chosen such that

(Ad∗
(0,â(νr ,νa

2 ,νa
3 ))−1 μ̃

r(νr, νa
2 , ν

a
3 ))1 = 0,

thus satisfying the second equation of (5.6). If νa
2 = 0, i.e., at the relative equilibria,

μ̃r(νr, 0, νa
3 ) = νre3 anyway, and when νa

2 → 0, then â3 → Dνa
2
μ̃r

1(ν
r, 0, νa

3 ). Moreover,
the equation

(Ad∗
(0,â(νr ,νa

2 ,νa
3 ))−1 μ̃

r(νr, νa
2 , ν

a
3 ))2 = 0,

and hence the last equation of (5.6), can be satisfied by choosing â1(νr, νa
2 , ν

a
3 ) appropriately

whenever νa
3 �= 0. When νa

3 = 0, then Cr = 0 and νRE(νr, 0) = (νr, 0). In particular,
νa
RE,1(ν

r, 0) = 0, and so also νa
1 (νr, s, 0) = 0 (see (5.5)). Therefore, R̂(νr, s, 0) = id and

μ̃r
2(ν

r, νa
2 , 0) = 0. Consequently, when νa

2 → 0, then â2 → Dνa
2
μ̃r

2(ν
r, νa

2 , 0). Hence a smooth
function â(νr, νa

2 , ν
a
3 ) has been found such that μr(νr, νa

2 , ν
a
3 ) := Ad∗

(0,â)−1 μ̃r(νr, νa
2 , ν

a
3 ) || e3.

For νa
2 = 0 the equality μr(νr, 0, νa

3 ) = μr
0 + νre3 holds. So coordinates can be changed such

that μr(νr, νa
2 , ν

a
3 ) = μr

0 + νre3 for all νa
2 ≥ 0, νa

2 ≈ 0. This proves part (a) of the proposition.
For part (b), let γ(νr, νa

2 , ν
a
3 ) = (R(νr, νa

2 , ν
a
3 ), a(νr, νa

2 , ν
a
3 )) be the drift symmetry of the

RPO P(νr, νa
2 , ν

a
3 ) at x(νr, νa

2 , ν
a
3 ), and write, as in (2.9), R(νr, νa

2 , ν
a
3 ) = exp(

∑3
i=1 φiξi),

where φi = φi(νr, νa
2 , ν

a
3 ). Then φ3(νr, νa

2 , ν
a
3 ) = 0 at νa

3 = 0 needs to be satisfied. Equa-
tions (3.17) and (5.2) imply that R(νr, νa

2 , ν
a
3 )Ja(x(νr, νa

2 , ν
a
3 )) = Ja(x(νr, νa

2 , ν
a
3 )), where

Ja(x(νr, νa
2 , ν

a
3 )) = (0, νa

2 , ν
a
3 ). Therefore,

∑3
i=1 φiξi = φ̂(0, νa

2 , ν
a
3 )T for some φ̂ ∈ R, where ξi is

identified with ei ∈ R
3 and so(3) and (R3)∗ with R

3. Because of this, φ3 = 0 for νa
3 = 0.

In addition to the family of RPOs from the above theorem, there may be additional
families of RPOs which rotate and translate about the same axis (without loss of generality
the e3-axis) as the relative equilibrium.

Proposition 5.6. Let, as before, SE(3)x0 be a relative equilibrium of an SE(3)-equivariant
Hamiltonian system (3.1), with momentum μ0 = (μr

0, 0), μ
r
0 �= 0, and with nonvanishing ro-

tational velocity vector ξr
0 �= 0. Choose x0 such that μr

0||e3, ξr
0 = ωrot

0 e3, ξa
0 ||e3. Assume

that the relative equilibium is nonresonant and elliptic in the sense of Definition 4.4 and that
ωrot

0 /ωj /∈ Z for all eigenvalues iωj of JN1D
2
wh(0). Then there are three-dimensional manifolds

Pj(νr, s, νa
3 ) of RPOs, j = 1, . . . 1

2 dimM−5, and smooth functions xj(νr, s, νa
3 ) ∈ Pj(νr, s, νa

3 )
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such that xj(νr, 0, νa
3 ) = xRE(νr, νa

3 ) (with xRE(νr, νa
3 ) from Proposition 5.4). Moreover,

the RPO through xj(νr, s, νa
3 ) has momentum (μr

0 + νre3, ν
a
3 e3), energy H(xj(νr, s, νa

3 )) =
H(xRE(νr, νa

3 )) ± s2 (depending on the Krein signature of ωj), relative period Tj(νr, s, νa
3 ),

where Tj(0, 0, 0) = 2π/|ωj |, and average drift velocity

ξj(νr, s, νa
3 ) = (ξr

j,3(ν
r, s, νa

3 )e3, ξa
j,3(ν

r, s, νa
3 )e3), ξj(0, 0, 0) = ξ0.

Proof. Let us, as in the proof of Proposition 5.4, reduce only by the symmetry group
Γ̃ = SO3(2) × R3. The statement then follows by applying the Lyapunov center theorem on
the ˙̃w-equation of (5.4).

Conclusion and future directions. In this paper a Hamiltonian analogue of the well-
known meandering transition from rotating waves to modulated rotating waves and modulated
traveling waves in systems with Euclidean symmetries has been studied. This transition
occurs, for example, in a finite-dimensional system of point vortices. Similar effects have been
analyzed in systems with spherical symmetry and with the Euclidean symmetry of three-
dimensional space. It remains a challenging open problem to extend these results to infinite-
dimensional Hamiltonian systems such as PDE models of vortex dynamics.
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with Asymmetric Connections∗
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Abstract. We study (i) traveling wave solutions, (ii) the formation and spatial spread of synchronous oscilla-
tions, and (iii) the effects of variations of threshold in a system of integro-differential equations which
describe the activity of large-scale networks of excitatory neurons on spatially extended domains.
The independent variables are the activity level u of a population of excitatory neurons which have
long range connections, and a recovery variable v. In the integral component of the equation for u
the firing rate function is the Heaviside function, and the coupling function w is positive. Thus, there
is no inhibition in the system. There is a critical value of the parameter β (β∗ > 0) that appears in
the equation for v, at which the eigenvalues μ± of the linearization of the system around the rest
state (u, v) = (0, 0) change from real to complex. We focus on the range β > β∗, where μ± are
complex, and analyze properties of wave fronts and 1-pulse and 2-pulse waves when the connection
function w is asymmetric. For wave fronts we demonstrate how an initial stimulus evolves into two
solutions which propagate in opposite directions with different speeds and shapes. For 1-pulse waves
our main theoretical result (Theorem 4.2) shows that there is a range of β > β∗ where two families
of waves exist, each consisting of infinitely many solutions. The waves in these two families also
propagate in opposite directions with different speeds and shapes. There is a critical value θ∗ > 0
such that if θ > θ∗, then 1-pulse waves can propagate only in one direction. In addition, there is a
second critical β value, β∗ > β∗, where bulk oscillations come into existence and the system becomes
bistable. When β ≥ β∗ we show how an initial stimulus evolves into a solution with large amplitude
oscillations that spread out uniformly from the point of stimulus. The asymmetry in w causes the
rate of spread of the “region of synchrony” to be more rapid to the right of the point of stimulus
than to the left. When θ > θ∗ we construct a “unidirectional” circuit where synchronization in one
region can trigger synchronization in a distant, second region. However, when synchronization is
initially triggered in the second region, it cannot spread to the first region.
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1. Introduction. Functional behavior of the central nervous system includes such diverse
phenomena as information processing from different receptor zones, sleep, and the control of
vital autonomic functions [29, 30, 40]. These processes require cooperation between ensembles
of cells organized into large-scale, spatially extended neuronal networks. The physical laws
that govern the behavior of large-scale networks are different from those for a system consisting
of small numbers of cells [15, 26, 34, 56]. In the study of spatially extended neuronal networks
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considerable attention has been given to (i) traveling waves of activity, (ii) the formation and
spatial spread of synchronous oscillations, and (iii) the effects of variations in the threshold of
excitation. This includes both experimental [28, 3, 4, 5, 10, 18, 23, 31, 33, 36, 39, 37, 45, 46, 49,
53, 61, 57, 60] and theoretical [1, 12, 13, 14, 17, 2, 19, 20, 24, 25, 22, 32, 35, 38, 40, 42, 58, 59, 62]
studies.

In this paper we investigate traveling waves, the spread of synchronous oscillations, and
the effects of variations in threshold in the excitable, spatially extended model

∂u(x,t)
∂t = −u(x, t) − v(x, t) +

∫∞
−∞w(x− x′)f(u(x′, t) − θ)dx′ + ζ(x, t),

∂v(x,t)
∂t = ε(βu(x, t) − v(x, t)).

(1.1)

Systems of this form were introduced by Pinto and Ermentrout [42] to model the spread
of excitation waves in slices of brain cortex in which synaptic inhibition is pharmacologically
blocked [7, 10, 31, 61]. The variable u denotes the activity level of the population of excitatory
neurons with long range connections; v represents a negative feedback recovery mechanism in
which “the negative feedback could represent spike frequency adaptation, synaptic depression
or some other process that limits excitation of the network” [42]. The function ζ(x, t) repre-
sents external input to the system. The parameters ε and β are positive and control the rate
of change of v; θ is a positive constant which denotes the threshold level for u. We assume
that the coupling function w is strictly positive. Thus, there is no inhibition in the system.
We also assume that w is continuous, integrable, and either symmetric, i.e.,

(1.2) w(x) = w(−x) ∀x ∈ (−∞,∞),

or asymmetric, i.e.,

(1.3) w(x) �= w(−x) for some x ∈ (−∞,∞).

The firing rate function f is nonnegative and sigmoidal-shaped. In order to allow for compar-
ison of our results with those of previous studies, we follow [2, 19, 42, 48, 58] and set

(1.4) f(u− θ) = H(u− θ) =
{

1 ∀u ≥ θ,
0 ∀u < θ,

and

(1.5) w(x) =
1
2
e−|x|+κx, 0 ≤ κ ≤ 1, and x ∈ R.

We will make use of the observation that if κ > 0, then

(1.6) w(x) > w(−x) ∀x ∈ (−∞,∞).

In our numerical studies we employ two methods to initiate a solution such as a traveling
wave. The first is to set the external stimulus to zero, i.e., ζ(x, 0) ≡ 0, and let (u(x, 0), v(x, 0))
be a perturbation from the rest state (0, 0) which has the typical form

(1.7) (u(x, 0), v(x, 0)) ≡ (Ae−Bx2
, 0), x ∈ R, A > 0, and B > 0.
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Equivalently, we could set (u(x, 0), v(x, 0)) = (0, 0) and set ζ(x, 0) = Ae−Bx2
.

Goals. We investigate the dynamics of (1.1) when w is asymmetric and the eigenvalues
μ± of the linearization of (1.1) around the rest state (u, v) = (0, 0) are complex. Section 2
shows how μ± change from real to complex as β passes through the critical value β∗ = (ε−1)2

4ε
from below. As β increases from β∗ the imaginary part of μ± increases and solutions of the
linearization oscillate with increasing frequency. In turn, this causes the dynamics of (1.1) to
become more complicated. Thus, we study how the structure of families of traveling waves
changes as β increases from β∗. There is a critical value β∗ > β∗ where bulk oscillations
appear and (1.1) becomes bistable. When β ≥ β∗ we investigate the formation and spatial
spread of synchronous oscillations. To put our investigation into perspective we summarize
previous results in (A)–(C) below. Our specific aims are described in (D).

(A) Symmetric couplings and real eigenvalues. Pinto et al. [42, 43, 44] analyzed 1-pulse
waves in parameter regimes where w is symmetric and μ± are real. Richardson, Schiff, and
Gluckman [48] make use of the results in [44] to study the effects of raising electric fields
on 1-pulse waves in the mammalian cortex. The stability of solutions in the real eigenvalue
setting has been studied in [12, 44, 50].

(B) Asymmetric couplings and real eigenvalues. Pinto and Troy [47] analyzed 1-pulse
waves when w is asymmetric and μ± are real. The asymmetry in w causes an initial stimulus
of the form (1.7) to evolve into two 1-pulse waves which propagate in opposite directions
with different amplitudes and speeds. Thus, traveling waves have a preferred direction of
propagation when the coupling is asymmetric. In agreement with these theoretical results,
we give experimental evidence which indicates that 1-pulse waves in the barrel cortex have a
preferred direction of propagation.

(C) Symmetric couplings and complex eigenvalues. Troy and Shusterman [58] investigated
(1.1) in parameter regimes where the coupling is the symmetric function w(x) = 1

2e
−|x| and

β > β∗ where μ± are complex. We analyzed one-dimensional wave fronts, single-pulse waves,
and multipulse wave trains. We also explained why multipulse waves are expected to exist
only in the complex eigenvalue regime. In two dimensions we analyzed the periodic formation
of waves, as well as the mechanisms responsible for the formation of spiral waves. Spiral
waves were recently discovered in tangential slices of rat brain tissue [31]. Thus, in the
complex eigenvalue setting the dynamics of (1.1) are richer than in the real eigenvalue case.
Furthermore, these dynamics closely resemble electrophysiological phenomena observed in
clinical and experimental studies [40].

(D) Specific aims: Asymmetric couplings and complex eigenvalues. In this paper we extend
the results described in (A)–(C) and investigate the dynamics of (1.1) when w is asymmetric
and the eigenvalues μ± are complex. Our goals are summarized in I–III below.

I. Traveling waves. Single-pulse and multipulse traveling activity waves have been ob-
served in feline cortex [3, 4, 5], in the brain of freely moving mice [18], in tangential and
coronal brain slice experiments [31, 61], and in seizure propagation across cortical regions
[39, 60]. In sections 3–5 we analyze wave fronts, 1-pulse waves, and 2-pulse waves when
β > β∗ and w(x) = 1

2e
−|x|+κx, where κ �= 0. Wave front solutions cross the threshold level

u = θ precisely once, whereas N-pulse waves cross threshold exactly 2N times. For a fixed
initial stimulus we find that, as β increases, there is a natural evolution from wave fronts to
1-pulse waves, and subsequently to 2-pulse waves. Our main theoretical result (Theorem 4.2)
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shows that there is a range of β > β∗ where two families of 1-pulse waves exist, each con-
sisting of infinitely many coexisting solutions. The waves in these two families propagate in
opposite directions with different speeds and shapes. Infinite families of solutions with such
diverse properties do not exist when w is asymmetric and μ± are real. Similar properties hold
for wave fronts and 2-pulse waves. Because the eigenvalues are complex, technical difficulties
make proofs more challenging than in the real eigenvalue case. These difficulties lead to open
problems which are stated as we proceed.

II. Synchronous oscillations. There is a second critical value β∗ > β∗ where spatially
independent bulk oscillations come into existence (section 6). When β ≥ β∗ the system (1.1) is
bistable since these oscillations are stable and coexist with the stable rest state (u, v) = (0, 0).
An initial stimulus of the form (1.7) can evolve into a solution which exhibits large amplitude
oscillations that spread out uniformly from the point of stimulus. The asymmetry in w causes
the rate of spread of the “region of synchrony” to be more rapid to the right of the point
of stimulus than to the left. Eventually, however, the solution oscillates uniformly over the
entire spatial region. We also show how an initial stimulus can evolve into a stable 1-pulse
wave which coexists with synchronous oscillations and the stable rest state. In section 6 we
compare our theoretical results with clinical observations of epileptiform events.

III. Variations in threshold. In 1936 Hill [28] suggested that the value of threshold might
change in response to the state of neuronal tissue. Following Hill’s theoretical ideas, Coombes
and Owen [13, 14] studied the effects of a state dependent threshold on bump-type solutions in
a scalar Wilson–Cowan-type model in which w is of Mexican hat type; i.e., w(x) is symmetric
about x = 0 and changes sign on (−∞,∞). Recently, Kowai, Lazar, and Metherate [35]
have given experimental evidence which shows that the threshold of excitation can indeed
change. In particular, when they expose axons of thalamocortical mouse neurons to nicotine,
the threshold of excitation decreases and the firing rate of the neurons doubles. In [54] it is
suggested that this causes “an increase in the amount of sensory information reaching the
cortex,” and that “this is a major reason that nicotine enhances cognitive functioning.” It is
also pointed out that in schizophrenia there is poor communication between the thalamus and
the cortex, and therefore the high incidence of smoking in schizophrenics might be a method
of self-medication. In our analysis of traveling waves and synchrony we investigate the effects
of both increasing and decreasing the threshold θ, and also the strength κ of the asymmetric
coupling. In agreement with [35] we find that the amplitudes and speeds of traveling waves
increase dramatically as θ decreases. Because w is asymmetric there is a critical value θ∗ such
that waves can be transmitted in only one direction when θ > θ∗. In section 6 we investigate
how variations in threshold can affect synchrony. As a first step toward understanding how
communication between spatial regions can become inhibited when threshold is too high, we
let θ > θ∗ and study how synchronization in one region can influence synchronization in
a distant region. For this we construct a simple “unidirectional neuronal circuit” in which
θ > θ∗ so that waves propagate only to the right. In this setting synchronization in one region
causes the formation of a train of waves which propagate to the right and ultimately trigger a
second, distant region to undergo synchronization. However, because θ > θ∗, synchronization
in the second region is inhibited from emitting left propagating waves; hence the first region
remains at rest.

Conclusions and directions for future research are given in section 7.
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2. Traveling waves. Following [44, 58], we set ζ(x, t) = 0 and look for traveling wave
solutions of (1.1) of the form (u, v) = (U(z), V (z)), where z = x+ ct. These satisfy

cU ′(z) = −U − V +
∫∞
−∞w(z − z′)H(U(z′) − θ)dz′,

cV ′(z) = ε(βU − V ),
(2.1)

where

(2.2) w(z − z′) =
1
2
e−|z−z′|+κ(z−z′), 0 ≤ κ < 1.

Our main focus is on the regime κ �= 0, where the coupling is asymmetric. For simplicity we
restrict our attention to the case κ > 0. It is easily verified that (2.1) is equivalent to
(2.3)

c2U ′′ + c(1+ ε)U ′ + ε(β+1)U = c
d

dz

∫ ∞

−∞
w(z− z′)H(U − θ)dz′ + ε

∫ ∞

−∞
w(z− z′)H(U − θ)dz′.

Linearizing (2.3) around the rest state U = 0 leads to

(2.4) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = 0.

The eigenvalues associated with (2.4) are

(2.5) μ± =
λ±

c
=

−(ε+ 1) ± i
√

4βε− (ε− 1)2

2c
.

We restrict our attention to the regime 0 < ε < 1. From this and (2.5) it follows that

(2.6) μ± are real ⇐⇒ 0 < β ≤ β∗ =
(ε− 1)2

4ε
.

Remarks. (i) When μ± are real one expects to find only wave fronts or single-pulse waves
[42, 43, 44, 48, 58]. Our interest is in the regime β > β∗, where μ± are complex and the
dynamics of (1.1) are richer. For example, when w is symmetric we previously found the
coexistence of families of multipulse waves in one space dimension and periodic waves and
rotating waves in two dimensions [58].

(ii) We have followed [44, 58] and let the independent variable have the form z = x+ ct.
Thus, when c > 0, solutions of (2.1)–(2.2) correspond to traveling waves of (1.1) which prop-
agate “to the left” as t increases. If z = x − ct, then traveling wave solutions propagate “to
the right.”

Previous studies analyzed traveling waves when w is symmetric [2, 19, 20, 42, 44, 48, 58].
In this setting it can be assumed that c > 0, since a wave traveling with speed c > 0 can be
transformed into a wave traveling in the opposite direction with the same shape, and with
speed −c < 0. Here we study traveling waves when μ± are complex and the w is asymmetric.
Our numerical experiments in the next three sections show that an initial perturbation from
rest can cause two waves to form which propagate in opposite directions with different speeds
and shapes. We will make use of the quantities

(2.7) α = Re(μ±) =
−(ε+ 1)

2c
and γ = Im(μ±) =

√
4εβ − (ε− 1)2

2c
.
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Figure 1. Left panel: Stationary front solution of (3.8)–(3.9), with U(∞) = 2θ
1−κ

= .23 when (θ, κ) =

(.1, .15) and β = β1 = 0.5
(κ+1)θ

− 1 = 3.35. Right panel: Solution with U(−∞) = 2θ
1+κ

= .173 when β = β2 =
.5

(1−κ)θ
− 1 = 4.88.

Our investigation indicates that stable traveling waves exist when

(2.8) 0 < ε, κ < 1, 0 < θ < min
(

2ε
(1 − κ2)(ε+ 1)2

,
1

4(ε+ 1)

)
, β > β∗ =

(ε− 1)2

4ε
.

The first two sets of inequalities in (2.8) are mild restrictions which allow technical arguments
to be completed, and the third inequality means that μ± are complex. Throughout the
paper we perform numerical experiments for parameters which satisfy (2.8). An important
implication of (2.8) is that

(2.9) β∗ =
(ε− 1)2

4ε
< β1 =

1
2(1 + κ)θ

− 1 < β2 =
1

2(1 − κ)θ
− 1

when |κ| is small. In section 3 we will see that distinct branches of wave fronts come into
existence at the critical values β1 = 1

2(1+κ)θ − 1 and β2 = 1
2(1−κ)θ − 1. Our analysis of 1-pulse

waves in section 4 shows that infinitely many wave speeds are possible at β = β1 and β = β2.
2-pulse solutions are described in section 5. When μ± are complex, underlying oscillatory
terms lead to technical difficulties which make the completion of existence proofs especially
challenging. These difficulties suggest open problems which are discussed as we proceed.

3. Wave fronts. We analyze wave front solutions when w is asymmetric. Although the
discussion appears lengthy, it is necessary to give complete details in order to obtain a global
understanding of the structure of solutions. Our study focuses on the following:

A. The construction of two families of stationary solutions with speed c = 0 (Figure 1).
B. Properties of wave fronts when c > 0. In this case a family of solutions bifurcates from

a stationary solution (Figure 1, right panel) as c increases from c = 0.
C. Properties of wave fronts when c < 0. In this case a family of wave fronts with different

speeds and shapes bifurcates from a second stationary solution (Figure 1, left panel)
as c decreases from c = 0.

D. The effects of changing the threshold θ.
E. Open problems.
A. Stationary solutions. We set c = 0 and w(x) = 1

2e
−|x−x′|+κ(x−x′) in (2.3) and investigate

the existence of stationary wave front solutions of the form
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(3.1) U(x) =
1

2(β + 1)

∫ ∞

−∞
e−|x−x′|+κ(x−x′)H

(
U(x′) − θ

)
dx′.

We find that there is a range of parameters for which two different solutions exist.
The first stationary solution. The first solution (Figure 1, left panel) satisfies

(3.2)

⎧⎨
⎩

U(x) and U ′(x) are continuous ∀x ∈ (−∞,∞),
U(x) < θ ∀x < 0, U(0) = θ,
U(x) > θ ∀x ∈ (0,∞).

Without loss of generality we have assumed that U(0) = θ in (3.2) since (3.1) is translationally
invariant. Then (3.2) reduces (3.1) to

(3.3) U(x) =
1

2(β + 1)

∫ ∞

0
e−|x−x′|+κ(x−x′)dx′.

Solving (3.2)–(3.3) gives

(3.4) U(x) =

⎧⎨
⎩

0.5
(κ+1)(β+1)e

(1+κ)x ∀x ≤ 0,

0.5
β+1

(
2

1−κ2 − e(κ−1)x

1−κ

)
, x > 0,

where β, κ, θ satisfy

(3.5) 0 < κ < 1, 0 < θ < 1, β = β1 =
0.5

(κ+ 1)θ
− 1.

This and (2.9) imply that

(3.6) β∗ < β1 <
1
2θ

− 1 ∀κ ∈ (0, 1), β1 → 1
2θ

− 1 as κ→ 0+, β1 → 1
4θ

− 1 as κ→ 1−.

It follows from (3.4)–(3.5) that

(3.7)

⎧⎪⎪⎨
⎪⎪⎩

U ′(x) > 0 ∀x ∈ (−∞,∞),

(U(x), U ′(x)) →
(

2θ
1−κ , 0

)
as x→ ∞,

(U(x), U ′(x)) → (0, 0) as x→ −∞.

The second stationary solution. The second solution (Figure 1, right panel) satisfies

(3.8)

⎧⎨
⎩

U(x) and U ′(x) are continuous ∀x ∈ (−∞,∞),
U(x) > θ ∀x ∈ (−∞, 0), U(0) = θ,
U(x) < θ ∀x > 0.

Conditions (3.8) reduce (3.1) to

(3.9) U(x) =
1

2(β + 1)

∫ 0

−∞
e−|x−x′|+κ(x−x′)dx′.
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Solving (3.8)–(3.9) gives

(3.10) U(x) =

⎧⎨
⎩

.5
β+1

(
2

1−κ2 − e(1+κ)x

1+κ

)
, x < 0,

.5
(β+1)(1−κ)e

(κ−1)x ∀x ≥ 0.

Conditions (3.8) hold when β, κ, θ, a satisfy

(3.11) 0 < κ < 1, 0 < θ < 1, β = β1 =
.5

(1 − κ)θ
− 1.

This implies that

(3.12) β1 >
1
2θ

− 1 ∀κ ∈ (0, 1), β1 → 1
2θ

− 1 as κ→ 0+, β1 → +∞ as κ→ 1−.

Finally, it follows from (3.10)–(3.11) that U satisfies (3.8), and also

(3.13)

⎧⎪⎪⎨
⎪⎪⎩

U ′(x) < 0 ∀x ∈ (−∞,∞),

(U(x), U ′(x)) →
(

2θ
1+κ , 0

)
as x→ −∞,

(U(x), U ′(x)) → (0, 0) as x→ +∞.

B. Properties of wave fronts when c > 0. In this and the next two sections we show how
distinct branches of solutions bifurcate from the stationary solutions constructed above as c
passes through c = 0. When c > 0 wave front solutions satisfy

(3.14)

⎧⎪⎪⎨
⎪⎪⎩

U(z) and U ′(z) are continuous ∀z ∈ (−∞,∞),
U(z) < θ ∀z < 0,
(U(z), U ′(z)) → (0, 0) as z → −∞,
U(0) = θ, U(z) > θ ∀z > 0, U ′(z) → 0 as z → ∞.

Again, without loss of generality we have assumed that U(0) = θ in (3.2) since (2.3) is
translationally invariant. When conditions (3.14) hold, equation (2.3) reduces to

(3.15) c2U ′′+c(1+ε)U ′+ε(β+1)U =
c

2
d

dz

∫ ∞

0
e−|z−z′|+κ(z−z′)dz′+

ε

2

∫ ∞

0
e−|z−z′|+κ(z−z′)dz′.

This further reduces to

(3.16) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = g(z),

where

(3.17) g(z) =

{
.5(c + ε

1+κ)e(1+κ)z ∀z ≤ 0,

.5(c − ε
1−κ)e−(1−κ)z + ε

1−κ2 if z > 0.

A combination of analysis and numerical experiments suggests that two branches of solutions
coexist when c > 0 (Figure 2). To understand how these results are obtained, we investigate
the following:
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Figure 2. Upper left: c1, c2, c3, and c4 versus β when (ε, θ, κ) = (.1, .1, .15). Upper right: Γ1, Γ2, Γ3, and
Γ4 in the (β, c) plane when (ε, θ, κ) = (.1, .1, .15). Second row: Solutions at β = 4 on Γ1 (left) and Γ4 (right).
Third row: Solutions at the right endpoints of Γ1 (left) and Γ4 (right), where β ≈ 6.45. Fourth row: Solutions
at the right endpoints of Γ2 (left) and Γ3 (right), where β = 1

(1−κ2)θ
− 1 ≈ 9.2.

(i) Analysis of solutions on (−∞, 0].
(ii) Analysis of solutions on (0,∞).
(iii) Numerical evidence for the existence of solutions.
(i) Analysis of solutions on (−∞, 0]. On (−∞, 0] the solution of (3.16) is

(3.18) U0(z) = b1e
αz cos(γz) + b2e

αz sin(γz) + P0(z),
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where b1 and b2 are constants, and P0(z) is the particular solution

(3.19) P0(z) =
.5(ε+ (1 + κ)c)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
e(1+κ)z ∀z ≤ 0.

The oscillatory terms b1eαz cos(γz) and b2e
αz sin(γz) in (3.18) are due to μ± being complex.

Recall from (2.7) that α = Re(μ±) < 0 when c > 0. Thus, to satisfy the condition U0(−∞) =
U ′

0(−∞) = 0, we conclude that b1 = b2 = 0, and (3.18)–(3.19) reduce to

(3.20) U0(z) =
.5(ε+ (1 + κ)c)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
e(1+κ)z ∀z ≤ 0.

Substituting U0(0) = θ into (3.20) gives the algebraic equation

(3.21)
.5(ε+ (1 + κ)c)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
= θ.

It follows from (3.20)–(3.21) that

(3.22) U0(z) = θe(1+κ)z < θ ∀z ≤ 0.

(ii) Analysis of solutions on (0,∞). When z > 0 the first step in analyzing solutions is to
solve (3.21) for wave speed c. This gives the two positive values (Figure 2, upper left panel)

c1 =
.5 − θ(1 + κ)(ε+ 1) +

√
(.5 − θ(1 + κ)(1 + ε))2 − 4εθ(1 + κ) (θ(1 + κ)(β + 1) − .5)

2θ(1 + κ)2
,

(3.23)

c2 =
.5 − θ(1 + κ)(ε+ 1) −

√
(.5 − θ(1 + κ)(1 + ε))2 − 4εθ(1 + κ) (θ(1 + κ)(β + 1) − .5)

2θ(1 + κ)2
.

(3.24)

Recall from (2.8) that 0 < ε < 1 and 0 < θ < 1
4(ε+1) . This and (3.23)–(3.24) imply that

(3.25)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1 > 0 if 0 < β < 1
2θ(1+κ) − 1 + 1

4εθ2(1+κ)2
(.5 − θ(1 + κ)(1 + ε))2 ,

c2 = 0 if β = 1
2θ(1+κ) − 1,

c2 > 0 if 1
2θ(1+κ) − 1 < β ≤ 1

2θ(1+κ) − 1 + 1
4εθ2(1+κ)2

(.5 − θ(1 + κ)(1 + ε))2 ,

c1 and c2 are complex if β > 1
2θ(1+κ) − 1 + 1

4εθ2(1+κ)2
(.5 − θ(1 + κ)(1 + ε))2 .

When z > 0 the solution of (3.16) is

(3.26) U1 = k1e
αz cos(γz) + k2e

αz sin(γz) + P1(z),

where α < 0 and γ > 0 are defined in (2.7), and P1(z) is the particular solution

(3.27) P1(z) =
.5((1 − κ)c− ε)

(1 − κ)((1 − κ)2c2 − (1 − κ)(1 + ε)c+ ε(β + 1))
e−(1−κ)z +

1
(β + 1)(1 − κ2)

,
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where c = c1 or c = c2. To preserve continuity at z = 0 we require that (U1(0), U ′
1(0)) =

(U0(0), U ′
0(0)). This and (3.26)–(3.27) show that k1 and k2 are uniquely defined by

(3.28) k1 = θ − P1(0) and k2 =
1
γ

(
θ(1 − α) − P1

′(0) + αP1(0)
)
.

(iii) Numerical evidence for the existence of solutions. To complete the proof that a so-
lution satisfies all of the conditions in (3.14) for a traveling wave front we need only to show
that

(3.29) U1(z) > θ ∀z > 0 and lim
z→∞

U ′
1(z) = 0.

To gain insight we let ε = .1 and β > β∗ = 2.025 and solve the initial value problem

ut(x, t) = −u− v + 1
2

∫ 120
−120 e

−|x−x′|+κ(x−x′)H(u(x′, t) − θ)dx′,

vt(x, t) = ε(βu− v),

u(x, 0) = e−x2
, and v(x, 0) = 0 ∀x ∈ [−120, 120],

(3.30)

where (θ, κ) satisfy (3.30). The limits (−∞,∞) in the integral term have been replaced with
[−120, 120]. Other choices for initial conditions give results similar to those described below.
A second approach which leads to wave formation is to initially keep u and v at their resting
levels, i.e., u(x, 0) = v(x, 0) = 0, and perturb the system with an external stimulus applied to
the right side of the equation for u. To solve (3.30) we approximate the integral term with a
Riemann sum, with step size Δx = .1, and use an explicit Euler time step Δt = .05. When
β > β∗ the solution of (3.30) evolves into a traveling wave front (Figure 2), a single-pulse
wave (Figures 4 and 6), or an N-pulse wave (Figure 7). Our numerical study of wave fronts
suggests that (3.29) does not hold at every point along the curves c1 and c2 (Figure 2, upper
left). However, (3.29) does hold along two connected subbranches Γ1 and Γ2 of these curves
(Figure 2, upper right). Below we describe Γ1 and Γ2.

The lower branch Γ2. When c = c2 it follows from (3.26), (3.27), and (3.28) that

U1(z) = k1e
αz cos(γz) + k2e

αz sin(γz)

+ .5((1−κ)c2−ε)
(1−κ)((1−κ)2c22−(1−κ)(1+ε)c2+ε(β+1))

e−(1−κ)z + 1
(β+1)(1−κ2)

.
(3.31)

If U1(z) > θ ∀z > 0, then (3.31) implies that U ′
1(z) → 0 as z → ∞, and therefore both

conditions in (3.29) hold. Thus, it is sufficient to show that

(3.32) U1(z) > θ ∀z > 0.

It is difficult to prove (3.32) since the oscillatory component k1e
αz cos(γz) + k2e

αz sin(γz) of
(3.31) can cause U1(z) to dip below the threshold level θ at some point in (0,∞). However,
our numerical experiments indicate that there is a branch Γ2 (Figure 2) of solutions satisfying

(3.33) U(z) =
{
θe(1+κ)z < θ ∀z < 0,
U1(z) > θ ∀z > 0.
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Along Γ2 it follows from (3.23) and (3.25) that

(3.34) c2 → 0+ as β →
(

1
2(1 + κ)θ

− 1
)+

.

Thus, the left end of Γ2 begins at β = 1
2(1+κ)θ − 1 where c2 = 0 and U is the stationary

solution defined by (3.4) (Figure 1, left panel). To determine the right end of Γ2 we substitute
the condition U(∞) ≥ θ into (3.33) and obtain U(∞) = 1

(1−κ2)(β+1)
≥ θ. This implies that

Γ2 cannot extend past β = 1
(1−κ2)θ

− 1. Figure 2 (fourth row, left panel) shows the solution
at the right endpoint of Γ2 when (ε, θ, κ) = (.1, .1, .15). For each β ∈ [ 1

2(1+κ)θ − 1, 1
(1−κ2)θ

− 1]
our computations indicate that U(z) > θ ∀z > 0; hence we conjecture that the interval of
existence of Γ2 is [ 1

2(1+κ)θ − 1, 1
(1−κ2)θ

− 1]. Our study also suggests that all solutions on Γ2

are unstable.
The upper branch Γ1. Let Γ1 denote the upper branch of wave fronts when c = c1

(Figure 2). This branch extends to the left of β = β∗ down to β = 0. When 0 < β ≤ β∗
the eigenvalues μ± are real, and solutions on Γ1 are monotone for large z. When β > β∗ the
eigenvalues μ± are complex and solutions have the form

(3.35) U(z) =

⎧⎪⎪⎨
⎪⎪⎩

θe(1+κ)z ∀z ≤ 0,

k1e
αz cos(γz) + k2e

αz sin(γz) + .5((1−κ)c1−ε)e−(1−κ)z

(1−κ)((1−κ)1c21−(1−κ)(1+ε)c1+ε(β+1))

+ 1
(1−κ2)(β+1) ∀z > 0,

where α, γ, k1, and k2 are evaluated at c = c2. To complete the proof we need to show that
U(z) > θ ∀z > 0. This is difficult to prove, even in the real eigenvalue regime, since U can
dip below θ at a positive z value. In Figure 2 (second row, left) we set β = 4 and see that
U(z) is a wave front since U(z) > θ ∀z > 0. In the third row, left panel, we set β = 6.45 and
see that U(z) is not a wave front since it is tangent to U = θ at z ≈ 21. When β > 6.45 the
function U cannot be a wave front since it dips below θ at a positive z value. We conjecture
that the interval of existence of Γ1 is approximately (0, 6.45) (Figure 2, first row, right). Our
study suggests that solutions on Γ1 are stable.

C. Properties of wavefronts when c < 0. When c < 0 we investigate solutions which satisfy

(3.36)

⎧⎪⎪⎨
⎪⎪⎩

U(z) and U ′(z) are continuous ∀z ∈ (−∞,∞),
U(z) > θ ∀z < 0, U ′(z) → 0 as z → −∞,
U(0) = θ, U(z) < θ ∀z > 0,
(U(z), U ′(z)) → (0, 0) as z → ∞.

When conditions (3.36) hold, (2.3) reduces to

(3.37) c2U ′′+c(1+ε)U ′+ε(β+1)U =
c

2
d

dz

∫ 0

−∞
e−|z−z′|+κ(z−z′)dz′+

ε

2

∫ 0

−∞
e−|z−z′|+κ(z−z′)dz′.

This further reduces to

(3.38) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = g(z),
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where

(3.39) g(z) =

{
−.5(c+ ε

1+κ)e(1+κ)z + ε
1−κ2 ∀z ≤ 0,

−.5(c− ε
1−κ)e−(1−κ)z if z > 0.

As in the case c > 0, we devote the remainder of this section to the following:
(iv) Analysis of solutions on [0,∞).
(v) Analysis of solutions on (−∞, 0).
(vi) Numerical evidence for the existence of solutions.
(iv) Analysis of solutions on [0,∞). Proceeding as above, we find that the solution of

(3.38) is

(3.40) U2(z) =
.5(ε− (1 − κ)c)

(1 − κ)((1 − κ)2c2 + −(1 − κ)(1 + ε)c+ ε(β + 1))
e−(1−κ)z ∀z > 0.

Substituting the condition U2(0) = θ into (3.40), we obtain

(3.41)
.5(ε− (1 − κ)c)

(1 − κ)((1 − κ)2c2 − (1 − κ)(1 + ε)c+ ε(β + 1))
= θ.

It follows from (3.40)–(3.41) that

(3.42) U2(z) = θe−(1−κ)z < θ ∀z ≥ 0.

Next, solving (3.41) for wave speed c gives the two negative values (Figure 2)

c3 =
θ(1 − κ)(ε+ 1) − .5 +

√
(.5 − θ(1 − κ)(1 + ε))2 − 4εθ(1 − κ) (θ(1 − κ)(β + 1) − .5)

2θ(1 − κ)2
,

(3.43)

c4 =
θ(1 − κ)(ε+ 1) − .5 −

√
(.5 − θ(1 − κ)(1 + ε))2 − 4εθ(1 − κ) (θ(1 − κ)(β + 1) − .5)

2θ(1 − κ)2
.

(3.44)

(v) Analysis of solutions on (−∞, 0). When z < 0 the solution of (3.16) is

(3.45) U3 = k1e
αz cos(γz) + k2e

αz sin(γz) + P2(z),

where α < 0 and γ > 0 are defined in (2.7), and P2(z) is the particular solution

(3.46) P2(z) =
−.5((1 + κ)c+ ε)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
e(1+κ)z +

1
(β + 1)(1 − κ2)

,

where c = c3 or c = c4. To preserve continuity at z = 0 we require that (U3(0), U ′
3(0)) =

(U2(0), U ′
2(0)). This and (3.45)–(3.46) show that k1 and k2 are uniquely defined by

(3.47) k1 = θ − P2(0) and k2 =
1
γ

(
θ(1 − α) − P2

′(0) + αP2(0)
)
.
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(vi) Numerical evidence for the existence of solutions. As in the case c > 0, to complete
the proof that a solution satisfies all of the conditions in (3.14) for a wave front it suffices to
show that

(3.48) U3(z) > θ ∀z < 0.

Our numerical experiments suggest that conditions (3.48) are not satisfied at every point along
the curves c3 and c4 (Figure 2). However, (3.48) does hold along two subbranches Γ3 and Γ4

of these curves (Figure 2). Below we briefly describe properties of solutions along Γ3 and Γ4.
The branch Γ3. When c = c3 < 0 it follows from (3.45), (3.46), and (3.47) that

U2(z) = k1e
αz cos(γz) + k2e

αz sin(γz)

− .5((1+κ)c3+ε)
(1+κ)((1+κ)2c23+(1+κ)(1+ε)c3+ε(β+1))

e(1+κ)z + 1
(β+1)(1−κ2)

.
(3.49)

Our numerical experiments indicate that there is a branch Γ3 (Figure 2) of solutions satisfying

(3.50) U(z) =
{
θe−(1−κ)z < θ ∀z ≥ 0,
U2(z) > θ ∀z < 0.

Along Γ3 it follows from (3.43) that

(3.51) c3 → 0+ as β →
(

1
2(1 − κ)θ

− 1
)+

.

Thus, the left end of Γ3 begins at β = 1
2(1−κ)θ −1 where c3 = 0 and U is the stationary solution

defined by (3.4) (Figure 1, right panel). To determine the right end of Γ3 we substitute the
condition U(∞) ≥ θ into (3.50) and obtain U(∞) = 1

(1−κ2)(β+1) ≥ θ. This implies that Γ3

cannot extend past β = 1
(1−κ2)θ

− 1. Figure 2 (fourth row, right panel) shows the solution at
the right endpoint of Γ3 when (ε, θ, κ) = (.1, .1, .15). For each β ∈ [ 1

2(1−κ)θ − 1, 1
(1−κ2)θ

− 1]
our computations indicate that U(z) > θ ∀z < 0; hence we conjecture that the interval of
existence of Γ3 is [ 1

2(1−κ)θ − 1, 1
(1−κ2)θ

− 1]. Our study also suggests that all solutions on Γ3

are unstable.
Comparisons. To obtain Γ2 we set (ε, θ, κ) = (.1, .1, .15) and let β increase from the upper

critical value β = 1
2(1+κ)θ − 1 where c2 = 0 and the solution is the stationary front defined by

(3.4). Γ3 is found by letting β increase from the lower critical value β = 1
2(1−κ)θ − 1 where

c3 = 0 and the solution is the stationary front defined by (3.10). The eigenvalues μ± are
complex at β = 1

2(1+κ)θ − 1 and β = 1
2(1−κ)θ − 1 since (ε, θ, κ) satisfy (2.8). It is interesting

to contrast these bifurcation results with [2], where a similar phenomenon is found when the
coupling is symmetric (i.e., κ = 0) and (ε, θ) are chosen so that μ± are real. In that study
(θ, β) are kept fixed and counterpropagating fronts bifurcate from the stationary solution as ε
varies. It would be interesting to analytically determine if a similar phenomenon occurs here
where w is asymmetric and μ± are complex.

The branch Γ4. We let Γ4 denote the upper branch of wave fronts when c = c4 < 0
(Figure 2). As in the case c > 0, this branch extends below β = β∗ down to β = 0. Solutions
on Γ4 have the form
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(3.52) U(z) =

⎧⎪⎪⎨
⎪⎪⎩

θe−(1−κ)z ∀z > 0,

k1e
αz cos(γz) + k2e

αz sin(γz) − .5((1+κ)c4+ε)e(1+κ)z

(1+κ)((1+κ)2c24+(1+κ)(1+ε)c4+ε(β+1))

+ 1
(1−κ2)(β+1)

∀z ≤ 0,

where α, γ, k1, and k2 are evaluated at c = c4. To complete the proof of existence we need
to show that U(z) > θ ∀z < 0. Again, this is difficult to prove since U can dip below θ at a
negative value of z. In Figure 2 (second row, right panel) we set β = 4 and see that U(z) is a
wave front since U(z) > θ ∀z < 0. In the third row, right panel, we set β = 6.45 and see that
U(z) is not a wave front since it is tangent to U = θ at z ≈ −21. When β > 6.45 the function
U cannot be a wave front since it dips below θ at a finite value of z. Thus, we conjecture that
the interval of existence of Γ4 is approximately (0, 6.45). Our study suggests that all solutions
on Γ4 are stable.

D. The effects of changing the threshold θ. We study how variations in θ affect wave
front formation when μ± are complex and w is asymmetric. Figures 2 and 3 illustrate the
differences in the behavior of solutions when θ = .1 and θ = .2, and lead to the following
conjectures:

(i) There is an interval of β values, approximately 0 < β < 6.75 when (ε, κ, θ) =
(.1, .15, .1), and a second interval 0 < β < 4.05 when (ε, κ, θ) = (.1, .15, .2), over
which two stable wave fronts coexist, which propagate in opposite directions, with
different speeds and amplitudes.

(ii) At fixed (ε, κ, β) the speeds and amplitudes decrease as θ increases.
(iii) At fixed (ε, κ) the values of β at the right endpoints of Γ1, . . . ,Γ4 decrease as θ increases.
E. Open problems. It remains an open problem to prove the existence of wave fronts along

the branches Γ1, . . . ,Γ4 described above. Whether μ± are real or complex, new methods are
needed in order to overcome the technical difficulties in showing that solutions satisfy U(z) = θ
only once on the interval (−∞,∞). Although generalizations and insightful approximations
have previously been given [2, 42], this property has not yet been verified for any set of
parameters or couplings, even in the real eigenvalue regime. In [58] we considered parameter
values where μ± are real and developed a comparison method which addresses these issues
when w is symmetric. It is hoped that extensions of our techniques will help complete existence
proofs when w is asymmetric, and for a wider range of rate functions and parameter values.
The proof of stability of solutions along Γ1 and Γ4, and the instability of solutions along Γ2

and Γ3, also remains an open problem. It is possible that this might be accomplished by
extensions of Evans function methods developed in [12, 44, 50].

4. 1-pulse traveling waves. We analyze 1-pulse traveling waves when w is asymmetric
and μ± are complex. Our study consists of the following:

A. The proof of nonexistence of stationary, 1-pulse solutions.
B. Positive and negative wave speeds: the statement and proof of Theorem 4.2 concerning

the coexistence of two families of infinitely many 1-pulse waves.
C. The effects of changing the threshold and the identification of θ∗.
A. Nonexistence of stationary solutions. In the previous section we showed how two

distinct families of wave fronts come into existence by means of a bifurcation from stationary
solutions when κ �= 0. In [58] we demonstrated how a branch of 1-pulse traveling waves
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Figure 3. Upper left: c1, c2, c3, and c4 versus β when (ε, θ, κ) = (.1, .2, .15). Upper right: Γ1, Γ2, Γ3, and
Γ4 in the (β, c) plane. Second row: Solutions at β = 3.9 on Γ1 (left) and at β = 4.05, the right endpoint where
Γ1 meets Γ2 (right). Third row: Solutions at the right endpoints of Γ3 where β ≈ 4.12 (left) and Γ4 where
β ≈ 3.95 (right). It is conjectured that solutions on Γ1 and Γ4 stable, and those on Γ2 and Γ3 are unstable.

bifurcates from a stationary solution when κ = 0 and the coupling is symmetric. Theorem 4.1
below shows that there is a fundamental difference when we consider asymmetric couplings.
In particular, we prove that there is no stationary 1-pulse solution for the class of asymmetric
couplings satisfying the general condition

(4.1) w(x) − w(−x) > 0 ∀x ∈ (−∞,∞) or w(x) −w(−x) < 0 ∀x ∈ (−∞,∞).

The function w(x) = 1
2e

−|x|+κx which we study in this paper falls within this class. Thus, for
couplings satisfying condition (4.1), a family of 1-pulse waves cannot come into existence by
means of a bifurcation from a stationary solution.

Theorem 4.1. If w satisfies (4.1), then (2.3) does not have a stationary 1-pulse solution.
Proof. If a stationary solution U exists, then c = 0 and (2.3) reduces to

(4.2) U(x) =
1

β + 1

∫ ∞

−∞
w(x− x′)dx′.
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We assume, for contradiction, that U(x) satisfies

(4.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(x) and U ′(x) are continuous ∀x ∈ (−∞,∞),
U(x) < θ ∀x < 0, U(0) = θ,
U(x) > θ ∀x ∈ (0, a), for some a > 0,
U(a) = θ, U(x) < θ ∀x > a,
(U(x), U ′(x)) → 0 as |x| → ∞.

Without loss of generality we have assumed that U(0) = θ in (4.3) since (4.2) is translationally
invariant. Conditions (4.3) reduce (4.2) to

(4.4) U(x) =
1

β + 1

∫ a

0
w(x− x′)dx′.

The substitution η = x− x′ changes (4.4) into

(4.5) U(x) =
1

β + 1

∫ x

x−a
w(η)dη.

Setting x = 0 and x = a in (4.5), we conclude from (4.3) that

(4.6) U(0) =
1

β + 1

∫ 0

−a
w(η)dη = θ and U(a) =

1
β + 1

∫ a

0
w(η)dη = θ.

From this it follows that
∫ 0
−a w(η)dη =

∫ a
0 w(η)dη; hence

(4.7)
∫ a

0
[w(η) − w(−η)]dη = 0.

However, condition (4.1) implies that either

(4.8)
∫ a

0
[w(η) − w(−η)]dη > 0 or

∫ a

0
[w(η) − w(−η)]dη < 0,

which contradicts (4.7). This completes the proof.
B. Positive and negative wave speeds. In this section we study properties of 1-pulse

traveling waves for both positive and negative wave speeds.
Positive wave speeds. When c > 0 we investigate the existence of 1-pulse waves which

satisfy

(4.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(z) and U ′(z) are continuous ∀z ∈ (−∞,∞),
U(z) < θ ∀z < 0, U(0) = θ,
U(z) > θ ∀z ∈ (0, a), for some a = a(c) > 0,
U(a) = θ and U(z) < θ ∀z ∈ (a,∞),
(U(z), U ′(z)) → (0, 0) as |z| → ∞.

Again we have assumed that U(0) = θ since (2.3) is translationally invariant. When conditions
(4.9) hold, (2.3) reduces to

(4.10) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ a

0
w(z − z′)dz′ + ε

∫ a

0
w(z − z′)dz′.
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Because w(x) = 1
2e

−|x|+κx, (4.10) can be written in the equivalent form

(4.11) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = f(z),

where

(4.12) f(z) =

⎧⎪⎪⎨
⎪⎪⎩

.5
1+κ (c(1 + κ) + ε) (1 − e−(1+κ)a)e(1+κ)z ∀z ≤ 0,

.5
(
c+ ε

κ−1

)
e(κ−1)z − .5

(
c+ ε

κ+1

)
e(κ+1)(z−a) + ε

1−κ2 if 0 < z < a,

.5
1−κ(ε− c(1 − κ))(e(1−κ)a − 1)e−(1−κ)z ∀z ≥ a.

Negative wave speeds. When c < 0, a 1-pulse traveling wave satisfies

(4.13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(z) and U ′(z) are continuous ∀z ∈ (−∞,∞),
U(z) < θ ∀z ∈ (−∞, a), for some a = a(c) < 0, U(a) = 0,
U(z) > θ ∀z ∈ (a, 0), U(0) = θ,
U(z) < θ ∀z > 0,
(U(z), U ′(z)) → (0, 0) as |z| → ∞.

When conditions (4.13) hold, (2.3) reduces to

(4.14) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ 0

a
w(z − z′)dz′ + ε

∫ 0

a
w(z − z′)dz′.

Because w(x) = 1
2e

−|x|+κx, (4.14) can be written in the equivalent form

(4.15) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = h(z),

where

(4.16) h(z) =

⎧⎪⎪⎨
⎪⎪⎩

.5
1−κ (c(1 − κ) − ε) (e(1−κ)a − 1)e−(1−κ)z ∀z ≥ 0,

.5
(
c− ε

1−κ

)
e−(1−κ)(z−a) − .5

(
c+ ε

κ+1

)
e(κ+1)z + ε

1−κ2 if a < z < 0,
.5

1+κ(ε+ c(1 + κ))(e−(1+κ)a − 1)e(1+κ)z ∀z ≤ a.

We prove the following theorem.
Theorem 4.2. Let (ε, θ) satisfy (2.8). If κ > 0 is small and β = 1

2(1−κ2)θ − 1, then the
following hold.

(i) There are infinitely many c ∈ (c2, c1) and a(c) > 0 and solutions U of (4.11)–(4.12)
such that

U(z) = θe(1+κ)z ∀z < 0, U(0) = U(a(c)) = θ, and U ′(0) = 1 + κ,

(U(z), U ′(z)) → (0, 0) as z → ∞.
(4.17)

(ii) There are infinitely many c ∈ (c4, c3) and a(c) < 0 and solutions U of (4.11)–(4.12)
such that

U(z) = θe−(1−κ)z ∀z > 0, U(a(c)) = U(0) = θ, and U ′(0) = κ− 1,
(U(z), U ′(z)) → (0, 0) as z → −∞.

(4.18)
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Figure 4. 1-pulse waves when ε = θ = .1 and β = 1
2θ(1−κ2 −1 ≈ 4.11 (see Theorem 4.2). Left panel: c ≈ 2.27

and a ≈ 24. Right panel: c ≈ −5.65 and a ≈ −43. Clicking on the first panel displays the accompanying movie
(70988 01.mpg [1.4MB]).

Remarks. (i) The proof of Theorem 4.2 relies heavily on sine and cosine terms which arise
due to μ± being complex. Such terms are not present in the real eigenvalue case, and therefore
we conjecture that Theorem 4.2 does not hold when μ± are real.

(ii) The positive wave speed solutions described in Theorem 4.2 have monotone tails as
z → −∞ and oscillatory tails as z → ∞. By contrast, the speeds and amplitudes of the
negative wave speed solutions are larger than those of the positive speed solutions (see Figure
4); they have oscillatory tails as z → −∞ and monotone tails as z → ∞. The oscillatory tails
are due to μ± being complex.

(iii) To prove that the solutions in Theorem 4.2 are 1-pulse waves we must also prove that
z = 0 and z = a(c) are the only solutions of U(z) = θ, and that (U(z), U ′(z)) → (0, 0) as
z → ∞. Because μ± are complex, technical difficulties arise which make the verification of
these properties a challenging problem which remains open.

Proof of Theorem 4.2. We prove part (i) for the case c > 0. The details for the case c < 0
are similar and are omitted for brevity. On the interval (−∞, 0) the system (4.11)–(4.12)
reduces to

(4.19) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U =
.5

1 + κ
(c(1 + κ) + ε) (1 − e−(1+κ)a)e(1+κ)z ∀z ≤ 0.

The general solution of (4.19) is

U3(z) = k1e
αz cos(γz) + k2e

αz sin(γz)

+ .5((1+κ)c+ε)(1−e−(1+κ)a)
(1+κ)((1+κ)2c2+(1+κ)(1+ε)c+ε(β+1))

e(1+κ)z .
(4.20)

We need to show that there are values c ∈ (c2, c1) and a > 0 such that

(4.21) U3(z) < θ ∀z ∈ (−∞, 0), U3(−∞) = U ′
3(−∞) = 0, and U3(0) = θ.

Recall from (2.7) that α = Re(μ±) < 0. Thus, to satisfy U3(−∞) = U ′
3(−∞) = 0 we conclude

that k1 = k2 = 0, and therefore

(4.22) U3(z) =
.5((1 + κ)c+ ε)(1 − e−(1+κ)a)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
e(1+κ)z .

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_01.mpg
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Figure 5. Graph of a(c) versus c when (ε, θ, κ) = (.1, .1, .15) and β = 1
2(1−κ2)θ

− 1 ≈ 4.11.

Substituting the continuity requirement U3(0) = θ into (4.22) gives

(4.23)
.5((1 + κ)c+ ε)(1 − e−(1+κ)a)

(1 + κ)((1 + κ)2c2 + (1 + κ)(1 + ε)c+ ε(β + 1))
= θ.

Combining (4.22) and (4.23) gives U3(z) = θe(1+κ)z ∀z ≤ 0.
The interval (0, a). On the interval (0, a) the system (4.11)–(4.12) reduces to

(4.24)

c2U ′′ + c(1 + ε)U ′ + ε(β+ 1)U = .5
(
c+

ε

κ− 1

)
e(κ−1)z − .5

(
c+

ε

κ+ 1

)
e(κ+1)(z−a) +

ε

1 − κ2
.

The general solution of (4.24) is

(4.25) U4(z) = m1e
αz cos(γz) +m2e

αz sin(γz) + P4(z),

where α and γ are defined in (2.7), and P4 is the particular solution

P4(z) = .5(c(1−κ)−ε)e(κ−1)z

(1−κ)((1−κ)2c2−(1+ε)(1−κ)c+ε(β+1))

− .5(ε+c(1+κ))e(κ+1)(z−a)

(1+κ)((1+κ)2c2+(1+ε)c(1+κ)+ε(β+1)) + 1
(β+1)(1−κ2) .

(4.26)

Continuity at z = 0 requires that (U4(0), U ′
4(0)) = (U3(0), U ′

3(0)) = (θ, (1 + κ)θ). Combining
this with (4.25) and (4.26) shows that the coefficients m1 and m2 in (4.25) are defined by

(4.27) m1 = θ − P4(0) and m2 =
1
γ

(
θ(1 + κ− α) − P ′

4(0) + αP4(0)
)
.

Next, solve (4.23) for e−(1+κ)a and get

(4.28) e−(1+κ)a(c) =
.5(ε+ c(1 + κ)) − θ(1 + κ)

(
(1 + κ)2c2 + (1 + ε)c(1 + κ) + ε(β + 1)

)
.5(ε+ c(1 + κ))

.

It follows from (3.21) that the right side of (4.28) is zero at c = c1 and c = c2 and that
(Figure 5)

(4.29) a(c) > 0 ∀c ∈ (c2, c1) and lim
c→c+2

a(c) = lim
c→c−1

a(c) = ∞.
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We will use (4.29) to help prove that there exist values c ∈ (c2, c1) and a = a(c) > 0 such that

(4.30) U4(a(c)) = θ.

Substituting (4.25) into (4.30) gives

(4.31) m1e
αa(c) cos(γa(c)) +m2e

αa(c) sin(γa(c)) + P4(a(c)) = θ.

Thus, it remains to show that there are infinitely many c ∈ (c2, c1) such that the function

(4.32) g(c) = m1e
αa(c) cos(γa(c)) +m2e

αa(c) sin(γa(c)) + P4(a(c)) − θ

satisfies g(c) = 0. The first step is to write (4.28) as
(4.33)

.5(ε+ c(1 + κ))
(1 + κ)2c2 + (1 + ε)(1 + κ)c+ ε(β + 1)

=
.5(ε+ c(1 + κ))e−(1+κ)a

(1 + κ)2c2 + (1 + ε)(1 + κ)c+ ε(β + 1)
+ θ(1 + κ).

Substituting (4.33) into (4.26) and using the hypothesis β = 1
2(1−κ2)θ

− 1, we obtain

P4(a(c)) − θ = e−(1−κ)a(c)
(

.5(c(1−κ)−ε)
(1−κ)(1−κ)2c2−(1+ε)(1−κ)c+ε(β+1)

)
− e−(1+κ)a(c)

(
.5(ε+c(1+κ))

(1+κ)(1+κ)2c2+(1+ε)(1+κ)c+ε(β+1)

)
.

(4.34)

Next, substitute (4.34) into (4.32) and get

g(c) = eαa(c)g1(c),(4.35)

g1 = m1 cos(γa(c)) +m2 sin(γa(c)) + e−(1+α−κ)a(c)
(

.5(c(1−κ)−ε)
(1−κ)(1−κ)2c2−(1+ε)(1−κ)c+ε(β+1)

)
− e−(1+α+κ)a(c)

(
.5(ε+c(1+κ))

(1+κ)(1+κ)2c2+(1+ε)(1+κ)c+ε(β+1)

)
.

(4.36)

Because eαa(c) > 0, it suffices to show that g1(c) changes sign infinitely often on (c2, c1). To
analyze g1(c) we need to determine the limiting behavior, as c→ c−1 , of the terms on the right
side of (4.36). For this we need the five basic estimates developed below.

(i) The behavior of e−(1+α−κ)a(c) and e−(1+α+κ)a(c) as c→ c−1 . From (2.7) it follows that

(4.37) lim
c→c−1

(1 + α− κ) =
2c1(1 − κ) − 1 − ε

2c1
.

It follows from (3.23), and the hypothesis β = 1
2(1−κ2)θ

− 1, that

(4.38) c1 =
.5 − θ(1 + κ)(ε+ 1) +

√
(.5 − θ(1 + κ)(1 + ε))2 − 2εθκ(1+κ)

1−κ

2θ(1 + κ)2
.

We substitute (4.38) into (4.37) and conclude from an algebraic manipulation, and the re-
striction 0 < θ < 1

4(ε+1) given in (2.8), that

(4.39) lim
(c,κ)→(c−1 ,0)

(1 + α− κ) =
1 − 3θ(1 + ε)
1 − 2θ(1 + ε)

> 0.
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From (4.39) and continuity it follows that if κ > 0 is small, then

(4.40) lim
c→c−1

(1 + α− κ) > 0.

Thus, if κ > 0 is small, then (4.29) and (4.40) imply that

(4.41) lim
c→c−1

e−(1+α−κ)a(c) = lim
c→c−1

e−(1+α+κ)a(c) = 0.

(ii) The behavior of γa(c) as c → c−1 . Recall that β = 1
2(1−κ2)θ − 1. This and (2.7)–(2.8)

imply that

(4.42) γ =
(ε+ 1)

2c
√

(1 − κ2)θ

√
2ε

(ε+ 1)2
− (1 − κ2)θ > 0 ∀c ∈ [c2, c1] and ∀κ ∈ [0, 1).

From this and (4.29) we conclude that γa(c) is continuous in c and that

(4.43) γa(c) > 0 ∀c ∈ (c2, c1) and lim
c→c−1

γa(c) = ∞ ∀κ ∈ [0, 1).

(iii) The behavior of (1 − κ)2c2 − (1 + ε)(1 − κ)c+ ε(β + 1) as c→ c−1 . We show that

(4.44) lim
c→c−1

(
(1 − κ)2c2 − (1 + ε)(1 − κ)c + ε(β + 1)

)
> 0 ∀κ ∈ [0, 1).

It follows from (2.8) that the discriminant of the limiting term

(4.45) (1 − κ)2c21 − (1 + ε)(1 − κ)c1 + ε(β + 1)

satisfies
discriminant = (1 − κ)2

(
(1 + ε)2 − 4ε(β + 1)

)
< 0 ∀κ ∈ [0, 1),

since ε > 0 and β > (ε−1)2

4ε . This and continuity imply that (4.44) holds.
(iv) The behavior of m1 as c→ c−1 . We show that m1 is bounded away from 0 as c→ c−1

when κ > 0 is small. Since a(c) → ∞ as c → c−1 , it follows from (4.26) and the definition of
m1 given in (4.27) that m1 is continuous in κ and c, and

(4.46) lim
c→c−2

m1 = θ − .5(c1(1 − κ) − ε)
(1 − κ)

(
(1 − κ)2c21 − (1 + ε)(1 − κ)c1 + ε(β + 1)

) − 1
(β + 1)(1 − κ2)

.

We solve (3.21) for c2, substitute the resultant expression into (4.46), and obtain the limiting
value

(4.47) lim
(κ,c)→(0,c−1 )

m1 =
θ(ε− 2θ(1 + ε)c1)

(.5 − 2θ(1 + ε))c1 + .5ε
− 1
β + 1

,

where, by (3.23), c1 has the limiting value

(4.48) c1 =
.5 − θ(1 + ε)

θ
> 0.
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Substituting (4.48) into the numerator of the first term in (4.47) gives the limiting value

(4.49) lim
(κ,c)→(0,c−1 )

m1 =
θ(−1 + 2θ(1 + ε)2)

(.5 − 2θ(1 + ε))c1 + .5ε
− 1
β + 1

.

Recall from (2.8) that 0 < ε < 1 and 0 < θ < 1
4(ε+1) . This implies that −1 + 2θ(1 + ε)2 <

.5(ε− 1) < 0 and .5 − 2θ(1 + ε) > 0. Thus, the first term in (4.49) is negative, and therefore

(4.50) lim
(κ,c)→(0,c−1 )

m1 < − 1
β + 1

= −2θ.

Finally, it follows from (4.50) and continuity that if κ > 0 is small, then

(4.51) lim
c→c−1

m1 < −2θ.

(v) The behavior of g1(c). We now use the estimates given above to determine the behavior
of g1(c) when κ > 0 is small. It follows from (4.43) that, for small κ > 0, there is an increasing
sequence {cn} such that

(4.52) cn → c−2 as n→ ∞ and γa(cn) = 2nπ for large n.

Let c = cn in (4.36). Then sin(γa(cn)) = 0, cos(γa(cn)) = 1, and (4.36) reduces to

g1(cn) = m1 + e−(1+α−κ)a(cn)
(

.5(cn(1−κ)−ε)
(1−κ)(1−κ)2c2n−(1+ε)(1−κ)cn+ε(β+1)

)
− e−(1+α+κ)a(cn)

(
.5(ε+cn(1+κ))

(1+κ)(1+κ)2c2n+(1+ε)(1+κ)cn+ε(β+1)

)
.

(4.53)

Combining the estimates in (4.41), (4.44), (4.51), and (4.52), we conclude from (4.53) that

(4.54) g1(cn) < −θ for n >> 1.

Likewise, for small κ > 0, there is an increasing sequence {cn} such that

(4.55) cn → c−2 as n→ ∞ and γa(cn) = (2n + 1)π for n >> 1.

Let c = cn in (4.36). Then sin(γa(cn)) = 0 and cos(γa(cn)) = −1. From this, (4.41), (4.44),
(4.51), and (4.55) it follows that

(4.56) g1(cn) > θ for large n >> 1.

It follows from (4.54) and (4.56) and continuity that g1(c), and therefore g(c), have infinitely
many zeros on (c1, c2) when κ > 0 is small. Thus, we have proved that there are infinitely
many c ∈ (c1, c2) and a(c) > 0, and corresponding solutions U of (2.3), such that

(4.57) U(z) =
{
θe(1+κ)z ∀z ≤ 0,
U4(z), 0 < z < a(c),
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where U4(z) is defined in (4.25)–(4.26) and satisfies

(4.58) U4(0) = U4(a(c)) = θ and U ′
4(0) = 1 + κ.

This completes the first part of the proof of (4.17). It remains to show that the solution
satisfies (U(z), U ′(z)) → (0, 0) as z → ∞. This is addressed below.

The interval (a,∞). On the interval (a,∞) the system (4.11)–(4.12) reduces to

(4.59) c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U =
.5

1 − κ
(ε− c(1 − κ))(e(1−κ)a − 1)e−(1−κ)z ∀z > a.

The general solution of (4.59) is

(4.60) U5(z) = q1e
αz cos(γz) + q2e

αz sin(γz) + P5(z),

where α and γ are defined in (2.7), and P5 is the particular solution

(4.61) P5(z) = (ε−c(1−κ))(e(1−κ)a−1)e−(1−κ)z

(1−κ)((1−κ)2c2−(1+ε)(1−κ)c+ε(β+1)) .

The coefficients q1 and q2 in (4.60) are uniquely defined by the continuity conditions

(4.62) U5(a(c)) = U4(a(c)) = θ and U ′
5(a(c)) = U ′

4(a(c)).

Finally, it follows from (4.60)–(4.61) and the fact that α < 0 that

(4.63) (U5(z), U ′
5(z)) → (0, 0) as z → ∞.

This completes the proof of part (i) of Theorem 4.2.
C. The effects of changing threshold and the identification of θ∗. To understand how

solutions change as θ varies we proceed as in section 3 and compare the behavior of solutions
when θ = .1 and θ = .2. For these values our numerical experiments suggest that all conditions
for a 1-pulse wave are satisfied along a branch Λ1 of solutions when c > 0, and also along a
second branch Λ2 when c < 0. Solutions along Λ1 and Λ2 are stable and propagate in opposite
directions with different speeds and amplitudes. Figure 6 (top row) illustrates these branches
when (ε, κ) = (.1, .15).

(i) The case θ = .1. Figure 6 (second row, first panel) shows two solutions which coexist
at the right endpoints of Λ1 and Λ2, where β ≈ 12.75.

(ii) The case θ = .2. The middle panel of the second row shows two solutions which coexist
when β = 3.35. The right endpoint of Λ1 occurs at β ≈ 3.5, where the positive wave speed
solution ceases to exist. When β > 3.5 the negative wave speed solution continues to exist
until β ≈ 7.5, where the branch Λ2 comes to an end. The third panel illustrates the solution
at β = 7.5.

Our experiments lead to the following conjectures whose proofs remain open problems:
• At fixed (ε, κ, β) the amplitudes and speeds of 1-pulse solutions decrease as θ increases.
• At fixed (ε, κ) the right endpoint of Λ1 decreases more rapidly than the right endpoint

of Λ2 as θ increases. Thus, there is an interval I of β values such that if β ∈ I is fixed,
then a critical value θ∗ = θ∗(ε, κ, β) exists such that there are two stable solutions
when 0 < θ ≤ θ∗ and only one solution when θ > θ∗.
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Figure 6. First row: Bifurcation curves Λ1 and Λ2 in the (β, c) plane for families of 1-pulse waves when
(ε, κ, θ) = (.1, .15, .1) (left) and (ε, κ, θ) = (.1, .15, .2) (right). Second row: Solutions at specific points along
Λ1 and Λ2. Please click on each figure in the second row to display the accompanying movie (70988 02.mpg
[2.64MB], 70988 03.mpg [2.1MB], and 70988 04.mpg [1.41MB]).

Experimental implications. By controlling the electric field in disinhibited slices of mam-
malian cortex, Richardson, Schiff, and Gluckman [48] can determine properties of 1-pulse
waves for different values of threshold. Our results show that, when threshold has a low value,
an appropriate stimulus causes waves to form which propagate in opposite directions with
different amplitudes and speeds. The methods in [48] might allow one to determine if similar
properties hold for low electric field values and also whether there is a critical value of the
field where one of the waves disappears. This, together with an analysis of the speeds and
amplitudes of waves as a function of electric field strength, could provide a plausible method
to obtain a measure of the asymmetry in the connectivity between neuronal groups.

5. 2-pulse waves. To understand how 2-pulse waves form when β > β∗, we analyze the
linearization of (2.3) around the rest state U = 0:

(5.1) c2H ′′ + c(1 + ε)H ′ + ε(β + 1)H = 0.

When μ± are complex the general solution of (5.1) is

(5.2) H(z) = b1e
αz sin(γz) + b2e

αz cos(γz),

where

(5.3) α = Re(μ±) =
−(ε+ 1)

2c
< 0 and γ = Im(μ±) =

√
4εβ − (ε− 1)2

2c
> 0.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_04.mpg
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Figure 7. 2-pulse waves when β = 7.5 and (ε, θ, κ) = (.1, .1, 0) (left), (ε, θ, κ) = (.1, .1, .15) (middle), and
(ε, θ, κ) = (.1, .17, .15) (right). In the right panel the wave propagates only to the right since θ = .17 > θ∗

when (ε, κ) = (.1, .15). Click on each panel to display the accompanying movie (70988 05.mpg [3.51MB],
70988 06.mpg [2.94MB], and 70988 07.mpg [2.73MB]).

It follows from (5.2)–(5.3) that the frequency of oscillation of H(z) increases as β increases
from β∗. In turn, this causes solutions of (1.1) to become more oscillatory as β increases,
making it increasingly likely that an initial perturbation will evolve into a 2-pulse traveling
wave. It follows from (2.3) that a 2-pulse traveling wave satisfies

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c d
dz

∫ a
0 w(z − z′)dz′ + ε

∫ a
0 w(z − z′)dz′

+ c d
dz

∫ d
b w(z − z′)dz′ + ε

∫ d
b w(z − z′)dz′,

(5.4)

where

(5.5)

⎧⎨
⎩

U(0) = U(a) = U(b) = U(d) = θ for some d > b > a > 0,
U(z) �= θ if z /∈ {0, a, b, d},
(U(z), U ′(z)) → (0, 0) as |z| → ∞.

In Figure 7 we consider the representative parameter set ε = .1 and β = 7.5 and illustrate
three different types of 2-pulse waves. For this we solve the initial value problem

ut(x, t) = −u− v + 1
2

∫ 120
−120 e

−|x−x′|+κ(x−x′)H(u(x′, t) − θ)dx′,

vt(x, t) = ε(βu− v),

u(x, 0) = .6e−x2
, and v(x, 0) = 0 ∀x ∈ [−120, 120].

(5.6)

In the left panel we let θ = .1 and set κ = 0 so that w is symmetric. The initial stimulus splits
into two 2-pulse waves which propagate outward from x = 0. The wave propagating to the
left has the same speed and shape as the wave propagating to the right. In the second panel
we keep θ = .1 and set κ = .15 so that w is asymmetric. The initial stimulus again splits into
two waves. The wave traveling to the left is slower than the one traveling to the right, and
its shape is also different. In the third panel we keep κ = .15 and raise θ to θ = .17. Once
again, the initial perturbation splits into two waves which begin to propagate outward from
the x = 0. However, because θ = .17 > θ∗, the “weaker” wave propagating to the left cannot
be sustained, and it quickly shrinks and collapses onto the steady state (u, v) = (0, 0). The

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_07.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_07.mpg
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wave propagating to the right persists indefinitely. We note that (i) other choices for initial
conditions give the same results, and (ii) similar properties were observed for 1-pulse waves
(see Figures 4 and 6).

For general N ≥ 2 a simple extension of (5.4)–(5.5) gives the criteria satisfied by N-pulse
traveling waves. In particular, it is necessary to prove that the solution intersects U = θ
exactly 2N times. However, as with 1-pulse waves, the nonlocal terms in the equation lead
to technical difficulties in proving this key property, and therefore existence proofs remain
a challenging open problem. Finally, we note that our numerical study suggests that the
traveling waves in Figure 7 are all stable as solutions of (1.1). It would be of interest to
develop Evans function methods to prove this conjecture.

6. Synchronous oscillations. In this section we investigate the formation and spread of
uniformly synchronous oscillations when β increases past a second critical value β∗ > β∗ where
(1.1) becomes bistable. In particular, we show how β∗ arises and study the following when
β ≥ β∗:

A. Bistability: The coexistence of bulk oscillations and a stable rest state.
B. Synchrony: The formation of uniformly synchronous oscillations which spread outward

from a point of stimulus.
C. The coexistence of synchronous oscillations and 1-pulse waves.
D. How synchronization in one region can trigger synchronization in another.
A. Bistability: The coexistence of bulk oscillations and a stable rest state. Our goal here

is to show that there is a critical value β∗ where spatially independent bulk oscillations come
into existence. Such solutions depend only on the variable t and satisfy

du
dt = −u− v + f(u− θ)

∫∞
−∞w(η)dη,

dv
dt = ε(βu− v).

(6.1)

In [58] we considered symmetric couplings and showed that periodic solutions of (6.1) come
into existence at a critical β∗. Figure 8 illustrates how this happens for the parameter set
(ε, θ, κ) = (.1, .1, 0). In the first row we let β = 12.6 and see that the solution with initial
condition (u(0), v(0)) = (.4, 0) returns to the rest state (u, v) = (0, 0) as t → ∞. The same
behavior occurs when 0 < β < 12.6, and for all other initial conditions. Thus, the rest state
is globally stable when 0 < β ≤ 12.6. At β = β∗ ≈ 12.61 a periodic solution comes into
existence (second row, right panel). Its trajectory forms a closed loop in the (u, v) plane and
intersects the u′ = 0 nullcline at the “threshold point” (u, v) = (θ,−θ) (left panel). This
property causes the periodic solution to be semistable. That is, solutions of (6.1) whose initial
conditions lie outside its trajectory approach a translate of the periodic solution as t → ∞,
and solutions with initial conditions inside the trajectory satisfy (u, v) → (0, 0) as t→ ∞. As
β increases from β∗ a family of stable periodic orbits bifurcates from the periodic solution at
β∗. The third row shows such a solution at β = 17. Our study shows that this mechanism
also occurs when κ �= 0, and over a wide range of θ, which includes the critical value θ∗. For
small θ > 0 a phase plane approach can be used to prove the existence of periodic solutions.
General proofs remain open.

B. Synchrony. When β ≥ β∗ our numerical experiments on the full system (1.1) show that
uniformly synchronous oscillations can form and spread outward from a point of stimulus. In
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Figure 8. Bulk oscillations: Solutions of (6.1) graphed in the (u, v) phase plane (left column), and u and
v as functions of t (right column). Parameter values: (ε, θ, κ) = (.1, .1, 0).
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Figure 9. The formation and spread of uniformly synchronous oscillations in response to the initial stimulus

(u(x, 0), v(x, 0)) = (.6e−x2
, 0) when (ε, θ, κ, β) = (.1, .15, .15, 17). Clicking on the first image displays the

accompanying movie (70988 08.mpg [3.17MB]).

Figure 9 we set (β, ε, θ, κ) = (17, .1, .15, .15) and consider the initial condition

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_08.mpg
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(6.2) (u(x, 0), v(x, 0)) = (.6e−x2
, 0), x ∈ R.

The stimulus (6.2) is sufficiently strong so that the bulk oscillations affect the solution and
cause it to begin oscillating at the center of the stimulus. The oscillations are spatially uniform
and in phase over an ever expanding “region of synchrony.” Our study suggests the following:

(i) During each oscillation the region of synchrony expands outward by an amount pro-
portional to the speed of a 1-pulse wave.

(ii) During each oscillation the expanding region sheds a traveling wave. Since θ > θ∗ for
our choice of parameters, these waves can propagate only to the right.

Because of the asymmetry in w, the expansion of the region of synchrony is most rapid in the
direction to the right of the point of initial stimulus and less rapid to the left. Eventually,
however, the solution oscillates uniformly over the entire spatial region, and with the same
period as the bulk oscillation. There are similarities between the theoretical spread of a
region of synchrony and clinical observations of epileptiform events. Milton and Jung [40,
pp. 346–347] point out that “during a seizure there is a propagation of synchrony over the
cortical surface” (see Figures 5.7 and 5.8 in [40]) and that optical imaging shows wave-like
properties of epileptic propagation. In electocorticographic studies, Towel et al. [57] show how
spatially uniform synchronous oscillations develop in a region behind the leading edge of a
seizure as it propagates across the cortex (see Figures 6.2, 6.5, and 6.11 in [57]). Milton [39,
pp. 18–19] notes that a seizure spreads relatively slowly when compared with spike propagation
rates. Our numerical study indicates that the region of synchrony also spreads slowly, at a
rate which is only a fraction of the speed of a traveling wave. An important challenge for
future research is to extend the methods in [58] and derive a theoretical formula for the
rate of expansion which takes into account asymmetric couplings as well as variations in the
threshold θ.

C. The coexistence of synchronous oscillations and 1-pulse waves. Wright and Serge-
jew [60] have demonstated the presence of traveling waves in EEG studies of seizure propaga-
tion. In [58] we found that a similar phenomenon occurs theoretically; i.e., 1-pulse traveling
waves can form in the same parameter regime as synchronous oscillations when κ = 0 and
θ > 0 is small. Here we examine the robustness of this property when κ �= 0 and for larger
values of θ. For this we consider the representative parameter set (β, ε, θ, κ) = (17, .1, .15, .15).
At these values the system is bistable, and synchronous oscillations form and spread outward
in response to a sufficiently strong initial stimulus. However, synchrony is not always the out-
come. For example, Figure 10 illustrates how the solution with the smaller amplitude initial
perturbation

(6.3) (u(x, 0), v(x, 0)) = (.18e−x2
, 0), x ∈ R,

evolves into a 1-pulse wave. It propagates only to the right since κ = .15 and θ = .15 > θ∗.
Our study suggests that synchronous oscillations and stable 1-pulse waves coexist for a broad
range of parameters. Proofs remain an open problem.

D. How synchronization in one region can trigger synchronization in another. We inves-
tigate how synchronous oscillations in one region can spread and initiate synchronization in
distant regions. This aspect of our study is motivated by two diverse settings.
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Figure 10. A small amplitude stimulus (u(x, 0), v(x, 0)) = (.18e−x2
, 0) evolves into a 1-pulse wave when

(β, ε, θ, κ) = (17, .1, .15, .15). Its speed c ≈ |c4| = .257 is computed from (3.43). Clicking on the first panel
displays the accompanying movie (70988 09.mpg [1.73MB]).

(i) In section 1 we described recent experiment results which show that exposure to nicotine
reduces the threshold of excitation in thalamocortical mouse neurons and that this dramati-
cally increases their firing rates [35, 54]. It is suggested that in the brains of schizophrenics,
the poor communication between thalamus and cortex might be improved by such lowering
of threshold.

(ii) Chkhenkeli and Milton [8] describe how seizures in one region of the brain can trigger
seizure onset in another. In particular, they give evidence which shows how rhythmic oscilla-
tions in the amygdala can trigger a seizure in the hippocampus (see Figure 3.4 in [8]). They
also show how a seizure which starts in the hippocampus does not necessarily spread to the
amygdala (see Figure 3.4 in [8]).

Our goal here is to understand how similar phenomena occur in our model when κ �= 0
and the threshold θ varies. In particular, we find that when θ increases past the critical value
θ∗, synchronization in one region can trigger the onset of synchronization in another, but the
reverse is not true. To see how this happens we let β vary as a function of x and define

(6.4) β(x) =

⎧⎨
⎩

17 ∀x ∈ [−100,−35),
10 ∀x ∈ [−35, 35),
17 ∀x ∈ [35, 100].

As in B and C above, we set (ε, θ, κ) = (.1, .15, .15). Since β = 17 in [−100, 35) and [35, 100]
the results of part B show that spatially uniform synchronous oscillations can develop in these
intervals. However, since β = 10 < β∗ when x ∈ [−35, 35), synchronization cannot occur in
this interval. Thus, the interval [−35, 35) forms a “buffer” region separating the two outer
intervals where synchronization can occur. Furthermore, θ > θ∗ for our choice of parameters;
hence waves can propagate only to the right in any of the three subintervals. To understand
the behavior of this “unidirectional neuronal circuit,” we performed three simple experiments.

I. In the first row of Figure 11 a small initial stimulus centered at x = −50 evolves into a
1-pulse wave propagating to the right (left panel). When the wave enters the interval [−35, 35)
its amplitude and speed increase since β has the lower value β = 10 (middle panel). As the
wave crosses into the interval [35, 100] it is not sufficient to trigger synchronization. Instead,
its amplitude and speed decrease and the wave passes through the interval [35, 100] as time t

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_09.mpg
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Figure 11. First row: A small amplitude stimulus (u(x, 0), v(x, 0)) = (.18e−(x+50)2 , 0) evolves into
a 1-pulse wave. The wave propagates through the entire circuit without triggering any part of it to un-
dergo synchronization. Parameters are (ε, θ, κ) = (.1, .15, .15). Second row: A larger amplitude stimulus

(u(x, 0), v(x, 0)) = (e−(x+50)2 , 0) triggers synchronization in the interval [−100,−35). The train of waves
emitted by the synchronizing region propagates through the circuit and initiates synchronization in the inter-

val [35, 100]. Third row: A stimulus (u(x, 0), v(x, 0)) = (e−(x−50)2 , 0) triggers synchronization in the interval
[35, 100]. Since waves cannot propagate to the left, there can be no initiation of synchronization in the left end
interval [−100,−35). Click on the first figure in each row to display the accompanying movie (70988 10.mpg
[1.64MB], 70988 11.mpg [16.1MB], and 70988 12.mpg [4.02MB]).

increases (right panel). Thus, a small amplitude stimulus centered in the interval [−100,−35)
evolves into a 1-pulse wave which propagates through the entire circuit without triggering
synchronization.

II. In the second row a stimulus centered at x = −50 (left panel) is sufficiently strong
to trigger the formation and spread of synchronous oscillations in the interval [−100,−35).
During each cycle the region of synchrony expands by a small amount and a wave is emitted.
Thus, a train of waves is created. These waves propagate to the right and enter [−35, 35),
where their amplitudes and speeds increase (middle panel). As the waves pass the point

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_10.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/70988_11.mpg
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x = 35 they are sufficient to initiate synchronization in the interval [35, 100] (right panel).
Thus, synchronization in the region [−100,−35) causes the formation of a train of waves which
eventually trigger synchronization in the region [35, 100].

Remark. We have found that at least three waves must pass the point x = 35 in order to
initiate synchronization in the region [35, 100]. To test this we found that the initial stimulus
(u(x, 0), v(x, 0)) = (10e−(x+20)2 , 0) evolves into a 2-pulse wave which propagates to the right
and passes right on through the interval [35, 100] without initiating synchronization.

III. In the third row we test whether synchronous oscillations in the right end interval
[35, 100] can ultimately trigger synchronous oscillations in the left end interval [−100, 35).
An initial stimulus centered at x = 50 (left panel) initiates synchronous oscillations which
spread uniformly over the entire interval [35, 100] (second and third panels). However, our
choice of parameters does not allow for left propagating waves; hence there is no initiation of
synchronous oscillations in [−100,−35) where the solution remains in the rest state u = v = 0.

Remarks. The results described above in I–III still hold when β has different values in
the outer intervals [−100, 35) and [35, 100]. In this setting, when synchronous oscillations are
initiated in these intervals, their frequencies do not necessarily entrain. Analytical proofs of
the numerical experiments described in parts A–D remain a challenging open problem.

7. Conclusions. In this paper we analyzed the dynamic behavior of a system of integro-
differential equations that models the activity of excitatory neurons on large-scale, spatially
extended domains. The independent variables represent the activity level of a population of
excitatory neurons with long range connections (u) and recovery (v). We considered positive,
asymmetric coupling functions (w) and a Heaviside firing rate (f).

There is a critical value of the parameter β (β∗ > 0) that appears in the equation for v, at
which the eigenvalues μ± of the linearization of the system around the rest state (u, v) = (0, 0)
change from real to complex. If 0 < β ≤ β∗, then μ± are real and both wave fronts and 1-
pulse traveling waves can exist. In [58] we explained why multipulse waves are not expected
in the real eigenvalue case. By contrast, when β > β∗ and μ± are complex, the range of
behavior is much richer. For example, our analysis provides evidence for the coexistence of
at least two distinct families of stable wave fronts. Because w is asymmetric, these solutions
propagate in opposite directions with different speeds and shapes. We have also found a
range of β > β∗ where two families of 1-pulse traveling wave solutions exist (Theorem 4.2).
Each family consists of infinitely many coexisting solutions, and solutions in the two families
propagate in opposite directions with different speeds and shapes. In addition, we study the
effects of variations of threshold θ on the dynamics of the system. As θ increases, the speeds
and amplitudes of the waves in each family decrease until a critical value θ∗ > 0 is reached
where solutions in the first family disappear. That is, left propagating 1-pulse waves cease to
exist when θ > θ∗. In addition there is a range θ > θ∗ where 2-pulse waves can propagate only
in one direction. This phenomenon does not occur when the coupling is a symmetric function.
To our knowledge this is the first description of such unidirectional wave propagation in this
class of nonlocal model.

There is a a second critical value β∗ > β∗ where (1.1) becomes bistable and a family of
spatially independent bulk oscillations comes into existence. These solutions influence the
global dynamics of (1.1). For example, when β ≥ β∗ a strong initial stimulus evolves into
uniformly synchronous oscillations which spread outward from the point of stimulus. However,
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a weak stimulus does not trigger synchronization and merely evolves into a 1-pulse traveling
wave. We also study how variations in θ affect the spread of synchrony. In particular, we let
κ > 0 be fixed and allow β > β∗ to be a function of the spatial coordinate x. We then raise θ
to a value above the critical value θ∗ so that waves propagate only to the right. In the resulting
unidirectional circuit we show how synchronization in one region can trigger synchronization
in a second, distant region. However, when synchronization is triggered in the second region,
it cannot spread to the first region and the first region remains at rest.

In all cases formidable technical difficulties preclude the completion of the final step of
existence proofs. It remains an open problem to extend our methods so that existence proofs
can be completed for a wider range of parameters, and also for more general coupling and
firing rate functions.

Our numerical experiments were performed when the firing rate is the Heaviside function.
To test the robustness of our results we have considered more general, sigmoidal-shaped firing
rates of the form

(7.1) f(u) =
1

1 +Ke−r(u−θ)
, K > 0, r > 0,

and

(7.2) f(u) = Ke
− r

(u−θ)2H(u− θ), K > 0, r > 0.

With f given by (7.1) or (7.2), our numerical results continue to hold when M is of moderate
size and R is large (e.g., K ≈ 1 and R ≥ 50). It remains an open problem to determine the
maximal range of parameters, firing rate, and coupling functions over which the numerical
results are valid.

Our theoretical results might have important implications for experimental and clinical
neurophysiology. In particular, our finding that the dynamics of (1.1) undergo qualitative tran-
sitions when μ± become complex, or θ exceeds θ∗, offers a plausible explanation of trailing-end
instabilities and wave speed variations observed in cortical experiments [35, 45, 46]. Further
explanation of observed variability in cortical waves might be provided by our findings that
the asymmetry in w leads to the coexistence of entire families of traveling waves which prop-
agate in opposite directions with different shapes and speeds. The unpredictable variation
in trailing ends and wave speeds could be caused by solutions switching from one member
of the family to another. A possible biophysical mechanism of such switching may involve a
variable neurohormonal concentration affecting neuronal recovery and strength of intercellular
connections [31].

Our observation that bifurcations of the system behavior occur at the critical values β = β∗
or θ = θ∗ also has important practical correlates. It predicts that by pushing the system above
or below one of these values one can qualitatively change the system behavior and obtain a
broad range of dynamical phenomena. One experimental example of such macrobehavior is an
evoked response, which might persist long after the stimulus [46]. Understanding the cellular
mechanisms responsible for such important functional changes in neuronal networks requires
further study.
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Abstract. This paper describes the underlying formulation and functionality of the newly developed software
program t̂c (“tc-hat”), to perform bifurcation analysis of systems in which continuous-in-time
dynamics are interrupted by discrete-in-time events, often referred to as hybrid dynamical systems.
Boundary-value-problem formulations corresponding to single- and two-parameter continuations of
periodic trajectories and selected associated codimension-one bifurcations in such systems are pre-
sented. Finally, the capabilities of the program are illustrated by performing bifurcation analysis of
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1. Introduction. A combination of theoretical and computational tools for bifurcation
analysis of dynamical systems offers distinct advantages to brute-force forward-time simula-
tion [29]. Such a combination enables prediction of behavior and response without the need
for a vast collection of simulations based at distinct initial conditions. More importantly, it
may offer an understanding of, and an underlying explanation for, changes in behavior and
response that are not available through simple simulation. Such analysis may further establish
the existence of structure in the response of a dynamical system that would not be accessible
to forward-time simulation. This may, in turn, enable a critical evaluation of the validity of
the output of computer simulations.

A comprehensive bifurcation analysis of a dynamical system seeks to establish the exis-
tence of characteristic classes of responses, such as equilibria or periodic responses. In each
case, this involves locating and tracking families of such responses under variations in system
parameters in a process known as continuation [2, 10, 12, 17, 18, 19, 28, 34, 37, 38, 40, 44].
The study of the robustness of particular system responses further emphasizes parameter
values where such families merge or terminate or where the stability characteristics of the
corresponding responses change. Here, characteristic normal forms may be used to establish
universal unfoldings of the associated bifurcation structure of response families [26]. In turn,
these unfoldings provide guidance for further continuation.
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Hybrid dynamical systems describe a class of mathematical models in which the continuous
evolution of continuous and discrete state variables is punctuated by discontinuous changes
in these variables and in the description of their future evolution. In mechanical engineering
applications, hybrid dynamical systems occur in typical models of impacts (corresponding
to instantaneous jumps in system velocities) or dry friction (including distinct conditions of
sustained stick or slip) [31, 33, 35, 54]. In models of electrical circuitry, hybrid systems repre-
sent idealized versions of nonlinear circuit elements, such as diodes and transistors. Similarly,
switched feedback strategies occur commonly in control applications. Finally, models of bio-
chemical systems, including those describing biomolecular reactions, often include chemical
switches and other triggered events, for example, the mitotic halving of the cell mass [51].

Hybrid dynamical systems exhibit bifurcations of the same fundamental nature as those
observed in smooth systems, including saddle-node, Hopf, and period-doubling bifurcations.
In contrast to smooth systems, however, hybrid dynamical systems also exhibit discontinuity-
induced bifurcations associated with changes in the hybrid time history of the reference re-
sponse. For example, grazing bifurcations, associated with the onset of zero-relative-velocity
contact in systems with impact-like discontinuities, are known to be associated with strong
instabilities and complicated sequences of postgrazing bifurcations.

Analytical tools for the study of discontinuity-induced bifurcations of periodic trajectories
include the discontinuity-mapping technique pioneered by Nordmark and collaborators [9, 14,
41, 42, 50]. This method introduces a unique correction to the prebifurcation description of
the local dynamics and an effective normal-form description of the postbifurcation behavior.
In particular, the technique allows one to resolve the degree of singularity associated with the
discontinuity-induced bifurcation and to establish the existence of nearby families of periodic
trajectories with distinct hybrid time histories.

A number of computational tools are available for bifurcation analysis of characteristic
classes of response, such as equilibria, periodic trajectories, homo- or heteroclinic trajectories
between equilibria and/or periodic trajectories, quasiperiodic trajectories on invariant tori,
and stable and unstable manifolds. These include general algebraic and two-point boundary-
value solvers for ordinary differential equations, such as AUTO (and specialized drivers, such
as homcont [4, 6] and slidecont [11]), matcont [13], and Sympercon [53]; boundary-
value solvers for delay differential equations, such as dde-biftool [20] and pdde-cont [48];
tools for large-scale systems, such as loca [45]; and implementations in MATLAB [5, 27].

The purpose of this paper is to establish a working definition of hybrid dynamical systems
that is amenable to bifurcation analysis and to the implementation of continuation algorithms
for periodic responses in such systems. In particular, selected boundary-value-problem formu-
lations are proposed that enable single- and two-parameter continuations of periodic responses
and some associated bifurcations. The formulation and its implementation in the Fortran-
based software application t̂c (“tc-hat”) provides a semiautomated tool for computational
bifurcation analysis of periodic responses that complements the functionality present in the
packages mentioned above.

The manuscript is organized as follows. Section 2 formulates a working definition of a
hybrid dynamical system in terms of its essential components and its solutions. Several fun-
damental boundary-value-problem formulations are given in section 3. Section 4 reviews the
general orthogonal collocation scheme employed in AUTO with particular emphasis on the
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modifications necessary to accommodate hybrid dynamics and presents some specific com-
ments on the implementation and usage of t̂c. A series of model examples is presented in
section 5 to illustrate the formalism. Finally, a concluding discussion in section 6 highlights a
number of desirable additions to the t̂c functionality that would enable a more comprehensive
study of the solution structure of hybrid dynamical systems. This section also summarizes
drawbacks in the present implementation that may affect computational accuracy and that
would be successfully addressed through a reimplementation of the boundary-value-problem
formulations in a stand-alone hybrid system continuation application.

2. Hybrid dynamical systems.

2.1. General setup. In this paper (cf. Thota [49] and Kang et al. [32]), a hybrid dynamical
system assumes the existence of a state space X of dimension n and an associated smooth
vector-valued function fm : X → X known as the vector field, indexed by a mode variable
m in some finite set of modes M. Moreover, denote by E a finite collection of events, and
associate to each element e ∈ E a pair πe = (m,m′) of elements of M, a smooth event function
he : X → R, and a smooth jump function ge : X → X. Then, a pair of modes (min,mout) and
a pair of states (xin,xout) are said to be connected by the event e if

(2.1) πe = (min,mout) ,

xin is a point on the event surface

{x | he (x) = 0, ∂xhe (x) · fmin
(x) ≤ 0} ,

i.e.,

(2.2) he (xin) = 0,

and

(2.3) ge (xin) = xout

(cf. Figure 1).

min mout

e
:
=

2
4 he

ge

3
5

(min ;mout)

a)

xin

xout

he = 0

ge

b)

Figure 1. The event e results in a change in mode from min to mout and a jump in state from xin to xout.

A solution of (or trajectory of) the corresponding dynamical system on a finite interval
of time [t0, tN ] is a sequence ξ = {xj : [tj−1, tj ] → X}N

j=1 of N smooth curves, an associated
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sequence of modes {mj}N
j=1, and an associated sequence of events {ej}N−1

j=1 , such that the
corresponding tangent vector at xj (t) equals fmj (xj (t)), i.e., in the case of X = R

n,

(2.4)
d

dt
xj (t) = fmj (xj (t)) ,

and such that, for j ∈ [1, N − 1], the pair of modes (mj,mj+1) and the pair of states
(xj (tj) ,xj+1 (tj)) are connected by the event ej , i.e.,

(2.5) hej (xj (tj)) = 0

and

(2.6) gej (xj (tj)) = xj+1 (tj) .

The concatenation Σ = {m1, e1,m2, e2, . . . ,mN−1, eN−1,mN} will be called the solution’s
signature (cf. [36]). It is clear that this definition encapsulates the case of a smooth dynamical
system, for which M consists of a single element and E is empty. A solution of a hybrid
dynamical system will be said to be simple in the case that the signature has only a single
element and hybrid otherwise.

2.2. The hybrid flow. Denote by Φm the flow function corresponding to the vector field
fm. Then, for j ∈ [1, N − 1] it follows that

(2.7) Φmj (xj (tj−1) , tj − tj−1) = xj (tj) ,

where Tj
def= tj − tj−1 is the time-of-flight of the jth segment. As in smooth systems, the

Jacobian ∂xΦm (x, t) is obtained as the solution to the variational initial-value problem

d

dt
∂xΦm (x, t) = ∂xfm (Φm (x, t)) · ∂xΦm (x, t) ,(2.8)

∂xΦm (x, 0) = Id,(2.9)

where Id denotes the n × n identity matrix. Moreover, differentiation of fm (Φm (x, t)) with
respect to time shows that

(2.10) fm (Φm (x, t)) = ∂xΦm (x, t) · fm (x)

and, in particular, that

(2.11) fmj (xj (tj)) = ∂xΦmj (xj (tj−1) , tj − tj−1) · fmj (xj (tj−1)) .

An event e with πe = (min,mout) is transversal if

(2.12) ∂xhe (xin) · fmin
(xin) < 0.

In this case, the function

(2.13) F (x, t) = he (Φmin (x, t))
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satisfies the conditions

(2.14) F (xin, 0) = he (xin) = 0

and

(2.15) ∂tF (xin, 0) = ∂xhe (xin) · fmin
(xin) < 0.

From the implicit function theorem it follows that there exists a unique smooth function τe (x)
for x ≈ xin, such that

τe (xin) = 0,(2.16)
he (Φmin

(x, τe (x))) ≡ 0,(2.17)

and

(2.18) ∂xτe (xin) = − ∂xhe (xin)
∂xhe (xin) · fmin

(xin)
.

For x ≈ xin the discontinuity mapping

(2.19) De (x) = Φmout (ge (Φmin (x, τe (x))) ,−τe (x))

satisfies the conditions

(2.20) De (xin) = ge (xin) = xout

and

(2.21) ∂xDe (xin) = ∂xge (xin) +
(fmout (xout) − ∂xge (xin) · fmin

(xin)) · ∂xhe (xin)
∂xhe (xin) · fmin

(xin)

(cf. [1, 39]). In particular,

(2.22) ∂xDe (xin) · fmin (xin) = fmout (xout) .

Now suppose that ξ denotes a solution sequence of length N with Tj �= 0 for all 1 ≤ j ≤ N
and an associated signature Σ with all transversal events. Then, for every x ≈ x1 (t0),
t̃0 ≈ t0, and t̃N ≈ tN , the above analysis establishes the existence of a sequence ξ̃ =

{
x̃j :[

t̃j−1, t̃j
]
→ X

}N

j=1
of N smooth curves with x̃1

(
t̃0
)

= x, such that conditions (2.4)–(2.6)
hold with x and t replaced by x̃ and t̃, respectively. In particular, it follows that x̃j

(
t̃j
)

=
Φmj

(
x̃j

(
t̃j−1

)
, t̃j − t̃j−1

)
. Associate with ξ and the signature Σ the hybrid flow

(2.23) Φξ,Σ
def= ΦmN (·, TN )◦DeN−1◦ΦmN−1 (·, TN−1)◦DeN−2◦· · ·◦Φm2 (·, T2)◦De1◦Φm1 (·, T1)

defined for x ≈ x1 (t0) and such that

(2.24) x̃N

(
t̃0 +

N∑
i=1

Ti

)
= Φξ,Σ

(
x̃1

(
t̃0
))
.
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To linear order it follows that

(2.25) x̃N

(
t̃0 +

N∑
i=1

Ti

)
− xN

(
t0 +

N∑
i=1

Ti

)
= ∂xΦξ,Σ (x1 (t0)) ·

(
x̃1

(
t̃0
)
− x1 (t0)

)
,

where
(2.26)

∂xΦξ,Σ (x1 (t0)) = ∂xΦmN
(xN (tN−1) , TN ) ·

1∏
j=N−1

∂xDej (xj (tj)) · ∂xΦmj (xj (tj−1) , Tj) .

Equations (2.11) and (2.22) imply that

(2.27) ∂xΦξ,Σ (x1 (t0)) · fm1 (x1 (t0)) = fmN
(xN (tN )) ,

i.e., that deviations in the initial condition along the initial vector field result in deviations of
the terminal point along the final vector field.

The above discussion pertains to the a posteriori characterization of a sequence of curves
and an associated signature as a solution to a hybrid dynamical system. The question of
how to generate such a solution a priori requires a definition of the forward dynamics of a
hybrid dynamical system. For this purpose, associate with each mode m ∈ M an event map
ιm : X → E, such that πιm(x) = (m, ·). Then, given a state vector xj (tj−1) and an associated
mode mj at t = tj−1, apply the flow Φmj until the earliest time t = tj that condition (2.5) is
satisfied for some event function he, for which πe = (mj , ·). Proceed to apply the event map
ιmj to yield ej = ιmj (xj (tj)), xj+1 (tj) = gej (xj (tj)), and mj+1, where πej = (mj,mj+1).
Append the curve segment xj (t) for t ∈ [tj−1, tj ] and mj and ej to the solution sequence ξ and
the signature Σ, respectively. Repeat this construction as many times as desired. Degenerate
situations may occur if two event functions are reached simultaneously, in which case priority
must be given on an ad hoc, domain-specific basis.

It is clear that there may not exist a solution with an initial condition x0 and a prescribed
signature. This, however, is of no concern to the above construction of the sequence ξ̃, since
this presupposes an existing trajectory with signature Σ and transversal intersections of the
corresponding event surfaces. On the other hand, it is certainly possible that trajectories may
exist with a given signature that could not occur during forward simulation of the hybrid
dynamical system. To ensure consistency between the a posteriori characterization of trajec-
tories and the a priori generation of such trajectories using the transition function, care and
domain-specific knowledge is required.

2.3. The hybrid Poincaré map. Suppose again that the event e with πe = (min,mout)
is transversal, such that he = 0 is a local Poincaré section for trajectory segments based
at nearby initial conditions and governed by the fmin

vector field. Then, for x ≈ xin, the
projection

(2.28) Pe (x) = Φmin (x, τe (x))

satisfies the conditions

he (Pe (x)) = 0,(2.29)
Pe (xin) = xin,(2.30)
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and

(2.31) ∂xPe (xin) = Id − fmin (xin) · ∂xhe (xin)
∂xhe (xin) · fmin (xin)

.

In particular,

(2.32) ∂xPe (xin) · fmin (xin) = 0.

Consider again the sequence ξ = {xj : [tj−1, tj] → X}N
j=1 of N smooth curves with

associated signature Σ and all transversal events. Associate with ξ and Σ the hybrid Poincaré
map
(2.33)
Pξ,Σ

def= geN−1◦PeN−1◦ΦmN−1 (·, TN−1)◦geN−2◦PeN−2◦ΦmN−2 (·, TN−2)◦· · ·◦ge1◦Pe1◦Φm1 (·, T1)

defined for x ≈ x1 (t0) and such that

(2.34) x̃N

(
t̃N−1

)
= Pξ,Σ

(
x̃1

(
t̃0
))

for a nearby sequence ξ̃ =
{
x̃j :

[
t̃j−1, t̃j

]
→ X

}N

j=1
of N smooth curves based at the point

x̃1

(
t̃0
)
≈ x1 (t0). To linear order it follows that

x̃N

(
t̃N−1

)
− xN (tN−1) = ∂xPξ,Σ (x1 (t0)) ·

(
x̃1

(
t̃0
)
− x1 (t0)

)
,

where

(2.35) ∂xPξ,Σ (x1 (t0)) =
1∏

j=N−1

∂xgej (xj (tj)) · ∂xPej (xj (tj)) · ∂xΦmj (xj (tj−1) , Tj) .

Equations (2.11) and (2.32) imply that

(2.36) ∂xPξ,Σ (x1 (t0)) · fm1 (x1 (t0)) = 0,

i.e., that deviations in the initial condition along the initial vector field result in zero deviations
of the outgoing state subsequent to the last event.

2.4. Periodic trajectories. A trajectory ξ of a hybrid dynamical system on a finite interval
[t0, t0 + T ] with signature Σ of length 2N − 1 will be said to be periodic with period T if
x1 (t0) = xN (t0 + T ) and mN = m1. The same need to check for consistency with forward
simulation as described in the general case naturally applies here. In particular, it is necessary
to establish that the terminal state on the Nth segment does not trigger a nontrivial event.

For a periodic trajectory, the Jacobian ∂xΦξ,Σ (x1 (t0)) is known as the monodromy matrix
and describes the local stability properties of the trajectory. In particular, its eigenvalues are
the celebrated Floquet multipliers, all of which (excluding the trivial eigenvalue at 1 with
eigenvector equal to the initial vector field; cf. (2.27)) must lie within the unit circle in the
complex plane to guarantee asymptotic orbital stability.
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From the general statement

(2.37) A ·B · v = λv ⇒ B ·A · B · v = λB · v,

it follows that if v is an eigenvector of ∂xΦξ,Σ (x1 (t0)) with eigenvalue λ, then

(2.38)

⎛
⎝ 1∏

j=N−1

∂xDej (xj (tj)) · ∂xΦmj (xj (tj−1) , Tj)

⎞
⎠ · v

is an eigenvector of the matrix

(2.39)

⎛
⎝ 1∏

j=N−1

∂xDej (xj (tj)) · ∂xΦmj (xj (tj−1) , Tj)

⎞
⎠ · ∂xΦm1 (xN (tN−1) , TN )

with the same eigenvalue. This suggests redefining a hybrid periodic trajectory with N seg-
ments as the collection of all cyclic permutations of the sequence ξ� = {xj : [tj−1, tj ] → X}N−1

j=1

of N − 1 smooth curves obtained by prepending the final segment to the initial segment and
relabeling the time partition. Specifically, associate with ξ� the sequence of modes {mj}N−1

j=1

and the sequence of transitions {ej}N−1
j=1 such that, in addition to the conditions prescribed

above for a general trajectory,

(2.40) πeN−1 = (mN−1,m1) ,

the (N − 1)th segment terminates at an intersection with the event surface{
x | heN−1

(x) = 0, ∂xheN−1
(x) · fmN−1

(x) ≤ 0
}
,

i.e.,

(2.41) heN−1
(xN−1 (tN−1)) = 0,

and the connectivity between the (N − 1)th and 1st segments is given by the function geN−1
,

i.e.,

(2.42) geN−1 (xN−1 (tN−1)) = x1 (t0) .

In this case, the cyclic signature equals the collection of all cyclic permutations of the sequence
Σ� = {Ij}N−1

j=1 consisting of pairs Ij = (mj, ej) or, equivalently, of triplets Ij =
(
fmj , hej ,gej

)
.

From this construction, it follows that the Floquet multipliers are the eigenvalues of the
matrix

(2.43) ∂xΦξ� ,Σ�
def=

1∏
j=N−1

∂xDej (xj (tj)) · ∂xΦmj (xj (tj−1) , Tj) .

For any event e with πe = (min,mout) it is straightforward to show that

(2.44) (∂xDe (xin) − ∂xge (xin) · ∂xPe (xin)) · v ‖ fmout (xout)
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for all v. Suppose, in particular, that v is an eigenvector of ∂xΦξ� ,Σ� with eigenvalue λ and
transversal to fm1 (x1 (t0)). Then, there exists a scalar α such that

(2.45) ∂xPξ� ,Σ� (x1 (t0)) · v = ∂xΦξ� ,Σ� · v + αfm1 (x1 (t0)) ,

and, consequently, λv + αfm1 (x1 (t0)) is an eigenvector of ∂xPξ� ,Σ� (x1 (t0)) with the
same eigenvalue. In addition, from (2.36) it follows that fm1 (x1 (t0)) is an eigenvector of
∂xPξ� ,Σ� (x1 (t0)) with eigenvalue 0. In the cyclic formulation, the Jacobian ∂xPξ� ,Σ� (x1 (t0))
thus yields an equivalent description of the local stability properties of the trajectory.

2.5. An example oscillator. To illustrate the formalism introduced above, consider a
mechanical system consisting of an oscillating mass m, termed the impactor, that is suspended
within a frame and whose motion relative to the frame is harmonically excited by an external
force (cf. Figure 2) with some known angular frequency ω and amplitudeA. Here, the clearance
between the frame and the impactor is designed so that collisions may occur with sufficient
displacement of the impactor relative to the frame. Interactions between the frame and the
impactor transmitted through the suspension are modeled with a combination of a linear
elastic element with stiffness k and a linear dissipative element with damping coefficient c.
Finally, collisions between the frame and the impactor are modeled as instantaneous impacts
that, through the imposition of conservation of momentum and Newton’s law of restitution,
result in discontinuous-in-time changes in the impactor’s velocity relative to the frame.

q

A cos!t

k

c

qc

m

Figure 2. The lateral motion of the impactor of mass m is harmonically excited with amplitude A and
angular frequency ω. Instantaneous changes occur in the impactor’s velocity q̇ when q reaches qc from below.

The dynamics of the impactor may be formulated as a hybrid dynamical system in the
following way. Denote by q the displacement of the impactor relative to the frame. The
impactor motion is then governed by the linear differential equation

(2.46) mq̈ + cq̇ + kq = A cosωt

as long as q ≤ qc and such that if

(2.47) lim
t→tc−

q (t) = qc, lim
t→tc−

q̇ (t) ≥ 0

for some time t = tc, then

(2.48) lim
t→tc+

q (t) = qc, lim
t→tc+

q̇ (t) = −e lim
t→tc−

q̇ (t) ,
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where e is the coefficient of restitution. We omit from consideration situations in which
the impactor remains in contact with the frame throughout a solution segment or solution
signatures with infinite length.

Let

(2.49) x =

⎛
⎝ x1

x2

x3

⎞
⎠ def=

⎛
⎝ q

q̇
ωt mod 2π

⎞
⎠ ∈ R

2 × S
1

represent the state of the impactor. The smooth motion of the impactor is then governed by
the vector field

(2.50) fsmooth (x) =

⎛
⎝ x2

1
m (A cos x3 − cx2 − kx1)

ω

⎞
⎠

and impacts between the impactor and the frame occur when

(2.51) himpact (x) def= qc − x1 = 0,

resulting in a discontinuous jump in state given by the state jump function

(2.52) gimpact (x) =

⎛
⎝ x1

−ex2

x3

⎞
⎠ .

Moreover, a discontinuous jump in the phase coordinate x3 occurs when

(2.53) hphase (x) def= 2π − x3 = 0

and corresponds to the state jump function

(2.54) gphase (x) =

⎛
⎝ x1

x2

x3 − 2π

⎞
⎠ .

Finally, for purposes of detection of grazing events with the event surface corresponding to
himpact, consider the event function

(2.55) hturning (x) def= x2

and the associated state jump function

(2.56) gidentity (x) = x

(cf. Figure 3).
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x3

hphase = 0

x2

x1

himpact = 0

hturning = 0

Figure 3. A state-space schematic of the event surfaces describing the dynamics of the linear impact
oscillator.

Let M = {smooth} and E = {impact, phase, turning}, such that fsmooth = fsmooth,

impact
.=

⎡
⎣ (smooth, smooth)

himpact

gimpact

⎤
⎦ ,(2.57)

phase
.=

⎡
⎣ (smooth, smooth)

hphase

gphase

⎤
⎦ ,(2.58)

and

(2.59) turning
.=

⎡
⎣ (smooth, smooth)

hturning

gidentity

⎤
⎦ ,

corresponding to the event graph in Figure 4 showing the relationship between a mode and a
given vector field as well as the event function and jump function associated with a given event.
For example, e = impact connects a solution segment governed by the vector field fsmooth and
terminating at xin on the event surface corresponding to himpact, to the next solution segment
based at xout and again governed by the vector field fsmooth, such that xout = gimpact (xin).
In the case of periodic trajectories, the dynamics of the hybrid system is captured by three
distinct values of the index vector, namely,

I1 = (smooth, impact) ,(2.60)
I2 = (smooth, phase) ,(2.61)
I3 = (smooth, turning) .(2.62)
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impact phase

smooth

turning

Figure 4. Event graph corresponding to the linear impact oscillator.

In particular, a solution will be termed impacting if its signature contains I1 and nonimpacting
otherwise.

Consider, as an alternative, the state vector

(2.63) x̃ =

⎛
⎜⎜⎝

x̃1

x̃2

x̃3

x̃4

⎞
⎟⎟⎠ ∈ R

4

and the corresponding smooth vector field

(2.64) f̃smooth (x̃) =

⎛
⎜⎜⎜⎝

x̃2
1
m (Ax̃4 − cx̃2 − kx̃1)

x̃3 + ωx̃4 − x̃3

(
x̃2

3 + x̃2
4

)
x̃4 − ωx̃3 − x̃4

(
x̃2

3 + x̃2
4

)

⎞
⎟⎟⎟⎠ ,

event functions

h̃impact (x̃) = qc − x̃1,(2.65)

h̃phase (x̃) = −x̃3,(2.66)

h̃turning (x̃) = x̃2,(2.67)

and state jump functions

g̃impact (x̃) =

⎛
⎜⎜⎝

x̃1

−ex̃2

x̃3

x̃4

⎞
⎟⎟⎠ ,(2.68)

g̃identity (x̃) = x̃.(2.69)

It is straightforward to show that the surface x̃2
3 + x̃2

4 − 1 = 0 is invariant and globally
attractive under the flow of the vector field f̃smooth. In particular, it can be easily seen that
x̃3 = sin (ωt+ θ0) and x̃4 = cos (ωt+ θ0) on this surface.
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Let M = {smooth} and E = {impact, phase, turning}, such that f̃smooth = f̃smooth,

impact
.=

⎡
⎣ (smooth, smooth)

h̃impact

g̃impact

⎤
⎦ ,(2.70)

phase
.=

⎡
⎣ (smooth, smooth)

h̃phase

g̃identity

⎤
⎦ ,(2.71)

and

(2.72) turning
.=

⎡
⎣ (smooth, smooth)

h̃turning

g̃identity

⎤
⎦

(cf. the event graph in Figure 4). In the case of periodic trajectories, the dynamics of the
hybrid system is again captured by three distinct values of the index vector, namely,

I1 = (smooth, impact) ,(2.73)
I2 = (smooth, phase) ,(2.74)
I3 = (smooth, turning) .(2.75)

There is a one-to-one relationship between solutions to this hybrid dynamical system on
x̃2

3 + x̃2
4−1 = 0 with θ0 = 0 and solutions to the original dynamical system. Solution segments

for which x̃2
3 + x̃2

4 − 1 �= 0, however, have no physical meaning. The introduction of the state
variables x̃3 and x̃4 mimics the approach enabling the continuation of periodic trajectories
of harmonically forced smooth dynamical systems in AUTO 97 effectively embedding S

1 as
a normally hyperbolic, attracting, invariant manifold of a smooth dynamical system in R

2.
Within the hybrid dynamical system formulation considered here, however, it is possible to
consider an intrinsic parametrization in terms of the phase x3, avoiding the need to artifi-
cially enlarge state space. This is particularly useful in the case of nonharmonic periodic or
quasiperiodic forcing.

3. Boundary-value problems.

3.1. Periodic trajectories. The discussion below is focused on the task of finding a tra-
jectory of a hybrid dynamical system with a prescribed signature satisfying the auxiliary
boundary conditions

(3.1) g (x1 (t0) ,xN (tN )) = 0

for some function g and any number of additional equations (typically generalized integral
equations) that guarantee well-posedness.

As an example, in the case of a periodic trajectory of a hybrid dynamical system with a
prescribed signature of length 2N − 1, the auxiliary boundary condition corresponds to the
connectivity condition

(3.2) x1 (t0) − xN (tN ) = 0.
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Together with an additional scalar condition, for example, the celebrated phase integral con-
dition

(3.3)
N∑

j=1

∫ tj

tj−1

x (t)T · ẋ∗ (t) dt = 0

for some reference trajectory x∗ (t), this yields a well-posed formulation for locating such a pe-
riodic trajectory (away from singularities). No such auxiliary boundary or integral conditions
are necessary in the cyclic formulation in section 2.4.

The boundary-value formulation imposes only conditions of equality, e.g., the termination
of trajectory segments on the zero-level surfaces of the corresponding event functions. It does
not, however, automatically ensure that the event function is locally decreasing along the
trajectory segment at the termination point. Solutions to the boundary-value formulation
must therefore be postprocessed to agree with this condition.

3.2. Grazing/sliding bifurcations. Suppose that, for some value of a free parameter, a
trajectory has been found that achieves approximate grazing contact at a point x∗ along the
jth segment with an event surface corresponding to the event function hD, such that

(3.4) hP (x∗) = 0

and (without loss of generality)

(3.5) ∂xhP (x∗) · fIj (x∗)

is distinctly negative, where

(3.6) hP (x) def= ∂xhD (x) · fIj (x) .

Then replace the jth segment with mode mj, and the jth event ej with two segments with
modes mj′ = mj′′ = mj and terminating events ej′ and ej′′ , such that πej′ = (mj,mj), πej′′ =
(mj,mj+1), hej′ = hP , hej′′ = hej , gej′′ = gej , and gej′ is the identity. The auxiliary boundary
condition

(3.7) hD (xj (tj)) = 0

serves to locate the parameter value and the trajectory corresponding to actual grazing con-
tact.

The imposition of an additional boundary condition may also be used to detect codimen-
sion-one bifurcations in Filippov systems in which a trajectory segment terminates on the
boundary of the sliding region [14]. Here, the event surface, termed the switching manifold,
corresponding to the event function hswitching locally separates two distinct regions of state
space with vector fields f> when hswitching > 0 and f< when hswitching < 0. The sliding region
is the subset on the switching manifold where

(3.8) ∂xhswitching · f< − ∂xhswitching · f> > 0
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and

(3.9) −1 ≤ hsliding
def= −∂xhswitching · f> + ∂xhswitching · f<

∂xhswitching · f< − ∂xhswitching · f>
≤ 1.

The parameter values corresponding to the termination of the jth trajectory segment on the
boundary of the sliding region may then be obtained using either of the auxiliary boundary
conditions

(3.10) hsliding (xj (tj)) = 1

and

(3.11) hsliding (xj (tj)) = −1.

3.3. Limit points. Limit points in the single-parameter continuation of boundary-value
problems occur when the component of the tangent vector to the corresponding solution
branch in the direction of the bifurcation parameter changes sign. Such limit points may be
located by appending to the existing equations, the equations for the tangent vector to the
trajectory branch, and imposing the condition that this component vanish. This functionality
is standard in AUTO 97.

Specifically, let μ (s) and ξ (s) represent the bifurcation parameter and a one-parameter
family of solutions of a hybrid system with identical signature, all transversal intersections,
and tj (s) − tj−1 (s) �= 0 for 1 ≤ j ≤ N , such that μ′ (0) = 0. In particular, for j ∈ [1, N − 1],

∂txj (t, s) − fmj (xj (t, s) , μ (s)) = 0

for t ∈ [tj−1 (s) , tj (s)] and

hej (xj (tj (s) , s) , μ (s)) = 0,(3.12)
xj+1 (tj (s) , s) − gej (xj (tj (s) , s) , μ (s)) = 0.(3.13)

Differentiation with respect to s and letting s = 0 then yield

∂t∂sx
lp
j (t) − ∂xfmj

(
xlp

j (t) , μlp
)
· ∂sx

lp
j (t) = 0

and

∂xhej

(
xlp

j

(
tlpj

)
, μlp
)
·
[
∂tx

lp
j

(
tlpj

)
tlp′j + ∂sx

lp
j

(
tlpj

)]
= 0,(3.14)

∂tx
lp
j+1

(
tlpj

)
tlp′j + ∂sx

lp
j+1

(
tlpj

)
− ∂xgej

(
xlp

j

(
tlpj

)
, μlp
)
·
[
∂tx

lp
j

(
tlpj

)
tlp′j + ∂sx

lp
j

(
tlpj

)]
= 0,

(3.15)

where the superscript lp refers to limit point values at s = 0. Solving the second equation for
tlp′j and substituting into the third equation then yields

(3.16) ∂sx
lp
j+1

(
tlpj

)
− ∂xDej

(
xlp

j

(
tlpj

)
, μlp
)
· ∂sx

lp
j

(
tlpj

)
= 0.
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It follows that, on each segment, ∂sx
lp
j (t) is a solution to the variational equation that con-

nects to the solution on the subsequent segment by premultiplication with the Jacobian
∂xDej

(
xlp

j

(
tlpj
)
, μlp
)

of the corresponding discontinuity mapping.
In the case of periodic trajectories of a hybrid dynamical system with a prescribed signa-

ture of length 2N−1, limit points correspond to saddle-node bifurcations, for which ∂xΦξ� ,Σ�
has an eigenvector with eigenvalue 1 distinct from the initial vector field. To locate a saddle-
node bifurcation point, consider an augmented hybrid dynamical system with state space
X̃ = X × X, mode set M̃ = M, and event set Ẽ = E. Let the associated vector fields
f̃m : X̃ → X̃ be given by

(3.17) f̃m (x̃) =
(

fm (u)
fm,x (u) · v + βfm (u)

)
, x̃ =

(
u
v

)
,

where β is an auxiliary free parameter whose value is subsequently found to equal 0. Moreover,
let h̃e (x̃) = he (u) and

(3.18) g̃e (x̃) =
(

ge (u)
∂xDe (u) · v

)
.

Together with the auxiliary boundary conditions

u1 (t0) − um (tm) = 0,(3.19)
v1 (t0) − vm (tm) = 0(3.20)

and the integral conditions

N∑
j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1,(3.21)

N∑
j=1

∫ tj

tj−1

vj (t)T · fmj (uj (t)) dt = 0,(3.22)

this yields a well-posed formulation for locating the periodic trajectory and the corresponding
eigenvector of ∂xΦξ� ,Σ� . Here, the second integral condition ensures that the eigenvector is
distinct from the initial vector field.

As will be discussed further below, the formulation above mimics the implementation of
t̂c and exploits existing features of the boundary-value problem solver for smooth dynamical
systems in AUTO 97. An alternative, and somewhat simpler, formulation is afforded using
the cyclic formulation and imposing the condition that ∂xPξ� ,Σ� (x1 (t0)) has an eigenvector
with eigenvalue 1. For this purpose, consider again an augmented hybrid dynamical system
with state space X̃ = X × X, mode set M̃ = M, and event set Ẽ = E. Let the associated
vector fields f̃m : X̃ → X̃ be given by

(3.23) f̃m (x̃) =
(

fm (u)
fm,x (u) · v

)
, x̃ =

(
u
v

)
.
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Moreover, let h̃e (x̃) = he (u) and

(3.24) g̃e (x̃) =
(

ge (u)
∂xge (u) · ∂xPe (u) · v

)
.

Then, the cyclic formulation and the integral condition

(3.25)
N−1∑
j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1

serve to locate the parameter values and the trajectory corresponding to the saddle-node
bifurcation point. As fm1 (x1 (t0)) corresponds to an eigenvalue 0 of ∂xPξ� ,Σ� (x1 (t0)), there
is no longer a need for the additional integral condition or the auxiliary parameter β.

3.4. Period-doubling bifurcations. Finally, consider the task of finding a periodic tra-
jectory of a hybrid dynamical system with a prescribed signature in the presence of two free
parameters, such that ∂xΦξ� ,Σ� has an eigenvector with eigenvalue −1 corresponding to a
period-doubling bifurcation. For this purpose, consider the augmented hybrid dynamical sys-
tem with state space X̃ = X × X, mode set M̃ = M, event set Ẽ = E, and associated vector
fields f̃m : X̃ → X̃, where

(3.26) f̃m (x̃) =
(

fm (u)
fm,x (u) · v

)
, x̃ =

(
u
v

)
.

Moreover, let h̃e (x̃) = he (u) and

(3.27) g̃e (x̃) =
(

ge (u)
∂xDe (u) · v

)
.

Then, the auxiliary boundary conditions

u1 (t0) − um (tm) = 0,(3.28)
v1 (t0) + vm (tm) = 0(3.29)

and the integral condition

(3.30)
m∑

j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1

serve to locate the parameter values and the trajectory corresponding to the period-doubling
bifurcation point.

Alternatively, let

(3.31) g̃e (x̃) =
(

ge (u)
κ∂xge (u) · ∂xPe (u) · v

)
,
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where κ = −1 when e = eN−1 and κ = 1 otherwise. In this case, the cyclic formulation and
the integral condition

(3.32)
N−1∑
j=1

∫ tj

tj−1

‖vj (t)‖2 dt = 1

serve to locate the parameter values and the trajectory, for which ∂xPξ� ,Σ� (x1 (t0)) has an
eigenvector with eigenvalue −1.

4. T̂C (“TC-HAT”).

4.1. Functionality. t̂c (“tc-hat”) is a novel Fortran-based software application devel-
oped by the authors that encompasses a set of basic tools for the bifurcation analysis of peri-
odic trajectories of hybrid dynamical systems. In this regard, t̂c was inspired by, and closely
resembles in general code implementation, the existing software application slidecont [11],
developed by Fabio Dercole and Yuri Kuznetsov for the study of hybrid dynamical systems
with sliding dynamics but no state-space jumps. As detailed below, t̂c replaces and improves
on some of the functionality of slidecont but suffers, in other respects, from the same com-
putational limitations regarding problem discretization. t̂c (just like slidecont) functions
as a driver to a modified version of AUTO 97 [16], a Fortran-based software application for
the bifurcation analysis of smooth dynamical systems. In particular, t̂c exploits AUTO 97’s
general boundary-value-problem formulation to locate and continue periodic trajectories of
hybrid dynamical systems and a selected set of codimension-one bifurcation points under
variations in system parameters.

In its current form, t̂c can perform the following specific tasks:
1. Single-parameter continuation of multisegment periodic trajectories of a hybrid dy-

namical system with a given signature.
2. Two-parameter continuation of multisegment periodic trajectories of a hybrid dynam-

ical system with a given signature and with grazing incidence at the terminal point of
the first segment with some event surface.

3. Two-parameter continuation of multisegment periodic trajectories of a hybrid dynam-
ical system with a given signature and with the terminal point of the first segment
intersecting a switching manifold in a Filippov system on the boundary of the sliding
region.

4. Two-parameter continuation of multisegment periodic trajectories of a hybrid dynami-
cal system with a given signature and corresponding to saddle-node or period-doubling
bifurcation points.

slidecont is able only to partially perform the above tasks for periodic trajectories with
at most three distinct segments. In particular, slidecont is not able to handle nontrivial
state jump functions or characterize the Lyapunov stability (Floquet multipliers) of periodic
trajectories. In the standard implementation of AUTO 97, the Lyapunov stability properties
of a periodic orbit are determined through a computation of the eigenvalues of the Jaco-
bian ∂xΦ (x0, T ), where x0 is a point on the periodic orbit and T is the period. Although
slidecont relies on a multisegment formulation similar to that described for t̂c (see below),
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it does not account for the corrections to the flow Jacobian imposed by the piecewise na-
ture of the solution trajectory as in (2.21). In contrast, t̂c ships with a modified version of
AUTO 97 that includes these corrections and, consequently, is able to accurately characterize
the linearized stability properties of periodic trajectories of hybrid dynamical systems.

The ability to correctly compute the eigenvalues of ∂xΦξ� ,Σ� implies that t̂c (with the
help of AUTO 97) can detect bifurcations associated with the crossing of the unit circle of one
or several eigenvalues, for example, saddle-node and period-doubling bifurcations. These form
the starting points for the two-parameter continuations of task 4 which are implemented as
new boundary-value formulations in the modified version of AUTO 97. Note that slidecont

is able to continue saddle-node bifurcations (for hybrid trajectories of up to three segments
and without jumps) as per the generic formulation for limit points outlined above.

Similarly, t̂c (and slidecont for hybrid trajectories of up to three segments and without
jumps) may be employed to detect the grazing contact of a trajectory segment with a properly
identified event surface so as to enable subsequent two-parameter continuation as in task 2. In
this case, it is typically necessary to cyclically reorder the trajectory segments in the grazing
trajectory as well as to modify its signature so that grazing contact is imposed on the first
trajectory segment and so that all termination points correspond to transversal intersections.
In the continuation of periodic trajectories that graze an event surface corresponding to a
mechanical-impact-like discontinuity, t̂c is also able to detect and locate a selected set of
characteristic codimension-two grazing bifurcations that serve as organizing centers for a va-
riety of codimension-one bifurcation curves such as saddle-node, period-doubling, and grazing
bifurcations (cf. Thota, Zhao, and Dankowicz [50]).

Finally, t̂c (and slidecont for hybrid trajectories of up to three segments and without
jumps) may be employed to detect the crossing of the terminal point of a trajectory segment
terminating on the switching manifold in a Filippov system with the boundary of the corre-
sponding sliding region. Two-parameter continuation as in task 3 is then possible subsequent
to reordering the trajectory segments so that the additional boundary condition is imposed
on the first segment.

4.2. Discretization. Piecewise polynomial collocation methods provide an accurate and
highly adaptive procedure for computing approximate solutions of boundary-value problems
involving differential equations. In this method, approximants of the form of piecewise poly-
nomials of some predetermined order are sought that satisfy the given differential equation at
a discrete set of points in the interval of definition, the collocation points. The robustness of
this method has made it an indisputable candidate in solving some of the difficult problems
in differential equations [16, 22] (see also [3, 21]).

Following [16], denote by x (t) a solution on the interval [0, 1] of the differential equation

(4.1)
dx

dt
= f (x)

for some vector field f . Introduce the partition

(4.2) 0 = t0 < · · · < tj−1 < · · · < tj−i/m = tj −
i

m
Δj < · · · < tj < · · · < tN = 1,

where
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(4.3) Δj = tj − tj−1,

and suppose that the sequence x0, . . . ,xj−1, . . . ,xj−i/m, . . . ,xj , . . . ,xN approximates the val-
ues of x (t) on this partition for some integers N and m, j = 1, . . . , N , and i = 0, . . . ,m. On
each interval [tj−1, tj ], define the Lagrange polynomials

(4.4) lj,i(t) =
m∏

k=0, k �=i

t− tj−k/m

tj−i/m − tj−k/m
, i = 0, . . . ,m and j = 1, . . . , N,

such that lj,i
(
tj−i/m

)
= 1 and lj,i

(
tj−k/m

)
= 0 for k �= i. Then, the piecewise polynomial

function p (t), such that

(4.5) p (t) =
m∑

i=0

lj,i(t)xj−i/m

for t ∈ [tj−1, tj ], interpolates the values xj−i/m for j = 1, . . . , N and i = 0, . . . ,m. Now,
consider the mth order Legendre polynomial on the interval [0, 1] and denote its roots by zi,
i = 1, . . . ,m. For each interval [tj−1, tj ], define zj,i as

(4.6) zj,i = tj−1 + ziΔj.

Then, an approximation to the solution to the original differential equation is obtained by
seeking numerical values for the mN + 1 discrete approximants xj−i/m for j = 1, . . . , N ,
i = 1, . . . ,m, and xN so that p satisfies the system of mN vector-valued equations

(4.7) p′ (zj,i) − f (p (zj,i)) = 0

for j = 1, . . . , N and i = 1, . . . ,m and so that the associated boundary conditions are satisfied
by x0 and xN .

Suppose, for example, that n = m = N = 2. In this case, the linearization of (4.7) takes
the form

(4.8)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where •’s denote nontrivial elements and zero elements have been omitted. Condensation
of parameters and a subsequent step of nested dissection applied to an uncoupled subset of
entries (see [16]) then yield a reduced matrix of the form



TC-HAT 1303

(4.9)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • •
• • • • •
• • • •
• • •

• • • • • •
• • • • •

• • • •
• • • •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, denote by P0 and P1 the 2 × 2 block matrices at the lower left and lower right,
respectively, of this reduced matrix. It follows that, when evaluated on the converged solution,

(4.10) P0 · Δx0 + P1 · Δx2 = 0,

i.e.,

(4.11) Δx2 = − (P1)
−1 · P0 · Δx0.

Hence, the matrix − (P1)−1 · P0 gives the lowest-order relationship between perturbations in
the initial point x0 and deviations in the corresponding terminal point x2.

For a multisegment trajectory of a hybrid dynamical system with solution sequence ξ and
signature Σ, the above formalism applies to each solution segment following the application
of the time transformation

(4.12) t → tj−1 + tTj ⇒ fmj → 1
Tj

fmj

and the introduction of internal boundary conditions associated with the event sequence con-
tained in Σ. As described in previous sections, these couple the terminal point on the (j−1)st
segment with the initial point on the jth segment and constrain the numerical values of the
unknown times-of-flight Tj . As the coupling between distinct segments is imposed only on
the boundary points, each segment may be treated independently from every other segment
when formulating the piecewise polynomial approximant and the associated discretized dif-
ferential equations. It follows that the sequence of matrix manipulations described previously
can be applied for each segment independently of each other segment. Thus, the Jacobian
∂xΦIj (xj (tj−1) , tj − tj−1) of the flow function that describes the sensitivity of the terminal
point xj (tj) of the jth segment to changes in the initial point xj (tj−1) may again be obtained
from the corresponding product − (P1)−1 · P0.

A severely constrained implementation of the discretization scheme for a multisegment
trajectory is afforded by the application of the same time partition to each solution segment.
This fails to accommodate segment-specific error control and meshing algorithms, for example,
in the case of solution segments with distinct curve characteristics. Instead, it corresponds
to replacing the multipoint boundary-value problem with a regular two-point boundary-value
problem for a single-segment trajectory of an augmented dynamical system with vector field

(4.13) f =

⎛
⎜⎝

1
T1

fm1

...
1

TN
fmN

⎞
⎟⎠
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and solution

(4.14) x (t) =

⎛
⎜⎝ x1 (t0 + tT1)

...
xN (tN−1 + tTN )

⎞
⎟⎠ .

This also corresponds to the current implementation of t̂c and slidecont as these both rely
on the two-point boundary-value solver contained in AUTO 97.

Suppose again that n = m = N = 2. Then, the linearization of (4.7) in the case of a
two-segment trajectory takes the form

(4.15)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • •
• • • • • •

� � � � � �
� � � � � �

• • • • • •
• • • • • •

� � � � � �
� � � � � �

• • • • • •
• • • • • •

� � � � � �
� � � � � �

• • • • • •
• • • • • •

� � � � � �
� � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where •’s and �’s denote nontrivial elements for the first and second segments, respectively,
and zero elements have been omitted. Condensation of parameters and nested dissection as
implemented in AUTO 97 then yields a reduced matrix of the form

(4.16)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • •
• • • • •

� � � � � �
� � � � �

• • • •
• • •

� � � �
� � �

• • • • • •
• • • • •

� � � � � �
� � � � �

• • • •
• • • •

� � � �
� � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In particular, denote by P0 and P1 the 4×4 block-diagonal matrices at the lower left and lower
right, respectively, of this reduced matrix. It again follows that the matrix − (P1)−1 ·P0 gives
the lowest-order relationship between perturbations in the initial point x0 and deviations in
the corresponding terminal point x2 independently for each segment.

4.3. Usage. This section focuses on those aspects of t̂c that distinguish it from AUTO 97.
The section thus assumes some prior experience with the latter program. For further details
on t̂c, see [49].

Essential information regarding the hybrid dynamical system is provided to t̂c by the
user in the <name>.f file.1 This file contains the vector fields fI, the event functions hI, and
the state jump functions gI and, typically, their first (and, possibly, second) derivatives with
respect to state variables and parameters. In addition, user-specific test functions may be
included for monitoring during continuation. These may include event functions describing
event surfaces with which the detection and two-parameter continuation of grazing incidence is
desired or event functions describing the boundary of a sliding region on a switching manifold
in a Filippov system for detection and continuation of selected sliding bifurcations.

Event functions corresponding to an identity state jump function may be introduced at
liberty along a given trajectory of a hybrid dynamical system. This can be used to represent
a trajectory by the value of some state variable on an event surface (cf. a Poincaré section) or
to enforce a more accurate detection of grazing incidence (the latter necessarily occurring at a
local extremum of the corresponding event function). In some instances, such as those where
grazing occurs with an event surface at a point corresponding to a nontrivial jump in state
space, an alternative signature may be intentionally employed to enable accurate detection
and continuation of a grazing bifurcation curve (see below).

As with AUTO 97, continuation of periodic trajectories in t̂c may be initialized with
an approximate solution obtained by alternative means (for example, forward simulation) or
from a previous run of t̂c. In contrast to the continuation of periodic trajectories in smooth
systems, however, discontinuity-induced codimension-one bifurcations in hybrid dynamical
systems are typically accompanied by a change in segment structure and length of signa-
ture. This necessitates an understanding of the trajectory branching associated with a given
discontinuity-induced bifurcation and a subsequent reinitialization with a modified segment
structure and signature. This may also be desirable prior to detecting a discontinuity-induced
bifurcation as suggested above.

In the event that the initial solution trajectory is provided by the user, the time histories
of the state variables for one complete time period of the periodic trajectory are contained
in the <name>.dat file. As described in the previous section, each time interval [tj−1, tj ]
is discretized by a segment-independent partition of the interval [0, 1] (contained in the first
column of the <name>.dat file) scaled to the length of the segment. The time history of the
ith state variable along the jth segment is then contained in the (1 +n (j − 1) + i)th column,
where n is the state-space dimension of the hybrid dynamical system.

In the event that the initial solution trajectory is obtained from a previous continuation,
the corresponding data is contained in a q.<name> file and labeled so as to enable further

1Here, <name> corresponds to the user-specified name of a file.
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continuation. In the event that resegmentation is necessary, for example, when a discontinuity-
induced bifurcation is associated with the birth of a branch of periodic trajectories with an
additional segment, data in the q.<name> file may be extracted manually and modified
externally as discussed in the previous paragraph.

To uniquely identify the continuation task to be undertaken, a number of numerical flags
and continuation-specific parameter values must be provided by the user in the gc.<name>
file. These include the state-space dimension of the hybrid dynamical system, the desired
signature, the system parameters that will be allowed to vary during continuation (this list
includes the segment times-of-flight), a segment-dependent list of event functions for which
the detection of zero-crossings is desirable, and additional boundary conditions associated
with continuation of grazing or sliding bifurcation curves.

5. Numerical examples.

5.1. A linear impact oscillator. To illustrate the methodology and functionality of t̂c

consider the first hybrid dynamical system discussed in section 2.5. Figure 5 shows a nonim-
pacting periodic trajectory of the hybrid dynamical system for m = 1, c = 0.1, k = 1, qc = 1,
e = 0.8, ω = 2.0, and A = 3.0 with cyclic signature {I3, I2}. A segment of the correspond-
ing branch of periodic trajectories under variations in ω with identical signature is shown
in the left panel of Figure 6. Here, trajectories for which maxx1 > 1 are inconsistent with
the forward dynamics conditions and must be discarded. For ω = 1.998 one finds a periodic
trajectory that achieves grazing incidence with the event surface corresponding to himpact at
a point x∗ =

(
1.0 0 3.075

)T . A two-parameter continuation of the corresponding grazing
bifurcation curve under simultaneous variations in ω and A is shown in the right panel of
Figure 6.

-1.2 1.2
-2.2

2.2

x1

x2

I3

I2

Figure 5. A nonimpacting periodic trajectory of the linear oscillator for ω = 2.0 and A = 3.0. Here and in
the later figures, a dot on a periodic trajectory indicates the terminal point corresponding to a segment of that
trajectory.

Using the method of discontinuity mappings [8], it is possible to show that a unique branch
of period-one impacting trajectories with a single impact per period emanates from the grazing
curve under variations in A for all values of ω. To map out such a branch requires replacing the
periodic trajectory with the equivalent trajectory with cyclic signature {I1, I2}. The result of
such continuation for two distinct values of ω are shown in Figures 7 and 8. In each case, the
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Grazing curve
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Figure 6. Left panel: Diagram indicating the continuation of a nonimpacting periodic trajectory correspond-
ing to the linear impact oscillator. Here, t̂c detects the parameter value corresponding to a grazing incidence
with the event surface himpact = 0 that can be used as a starting solution to obtain a grazing curve. Right
panel: Grazing curve in the (A–ω) space obtained using t̂c. The o’s on the grazing curve correspond to the
codimension-two bifurcation points, in particular to impact oscillators and detected by t̂c, that form organizing
centers for a variety of codimension-one bifurcation curves [50].
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x1
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Figure 7. Left panel: Bifurcation diagram indicating the continuation of an impacting periodic orbit as
a function of A with a grazing periodic orbit as a starting solution for ω = 2.0209 and A = 3.0909. This
impacting periodic trajectory experiences a period-doubling bifurcation at A = 3.0951 resulting in a stable
impacting trajectory. Right panel: Impacting periodic trajectories corresponding to the grazing incidence (a)
and period-doubling bifurcation (b) points from the left panel.

right panel shows two selected impacting periodic trajectories corresponding to the grazing
and period-doubling bifurcation points and the grazing and saddle-node bifurcation points,
respectively.

Figure 9 shows the results of two-parameter continuation of the saddle-node and period-
doubling bifurcation curves under simultaneous variations in ω and A along with a segment
of the grazing bifurcation curve. The former curves terminate at a point (ω = 1.9975 and
A = 2.9966) of quadratic contact with the grazing curve corresponding to a codimension-two
grazing bifurcation point [23, 24, 30, 50].

In the case of the single-parameter continuation of impacting trajectories with cyclic signa-
ture {I1, I2} from the grazing bifurcation curve considered above, the direction of continuation
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Figure 8. Left panel: Bifurcation diagram indicating the continuation of an impacting periodic trajectory
as a function of A with a grazing periodic trajectory as a starting solution for ω = 1.9086 and A = 2.6498.
This impacting periodic trajectory experiences a saddle-node bifurcation at A = 2.1662 resulting in a stable
impacting trajectory. Right panel: Impacting periodic trajectories corresponding to the grazing incidence (a)
and saddle-node bifurcation points (b) from the left panel.

1.8 2.15
2

3.8

!

Grazing curve
A

Saddle-node curve

Period-doubling curve

COD-2 point

Figure 9. Diagram depicting the two-parameter continuation of the grazing, saddle-node, and period-
doubling bifurcation curves corresponding to impacting periodic trajectories. The saddle-node and period-
doubling curves terminate at a joint tangential intersection with the grazing bifurcation curve.

decides the validity of the solution trajectory obtained. As an example, continuation may re-
sult in convergence to a periodic trajectory similar to that shown in Figure 10. While this is
a valid solution to the associated boundary-value problem, it is inconsistent with the require-
ment that event functions be locally decreasing along the corresponding trajectory segments
at the corresponding termination points and should thus be discarded.

5.2. A Filippov system with impacts. As a second example, consider a mechanical sys-
tem consisting of an oscillating mass m pressed against a rough horizontal surface with a
corresponding maximum friction force of magnitude Ff [47]. Suppose that the motion of the
mass relative to its environment is influenced by a combination of a linear elastic element
with stiffness k and instantaneous impacts with coefficient of restitution e with a massive
impactor with prescribed displacement time history qc (t) relative to the position of the mass
corresponding to the unstretched length of the spring (cf. Figure 11).
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himpact (x)>0 himpact (x)<0

himpact(x)=0

hturning(
x)=0

Figure 10. Valid solution to the boundary value problem with no physical significance.

q

k

m

¡qc (t)

Ff

Figure 11. The lateral motion of the oscillator of mass m is excited by impacts with a massive impactor
with prescribed displacement time history qc (t).

The dynamics of the oscillator may be formulated as a hybrid dynamical system in the
following way. Denote by q the signed displacement of the oscillator relative to the position
of unstretched length of the spring. The oscillator motion is then governed by the linear
differential equation

(5.1) mq̈ + kq = F

as long as q − qc ≥ 0, where

(5.2) F =

{
−Ff

q̇
|q̇| for q̇ �= 0,

kq for q̇ = 0 and |kq| ≤ Ff

and is otherwise defined so as to guarantee left-continuity with respect to time along a corre-
sponding time history. Moreover, if

(5.3) lim
t→tc−

q (t) = qc (tc) , lim
t→tc−

q̇ (t) ≤ q̇c (tc)

for some time t = tc, then

(5.4) lim
t→tc+

q (t) = qc (tc) , lim
t→tc+

q̇ (t) = −e lim
t→tc−

q̇ (t) + (1 + e) q̇c (tc) ,
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where e is the coefficient of restitution. We again omit from consideration situations in
which the oscillator remains in contact with the impactor throughout a solution segment or
corresponds to signatures of infinite length.

Suppose that

(5.5) qc (t) = −b+ a sinωt

for a, b > 0, and let

(5.6) x =

⎛
⎝ x1

x2

x3

⎞
⎠ def=

⎛
⎝ q

q̇
ωt mod 2π

⎞
⎠ ∈ R

2 × S
1

represent the state of the oscillator. The smooth motion of the oscillator is then governed by
the vector fields

fpositive slip (x) =

⎛
⎝ x2

1
m (−Ff − kx1)

ω

⎞
⎠ ,(5.7)

fnegative slip (x) =

⎛
⎝ x2

1
m (Ff − kx1)

ω

⎞
⎠ ,(5.8)

and

(5.9) fstick (x) =

⎛
⎝ 0

0
ω

⎞
⎠ .

Impacts between the impactor and the frame occur when

(5.10) himpact (x) def= x1 − qc (x3) = 0,

resulting in a discontinuous jump in state given by the state jump function

(5.11) gimpact (x) =

⎛
⎝ x1

−ex2 + (1 + e)ωq′c (x3)
x3

⎞
⎠ .

Moreover, a discontinuous jump in the phase coordinate x3 occurs when

(5.12) hphase (x) def= 2π − x3 = 0

and corresponds to the state jump function

(5.13) gphase (x) =

⎛
⎝ x1

x2

0

⎞
⎠ .
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Discontinuous changes in the vector field are associated with intersections of system trajecto-
ries with the event surface

(5.14) hstick± (x) def= ±x2 = 0.

Finally, for purposes of detection of grazing events with the event surface corresponding to
himpact, consider the event function

(5.15) hturning (x) def= x2 − ωq′c (x3)

and the associated state jump function

(5.16) gidentity (x) = x

(cf. Figure 12).

x2

x1 + b¡a sinx3

x3

himpact = 0

hstick§ = 0

hturning = 0

sliding region

Figure 12. A state-space schematic of the event surfaces describing the dynamics of the Filippov oscillator
with impacts.

A periodic trajectory of this hybrid dynamical system may be characterized in terms of a
sequence of triplets of the form (f , h,g) corresponding to a solution segment governed by the
vector field f , terminating on the event surface corresponding to h, and connected to the next
solution segment by the state jump function g as per the following list:

I1 = (fpositive slip, himpact,gimpact) ,(5.17)
I2 = (fpositive slip, hphase,gphase) ,(5.18)
I3 = (fpositive slip, hstick+,gidentity) ,(5.19)
I4 = (fpositive slip, hturning,gidentity) ,(5.20)
I5 = (fnegative slip, himpact,gimpact) ,(5.21)
I6 = (fnegative slip, hphase,gphase) ,(5.22)
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I7 = (fnegative slip, hstick−,gidentity) ,(5.23)
I8 = (fnegative slip, hturning,gidentity) ,(5.24)
I9 = (fstick, himpact,gimpact) ,(5.25)

I10 = (fstick, hphase,gphase) ,(5.26)
I11 = (fstick, hturning,gidentity)(5.27)

(cf. Figure 13). In particular, a solution will be termed impacting if its signature contains I1,
I5, and/or I9 and nonimpacting otherwise. Similarly, a solution will be termed slipping if its
signature does not contain I9, I10, or I11, sticking if its signature contains only I9, I10, and/or
I11, and a stick-slip oscillation otherwise.

fpositive slip

fnegative slip

fstick

himpact

hphase

hstick+

hstick¡

hturning

gimpact

gphase

gidentity

Figure 13. Each branch of this graph based at an element in the leftmost column corresponds to the
characterization of a solution segment of the Filippov system with impacts in terms of a triplet (f , h, g).

This hybrid dynamical system is an example of a Filippov system with switching manifold
given by the zero-level surface of hstick+ (or, equivalently, hstick−). Here, the sliding region is
given by

(5.28) −1 ≤ hsliding (x) =
kx1

Ff
≤ 1.

The vector field fstick then corresponds to the sliding vector field (as per Utkin’s equivalent
control method [52]) along the sliding region.

The left panel of Figure 14 shows a periodic trajectory of the hybrid dynamical system
for m = 1, a = 1, ω = 1, e = 0.9, k = 6, Ff = 0.7961, and b = 0.8471 with cyclic signature
{I9, I3, I7, I3, I10}. The corresponding branch of periodic trajectories under single-parameter
variations in k is shown in the right panel of Figure 14. In particular, one end of the branch
is seen to terminate at a point k = 8.0544, where the third segment of the periodic trajectory
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Figure 14. Left panel: Periodic trajectory of the hybrid dynamical system for r = 0.9, k = 6, Ff = 0.7961,
and b = 0.8471. Right panel: Single parameter continuation using the periodic trajectory in the left panel as an
initial condition and varying k.

achieves grazing incidence with the event surface corresponding to himpact. Similarly, the other
end of the branch terminates at k = 5.5731 as the third segment of the periodic trajectory
terminates on the left boundary of the sliding region. The left and right panels of Figure 15
show the corresponding periodic trajectories.
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Figure 15. Left panel: Periodic trajectory of the given hybrid dynamical system for k = 8.0544 that achieves
grazing incidence with the event surface corresponding to himpact. Right panel: Periodic trajectory of the given
hybrid dynamical system for k = 5.5731 that intersects the switching manifold on the boundary of the sliding
region.

The dash-dotted curve in Figure 16 shows a two-parameter continuation of the grazing
bifurcation curve under simultaneous variations in k and b based at an equivalent resegmen-
tation with cyclic signature {I8, I7, I3, I10, I9, I3} of the trajectory shown in the left panel of
Figure 15. Resegmentation is here achieved by splitting the I7 segment into an I8 segment
that terminates on the hturning = 0 event surface followed by a truncated I7 segment and
subsequently reordering the signature so that the additional boundary condition himpact = 0
is applied to the terminal point of the first segment.

Two-parameter continuation of the sliding bifurcation curve under simultaneous variations
in k and b based at the trajectory shown in the right panel of Figure 15 requires, at the very
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Figure 16. Two parameter continuations of the grazing, sliding, and saddle-node bifurcation curves in the
(k, b) parameter space.

least, a reordering {I7, I3, I10, I9, I3} of the cyclic signature so that the additional boundary
condition hsliding = −1 may be applied to the terminal point of the first segment. Some care is
necessary, however, to ensure a nonsingular boundary-value problem. Specifically, in the limit
as the I7 segment of the original periodic trajectory terminates on the left boundary of the
sliding region, it follows from (5.7) and (5.9) that the subsequent I3 segment converges to a
portion of the equilibrium trajectory x1 = −Ff

k and x2 = 0 of the fpositive slip and fstick vector
fields, and terminates after a fixed time π

√
m
k at a nontransversal event on x2 = 0. In this

limit, the cyclic signature {I7, I3, I10, I9, I3} thus corresponds to a singular boundary-value
problem and cannot be used for continuation of the sliding bifurcation.

A nonsingular boundary-value formulation may be obtained by replacing the terminal
condition on the singular I3 segment with the condition that the segment’s time-of-flight
equal π

√
m
k . In this formulation, the correction matrix equation (2.21) corresponding to the

singular I3 segment is given by the identity matrix. This permits two-parameter continuation
of the sliding bifurcation curve under simultaneous variations in k and b (the dashed curve in
Figure 16) and is consistent with subsequent one-parameter continuation under variations in
k away from the sliding bifurcation curve using the original {I7, I3, I10, I9, I3} boundary-value
formulation.

Alternatively, a nonsingular boundary-value formulation may be obtained by replacing the
terminal condition on the singular I3 segment with the condition that k be constant. This
permits one-parameter continuation under variations in the segment’s time-of-flight while
retaining k among the unknowns of the boundary-value problem. For example, the singular
I3 segment’s time-of-flight may be reduced to zero while equivalently extending the subsequent
I10 segment.

An alternative nonsingular boundary formulation may now be obtained by replacing the
terminal condition on the singular I3 segment with the condition that the segment’s time-of-
flight equal 0. This again permits two-parameter continuation of the sliding bifurcation curve
under simultaneous variations in k and b but is not consistent with subsequent one-parameter
continuation away from the sliding bifurcation curve.

Finally, an equivalent resegmentation with cyclic signature {I7, I10, I9, I3} may be obtained
by replacing the consecutive I3 and I10 segments with a single extended I10 segment. This
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is equivalent to eliminating the zero-length I3 segment obtained using the first alternative
boundary-value formulation. This again permits two-parameter continuation of the sliding
bifurcation curve under simultaneous variations in k and b and is consistent with subsequent
one-parameter variation without the need for further resegmentation.

Indeed, a branch of periodic trajectories with cyclic signature {I7, I10, I9, I3} can be shown
to emanate from the sliding bifurcation point at k = 5.5731. A saddle-node bifurcation is
found along this branch at k = 4.9517. The solid curve in Figure 16 shows the corresponding
saddle-node bifurcation curve. It is curious to note that the grazing bifurcation curve appears
to terminate on the sliding bifurcation curve at a point of transversal intersection, whereas the
sliding bifurcation curve terminates on the saddle-node curve at a point of tangential contact.
In the former case, the termination point is likely artificial, as a continuation with modified
signature {I8, I7, I10, I9, I3} should exist beyond this point. In contrast, the latter case is an
example of a codimension-two sliding bifurcation (cf. [41]).

5.3. A heuristic cell-cycle model. As a final example, consider the biochemical reac-
tions governing the activity of a set of biomolecules during distinct stages in the cell cycle
of eukaryotes [51]. Here, the initiation of characteristic transitions during the cell cycle are
reduced to variations in the concentrations of specific cyclin-enzyme dimers that catalyze the
phosphorylation of key cell proteins. The activity of such cyclin/Cdk (cyclin-dependent ki-
nase) dimers in the cell nucleus is controlled by a nonlinear feedback loop that regulates the
availability of cyclin and various inhibitory agents. Specifically, the replication of DNA is
triggered by increased levels of cyclin synthesis and reduced levels of cyclin degradation. Sim-
ilarly, anaphase-promoting complexes (APCs) that enable the segregation of the chromatids
during mitosis increase the level of cyclin degradation during telophase, returning the cell to
its resting state.

Denote by x1, x2, and x3 the concentrations of cyclin/Cdk dimers, active Cdh1/APCs,
and the Cdh1/APC activator Cdc14, respectively. In this heuristic model, cyclin/Cdk dimers
activate Cdc20/APCs while inhibiting Cdh1/APCs. Active Cdc20/APCs destroy an inhibitor
of Cdc14, which in turn counters the inhibitory action of cyclin/Cdk on Cdh1/APCs. Finally,
active Cdh1/APCs destroy cyclin. Denote by x4 the cell mass, and suppose that during the
cell’s growth phase its rate of growth is independent of the concentrations of the biomolecules
considered here. Cell division is assumed to be effectively instantaneous and triggered by the
concentration of cyclin/Cdk dimers falling below a critical level x∗1.

The dynamics of the cell-cycle model may be formulated as a hybrid dynamical system in
the following way. Smooth variations in the state variables are governed by the vector field

(5.29) fgrowth (x) =

⎛
⎜⎜⎜⎜⎜⎝

k1 − (k′2 + k′′2x2) x1

(k′
3+k′′

3 x3)(1−x2)

J3+1−x2
− k4x1x2x4

J4+x2

k′5 + k′′5
(x1x4)

n

Jn
5 +(x1x4)

n − k6x3

μx4

(
1 − x4

x∗
4

)

⎞
⎟⎟⎟⎟⎟⎠ ,

where k1, k′2, k
′′
2 , k′3, k

′′
3 , k4, k′5, k

′′
5 , and k6 are rate constants, J3, J4, and J5 are Michaelis–

Menten constants (see [51]), n is some integer, μ is the linear growth rate in the limit of
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x4 � x∗4, and x∗4 is the limiting cell mass in the absence of division events. Mitosis occurs
when

hmitosis (x) = x1 − x∗1,

resulting in a discontinuous jump in state given by the state jump function

(5.30) gmitosis (x) =

⎛
⎜⎜⎝

x1

x2

x3

x4/2

⎞
⎟⎟⎠ .

Let M = {growth} and E = {mitosis} such that fgrowth = fgrowth and

(5.31) mitosis
.=

⎡
⎣ (growth, growth)

hmitosis

gmitosis

⎤
⎦

and such that periodic trajectories have signatures consisting of one or several copies of the
pair

(5.32) I1 = (growth,mitosis) .

The left panel of Figure 17 shows a periodic trajectory when k1 = 0.04, k′2 = 0.04, k′′2 = 1.0,
k′3 = 1.0, k′′3 = 10.0, k4 = 35.0, k′5 = 0.005, k′′5 = 0.2, k6 = 0.1, J3 = 0.04, J4 = 0.04, J5 = 0.3,
n = 4, μ = 0.01, m∗ = 10.0, and x∗1 = 0.1. A single-parameter continuation of this periodic
trajectory with the cyclic signature {I1} under variations in k′′3 is shown in the right panel
of Figure 17. The corresponding branch of stable limit cycle terminates is limited by two
saddle-node bifurcations at k′′3 = 7.0213 and k′′3 = 45.1157, respectively. A two-parameter
continuation of the leftmost of these saddle-node bifurcations under simultaneous variations
in k′′3 and k′′5 is shown in Figure 18.
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Figure 17. Left panel: Periodic trajectory of the hybrid dynamical system for k′′3 = 10. Right panel: Single
parameter continuation with varying k′′3 of the periodic trajectory shown in the left panel. Loci of saddle-node
bifurcations SN 1 and SN 2 are evident in the figure.
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Figure 18. Two-parameter continuation of the locus of the saddle-node bifurcation point, SN 1, found in
the single-parameter continuation shown in the right panel of Figure 17.

6. Discussion. The preponderance of physical and biological systems that are modeled
with hybrid dynamical systems makes the task of providing user-friendly computational tools
for bifurcation analysis pressing. The existing package slidecont was a first step in this
direction with emphasis on Filippov systems in the plane and with the ability to provide
a comprehensive bifurcation analysis of equilibria and selected bifurcation analysis of pe-
riodic trajectories. The boundary-value formulation introduced here extends slidecont’s
formulation to enable successful continuation of multisegment periodic trajectories in general
hybrid dynamical systems and selected associated codimension-one bifurcations. It should be
straightforward to arrive at similar formulations in the case of other codimension-one bifur-
cations associated with the eigenvalue spectrum, for example, torus bifurcations.

It should also be possible to modify the more general boundary-value formulation to
accommodate efforts to locate and continue multisegment homo- and heteroclinic trajecto-
ries between equilibria and/or limit cycles in hybrid dynamical systems (cf. [7, 15, 25, 46]).
A related challenge is the task of locating and continuing periodic trajectories of a hybrid
dynamical system consisting of a countable set of segments with (at least) one point of accu-
mulation of the switching times tj . As in the case of homo- or heteroclinic trajectories, this
necessitates omitting from the boundary-value formulation an infinite set of equations for |t|
larger than some critical T in the homo- or heteroclinic case and for t in some finite interval
in the case of finite-time accumulation. In the latter case, however, rather than relying on a
linear approximation of the stable and unstable manifolds, it becomes necessary to provide a
connectivity condition between the accumulation point and the final nonignored event [43].

A more challenging task is that of branch switching between branches of distinct signature,
in which domain-specific knowledge (as captured by the index jump function) is coupled with a
local unfolding of singularities in parameter space corresponding to the intersection of distinct
branches. Instances of such switching were discussed in the examples above (see also [32])
and relied in all cases on an understanding of the types of signature changes that could
be achieved in a manner consistent with the conditions of forward simulation and with a
continuous change in the segment structure. This poses a particular challenge in the case of
singularities associated with the onset of grazing contact in systems with mechanical impact-
like discontinuities. Here, infinitely many branches of periodic trajectories may emanate
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continuously from the singularity. Methods of unfolding, such as the discontinuity-mapping
technique [42], could then be used to provide tangent directions to the corresponding trajectory
branches at the singularity.

The implementation of t̂c as a driver for a modified version of AUTO 97 enables a range
of automated continuation tasks without the need to recreate the necessary source code in-
frastructure. As AUTO 97 is designed to handle only two-point boundary-value problems,
however, this necessitates a numerically ill-advised segment-independent time partition that
is unable to adapt the partition of each segment to local properties. An obvious implication
is the sudden growth of problem dimension that occurs, for example, with the addition of a
solution segment with zero time-of-flight. As AUTO 97 implements direct matrix-equation
solvers, this growth in dimension affects both CPU time as well as solution accuracy. There is
also no direct attempt made to exploit the block structure of the linearized equations. More
generally, the partition scheme will likely be dominated by features on the geometrically most
complex segment, requiring unnecessarily fine discretization for other segments. These short-
comings are likely to become pronounced for solutions with long signatures. Collectively, these
observations warrant a redesign of t̂c that accommodates segment-specific meshing algorithms
and that exploits the (sparse) structure of the linearized equations.

An exhaustive quantitative comparison of the numerical performance of the implementa-
tion of t̂c within AUTO 97 is beyond the scope of this manuscript. A preliminary demon-
stration of the effect of the boundary-value formulation is afforded, e.g., by investigating the
accuracy with which the switching-sliding bifurcation point is detected under single-parameter
variations of k in the Filippov system with impacts discussed in section 5.2 using the different
equivalent segmentations of the critical periodic trajectory. It follows directly from explicit
expressions for the flows corresponding to the distinct vector fields fstick, fpositive slip, and
fnegative slip that periodic trajectories with cyclic signature {I7, I3, I10, I9, I3} correspond to
fixed points x̃∗ on the interval [−1, 1] of the map

(6.1) x̃ −→

√
(1 + x̃)2 + Ω2

(
ã2 −

(
b̃+ x̃

)2
)
− 5,

where

(6.2) x̃ =
kq0
Ff

, ã =
ka

Ff
, b̃ =

kb

Ff
, Ω = (1 + e)ω

√
m

k
,

and q0 is the initial position of the oscillator at the beginning of the I9 segment. In particular,

(6.3) x̃∗ =
−4 − b̃Ω2 +

√
16 − 24Ω2 + 8b̃Ω2 + ã2Ω4

Ω2

corresponds to the branch shown in the right panel of Figure 14. The switching-sliding bifur-
cation then corresponds to

(6.4) Ω2 =
16

ã2 −
(
b̃− 1

)2 ,
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and the corresponding nonzero Floquet multiplier is given by

(6.5)
4
(
1 − b̃

)
ã2 −

(
b̃− 1

)2 .

Similarly, periodic trajectories with cyclic signature {I7, I10, I9, I3} correspond to fixed points
x̃∗ on the interval [−1, 1] of the map

(6.6) x̃ −→ 3 −

√
(1 + x̃)2 + Ω2

(
ã2 −

(
b̃+ x̃

)2
)
.

In particular,

(6.7) x̃∗ =
4 − b̃Ω2 −

√
16 − 8Ω2 − 8b̃Ω2 + ã2Ω4

Ω2

corresponds to the branch of four-segment trajectories emanating from the switching-sliding
bifurcation curve and the corresponding nonzero Floquet multiplier is now given by

(6.8)
4
(
b̃− 1

)
ã2 −

(
b̃− 1

)2 .

Table 1 shows the absolute difference between estimated values (k5, λ5) and (k4, λ4), re-
spectively, of the value of k and the nonzero Floquet multiplier λ at the switching-sliding
bifurcation point detected using t̂c during single-parameter variation of periodic trajectories
with cyclic signatures {I7, I3, I10, I9, I3} and {I7, I10, I9, I3} and those predicted from (6.4)–
(6.5). Here, the AUTO 97 constants NTST, NCOL, EPSL, EPSU, and EPSS refer to the
number of discretization intervals per segment, the number of collocation points per dis-
cretization interval, the convergence tolerance for free parameters and for solutions, and the
continuation step size tolerance when locating special solutions, respectively.

Table 1
Absolute difference between estimated values (k5, λ5) and (k4, λ4), respectively, of the value of k and the

nonzero Floquet multiplier λ at the switching-sliding bifurcation point detected using t̂c during single-parameter
variation of periodic trajectories with cyclic signatures {I7, I3, I10, I9, I3} and {I7, I10, I9, I3} and those predicted
from (6.4)–(6.5). Here, EPSL = EPSU = 10−6, EPSS = 10−4, and NCOL = 4.

NTST |k5 − k| |k4 − k| |λ5 − λ| |λ4 − λ|
200 1.7 × 10−4 2.0 × 10−5 1.0 × 10−6 1.3 × 10−6

100 6.3 × 10−4 8.0 × 10−5 3.5 × 10−6 6.6 × 10−6

50 2.4 × 10−3 2.9 × 10−4 1.3 × 10−5 2.6 × 10−5

30 6.5 × 10−3 7.8 × 10−4 3.6 × 10−5 6.7 × 10−5

10 5.1 × 10−2 5.8 × 10−3 3.0 × 10−4 5.2 × 10−4

5 2.0 × 10−1 2.3 × 10−2 1.4 × 10−3 2.3 × 10−3
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1. Introduction and background. Delay-differential equations (DDEs) have been used
as mathematical models for phenomena in population dynamics [21], physiology [12, 3],
physics [23], climate modeling [26, 28], and engineering [27], among others. DDEs behave
like abstract ordinary differential equations (ODEs) on an infinite-dimensional (Banach) phase
space and many results which are known for ODEs on finite-dimensional spaces have analogues
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on Parkinsonian tremor [2], and many more.

The bifurcation analysis of DDEs is done essentially in the same way as that of ODEs, al-
though the technical details differ. Consider the neighborhood of an equilibrium solution of a
nonlinear DDE; then the analysis of the linearization at the equilibrium point leads to stable,
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corresponding invariant subspaces of the linearized equations about the equilibrium point on
which the flow near the equilibrium is exponentially attracting (stable manifold), exponen-
tially repelling (unstable manifold), or nonhyperbolic (center manifold). Now, bifurcations
near equilibria are determined by the flow on the center manifold, and the dimension of this
manifold is determined by the number of eigenvalues of the linearization on the imaginary
axis.

The first result of our paper is Theorem 2.1 and goes as follows. Consider n nonzero
imaginary numbers iω1, . . . , iωn, where the imaginary parts ω1, . . . , ωn are positive and not
rationally dependent. We show that there exists a scalar linear DDE depending on n discrete
delays written

(1) ẋ =
n∑

j=1

ajx(t− τj),

where x ∈ R, aj ∈ R, and τj ∈ [0, τ ] for all j = 1, . . . , n such that the characteristic equation
of (1), given by

(2) λ−
n∑

j=1

aje
−λτj = 0,

has eigenvalues ±iω1, . . . ,±iωn. This result generalizes explicit computations done in the case
of one and two delays; see [20, 9, 1]. The proof is done by embedding the problem as a mapping
which is solved by the implicit function theorem at a carefully chosen point. From the implicit
function theorem, we are able to define a smooth mapping whose transversal intersection with
a dense curve on an n-dimensional torus provides solutions. The incommensurability of the n
frequencies enables us to define the dense curve on the n-torus. This type of argument using
a dense curve on an n-dimensional torus was used in Choi and LeBlanc [7].

This result falls within the category of so-called realization theorems, for instance, the
realization theorem of linear ODEs by linear DDEs obtained by Faria and Magalhães [11].
They show that for any finite-dimensional matrix B, a necessary and sufficient condition for
the existence of a bounded linear operator L0 from C([−τ, 0],Rn) into R

n with infinitesimal
generator having spectrum containing the spectrum of B is that n be larger than or equal to
the largest number of Jordan blocks associated with each eigenvalue of B. Other results in
this direction are concerned with the realization of finite jets of ODEs on a finite-dimensional
center manifold by DDEs; see [11, 7]. To our knowledge, the realization theorems in this paper
are the first general results linking the number of critical eigenvalues of linear DDEs with the
number of discrete delays.

The next significant result is an openness theorem, that is, the realization of n imaginary
numbers (not necessarily rationally independent) as eigenvalues of a linear scalar DDE is valid
in a neighborhood of any set of n rationally independent imaginary numbers. The proof of
this theorem also relies on the implicit function theorem.

We then turn our attention to the context of symmetric systems of DDEs. Several exam-
ples of symmetric systems of DDEs [16, 24] have characteristic equations which decompose
in factors, some of which have the same form as the characteristic equation (2). The decom-
position of the characteristic equation is induced by the isotypic decomposition of the space,
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and we present a general derivation of this decomposition. We show that isotypic components
consisting of a unique one-dimensional complex irreducible representation contribute a factor
of the form (2) in the characteristic equation, and so Theorem 2.1 can be applied directly to
each such factor separately.

We present a generalization of Theorem 2.1 to the case where several factors of the charac-
teristic equation have purely imaginary eigenvalues simultaneously. Theorem 2.4 shows that
a set of n rationally independent purely imaginary complex numbers can be realized from
several factors of the characteristic equation of a DDE with n delays given that two nonde-
generacy conditions on the characteristic equation are satisfied. The statement of the theorem
is independent of any symmetric structure, and the proof is a generalization of the proof of
Theorem 2.1.

We illustrate the above result on Dn-symmetric rings of n delay equations with delayed
coupling. Hopf bifurcation from such symmetric networks has been studied by several authors
[6, 10, 15, 16, 17, 24, 25, 29, 30]. We study only the case in which n is odd, since, for n even,
one of the nondegeneracy conditions of Theorem 2.4 is not always satisfied, as we illustrate in
a D4 example.

In order to apply Theorem 2.4 to this context, we derive an explicit form of the coupling
matrix in terms of the connections in the graph representation of the ring for cells of any
dimension and arbitrary numbers of connections and delays. This is a generalization of the
networks considered in the articles listed in the previous paragraph. We specialize to the case
of one-dimensional cells and show how Theorem 2.4 applies to Dn-symmetric coupled cell
systems with n odd.

The paper is organized as follows. The first section contains brief preliminary remarks, and
then we state and prove our main result (Theorem 2.1) and the openness result (Theorem 2.2).
Then we introduce the context leading to Theorem 2.4 and state this result. Section 3 is
devoted to Γ-symmetric systems of DDEs, and the section begins with a general discussion.
Section 3.1 presents a characterization of Dn-symmetric rings of delay coupled cells with an
arbitrary number of delays, and the characteristic equation in the case of one-dimensional
cells is derived. Theorem 2.4 is applied to Dn-symmetric rings of one-dimensional cells with
n odd. Section 4 contains the proof of Theorem 2.4. We conclude with a discussion of open
problems along the lines of those presented in this paper.

2. Realization theorems. We now discuss some aspects of the spectral theory of linear
scalar DDEs. In fact, we just introduce the basic facts, in a nonabstract setting, needed for
the statement of our first main theorem. For a complete treatment, see Diekmann et al. [9]
or Hale and Verduyn-Lunel [20].

Consider the scalar DDE

(3) ẋ(t) =
n∑

j=1

ajx(t− τj),

where aj ∈ R and τj ∈ [0, τ ] for all j = 1, . . . , n and τ > 0. The characteristic equation for (3)
can be obtained by substituting x(t) = Ceλt, where C is a constant, into the equation. Thus,

λCeλt =
n∑

j=1

ajCe
λ(t−τj ) =

n∑
j=1

ajCe
−λτjeλt,
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and by rearranging the terms we obtain(
λ−

n∑
j=1

aje
−λτj

)
x(t) = 0.

So, x(t) is a nonzero solution of (3) if and only if

Δ(λ) := λ−
n∑

j=1

aje
−λτj = 0.

The complex number λ is an eigenvalue of equation (3) if it is a solution of the characteristic
equation Δ(λ) = 0.

The question we address in this paper is related to the number of imaginary eigenvalues
(with incommensurable frequencies) which can satisfy Δ(λ) = 0. The case n = 1 with one
nonzero delay is a straightforward calculation and Δ(λ) = 0 for only one nonzero imaginary
eigenvalue λ; see [20]. The case n = 2 with τ1 = 0 and τ2 ∈ (0, τ ] in (3) can be found in [9].
There, it is shown that Δ(λ) = 0 can have at most two nonzero imaginary eigenvalues. The
case n = 2 with τ1, τ2 > 0 is done in [1], where it is shown that Δ(λ) = 0 can have at most
two nonzero imaginary eigenvalues. We are now ready to state our first result.

Theorem 2.1. Suppose ω1 > 0, ω2 > 0, . . . , ωn > 0 are linearly independent over the
rationals. Then there exist τ1 > 0, τ2 > 0, . . . , τn > 0, a1 ∈ R, a2 ∈ R, . . . , an ∈ R such that
the linear DDE

(4) ẋ(t) = a1 x(t− τ1) + a2 x(t− τ2) + · · · + an x(t− τn)

has solutions x±j (t) = e± iωjt for all j = 1, . . . , n.
Proof. A necessary and sufficient condition for the conclusion of the theorem to hold is

that the algebraic system of 2n equations

(5)

n∑
k=1

ak e
−iωjτk = iωj, j = 1, . . . , n,

n∑
k=1

ak e
iωjτk = −iωj, j = 1, . . . , n,

has a solution in the 2n unknowns (τ1, τ2, . . . , τn, a1, a2, . . . , an). Although (5) is in complex
form, since the second equation in (5) is just the complex conjugate of the first equation
in (5), system (5) is equivalent to a system of 2n real equations. This fact is taken for granted
throughout what follows, even though we continue to use complex notation.

It is useful to use the following matrix notation for (5):

(6)
(

P (τ ;ω)
P (−τ ;ω)

)
AT =

(
iωT

−iωT

)
,

where τ = (τ1, . . . , τn), ω = (ω1, . . . , ωn), A = (a1, . . . , an), superscript T denotes transpose,
and P (τ ;ω) = P (τ1, . . . , τn;ω1, . . . , ωn) is the n× n matrix whose entry at row j column k is

[P (τ ;ω) ]jk = e−iωjτk .
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Note that P (τ ;ω) = P (−τ ;ω).
Instead of attempting to solve (6) directly, we adopt an approach based on the following

fact. For j, k = 1, . . . , n, consider the exponents ωjτk in P (τ ;ω) taken modulo 2π. Since the
ωj are rationally independent, for τk ≥ 0, the vector τkω mod 2π generates a dense orbit,
denoted by Ok, on an n-torus Tn, where T = R/2πZ. If (τ,A) is a solution to (6), then τ
produces a point on V := (Tn)n via the dense orbits.

Thus, we embed the problem of finding solutions of (6) into the problem of finding solutions
of a mapping F defined on V and which is an extension of (6). The idea is that an explicit
solution of F = 0 is easily obtained, and we use the implicit function theorem to find a
submanifold of solutions to F = 0. We then show that the structure of the dense orbits Ok

on this submanifold yields an infinite number of solutions to F = 0 and therefore to (6).
Choose coordinates on V as follows:

V := {Φ = (Φ1, . . . ,Φn) | Φj = (ϕj
1, . . . , ϕ

j
n) ∈ Tn, j = 1, . . . , n },

and consider the following mapping associated to (6):

F : V × R
n �−→ R

2n

defined by

(7) F (Φ, A;ω) =

(
P̃ (Φ)
P̃ (−Φ)

)
AT − i

(
ωT

−ωT

)
,

where A and ω are as previously defined and P̃ (Φ) is the n× n matrix whose entry at row j
column k is [

P̃ (Φ)
]
jk

=
[
P̃ (Φ1, . . . ,Φn)

]
jk

= e−iϕk
j .

Letting Ψ = Φn is a convenient notation to use when applying the implicit function theorem,
i.e.,

Ψ = (ψ1, . . . , ψn) = Φn = (ϕn
1 , . . . , ϕ

n
n).

We write V = VΦ × VΨ, where VΦ
∼= (Tn)n−1 and VΨ

∼= Tn so that

F : VΦ × VΨ × R
n �−→ R

2n

is written as F (Φ,Ψ, A;ω) in (7) (we have relabeled Φ = (Φ1, . . . ,Φn−1) to designate coordi-
nates for VΦ

∼= (Tn)n−1).
We now find an explicit solution to F = 0. If {e1, . . . , en} denotes the canonical basis of

vectors in R
n, we define the vectors v1, . . . , vn by v1 =

∑n
k=1 ek, and for j = 2, . . . , n,

vj = v1 −
j−2∑
�=0

2 en−�.

By construction, the set {v1, . . . , vn} is linearly independent, and so the n×n matrix I, whose
jth column is the vector vT

j , is invertible.
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Consider the following point in VΦ × VΨ:

(Φ̂, Ψ̂) = −π
2

((v1, . . . , vn−1), vn);

then it is easy to compute that

(8) P̃ (Φ̂, Ψ̂) = iI,

where P̃ is as in (7). If we define

ÂT ≡ (â1, . . . , ân)T = I−1ωT ,

then
F (Φ̂, Ψ̂, Â;ω) = 0.

Because the ωj are rationally independent, it follows that the components âk of Â are all
nonzero.

We now show that we can use the implicit function theorem at the point (Φ̂, Ψ̂). Define
the n×n invertible matrix Uj to be the diagonal matrix whose kth diagonal element is the kth
component of the vector vj (in particular, U1 is the identity matrix). Note also that U−1

j = Uj,
j = 1, . . . , n. We easily compute the derivative

J ≡ D(Ψ,A)F (Φ̂, Ψ̂, Â;ω) =
(
ân Un iI
ân Un −iI

)
,

which is invertible, and its inverse is easily computed as

J−1 =

(
1

2ân
Un

1
2ân

Un

− i
2 I

−1 i
2 I

−1

)
.

By the implicit function theorem, there exist a neighborhood N of Φ̂ in VΦ and a unique
smooth function

G : N �−→ VΨ × R
n,

Φ �−→ G(Φ) = (GΨ(Φ), GA(Φ))
(9)

such that
G(Φ̂) = (Ψ̂, Â)

and

(10) F (Φ, G(Φ);ω) ≡ 0 ∀Φ ∈ N.

Recall that Ok is the dense orbit generated by τkω mod 2π on the n-torus Tn. Let
OΦ ⊂ VΦ be the direct product of the dense orbits Ok for k = 1, . . . , n − 1 and OΨ be the
dense orbit in VΨ. From (9), if Φ ∈ OΦ and Ψ = GΨ(Φ) ∈ OΨ, then A = GA(Φ) yields a
solution to the original system of equations (6). Thus, to complete the proof, it remains to
show that there exists a point Φ ∈ OΦ which is mapped by GΨ to a point Ψ ∈ OΨ.
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We begin by showing that GΨ is regular at Φ̂. An easy calculation shows that

K ≡ DΦF (Φ̂, Ψ̂, Â;ω) =
(
â1 U1 â2 U2 · · · ân−1 Un−1

â1 U1 â2 U2 · · · ân−1 Un−1

)
,

and implicit differentiation of (10) yields that

DG(Φ̂) =

(
DGΨ(Φ̂)
DGA(Φ̂)

)
= −J−1K

=

(
− â1

ân
Un U1 − â2

ân
Un U2 · · · − ân−1

ân
Un Un−1

0 0 · · · 0

)
,

(11)

where 0 denotes the n× n zero matrix. Consequently,

(12) DGΨ(Φ̂) =
(

− â1
ân

Un U1 − â2
ân

Un U2 · · · − ân−1

ân
Un Un−1

)
,

and it follows that the mapping
GΨ : N −→ VΨ

is regular at Φ̂.
The density of Ok in Tn for k = 1, . . . , n − 1 implies that for every ε > 0 there exists

(τ1,ε, . . . , τn−1,ε) such that

Φ∗
ε = (τ1,εω, . . . , τn−1,εω) mod 2π

is in an ε-neighborhood of Φ̂, and we define a small (n − 1)-dimensional surface in VΦ based
at Φ∗

ε by
Sh

Φ∗
ε

= {(τ1ω, . . . , τn−1ω) mod 2π | τj ∈ (τj,ε − h, τj,ε + h)}

with ε, h small enough so that Sh
Φ∗

ε
⊂ N . Note that this surface is generated by small nonempty

open intervals of Ok for k = 1, . . . , n− 1.
We now show that the image of Sh

Φ∗
ε

by GΨ has a nontrivial transversal intersection with
OΨ. To do this, we consider the function

T : N −→ R

defined by

(13) T (Φ) = det
(
DGΨ(Φ) ·W T

1 DGΨ(Φ) ·W T
2 · · · DGΨ(Φ) ·W T

n−1 ωT
)
,

where

Wj :=
d

dxj
(x1ω, . . . , xjω, . . . , xn−1ω)
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for j = 1, . . . , n − 1 are n − 1 linearly independent vectors in (Rn)n−1. Obviously, T is
continuous, and

T (Φ̂) = det
(

− â1
ân

Un U1ω
T − â2

ân
Un U2ω

T · · · − ân−1

ân
Un Un−1ω

T Un Unω
T

)
=

(−1)n−1

ân−1
n

detUn det
(
â1 U1ω

T â2 U2ω
T · · · ân−1 Un−1ω

T Unω
T

)
=

(ω1 ω2 · · · ωn) (â1 â2 · · · ân−1)
ân−1

n
det I


= 0.

It follows that there is a neighborhood N ′ ⊆ N in which T 
= 0. So, by choosing ε, h small
enough such that Sh

Φ∗
ε
⊂ N ′, the image of Sh

Φ∗
ε

by GΨ is transverse to OΨ. The density of the
orbit OΨ in VΨ guarantees that there are infinitely many intersections with GΨ(Sh

Φ∗
ε
) near the

point Ψ̂ = GΨ(Φ̂).
The next theorem shows that the previous realization result holds for open sets near

solutions found in Theorem 2.1.
Theorem 2.2. Suppose ω1 > 0, ω2 > 0, . . . , ωn > 0 are linearly independent over the

rationals. There exist a neigborhood N of ω = (ω1, . . . , ωn) in R
n and a smooth mapping

H : N −→ R
n × R

n,

ω �−→ H(ω) = (τ(ω), A(ω)) = ((τ1(ω), . . . , τn(ω)), (a1(ω), . . . , an(ω)))

such that
n∑

k=1

ak(ω) e−iωjτk(ω) = iωj , j = 1, . . . , n,

n∑
k=1

ak(ω) eiωjτk(ω) = −iωj, j = 1, . . . , n,

(14)

for all ω ∈ N .
Proof. We consider the system F = 0 given by (7). We have already shown in Theorem 2.1

that, for fixed ω linearly independent over the rationals, there exist infinitely many solutions
to F = 0. We again use an implicit function theorem argument combined with the density of
irrational torus flows.

Consider the mapping

(15)
Q : R

n × R
n × R

n −→ R
n × R

n,

(τ,A, ω) �−→ Q(τ,A, ω) = F ((τ1ω, . . . , τn−1ω), τnω,A;ω),

where F is as in (7). Therefore,
(16)

DτQ(τ,A, ω) = D((Φ1,...,Φn−1),Ψ)F ((τ1ω, . . . , τn−1ω), τnω,A;ω) ·

⎛
⎜⎜⎜⎜⎝

ωT 0 0 · · · 0
0 ωT 0 · · · 0
...

...
...

...
...

0 0 0 · · · ωT

⎞
⎟⎟⎟⎟⎠ ,
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where each 0 in the matrix above is an n-dimensional zero column vector; and

(17) DAQ(τ,A, ω) = DAF ((τ1ω, . . . , τn−1ω), τnω,A;ω).

Thus, we wish to show that the 2n × 2n matrix

(18)
(
DτQ(τ,A, ω) DAQ(τ,A, ω)

)
is invertible at the solutions to (5) we have found in Theorem 2.1.

For positive integers p and q, let Matp,q denote the space of p× q matrices. Consider the
following mappings associated to (16), (17), and (18):

R1 : VΦ × VΨ × R
n × R

n −→ Mat2n,n

defined by

R1(Φ,Ψ, A, ω) = D(Φ,Ψ)F (Φ,Ψ, A;ω) ·

⎛
⎜⎜⎜⎜⎝

ωT 0 0 · · · 0
0 ωT 0 · · · 0
...

...
...

...
...

0 0 0 · · · ωT

⎞
⎟⎟⎟⎟⎠ ,

R2 : VΨ × VΨ × R
n × R

n −→ Mat2n,n

defined by
R2(Φ,Ψ, A, ω) = DAF (Φ,Ψ, A;ω),

and
R : VΦ × VΨ × R

n × R
n −→ Mat2n,2n

defined by
R(Φ,Ψ, A, ω) =

(
R1(Φ,Ψ, A, ω) R2(Φ,Ψ, A, ω)

)
.

Now, a simple computation (similar to those done in the proof of Theorem 2.1) shows that

R
(
−π

2
(v1, . . . , vn), A, ω

)
=

( Z iI
Z −iI

)
,

where
Z =

(
a1 U1ω

T a2 U2ω
T · · · an Unω

T
)
.

If none of the aj vanish, then the n× n matrix Z is invertible, since its determinant is

detZ =
n∏

j=1

ajωj det I 
= 0.

Thus,

R
(
−π

2
(v1, . . . , vn), A, ω

)−1
=

(
1
2Z

−1 1
2Z

−1

− i
2 I

−1 i
2 I

−1

)
.

By continuity, there is thus a neighborhood N of the point −π
2 (v1, . . . , vn) in VΦ×VΨ in which

R is invertible. By Theorem 2.1, there are infinitely many solutions of Q = 0 (see (15)) in N ,
and the Jacobian matrix (18) is thus invertible at these solutions. We get the conclusion of
Theorem 2.2 by the implicit function theorem.
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2.1. Example: D3-symmetric system. Theorem 2.1 is written in the context of scalar
DDEs. However, in this section, we look at an example of a D3-symmetric system of DDEs
where Theorem 2.1 can be applied and then proceed to explain the generalization of this
theorem, which has applications to symmetric systems of DDEs.

Example 2.3. Let Γ = D3, the group generated by κ and γ, act on R
3 as follows:

κ.(x1, x2, x3) = (x1, x3, x2), γ.(x1, x2, x3) = (x3, x1, x2).

Consider a linear D3-symmetric coupled cell system with delayed coupling where each cell is
one-dimensional and has the form

ẋ1 = a1x1(t− τ1) + a2[x2(t− τ2) + x3(t− τ2)],
ẋ2 = a1x2(t− τ1) + a2[x3(t− τ2) + x1(t− τ2)],
ẋ3 = a1x3(t− τ1) + a2[x1(t− τ2) + x2(t− τ2)],

(19)

where xi ∈ R for i = 1, 2, 3 and a1, a2, a3 ∈ R. The characteristic equation of system (19)
is obtained by substituting (x1, x2, x3) = (w1e

λt, w2e
λt, w3e

λt) into the equations. We obtain
after simplification

λw1 = a1e
−λτ1w1 + a2e

−λτ2 [w2 + w3],

λw2 = a1e
−λτ1w2 + a2e

−λτ2 [w3 + w1],

λw3 = a1e
−λτ1w3 + a2e

−λτ2 [w1 + w2],

and rearranging the terms we have

(20)

⎡
⎣(λ− a1e

−λτ1)I − a2e
−λτ2

⎛
⎝ 0 1 1

1 0 1
1 1 0

⎞
⎠
⎤
⎦
⎛
⎝ w1

w2

w3

⎞
⎠ = 0,

where I is the 3×3 identity matrix. Letting α = λ−a1e
−λτ1 and β = −a2e

−λτ2 equation (20)
becomes ⎛

⎝ α β β
β α β
β β α

⎞
⎠
⎛
⎝ w1

w2

w3

⎞
⎠ = 0.

Let

Δ(λ) =

⎛
⎝ α β β

β α β
β β α

⎞
⎠ .

We complexify R
3 and look at the isotypic decomposition of C

3 by the action of D3:

C
3 = V0 ⊕ V1 ⊕ V2,

where V0 is the trivial representation of D3 and V1, V2 are the standard irreducible representa-
tions of D3 (all representations are one-dimensional complex). A basis for V0 is u0 = (v, v, v)t,
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a basis for V1 is u1 = (v, e2πi/3v, e4πi/3v)t, and a basis for V2 is u2 = (v, e4πi/3v, e2πi/3v)t.
Therefore,

Δ(λ)u0 = (α+ 2β)u0

and
Δ(λ)u1 = (α− β)u1, Δ(λ)u2 = (α− β)u2

since e4πi/3 = e2πi/3. Therefore, in the basis given by the isotypic decomposition of C
3, Δ(λ)

block diagonalizes so that we have⎛
⎝ α+ 2β 0 0

0 α− β 0
0 0 α− β

⎞
⎠
⎛
⎝ w̃1

w̃2

w̃3

⎞
⎠ = 0.

Hence, the eigenvalues are solutions to

detΔ(λ) = (α+ 2β)(α − β)2 = (λ− a1e
−λτ1 − 2a2e

−λτ2)(λ− a1e
−λτ1 + a2e

−λτ2)2 = 0.

Each factor of the characteristic equation is of the same form as the characteristic equation
for a scalar DDE. Therefore, by letting ã1 = a1 and ã2 = 2a2 in (λ − a1e

−λτ1 − 2a2e
−λτ2),

Theorem 2.1 applies directly. The same is true for the factor (λ−a1e
−λτ1 +a2e

−λτ2), where we
let ã1 = a1 and ã2 = −a2. Hence, for any choice of a set of complex numbers Λ = {iω1, iω2}
with ω1, ω2 > 0 and rationally independent, there exists a linear D3 symmetric coupled cell
system including Λ in its spectrum.

In the context of bifurcation theory, the symmetry properties of the critical eigenspace
depend on which factor contains the critical eigenvalue, and this leads to different bifurca-
tion behavior. Two imaginary eigenvalues in the first factor correspond to a nonresonant
Hopf/Hopf mode interaction (without symmetry), while the second case leads to a nonreso-
nant D3 Hopf/Hopf mode interaction. Details of the unfolding of these bifurcations can be
found, respectively, in Kuznetsov [22] and Golubitsky, Stewart, and Schaeffer [14].

Note that Theorem 2.1 is not sufficient to guarantee the existence of a linear D3-symmetric
coupled cell system with iω1 satisfying the first factor and iω2 satisfying the second factor
simultaneously. We characterize this situation as follows. Let b11 = b21 = 1, b12 = 2, and
b22 = −1, and for fixed rationally independent iω1, iω2 (with ω1, ω2 > 0) we look for a1, a2 and
τ1, τ2 such that

a1b
1
1e

−iω1τ1 + a2b
1
2e

−iω1τ2 = iω1,

a1b
2
1e

−iω2τ1 + a2b
2
2e

−iω2τ2 = iω2,
(21)

and their complex conjugate equations are satisfied. This is the context of the next theorem,
which is a generalization of Theorem 2.1. We state this result in a general form below and
postpone the proof to section 4, as it follows similar steps as the proof of Theorem 2.1.

Note that in the proof of Theorem 2.1, the matrix I defined in (8) is nonsingular by
construction, and this is a crucial step in the argument. For this more general result we shall
present, the matrix which holds a similar role is denoted by IB since it is a matrix consisting
of ± the constants bjk which appear in (21). The form of this matrix is not relevant for the
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moment, and the structure of the matrix is described in section 4. We are now ready to state
the theorem.

Theorem 2.4. Consider the factors

(22)
r∏

j=1

(
λ−

n∑
k=1

akb
j
ke

−λτk

)

of a characteristic polynomial, where the constants bjk ∈ R \ {0} are fixed for all j = 1, . . . , r,
k = 1, . . . , n, and suppose that detIB 
= 0. Suppose that

ω1
1, . . . , ω

1
�1 , ω

2
1, . . . , ω

2
�2 , . . . , ω

r
1, . . . , ω

r
�r

are positive and linearly independent over the rationals where 1 + · · · + r = n. Then there
exist τ1 > 0, τ2 > 0, . . . , τn > 0, a1 ∈ R, a2 ∈ R, . . . , an ∈ R such that for all j = 1, . . . , r,(

λ−
n∑

k=1

akb
j
ke

−λτk

)
= 0

has roots iωj
� for  = 1, . . . , j.

This theorem is applied in the following section to the case of Dn-symmetrically coupled
one-dimensional cell systems. If n odd, it is easy to show that bjk 
= 0 holds, but for n even,
some of the bjk’s can be zero, and in those cases, Theorem 2.4 cannot be applied directly.

Example 2.5. Consider the case of a D4-symmetric ring of DDEs given by

ẋi = a1xi(t− τ1) + a2[xi+1(t− τ2) + xi−1(t− τ2)],

where i = 1, . . . , 4 and the indices are taken modulo 4. A calculation similar to the D3 case
above yields the characteristic equation

det Δ(λ) = (λ− a1e
−λτ1 − 2a2e

−λτ2)(λ− a1e
−λτ1)(λ− a1e

−λτ1 + 2a2e
−λτ2)2 = 0.

Here Theorem 2.4 cannot be applied if we include the second factor of the characteristic
equation since the bjk coefficient of a2 is null. However, Theorem 2.4 can be applied if we are
looking for critical eigenvalues distributed among the first and third factors.

3. Linear Γ-symmetric DDEs. We now look at the case of Γ-equivariant linear retarded
functional differential equations (RFDEs) depending on  discrete delays. For the results
of this section, we find it convenient to introduce the well-known abstract setting (see, for
instance, Hale and Verduyn-Lunel [20]), which is adapted to the symmetric case. Let Cn =
C([−τ, 0],Cn) be the Banach space of continuous functions from the interval [−τ, 0], into C

n

(τ > 0) endowed with the norm of uniform convergence. Consider the linear homogeneous
RFDE

(23) ż(t) = L0(zt),
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where L0 is a bounded linear operator from Cn into C
n. We write

L0(ϕ) =
∫ 0

−τ
dη(θ)ϕ(θ),

where η is an n × n matrix-valued function of bounded variation defined on [−τ, 0]. The
characteristic equation is

(24) detΔ(λ) = 0, where Δ(λ) = λ In −
∫ 0

−τ
dη(θ)eλθ,

where In is the n× n identity matrix. Note that eλθ = eλθIn.
Suppose that Γ is a compact group of transformations acting linearly on C

n. We say that
(23) is Γ-equivariant if

(25) γ · η(θ) = η(θ) · γ ∀ γ ∈ Γ, θ ∈ [−τ, 0].

The group action of Γ on C
n induces an isotypic decomposition of C

n:

C
n = V1 ⊕ V2 ⊕ · · · Vk,

where Vi = Ui ⊕ · · ·Ui for irreducible representations Ui of Γ and Ui 
 Uj for i 
= j. Since
η(θ) commutes with the action of Γ, then

η(θ)Vi ⊂ Vi

for all i = 1, . . . , k.
Therefore, Δ(λ) also commutes with the representation of Γ. Indeed, for all γ ∈ Γ,

Δ(λ)γ = λIγ −
[∫ 0

−τ dη(θ)e
λθ
]
γ

= γλI −
[∫ 0

−τ dη(θ)γe
λθ
]

= γλI −
[∫ 0

−τ γdη(θ)e
λθ
]

= γ
(
λI −

∫ 0
−τ dη(θ)e

λθ
)

= γΔ(λ).

Thus,
Δ(λ)Vi ⊂ Vi

for all i = 1, . . . , k, and in the orthogonal basis given by the isotypic decomposition, the matrix
Δ(λ) block diagonalizes and we write

Δ(λ) = diag(Δ1(λ), . . . ,Δk(λ)).

The characteristic equation then becomes

detΔ(λ) =
k∏

i=1

det Δi(λ).
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Therefore, we are led to the following result.
Proposition 3.1. Suppose that Vi = Ui and Ui is a one-dimensional irreducible representa-

tion of Γ. Then

det Δi(λ) = λ−
�∑

j=1

aje
−λτj .

Corollary 3.2. Theorem 2.1 applies to factors of the characteristic equation which corre-
spond to the context of Proposition 3.1.

3.1. Delay coupled cell systems with Dn-symmetry, n odd. Our goal is to apply The-
orem 2.4 to delay coupled cell systems with Dn-symmetry. We focus on the case of n odd
because the assumption bjk 
= 0 is satisfied for all j, k. As Example 2.5 shows, when n is
even one cannot apply Theorem 2.4 in all cases because some coefficients bjk may be zero.
Therefore, we perform the following analysis on the case in which n is odd only. Note that
these computations are valid in the case in which n is even with minor modifications.

Multiple authors [6, 10, 15, 16, 17, 24, 25, 29, 30] have studied Hopf bifurcation in Dn-
symmetric rings of cells with delayed coupling where each cell is one-dimensional. The differ-
ential equation systems in those papers have the following general form. For i = 1, . . . , n, the
dynamics of cell i is given, respectively, for n odd:

(26) ẋi(t) = f(Xi) + g(xi+1, . . . , xi+(n−1)/2, xi−(n−1)/2, . . . , xi−1),

where Xi = (xi(t− s1), . . . , xi(t− sm)), xj = xj(t− τj) for j 
= i, f : R
m → R, g : R

n−1 → R

are smooth functions, τj, s� ∈ [0, τ ] for all j 
= i, and s = 1, . . . ,m. Here, f is called the
internal dynamics and g is the coupling function.

3.1.1. Characterization of delayed Dn networks. We introduce a more general notation
for delayed symmetrically coupled cell systems inspired by recent work on (not necessarily
symmetric) coupled cell systems of ODEs; see Golubitsky and Stewart [13] for a survey of
the theory. Note that all the results of this section are straightforward generalizations of the
nondelayed case.

Suppose that each cell in the system has phase space R
k. We generalize system (26) to

(27) Ẋi(t) = f(X̃i, X̃i+1, . . . , X̃i+(n−1)/2, X̃i−(n−1)/2, . . . , X̃i−1), i = 1, . . . , n,

where
X̃j = (Xj(t− τ1), . . . ,Xj(t− τm)),

f : (Rkm)n → R
k is a smooth function, and the position of X̃k corresponds to the coupling

from cell k to cell i and τj ≥ 0 for j = 1, . . . ,m. The following proposition is a straightforward
consequence of the coupled cell system theory [13]. The proof is given for completeness.

Proposition 3.3. Any delay coupled network of n-odd identical cells depending on m delays
can be written as (27).

Proof. Since the cells are identical, each cell has the same dimension k and the dynamics
of all cells is given by the same function f . The function f has arguments coming from every
other cell in the network corresponding to possible connections from these other cells, and
those depend possibly on the m delays by the definition of X̃j .
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We say that cells j and k have identical coupling to cell i if

(28) f(Xi, . . . , u, . . . , v, . . .) = f(Xi, . . . , v, . . . , u, . . .),

where u and v are permuted from positions j and k. We rewrite system (27) as

(29) Ẋ = F (X̃),

where X = (X1, . . . ,Xn)t,

X̃ = X̃i, X̃i+1, . . . , X̃i+(n−1)/2, X̃i−(n−1)/2, . . . , X̃i−1,

and F : (Rkm)n → R
nk has the ith component given by the formulas above for Ẋi(t).

Consider the group Dn, with generators ρ and κ acting on R
kn as follows:

ρ.(X1, . . . ,Xn) = (Xn,X1,X2, . . . ,Xn−1),
κ.(X1, . . . ,Xn) = (X1,Xn, . . . ,Xn+2−j , . . . ,X(n+3)/2,X(n+1)/2, . . . ,Xj , . . . ,X2).

(30)

Without loss of generality we assume that our networks are transitive. That is, all cells
in the network can be reached from any other cell via the coupling.

We now characterize the connections in the network so that the delay-differential system
is Dn-symmetric. We think of each cell in the network as having [(n − 1)/2] neighbors on
each side and an opposite cell if n is even. Graphically, it is clear that an n-cell network is
Dn-symmetric if for all cells in the network, all connections to and from the jth neighbor on
each side (or the opposite cell if n is even) are all the same; that is, the coupling term and its
delay must be the same for all those connections. This idea is formalized in the next result.

Proposition 3.4. A transitive network of n coupled identical cells with delays is Dn-equi-
variant if and only if it satisfies the conditions below.

(i) Suppose that cell 1 receives an input from cell j with delay ε ∈ [0, τ ]; then every cell i
in the network (i = 2, . . . , n) receives an input from cell (i+ j − 1) mod n with delay
ε identical to the one received by cell 1.

(ii) For every connection in part (i), there is an identical connection from cell i to cell
(i+ j − 1) mod n with delay ε.

Proof. The result is true for n odd and even but we give the proof only for n odd. We
begin by looking at ρ-equivariance. Denote by [w]i the ith row of vector w. Then,

[ρF (X̃)]i = f(X̃i−1, X̃i, . . . , X̃i−2),

and since ρX = (Xn,X1, . . . ,Xn−1) we have

[F (ρX̃)]i = f(X̃i−1, X̃i, . . . , X̃i−2).

Thus, ρ-equivariance holds automatically by the structure of the equations.
Suppose that cell 1 receives an input from cell j. We look at the system of equations (27)

and focus on the possible coupling from cell (i + j − 1) mod n to cell i. Moreover, consider
the possible connection from cell i to cell (i− j + 1) mod n. Note that the connections from
(i+ j − 1) mod n to i and from i to (i − j + 1) mod n are obtained by taking the index and
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subtracting j − 1. Finally, consider the possible connection from cell (i − j + 1) mod n to
cell i. We now show that F (X̃) is κ-equivariant (and so Dn-equivariant) if and only if the
connections defined above are identical. An easy computation shows that for all i = 1, . . . , n
we have

[κF (X̃)]n+2−i = f(X̃i, . . . , X̃i+j−1, . . . , X̃i−j+1, . . .)

and
[F (κX̃)]n+2−i = f(X̃i, . . . , X̃i−j+1, . . . , X̃i+j−1, . . .),

where n+ 2 − i is taken modulo n for i = 1.
We now show that parts (i) and (ii) imply κ-equivariance. If part (i) holds, the coupling

from cell (i+ j − 1) mod n to cell i and the coupling from cell i to cell (i− j + 1) mod n are
identical. Then, by part (ii), the coupling from cell (i−j+1) mod n to cell i is identical to the
coupling from cell i to cell (i−j+1) mod n. Therefore, the coupling from cells (i+j−1) mod n
and (i − j + 1) mod n to i are identical. By definition of identical coupling given by (28) we
have that

f(X̃i, . . . , X̃i−j+1, . . . , X̃i+j−1, . . .) = f(X̃i, . . . , X̃i+j−1, . . . , X̃i−j+1, . . .).

Since the dynamics of all cells is given by the same function f , this is true for all i = 1, . . . , n.
Thus, F is κ-equivariant.

Suppose now that F is κ-equivariant. Equality of both sides of the equivariance condition
implies that for all i = 1, . . . , n, the couplings from cells (i+j−1) mod n and (i−j+1) mod n
to i are identical. Since the dynamics of all cells is given by the same function f , the coupling
from cell (i + j − 1) mod n to cell i guarantees an identical coupling from cell i to cell
(i − j + 1) mod n, and this proves (i). But, the coupling from cell (i − j + 1) mod n to i
is therefore identical to the coupling from cell i to cell (i − j + 1) mod n. Hence there is an
identical two-way coupling between cells i and (i− j + 1) mod n, which proves (ii).

3.1.2. General form of the characteristic equation. We now focus our attention on delay
coupled cell systems where each cell is one-dimensional, that is, k = 1. The results of this
section are also easy generalizations of the nondelayed case. We split the linear and nonlinear
parts of system (27) and write the result in abstract form:

Ẋ = LXt +H(Xt),

where Xt ∈ C([−τ, 0],Rn), L : C([−τ, 0],Rn) → R
n is a bounded linear map, and H is a

nonlinear mapping. Thus, L is Dn-equivariant, η(θ) is an n × n Dn-equivariant matrix of
bounded variation, and

Lφ =
∫ 0

−τ
dη(θ)φ.

Proposition 3.5. The matrix η(θ) is symmetric (η(θ) = η(θ)T ) with the following properties:
(1) for all j = 1, . . . , n, ηjj(θ) = p(θ) for some function p, and
(2) for all i, k with i 
= k, ηki(θ) = η(2+n−k)i(θ) = ηk1(θ).
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Proof. We use Proposition 3.4 to obtain information on η. By part (ii), the matrix η(θ) is
symmetric. From the structure of (27), we deduce that for all j = 1, . . . , n, ηjj(θ) = p(θ) for
some function p(θ). We denote by ηji(θ) the element of η corresponding to the coupling from
cell j to i. Consider ηj1(θ); then there is an identical connection from cell 1 to cell 2 + n− j
by part (i) and so ηj1(θ) = η1(2+n−j)(θ). By part (ii), the connection from cell 2 + n − j to
cell 1 is identical to its reciprocal and so ηj1(θ) = η(2+n−j)1(θ). By part (i), we then have
ηki(θ) = η(2+n−k)i(θ) = ηk1(θ) since the connections to cell i are identical to the connections
to cell 1.

Remark 3.6. This result can be obtained for higher-dimensional cells with a proof essen-
tially similar to this one, but with more cumbersome notation. We decided to restrict ourselves
to the one-dimensional case as this is the one which we study in detail in what follows.

The diagonalization of the linear equation is obtained using the results at the beginning of
section 3 and are analogous to calculations for the Dn-symmetric ODEs found in Golubitsky,
Stewart, and Schaeffer [14, Chapter XVIII]. The details are left to the reader. One obtains
for j = 0, . . . , n− 1

(31) Aj(θ) := p(θ) +
(n+1)/2∑

k=2

2 cos(2π(k − 1)j/n)ηk1(θ).

Note that Aj(θ) = An−j(θ) for j = 1, . . . , [n/2]. The block diagonalization of η is given by
the terms Aj(θ) for j = 0, . . . , n− 1. Hence, in the basis given by the isotypic decomposition,
we have

Δ(λ) = λIn −
∫ 0

−τ
dη(θ)eλθ = λIn −

∫ 0

−τ
diag(dA0(θ)eλθ, . . . , dAn−1(θ)eλθ).

Let Δj(λ) = λ−
∫ 0
−τ dAj(θ)eλθ; then

Δ(λ) = diag(Δ0(λ), . . . ,Δn−1(λ)).

Therefore, the characteristic equation has the decomposition

(32) detΔ(λ) = detΔ0(λ)
(n−1)/2∏

j=1

[det Δj(λ)]2 = 0.

For completeness, the reader can verify that the corresponding formula for n even is

(33) det Δ(λ) = det Δ0(λ) det Δn/2(λ)
n/2−1∏
j=1

[det Δj(λ)]2 = 0,

where the Aj formula is slightly different from the one above.
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3.1.3. Application of main theorems to the Dn case. It is straightforward that Theo-
rem 2.1 can be applied to any of the factors of the characteristic equations (32) or (33). Recall
from Example 2.5 that Theorem 2.4 can possibly be applied in the case in which n is even if
the chosen factors of the characteristic equation satisfy bjk 
= 0 for all j, k. We do not pursue
this case here.

To apply Theorem 2.4 in the Dn case with n odd, we need to verify that the coefficients bjk
in the factors of the characteristic equation are nonzero and that the nondegeneracy condition
detIB 
= 0 is satisfied. In fact, as shown in section 4, detIB 
= 0 if and only if the matrix

B :=

⎡
⎢⎢⎢⎣
b11 b11+μ1

· · · b11+μr−1

b21 b21+μ1
· · · b21+μr−1

...
...

. . .
...

br1 br1+μ1
· · · br1+μr−1

⎤
⎥⎥⎥⎦

is nonsingular, where j is the number of imaginary eigenvalues satisfying the jth term of the
product of the characteristic equation (22) and μj =

∑j
i=1 i, where μr = n and μ0 := 0.

Note that row j of B contains coefficients belonging to the jth factor of the characteristic
equation (22). We apply Theorem 2.4 to Dn-symmetric coupled cell systems depending on
an arbitrary number of finite delays.

The characteristic equation is

(34) detΔ(λ) = detΔ0(λ)
(n−1)/2∏

j=1

[det Δj(λ)]2 = 0.

We can write
Δj(λ) = λ− F (λ) −Gj(λ),

where

F (λ) =
p∑

i=1

aie
−λτi

are the terms coming from the internal dynamics of each cell and

Gj(λ) =
(n+1)/2∑

k=2

[
2 cos

(
2π(k − 1)j

n

)] mk∑
t=1

αk
t e

−λsk
t

are the contributions from the coupling where mk is the number of delayed terms in the
connection from cell k to 1 and αk

t are the respective coupling coefficients.
Example 3.7. As an example, consider a delay coupled D5-symmetric cell. Let us(θ) = 0

if θ = [−τ,−s] and us(θ) = 1 for θ ∈ (−s, 0], where τ ≥ s for all delays s, and suppose

η(θ) =

⎡
⎢⎢⎢⎢⎣

p(θ) η21(θ) η31(θ) η41(θ) η51(θ)
η21(θ) p(θ) η51(θ) η31(θ) η41(θ)
η41(θ) η21(θ) p(θ) η51(θ) η31(θ)
η31(θ) η41(θ) η21(θ) p(θ) η51(θ)
η51(θ) η41(θ) η31(θ) η21(θ) p(θ)

⎤
⎥⎥⎥⎥⎦ ,
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where

p(θ) =
2∑

i=1

aiuτi(θ), η21(θ) =
3∑

�=1

α2
�us2

�
(θ), and η31(θ) =

2∑
�=1

α3
�us3

�
(θ)

with the conditions η41(θ) = η31(θ) and η51(θ) = η21(θ) given by Proposition 3.5, part (2).
Then,

F (λ) =
2∑

i=1

aie
−λτi

and

Gj(λ) =
3∑

k=2

[
2 cos

(
2π(k − 1)j

n

)] mk∑
t=1

αk
t e

−λsk
t ,

where m2 = 3 and m3 = 2.
Thus, all coefficients bkj of IB are nonzero and it is convenient to set bj1 to be the coefficient

of a1; that is, bj1 = 1 for j = 0, 1, 2, . . . , (n+1)/2, and we keep this convention for the remainder
of the paper.

We suppose that the characteristic equation detΔ(λ) = 0 has purely imaginary roots
coming from all factors; then for r = (n− 1)/2 we have

B :=

⎡
⎢⎢⎢⎣
b11 b11+μ1

· · · b11+μr−1

b21 b21+μ1
· · · b21+μr−1

...
...

. . .
...

br1 br1+μ1
· · · br1+μr−1

⎤
⎥⎥⎥⎦ ,

and we assign the coefficients bi1+μj
as follows. We suppose that the first row corresponds to

the factor for the trivial representation, which means that

b11+μj
= 2, j = 1, 2, . . . , (n− 1)/2.

Then, we set the remaining coefficients of each row to be equal to
[
2 cos

(2π(k−1)j
n

)]
for k =

2, 3, . . . , (n+ 1)/2, where row j + 1 has the coefficients of Δj for j = 1, 2, . . . , (n− 1)/2. This
leads to the matrix
(35)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 · · · 2 2

1 2 cos
(

2π
n

)
2 cos

(
4π
n

)
· · · 2 cos

(
(n− 3)π

n

)
2 cos

(
(n− 1)π

n

)
1 2 cos

(
4π
n

)
2 cos

(
8π
n

)
· · · 2 cos

(
2(n − 3)π

n

)
2 cos

(
2(n − 1)π

n

)
...

...
...

...
...

...

1 2 cos
(

(n− 1)π
n

)
2 cos

(
2(n − 1)π

n

)
· · · 2 cos

(
(n− 3)(n − 1)π

2n

)
2 cos

(
(n− 1)2π

2n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let i1 < i2 < · · · < is be a set of indices chosen from {0, . . . , (n − 1)/2} defining a
combination of factors from the characteristic equation (32). We now construct the s × s
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matrix B by removing rows and columns of (35) not in the set {i1, i2, . . . , is}. Suppose that
i1, . . . , is are chosen from {1, . . . , (n − 1)/2}; then the matrix B is symmetric (BT = B) and
has the form
(36)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 cos
(

2πi21
n

)
2 cos

(
2πi2i1
n

)
· · · 2 cos

(
2πis−1i1

n

)
2 cos

(
2πisi1
n

)

2 cos
(

2πi1i2
n

)
2 cos

(
2πi22
n

)
· · · 2 cos

(
2πis−1i2

n

)
2 cos

(
2πisi2
n

)
...

...
...

...
...

2 cos
(

2πi1is−1

n

)
2 cos

(
2πi2is−1

n

)
· · · 2 cos

(
2πi2s−1

n

)
2 cos

(
2πisis−1

n

)

2 cos
(

2πi1is
n

)
2 cos

(
2πi2is
n

)
· · · 2 cos

(
2πis−1is

n

)
2 cos

(
2πi2s
n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the other case, i1 = 0 and the matrix is of the form

(37) B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 · · · 2 2

1 2 cos
(

2πi22
n

)
· · · 2 cos

(
2πis−1i2 − 1

n

)
2 cos

(
2πisi2
n

)
...

...
...

...
...

1 2 cos
(

2πi2is−1

n

)
· · · 2 cos

(
2πis−1is−1

n

)
2 cos

(
2πisis−1

n

)

1 2 cos
(

2πi2is
n

)
· · · 2 cos

(
2πi2s−1

n

)
2 cos

(
2πi2s
n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can now state our result.
Theorem 3.8. Consider a linear Dn-symmetric coupled cell system with n odd depending

on k delays τ1, . . . , τk, and let i1 < i2 < · · · < is be indices chosen from {0, . . . , (n − 1)/2}
defining a combination of factors from the characteristic equation (32). We assume that the
matrix B given by (36) or (37) is nonsingular. Suppose

ω1
1, . . . , ω

1
�i1
, ω2

1, . . . , ω
2
�i2
, . . . , ωs

1, . . . , ω
s
�is

are positive and linearly independent over the rationals, where i1 + · · · + is = k. Then there
exist τ1 > 0, . . . , τk > 0 and real coefficients ai such that for all m = 1, . . . , s

detΔim(λ) = 0

has solutions iωm
� for  = 1, . . . , im .

Proof. Since n is odd, the coefficients

bjk = 2cos
(

2π(k − 1)j
n

)
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are nonzero for all k = 2, . . . , (n+ 1)/2 and j = 0, . . . , (n− 1)/2. Because B is assumed to be
nonsingular, Theorem 2.4 applies and the result is obtained.

The condition that B is nonsingular does not always hold, as we show in the case s = 2.
Consider the matrix (37) with n = 9 so that i2 ∈ {1, 2, 3, 4}. Choosing i2 = 3 we have the
singular matrix

B =
(

1 2
1 2

)
.

We now show that B is nonsingular in the case s = 2 if the matrix is given by (36); that
is,

B =

⎛
⎜⎜⎝

2 cos
(

2πi21
n

)
2 cos

(
2πi1i2
n

)

2 cos
(

2πi2i1
n

)
2 cos

(
2πi22
n

)
⎞
⎟⎟⎠ .

We compute

detB = 4

[
cos

(
2πi21
n

)
cos

(
2πi22
n

)
− cos

(
2πi1i2
n

)2
]

= 2
[
cos

(
2π(i21 + i22)

n

)
+ cos

(
2π(i21 − i22)

n

)
− cos

(
4πi1i2
n

)
− 1

]
.

We show a few cases explicitly. First, the case n = 3 is not relevant since i1 < i2, (n−1)/2 = 1,
and i1 
= 0. We show the case n = 5, where we must have i1 = 1 and i2 = 2. This implies
that i21 + i22 = 5, and so

detB = 2
[
cos

(
4π
5

)
− cos

(
8π
5

)]

= 0.

We now turn to the general case and show that the determinant cannot vanish. Because the
three cosines are projections of nth roots of unity on the real axis for n odd, then

cos
(

2π(i21 + i22)
n

)
+ cos

(
2π(i21 − i22)

n

)
− cos

(
4πi1i2
n

)

= 1.

So if the determinant is to vanish, one of the cosines must be equal to 1. Since i1 < i2, there
is only one option and we must have i21 + i22 = n. Thus, i21 = n− i22 and

cos
(

2π(i21 − i22)
n

)
= cos

(
2π(n − 2i22)

n

)
= cos

(
4πi22
n

)
.

If
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cos
(

4πi22
n

)
− cos

(
4πi1i2
n

)
= 0,

this would imply i1 = i2, but we know that i1 < i2 and so detB cannot vanish. We summarize
this result in the next theorem.

Theorem 3.9. Consider a linear Dn-symmetric coupled cell system with n odd depending
on k delays τ1, . . . , τk, and let i1 < i2 be indices chosen from {1, . . . , (n − 1)/2} defining a
combination of factors from the characteristic equation (32). Suppose

ω1
1, . . . , ω

1
�i1
, ω2

1, . . . , ω
2
�i2

are positive and linearly independent over the rationals, where i1 + i2 = k. Then there exist
τ1 > 0, . . . , τk > 0 and real coefficients a1 ∈ R, . . . , ap ∈ R such that for m = 1 and m = 2

detΔim(λ) = 0

has solutions iωm
� for  = 1, . . . , im .

4. Proof of Theorem 2.4. Before we present the proof of Theorem 2.4, we describe
in the next lemma the form of the matrix IB which appears in the proof and compute its
determinant.

Lemma 4.1. Let 1, . . . , r be positive integers and define μj =
∑j

i=1 i, where μr = n and
μ0 := 0. Consider the n× n matrix

IB := [A1 · · ·Aj · · ·Ar]
T ,

where

Aj =

⎡
⎢⎢⎢⎢⎣
bj1 · · · bjμj−1 bj1+μj−1

bj2+μj−1
· · · bjμj bjμj+1 · · · bjn

bj1 · · · bjμj−1 bj1+μj−1
bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn
... · · ·

...
...

... · · ·
...

... · · ·
...

bj1 · · · bjμj−1 bj1+μj−1
−bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn

⎤
⎥⎥⎥⎥⎦

is an j × n matrix and all elements are nonzero. Then,

det IB = ±
r∏

j=1

⎡
⎣(−2)�j−1

�j∏
s=2

bjs+μj−1

⎤
⎦ detB,

where

B :=

⎡
⎢⎢⎢⎣
b11 b11+μ1

· · · b11+μr−1

b21 b21+μ1
· · · b21+μr−1

...
...

. . .
...

br1 br1+μ1
· · · br1+μr−1

⎤
⎥⎥⎥⎦ .
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Proof. Substitute row k, denoted by Rk, of

Aj =

⎡
⎢⎢⎢⎢⎣
bj1 · · · bjμj−1 bj1+μj−1

bj2+μj−1
· · · bjμj bjμj+1 · · · bjn

bj1 · · · bjμj−1 bj1+μj−1
bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn
... · · ·

...
...

... · · ·
...

... · · ·
...

bj1 · · · bjμj−1 bj1+μj−1
−bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn

⎤
⎥⎥⎥⎥⎦

for k = 2, . . . , j by Rk −R1. The matrix Aj becomes

Ãj :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bj1 · · · bjμj−1 bj1+μj−1
bj2+μj−1

bj3+μj−1
· · · bj−1+μj

bjμj bjμj+1 · · · bjn

0 · · · 0 0 0 0 · · · 0 −2bjμj 0 · · · 0
0 · · · 0 0 0 0 · · · −2bj−1+μj

−2bjμj 0 · · · 0
... · · ·

...
...

...
... · · ·

...
...

... · · ·
...

0 · · · 0 0 0 −2bj3+μj−1
· · · −2bj−1+μj

−2bjμj 0 · · · 0
0 · · · 0 0 −2bj2+μj−1

−2bj3+μj−1
· · · −2bj−1+μj

−2bjμj 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We compute the determinant of IB by cofactor expansion starting with row 2 of Ãj, which
contains a unique nonzero element −2bjμj . Denote by Cij the (i, j)-cofactor matrix. The row
2 + μj−1 of C(2+�j−1,μj) has a unique nonzero element −2b−1+μj , and we perform a cofactor
expansion along this row. The row 2 + μj−1 of this new cofactor matrix also has a unique
nonzero element −2bj−2+μj

, and we proceed with the same process removing successively
columns 3+μj−1 to μj (and the appropriate rows) until the cofactor matrix has only two rows
corresponding to the original Ãj matrix and the second row has the unique nonzero element
−2b2+μj−1 which is used to perform a cofactor expansion. Performing this process successively
on each matrix Ãj for j = 1, . . . , r, leaves as a cofactor matrix the r × r matrix B defined in
the statement. The formula in the lemma is written using μj = μj−1 + j, and so the lemma
is proved.

We are now ready to prove our Theorem 2.4.

Proof of Theorem 2.4. The proof of this theorem is similar to the proof of Theorem 2.1.
However, more notation is needed and the details of some calculations are more elaborate
because we are now dealing with r factors of the characteristic equation and the vector ω is
separated in r subvectors of possibly unequal length.

A necessary and sufficient condition for the conclusion of the theorem to hold is that the
following algebraic system of 2n equations has a solution in the 2n unknowns (τ1, τ2, . . . , τn,
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a1, a2, . . . , an): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=1

ak (b1ke
−iω1

� τk) = iω1
� ,  = 1, . . . , 1,

n∑
k=1

ak (b2ke
−iω1

� τk) = iω2
� ,  = 1, . . . , 2,

...
n∑

k=1

ak (brke
−iω1

� τk) = iωr
� ,  = 1, . . . , r,

(38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
k=1

ak (b1ke
iω1

� τk) = −iω1
� , k = 1, . . . , 1,

n∑
k=1

ak (b2ke
iω1

� τk) = −iω2
� ,  = 1, . . . , 2,

...
n∑

k=1

ak (brke
iω1

� τk) = −iωr
� ,  = 1, . . . , r.

(39)

We introduce the following notation to describe the above system of equations in matrix
form. Let

ω = (ω1
1, . . . , ω

1
�1 , . . . , ω

r
1, . . . , ω

r
�r

),

and define (39) as

(40)
(

P (τ ;ω)
P (−τ ;ω)

)
AT =

(
iωT

−iωT

)
,

where A = (a1, . . . , an), superscript T denotes transpose, and P (τ ;ω) = P (τ1, . . . , τn;ω) is
the n× n matrix of the form

P (τ ;ω) =

⎡
⎢⎢⎢⎣
P1(τ ;ω)
P2(τ ;ω)

...
Pr(τ ;ω)

⎤
⎥⎥⎥⎦ ,

whose entry at block j, row , and column k is

[Pj(τ ;ω) ]�k = bjke
−iωj

�τk .

Note that P (τ ;ω) = P (−τ ;ω).
As in the proof of Theorem 2.1, we use the fact that since the ωk

� are rationally independent,
then ωτk taken modulo 2π generates a dense orbit, denoted Ok, on a torus Tn.

Just as in Theorem 2.1, we embed the problem into a mapping F associated to (40). Let

V = {Φ = (Φ1, . . . ,Φr) | Φj = (Φj
1, . . . ,Φ

n
j ), Φk

j = (ϕj
1k, . . . , ϕ

j
�jk), j = 1, . . . , r},
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and define
F : V × R

n �−→ R
2n

as

(41) F (Φ1, . . . ,Φr, A;ω) =

(
P̃ (Φ1, . . . ,Φr)

P̃ (−Φ1, . . . ,−Φr)

)
AT − i

(
ωT

−ωT

)
,

where A and ω are as previously defined and

P̃ (Φ1, . . . ,Φr) =

⎡
⎢⎢⎢⎣
P̃1(Φ1)
P̃2(Φ2)

...
P̃r(Φr)

⎤
⎥⎥⎥⎦

with [
P̃j(Φ1, . . . ,Φn)

]
�k

= bjke
−iϕj

�k

for j = 1, . . . , r,  = 1, . . . , j , and k = 1, . . . , n. The definition of P̃ uses the following
coordinates of V .

We single out some coordinates as follows to facilitate the use of the implicit function
theorem. Let Ψj = Φj

n and Ψ = (Ψ1, . . . ,Ψr), and we now write

Φ = (Φ1
o, . . . ,Φ

n−1
o ),

where
Φj

o = (Φj
1, . . . ,Φ

j
n−1).

Thus, the mapping (41) can be written as F (Φ,Ψ, A;ω).
We now find an explicit solution of F = 0 using the vectors vj defined in the proof of

Theorem 2.1. Denote by I� the (invertible) ×  matrix whose jth column is the vector vT
j .

We define μ0 := 0, μj :=
∑j

i=1 i, and

Θ�j
:= (Φj

1+μj−1
, . . . ,Φj

μj
).

We use the following base point in V . For j = 1, . . . , r define Φ̂j be the point given by

Θ̂�j
=

−π
2

((v1, . . . , v�j−1), v�j
)

and Φ̂j
i = −π

2v1 for i /∈ {μ1+μj−1 , . . . , μj}. In particular, Φ̂j
μj = −π

2v�j
.

We now evaluate P̃ (Φ̂, Ψ̂) by computing P̃j(Φ̂, Ψ̂) for j = 1, . . . , r:

P̃j(Φ̂, Ψ̂) = i

⎡
⎢⎢⎢⎢⎣
bj1 · · · bjμj−1 bj1+μj−1

bj2+μj−1
· · · bjμj bjμj+1 · · · bjn

bj1 · · · bjμj−1 bj1+μj−1
bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn
... · · ·

...
...

... · · ·
...

... · · ·
...

bj1 · · · bjμj−1 bj1+μj−1
−bj2+μj−1

· · · −bjμj bjμj+1 · · · bjn

⎤
⎥⎥⎥⎥⎦ .
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Thus,

P̃ (Φ̂, Ψ̂) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃1(Φ̂, Ψ̂)
...

P̃j(Φ̂, Ψ̂)
...

P̃r(Φ̂, Ψ̂)

⎤
⎥⎥⎥⎥⎥⎥⎦ := iIB ,

where IB is invertible by assumption. In particular, P̃ (−Φ̂,−Ψ̂) = −iIB. We define

ÂT ≡ (â1, . . . , ân)T = I−1
B ωT ,

which leads to the solution:
F (Φ̂, Ψ̂, Â;ω) = 0.

Because the ωj are rationally independent, it follows that the components âk of Â are all
nonzero.

We now show that we can use the implicit function theorem at the point found above. We
define the ×  invertible matrix Uj to be the diagonal matrix whose kth diagonal element is
the kth component of the vector vj (in particular, U1 is the identity matrix). Note also that
U−1

j = Uj, j = 1, . . . , r. We compute

J ≡ D(Ψ,A)F (Φ̂, Ψ̂, Â;ω) =
(
Û iIB

Û −iIB

)
,

where
Û = diag(ânb

1
nU1

1 , . . . , ânb
r−1
n Ur−1

1 , ânb
r
nUr

�r
)

is an n × n matrix with diagonal blocks of dimensions 1 × 1 to r × r. By the implicit
function theorem, there exist a neighborhood N of Φ̂ in VΦ and a unique smooth function

G : N �−→ VΨ × R
n,

G : Φ �−→ G(Φ) = (GΨ(Φ), GA(Φ))

such that
G(Φ̂) = (Ψ̂, Â)

and

(42) F (Φ, G(Φ);ω) ≡ 0 ∀Φ ∈ N.

Now that we have identified a set of solutions for F = 0, we wish to identify within this
set solutions which lie on the dense orbits Ok.

We show now that GΨ is regular at Φ̂. A computation shows that

K ≡ DΦF (Φ̂, Ψ̂, Â;ω) =
(
K̂

K̂

)
,
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where
K̂ = diag(K̂1, . . . , K̂r)

is an n× (n− 1)n matrix where the block K̂j has dimensions j × (n− 1)j and is of the form

K̂j =
(
â1 b

j
1 U

j
1 · · · â1+μj−1 b

j
1+μj−1

U j
1 â2+μj−1 b

j
2+μj−1

U j
2 · · · âμj b

j
μj U

j
�j

â1+μj b
j
1+μj

U j
1 · · · ân−1b

j
n−1U

j
1

)
.

The matrix J is invertible and its inverse is

J−1 =

(
1
2 Û

−1 1
2 Û

−1

−i
2 I−1

B
i
2I

−1
B

)
.

Implicit differentiation of (42) yields

DG(Φ̂) =

(
DGΨ(Φ̂)
DGA(Φ̂)

)
= −J−1K

=
(

diag(M1, . . . ,Mr)
∗

)
,

(43)

where ∗ is not important for our purposes and the first component is an n× (n− 1)n matrix
composed of n− 1 block matrices

Mj =
(

− â1bj
1

âμj bj
μj

(U j
1 )2 · · · −

â1+μj−1
bj
1+μj−1

âμj bj
μj

(U j
1 )2 −

â2+μj−1
bj
2+μj−1

âμj bj
μj

U j
1U

j
2 · · ·

− âμj bj
μj

âμj bj
μj

U j
1U

j
�j

−
â1+μj

bj
1+μj

âμj bj
μj

(U j
1 )2 · · · − ân−1bj

n−1

âμj bj
μj

(U j
1 )2

)
of dimension j × (n − 1)j , where j = 1, . . . , r − 1. Recall that μr = n, so that we have

Mr =
(

− â1br
1

âμr br
μr

Ur
�r
Ur

1 · · · −
âμr−1br

μr−1

âμr br
μr

Ur
�r
Ur

1 −
â1+μr−1br

1+μr−1

âμr br
μr

Ur
�r
Ur

1

−
â2+μr−1br

2+μr−1

âμr br
μr

Ur
�r
Ur

2 · · · − ân−1br
n−1

âμr br
μr

Ur
�r
Ur

�r−1

)
.

Consequently,

(44) DGΨ(Φ̂) = diag(M1, . . . ,Mr)

is nonsingular and it follows that the mapping

GΨ : N −→ VΨ

is regular at Φ̂.
From the density of Ok in Tn for k = 1, . . . , n − 1, we know that for every ε > 0 there

exists (τ1,ε, . . . , τn−1,ε) such that

Φ∗
ε = (τ1,εω, . . . , τn−1,εω) mod 2π
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is in an ε-neighborhood of Φ̂ in N , and we define a small (n − 1)-dimensional surface in VΦ

based at Φ∗
ε by

Sh
Φ∗

ε
= {(τ1ω, . . . , τn−1ω) mod 2π | τj ∈ (τj,ε − h, τj,ε + h)}

with ε, h > 0 small enough so that Sh
Φ∗

ε
⊂ N . We now show that the image of Sh

Φ∗
ε

by GΨ has
a nontrivial transversal intersection with OΨ.

Consider the following n− 1 vectors in (R�1)n−1 × (R�2)n−1 × · · · × (R�r)n−1  (Rn)n−1:

W1 = (ω1, 0, . . . , 0;ω2, 0, . . . , 0; . . . ;ωr, 0, . . . , 0),

W2 = (0, ω1, . . . , 0; 0, ω2, . . . , 0; . . . , 0, ωr, . . . , 0),
...

Wn−2 = (0, . . . , ω1, 0; 0, . . . , ω2, 0; . . . ; 0, . . . , ωr, 0),

Wn−1 = (0, . . . , 0, ω1; 0, . . . , 0, ω2; . . . , 0, . . . , 0, ωr),

where 0 represents the 0 vector in the respective space R
�j , and we recall that

(ω1, . . . , ωr) = (ω1
1, . . . , ω

1
�1, . . . , ω

r
1, . . . , ω

r
�r

).

The set {W1, . . . ,Wn−1} is linearly independent. We consider the function

T : N −→ R

defined by

(45) T (Φ) = det
(
DGΨ(Φ) ·W T

1 DGΨ(Φ) ·W T
2 · · · DGΨ(Φ) ·W T

n−1 ωT
)
,

and recalling that (U i
j)

2 = I for all j, i we compute

T (Φ̂) = det
(
DGΨ(Φ̂) ·W T

1 DGΨ(Φ̂) ·W T
2 · · · DGΨ(Φ̂) ·W T

n−1 ωT
)

= det (αjk) ,
(46)

where j = 1, . . . , r, k = 1, . . . , n. The elements of the matrix (αjk) are

α1k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− âkb1k
âμ1b1μ1

U1
1U1

k (ω1)T , k = 1, . . . , 1,

− âkb1k
âμ1b1μ1

(U1
1 )2(ω1)T , k = 1 + 1, . . . , n− 1,

âμ1 b1μ1
âμ1 b1μ1

(U1
1 )2(ω1)T , k = n,

and for j = 2, . . . , r − 1

αjk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− âkbj
k

âμj bj
μj

(U j
1 )2(ωj)T , k = 1, . . . , μj−1, and k = μj + 1, . . . , n− 1,

− âkbj
k

âμj
bj
μj

U j
1U

j
k−μj−1

(ωj)T , k = 1 + μj−1, . . . , μj ,

âμj bj
μj

âμj
bj
μj

(U j
1 )2(ωj)T , k = n,
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and finally

αrk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− âkbr
k

âμr br
μr

Ur
�r
Ur

1 (ωr)T , k = 1, . . . , μr−1,

− âkbr
k

âμr br
μr

Ur
�r
Ur

k−μr−1
(ωr)T , k = 1 + μr−1, . . . , μr − 1,

âμr br
μr

âμr br
μr

(Ur
�r−1)

2(ωr)T , k = n,

where we recall that μr = n. Note that the elements of the last column are rewritten so as to
lead to the significant simplification of the determinant to the following form:
(47)

T (Φ̂) =
(−1)n−1ω1

1 · · ·ω1
�1
· · ·ωr

1 · · ·ωr
�r
â1 · · · ân−1

(âμ1b
1
μ1

)�1 · · · (âμrb
r
μr

)�r
det(diag(U1

1 ,U2
1 , . . . ,Ur−1

1 ,Ur
�r

)) det I ′
B,

where

I ′
B =

⎛
⎜⎜⎜⎝

Q1

Q2
...
Qr

⎞
⎟⎟⎟⎠ ,

and for j = 1, . . . , r

Qj =

⎡
⎢⎢⎢⎢⎣
bj1 · · · bjμj−1 bj1+μj−1

bj2+μj−1
· · · bjμj bjμj+1 · · · âμjb

j
μj

bj1 · · · bjμj−1 bj1+μj−1
bj2+μj−1

· · · −bjμj bjμj+1 · · · âμjb
j
μj

... · · ·
...

...
... · · ·

...
... · · ·

...
bj1 · · · bjμj−1 bj1+μj−1

−bj2+μj−1
· · · −bjμj bjμj+1 · · · âμjb

j
μj

⎤
⎥⎥⎥⎥⎦

is an j × n matrix. Moreover, det I ′
B 
= 0 since det I ′

B = ân det IB and ân 
= 0. Thus
T (Φ̂) 
= 0, and the conclusion is exactly the same as in Theorem 2.1; hence the theorem is
proved.

5. Conclusion. We have shown in this paper that n nonresonant eigenvalues on the imag-
inary axis can be realized by a scalar DDE with n delays. Moreover, the same is true for any
collection of n imaginary eigenvalues in a neighborhood of an n-tuple of nonresonant imagi-
nary eigenvalues. We have also shown how these results can be applied to nonscalar DDEs in
the context of symmetric DDEs, where the characteristic equation decomposes according to
the isotypic decomposition. We apply our result to delay coupled Dn-symmetric cell systems
with n odd.

There are several ways of extending the main result of our paper. One question we did not
address in this paper is if n nonresonant nonzero imaginary eigenvalues constitute an upper
bound for the realizability by a scalar equation with n delay. The case n = 1 is one such
example since an easy calculation shows that we can have at most one imaginary eigenvalue
on the imaginary axis. It is likely, but unknown, that this is also true for general n.

One may want to study whether k zero eigenvalues in a single Jordan block and  non-
resonant nonzero imaginary eigenvalues can be realized in a scalar DDE with k +  delays.
This problem may be feasible by modifying the proof of Theorem 2.1 since the nonresonance
of the  eigenvalues is again present. However, we expect the argument used in this paper to
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break down for n nonzero imaginary eigenvalues with resonance. We can also study the same
problem as in this paper but for higher-dimensional delay equations. One problem would be to
find out if n nonresonant nonzero imaginary eigenvalues can be realized by an m-dimensional
system with k delays. For instance, it is known that a pair of nonzero imaginary eigenvalues
can be realized by a two-dimensional equation with one delay [8]. In this case n = 2, m = 2,
k = 1, and so n = mk; is it possible to realize three nonresonant nonzero eigenvalues, or does
the relationship n = mk provide a bound to realizability in general?

Another problem which can be studied is whether a restriction in the class of delay equation
can change the realizability. For instance, the characteristic equation for a general two-
dimensional system with one-delay τ is

λ2 + aλ+ bλe−λτ + c+ de−λτ = 0,

while for a second-order equation with one delay in the feedback term we must set b = 0. We
know in this case that two nonresonant nonzero imaginary eigenvalues can be realized by a
second-order equation with a unique delay in the feedback term [4]. In fact, two imaginary
eigenvalues with 1 : 2 resonance have been found in such an equation [5]. The obvious question
is to see if n nonresonant (and resonant) nonzero imaginary eigenvalues can be realized within
the class of nth-order scalar equations with one delay in the feedback term.

An extension of our main result in a direction relevant for studying bifurcations is to find
out whether the n nonresonant nonzero imaginary eigenvalues can be realized by a scalar delay
equation such that the remaining eigenvalues have negative real parts; that is, the multiple
Hopf point lies at the boundary of the stability region for the equilibrium solution. This is
typically verified in stability analysis of specific equations. For scalar problems see Bélair and
Campbell [1] for a thorough analysis of a two-delay case and a review of several other cases.
Yuan and Campbell [31] study the stability regions for Dn-symmetric rings of scalar cells
with nearest neighbor delay coupling and simultaneously obtain the location of multiple Hopf
bifurcation points at the boundary of the stability region.

Finally, let us mention the case of linear T -periodic equations with N + 1 delays:

(48) ẋ =
N∑

j=0

aj(t)x(t− τj),

where each aj(t) is a T -periodic n× n matrix. Hale [19] states the following open problem:
Is it possible to give a precise upper bound in terms of N on the number of Floquet
multipliers of (48) that can have moduli 1?

If we restrict (48) to scalar equations, we can pose a possibly simpler problem which is
related to the main result of our paper:

Is it possible to realize N + 1 complex numbers e±iω1 , . . . , e±iωN+1 with ω1, . . . , ωN+1

positive and rationally independent as Floquet multipliers of the scalar equation (48)?
This problem is automatically solved by Theorem 2.1 if a Floquet theorem can be applied

to (48); that is, the Floquet exponents of the Floquet multipliers of (48) are eigenvalues of
a scalar equation (1) with N + 1 delays. Such a theorem has not been proved in general;
however, it may hold true given that some conditions are imposed on (48).
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Singular Hopf Bifurcation in Systems with Two Slow Variables∗

John Guckenheimer†

Abstract. Hopf bifurcations have been studied intensively in two dimensional vector fields with one slow
and one fast variable [É. Benôıt et al., Collect. Math., 31 (1981), pp. 37–119; F. Dumortier and
R. Roussarie, Mem. Amer. Math. Soc., 121 (577) (1996); W. Eckhaus, in Asymptotic Analysis II,
Lecture Notes in Math. 985, Springer-Verlag, Berlin, 1983, pp. 449–494; M. Krupa and P. Szmolyan,
SIAM J. Math. Anal., 33 (2001), pp. 286–314; J. Guckenheimer, in Normal Forms, Bifurcations
and Finiteness Problems in Differential Equations, NATO Sci. Ser. II Math. Phys. Chem. 137,
Kluwer, Dordrecht, The Netherlands, 2004, pp. 295–316]. Canard explosions are associated with
these singular Hopf bifurcations [S. M. Baer and T. Erneux, SIAM J. Appl. Math., 46 (1986), pp.
721–739; S. M. Baer and T. Erneux, SIAM J. Appl. Math., 52 (1992), pp. 1651–1664; B. Braaksma,
J. Nonlinear Sci., 8 (1998), pp. 457–490; Y. Lijun and Z. Xianwu, J. Differential Equations, 206
(2004), pp. 30–54], manifested by a very rapid growth in the amplitude of periodic orbits. There has
been less analysis of Hopf bifurcations in slow-fast systems with two slow variables where singular
Hopf bifurcation occurs simultaneously with type II folded saddle-nodes [A. Milik and P. Szmolyan,
in Multiple-Time-Scale Dynamical Systems, IMA Vol. Math. Appl. 122, Springer-Verlag, New York,
2001, pp. 117–140; M. Wechselberger, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 101–139]. This work
contributes to our understanding of these Hopf bifurcations in five ways: (1) it computes the first
Lyapunov coefficient of the bifurcation in terms of a normal form, (2) it describes global features
of the flow that constrain the types of trajectories found in the system near the bifurcation, (3) it
identifies codimension two bifurcations that occur as coefficients in the normal form vary, (4) it
exhibits complex solutions that occur in the vicinity of the bifurcation for some values of the normal
form coefficients, and (5) it identifies singular Hopf bifurcation as a mechanism for the creation of
mixed-mode oscillations. A subtle aspect of the normal form is that terms of higher order contribute
to the first Lyapunov coefficient of the bifurcation in an essential way.

Key words. Hopf bifurcation, mixed mode oscillation, singular perturbation
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1. Introduction. Slow-fast vector fields have the form

εẋ = f(x, y, ε),
ẏ = g(x, y, ε),

(1.1)

with x ∈ Rm as the fast variable, y ∈ Rn as the slow variable, and ε as a small parameter
that represents the ratio of time scales. The set of points satisfying f = 0 is the critical
manifold of the system: slow motion of trajectories can occur only near the critical manifold.
Fenichel theory [14] establishes that there are invariant slow manifolds of the system near
portions of the critical manifold, where Dxf is hyperbolic. Moreover, the trajectories on the
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slow manifold approach trajectories of the slow flow ẏ = g(h(y), y, 0) on the critical manifold
where h is defined implicitly by f(h(y), y, 0) = 0. Points of the critical manifold where Dxf is
singular are called fold points. In much of the literature on slow-fast models of neural systems,
the fold points are called “knees” [29].

Hopf bifurcation occurs in the following slow-fast system with one slow and one fast
variable:

εẋ = y − x2/2 − x3/3,
ẏ = μ− x.

(1.2)

This system has an equilibrium point at (μ, μ2/2 + μ3/3) that undergoes a supercritical Hopf
bifurcation as μ decreases through zero. The Hopf equilibrium is at the fold of the system.
We also note that the slow flow along the critical manifold has a stable equilibrium on a stable
branch of the critical manifold for μ > 0 but an unstable equilibrium on the unstable branch
of the critical manifold for −1 < μ < 0. The periodic orbits that emerge from the Hopf
bifurcation grow explosively from an amplitude that is O(ε1/2) to an amplitude that is O(1)
over a range of values of μ that has length O(exp(−c/ε)) for a constant c > 0 independent
of ε. This canard explosion was discovered by Benôıt et al. [7] and subsequently analyzed by
Eckhaus [13], Dumortier and Roussarie [12], and others [23, 15].

Consider now another system with one slow and one fast variable:

εẋ = y − x2,

ẏ = μ− x+ ay.
(1.3)

This system also has a Hopf bifurcation, but it occurs when x = εa/2, y = ε2a2/4, and
μ = εa/2−ε2a3/4. Its point of Hopf bifurcation is on the critical manifold but displaced from
the fold by a distance that is O(ε). When a �= 0, the periodic orbits in the canard explosion
of this system grow monotonically with variations of μ like those of system (1.2), but they
become unbounded as μ varies over a finite interval. Whether the bifurcation is subcritical
or supercritical is determined by the sign of a. When a = 0, the singular Hopf bifurcation at
μ = 0 is totally degenerate: system (1.3) has a family of periodic orbits that are level curves
of the function H(x, y) = exp(−2y/ε)(y−x2 +ε/2). In this case, the parabola H = 0 contains
the stable and unstable slow manifolds of the system, and it bounds the family of periodic
orbits.

The system (1.3) can be rescaled by x = ε1/2X, y = εY , and t = ε1/2T to give

X ′ = Y −X2,

Y ′ = ε−1/2μ−X + ε1/2aY.
(1.4)

This system can be transformed to the Hopf normal form

r′ =
ε1/2a

16
√

1 − εa2
r3 + o(r3),

θ′ =
√

(1 − εa2) + o(r)
(1.5)

at the equilibrium.
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System (1.3) is representative of generic singular Hopf bifurcations [2, 3, 8, 25] with one
slow and one fast variable. There are three aspects of the bifurcation that are directly influ-
enced by multiple time scales:

• The bifurcation occurs at a distance that is O(ε) from a fold point.
• The periodic orbits emanating from the Hopf bifurcation undergo a canard explosion.
• The slow stable and unstable manifolds of the system cross each other as a varies.

Tangential intersections of the slow stable and unstable manifolds are not bifurcations in
traditional terms, but rather a degeneracy in the slow-fast decomposition of the system [15]
comparable to a homoclinic/heteroclinic bifurcation. Generically, such tangencies occur at
different parameter values from those where the equilibrium point is on a fold curve or at
the Hopf bifurcation parameter value. The crossing marks the transition from parameters at
which the slow stable manifold converges to the equilibrium or periodic orbit and parameters
for which it jumps along the fast direction after approaching the vicinity of the equilibrium.
This transition is one of the most significant changes in dynamical behavior associated with
the singular Hopf bifurcation.

Singular Hopf bifurcations with two slow variables and one fast variable are analogous
to system (1.3) with a single slow variable. There are counterparts to each of the three
properties listed above. Equilibrium points of a system with two slow variables lie on its
two dimensional critical manifold. The folds of the critical manifold form a curve. A stable
equilibrium point of the system (1.1) may approach and cross the fold curve in a generic
manner when a single parameter is varied. If it does so, Hopf bifurcation occurs at a distance
O(ε) from the fold curve. Canard explosions also occur, but the dimension of the state space is
now large enough to allow period-doubling and torus bifurcations as the periodic orbits grow.
Section 3 gives examples of each of these bifurcations. In systems with two slow variables
and one fast variable, the slow stable and unstable manifolds are each two dimensional and
therefore can intersect transversally along a trajectory in the three dimensional state space.
These intersections occur for open sets of parameters and are a common feature of systems near
singular Hopf bifurcations. The location of the slow stable and unstable manifold intersections
helps determine whether there are bounded attractors near the singular Hopf bifurcation.

This paper explores the dynamics of singular Hopf bifurcation via analysis of normal forms.
Coordinate changes and scaling suggest a normal form analogous to (1.3), but the normal form
has four coefficients that cannot be scaled to fixed values. If these coefficients are regarded
as parameters (or moduli), then degenerate Hopf bifurcations occur in the system for some
values of these coefficients. Regarding one of the coefficients as a second parameter, the theory
of codimension two bifurcations [18] can be used to investigate the dynamics. In some cases,
higher order terms in ε must be retained in a rescaled normal form to obtain nondegeneracy
of the codimension two bifurcations.

Singular Hopf bifurcation with two slow variables has been studied previously in other
papers [3, 8, 25, 27]. The normal form used by Braaksma [8] differs from the one used here:
one difference is that Braaksma’s normal form has “global returns” of trajectories that leave
the vicinity of the equilibrium point in the flow. System (1.2) also has global returns but just
one slow variable. This paper emphasizes the role of singular Hopf bifurcation in the creation
of certain types of mixed-mode oscillations (MMOs). MMOs are oscillations in which there
are small and large amplitude cycles in each period of the oscillation. Singular Hopf bifurca-
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tions produce small oscillations near the equilibrium point that can be combined with global
returns to create MMOs. MMOs appear to have been studied first in chemically reacting sys-
tems [4, 5, 22, 27] and then in lasers [21]. More recently, MMOs have been studied in neural
oscillations [9], where they are sometimes associated with folded nodes [31, 33, 17] as well as
singular Hopf bifurcations. Some of the subsidiary bifurcations analyzed here have been ob-
served in the models of chemical oscillators, but their relationship to singular Hopf bifurcation
does not seem to have been noticed previously. Section 4 discusses the “autocatalator” model
analyzed by Petrov, Scott, and Showalter [28] and Milik and Szmolyan [27].

2. Coordinate changes and normal forms. The goal of this section is to derive a normal
form for a generic system with two slow variables and one fast variable with an equilibrium
point that crosses a simple fold transversally. We denote x as the fast variable and (y, z) as
the slow variables. The fast equation for such a system near a simple fold can be reduced
to εẋ = y − x2 [1], perhaps using a rescaling of time. This is our starting point for deriving
a normal form for singular Hopf bifurcation. We approximate the system by truncating
nonlinear terms in the Taylor series expressions for ẏ and ż. The truncated system is further
reduced by noting that if ẏ = α + βx + γy + δz, then replacing z by w = α + γy + δz
makes ẏ = βx + w while ẇ is still an affine function of (x, y, z). We relabel w as z. Hopf
bifurcation occurs when β < 0. Rescaling (x, y, z, t) by (|β|1/2, |β|, |β|3/2, |β|−1/2) makes a
further reduction to the case that β = −1. These coordinate transformations yield a truncated
system of the form

εẋ = y − x2,

ẏ = z − x,

ż = −μ− ax− by − cz.

(2.1)

Note that a detailed study of higher degree normal forms for singular Hopf bifurcation with
two slow variables does not appear in the literature. The term singular point is used in
Arnold et al. [1] to refer to folded singularities [15] (pseudosingularities in Benôıt [6]) that
are regular points of the vector field (1.1) when ε > 0. A final rescaling (x, y, z, t) =
(ε1/2X, εY, ε1/2Z, ε1/2T ) and (A,B,C) = (ε1/2a, εb, ε1/2c) eliminates ε from the system:

X ′ = Y −X2,

Y ′ = Z −X,

Z ′ = −μ−AX −BY − CZ.

(2.2)

Our numerical studies and bifurcation analysis will be conducted largely with system (2.2).
Note that A, B, and C tend to zero as ε → 0 and that B tends to zero faster than A and
C. The extent to which nonlinear terms in the equations for ẏ and ż that have order ε1/2

following rescaling influence the dynamics described in this paper has not been investigated.
The “desingularized” slow flow of system (2.1) is

ż = −2x(μ+ ax+ bx2 + cz),
ẋ = z − x.

(2.3)
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This equation is obtained from (2.1) by setting ε = 0, differentiating the resulting equation
y−x2 = 0 to obtain ẏ = 2xẋ, then eliminating ẏ from the second equation and finally rescaling
the equation by 2x.

3. Normal form dynamics and flow maps. This section investigates the dynamics of the
systems (2.1) and (2.2). As μ varies near zero in system (2.1), the equilibrium point crosses
the fold curve of the critical manifold at the origin. This crossing has been called a folded
saddle-node type II by Milik and Szmolyan [27] because the slow flow (2.3) has a degenerate
equilibrium point at this parameter value. The bifurcation in the slow flow is a transcritical
bifurcation. The origin is always a folded singularity (or pseudosingularity) that is a saddle
when μ < 0, a node when 0 < μ < 1/8, and a focus when 1/8 < μ. While the folded
saddle-node appears as the main change in the dynamics of the slow flow, Hopf bifurcations
of the systems (2.1) and (2.2) typically occur at nonzero values of μ. The equilibrium point
of system (2.1) undergoes Hopf bifurcation at a value of μ that is O(ε). Much of the analysis
in this section is devoted to exploring this Hopf bifurcation and the family of periodic orbits
emerging from it.

3.1. Hopf bifurcation. Equilibria of system (2.2) occur at points (Xe, X
2
e , Xe) with μ =

−AXe −BX2
e − CXe. The Jacobian at this equilibrium is the matrix

⎛
⎝

−2Xe 1 0
−1 0 1
−A −B −C

⎞
⎠ ,

whose characteristic polynomial is

P (s) = s3 + (C + 2Xe)s2 + (B + 2XeC + 1)s+ (A+ 2XeB + C).

Thus Hopf bifurcation of the system occurs where (B + 2XeC + 1) > 0 and

(C + 2Xe)(B + 2XeC + 1) = (A+ 2XeB + C).

Note that (B+2XeC+1) > 0 is satisfied when B and C are small. Thus, the Hopf bifurcation
locus of system (2.2) is parametrized by the equations

A = BC + 2XeC
2 + 4X2

eC + 2Xe,

μ = −AXe −BX2
e − CXe

(3.1)

in terms of the equilibrium position Xe and the parameters B,C. If B = 0, then A =
2XeC

2 + 4X2
eC + 2Xe and μ = −(2XeC

2 + 4X2
eC + 2Xe + C)Xe. Since B is O(ε) while A

and C are O(ε1/2), zero eigenvalues of the equilibrium occur near the origin only if a + c is
small in system (2.1).

The program Maple [26] has been used to compute the Hopf normal form of system (2.2).
Consider first the case B = 0. System (2.2) can then be transformed to its Hopf normal form
by rational coordinate changes if A, C, and μ are parametrized by Xe and ω, the magnitude of
its imaginary eigenvalue. Whether the bifurcation is subcritical or supercritical is determined
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by the sign of the first Lyapunov coefficient.1 Maple yields the following expression for the
first Lyapunov coefficient:

4
Xe

3
(
12ω2Xe

2 − 4Xe
2 − 2ω2 + ω4 + 1

)
(
1 − 2ω2 + ω4 + 12ω2Xe

2 − 8Xe
2 + 16Xe

4
) (

16Xe
4 − 8Xe

2 + 24ω2Xe
2 − 2ω2 + ω4 + 1

) .

Substituting ω =
√

1 + 2XeC and Xe = 1/8 −2 C2−2+2
√

C4+2 C2+1+4 CA
C gives the first Lya-

punov coefficient in terms of A and C. The first Lyapunov coefficient is divisible by A and the
leading order term of its Taylor series is A/4. The leading order term in the expansion of μ
at the Hopf bifurcation is −A(A+ C)/2. Following the rescaling of (2.1), the first Lyapunov
coefficient is O(ε1/2) and the value of μ is O(ε).

Interestingly, there is a second term in the first Lyapunov coefficient of system (2.2) that
is O(ε1/2) in the case that B �= 0 even though B is O(ε). The coordinate transformations to
Hopf normal form are rational if the system is parametrized by ω, Xe, and r, the magnitude of
the real eigenvalue. Maple computes the first Lyapunov coefficient as a rational function P/Q
of r, Xe, and ω. The leading terms in the Taylor series expansion of P and Q as functions
of A, B, and C are 16C5(2B + A2 + AC + 2B2) and 64C5(A + C), respectively. If A and
C are O(ε1/2) and B is O(ε), the first Lyapunov coefficient is A

4 + B
2(A+C) + o(ε1/2). Thus,

even though B has higher order than A and C in terms of ε, it plays a significant role in the
dynamics associated with the Hopf bifurcations of system (2.2).

Two different ways in which the nondegeneracy conditions for the Hopf bifurcation can
fail are that the real eigenvalue r vanishes and that the first Lyapunov coefficient vanishes.
Both of these degeneracies occur for small values of the parameters (A,B,C). When r = 0, a
codimension two saddle-node Hopf bifurcation occurs if appropriate nondegeneracy conditions
are met. The first Lyapunov coefficient vanishes along a surface in the parameter space that
is asymptotic to B = −A(A+ C)/2 as ε → 0. This produces a generalized Hopf bifurcation,
first analyzed by Bautin. The saddle-node Hopf and generalized Hopf bifurcations of system
(2.2) are discussed in the next two subsections.

3.2. Saddle-node Hopf bifurcations. Saddle-node Hopf bifurcations (also called fold-
Hopf bifurcations) occur at equilibria with both a zero eigenvalue and a pair of pure imaginary
eigenvalues. The parameter values for which system (2.2) has such an equilibrium are given
by A = C(B − 1) and μ = BC2/4. Alternatively, these can be expressed by the equations
B = (A + C)/C and μ = C(A + C)/4. Since B is of higher order than A and C in ε, these
bifurcations are located where A ≈ −C.

The truncated normal form of the saddle-node Hopf bifurcation [18] can be written in
polar coordinates as

ṙ = a1rz,

ż = b1r
2 + b2z

2,

θ̇ = ω.

1The magnitude of the first Lyapunov coefficient depends upon the coordinates used in the eigenspace of
the pure imaginary eigenvalues. Guckenheimer and Holmes [18] and Kuznetsov [24] use different coordinate
systems that yield expressions which differ by a factor of 2. The expression here follows the conventions of
Guckenheimer and Holmes [18].
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The three coefficients a1, b1, b2 determine the main features of the dynamics of its unfolding,
for example, whether invariant tori occur close to the bifurcation. Maple calculations yield
the expressions ω = 1 +B − C2 and

a1 =
C2 − 1
ω2

,

b1 =
−B
2ω2

,

b2 =
−2B
ω2

.

If B > 0, then all of these coefficients are negative, while if B < 0, then a1 is negative
and b1, b2 are both positive. Since |bi| < |a1|, these correspond to the cases IVb and III of
Guckenheimer and Holmes [18, section 7.4]. Small invariant tori and chaotic solutions occur
in generic unfoldings of case III.

3.3. Degenerate Hopf bifurcations. Hopf bifurcations are degenerate when their first
Lyapunov coefficient vanishes [24]. Takens [32] described the unfolding of codimension two
degenerate Hopf bifurcations, assuming that the second Lyapunov coefficient does not vanish.
In the unfolding, the Hopf bifurcation makes a transition between subcritical and supercritical
and there is a region with two periodic orbits that annihilate each other in a saddle-node of
limit cycles bifurcation [18].

To find parameters where degenerate Hopf bifurcation might occur, we express the first
Lyapunov coefficient as a rational function of Xe, A,B,C. Denote its numerator by P . We
then compute the resultant of P and the Hopf polynomial BC+2Xe +4CX2

e +2XeC
2 −A as

functions of Xe to obtain a polynomial RH(A,B,C) that vanishes at degenerate Hopf points:

RH(A,B,C) = 256C2(−12A2B − 15B2A2 + 20C5A+ 16C2A2 + 76C4A2 + 92C3A3

+ 36C2A4 + 8C7A+ 16C6A2 + 8C5A3 + 8CA3 + 16C2B + 56BC6

+ 54C4B − 120C4B2 − 65C2B2 + 36C4B5 + 91C2B4 + 8C4B3

− 26C6B3 − 10C4B4 − 85C6B2 − 10C8B2 + 46C2B3 + 4B2C10

− 32B3C8 + 55C6B4 + 26C8B + 4C10B + 8C3A− 24B2 − 24B3

+ 100C3BA3 − 144C5B3A− 124CB3A− 156CB2A+ 22C2BA2

− 32C2B3A2 − 64CA3B2 + 60C3B4A+ 76C7AB − 52BCA3

+ 50BC6A2 + 4C9AB − 95C4B2A2 + 172C3B3A− 170C3B2A

− 244C5B2A

+ 128C3BA+ 148C5BA+ 4BCA+ 192C4BA2

− 210C2B2A2 + 14C7B2A).

The leading order terms of RH(A,B,C) are

−1024C2B
(
6B + 3A2 − CA+ 6B2 − 4C2

)
,
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implying that B ≈ (A+ C)(4C − 3A)/6 at degenerate Hopf points with (A,B,C) small. For
example, two approximate solutions of RH(A,B,C) = 0 are (−0.01, 0.00013335, 0.02) and
(−0.01, 0.00005, 0.02).

3.4. Periodic orbits. When A = B = 0 but C �= 0, the family of periodic orbits at
μ = 0 is normally hyperbolic. Normal hyperbolicity implies that this surface of periodic
orbits in (X,Y, Z, μ) space deforms but does not disappear when A and/or B are perturbed
from zero. For most values of the parameters, the periodic orbits are isolated in the (X,Y, Z)
state space. Continuation methods implemented in AUTO [11] and MATCONT [10] track
the periodic orbits and locate saddle-node, period-doubling, and torus bifurcations as a single
parameter is varied. Continuation methods further track curves of these bifurcations as two
parameters are varied. This subsection presents some results obtained with MATCONT.
Numerical integration has been used to check these continuation calculations and visualize
complex trajectories from the family (2.2).

The first Lyapunov coefficient of the Hopf bifurcation in system (2.2) is A
4 + B

2(A+C)+o(ε
1/2).

When the first Lyapunov coefficient is negative, the bifurcation is supercritical, and stable
periodic orbits emerge from the equilibrium. The periodic orbits can bifurcate as they grow
in amplitude. Figure 1 shows four periodic orbits at the beginning of a period-doubling cascade
computed with (A,B,C) = (−0.05,−0.01, 0.1) and μ taking the values 0.0082, 0.0084, 0.0086,
and 0.008618. As μ increases, three period-doubling bifurcations give successive transitions
from the blue orbit to the green, then the red, and finally the thin blue orbit. The Hopf value of
μ for these values of (A,B,C) is approximately 0.0008. Figure 2 shows a cross-section (green)
to a quasi-periodic trajectory (blue) with parameter values (A,B,C, μ) = (−0.08, 0, 0.1, 0.001).

−1.5 −1 −0.5 0 0.5 1 1.5
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

X

Z

Figure 1. Four periodic orbits of system (2.2) at the beginning of a period-doubling cascade, projected
onto the (X,Z) plane. The heavy blue periodic orbit undergoes a period-doubling bifurcation to give rise to the
red orbit. Two further period-doubling bifurcations yield the thin green and magenta. Parameter values are
(A,B,C) = (−0.05,−0.01, 0.1) and μ = 0.0082, 0.0084, 0.0086, 0.008618 for the successive orbits.
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Figure 2. A cross-section to a quasiperiodic trajectory of system (2.2). Parameter values are (A,B,C, μ) =
(−0.08, 0, 0.1, 0.001). A portion of the trajectory is drawn as a blue curve. Intersections of the full computed
trajectory with the plane X = 0 with X increasing are plotted in green.

Figure 3 shows a bifurcation diagram for periodic orbits that emerge from a Hopf bifurca-
tion as μ varies with (A,B,C) = (−0.09, 0, 0.1). In this figure, the maximum and minimum
values of x of the periodic orbits are plotted as a magenta curve. Points of period-doubling
and torus bifurcations along this branch are marked and labeled “PD” and “T.” Since B = 0,
the system has a single equilibrium point, and the amplitude of the periodic orbits continues
to grow as μ increases. The calculations are inconclusive as to whether this family of periodic
orbits extends to ∞. When B �= 0, system (2.2) has a second equilibrium on its critical
manifold. If A + C �= 0, then the second equilibrium is at finite distance from the origin. It
appears that homoclinic orbits to this equilibrium can terminate families of periodic orbits.
If A+C �= 0, then the second equilibrium of system (2.1) is at finite distance from the origin
and does not play a role in the local behavior of the singular Hopf bifurcation.

Branches of period-doubling and torus bifurcations with varying μ and B were computed
with MATCONT 2.3.3 [10] and are shown in blue and green in Figure 4. Low order resonances
of the torus bifurcations are marked by red dots. The three that occur for values of μ < 0.03
are labeled with the order of the resonance; the point labeled R2 is the intersection of the two
curves. The curve of torus bifurcations has a sharp bend near μ = 0.1, where MATCONT
detects several resonances of different orders as well as a fold of torus bifurcations very close to
each other along the branch. The location of these resonances is indicated by the red marker
at the right side of the figure.

4. Invariant manifolds. Invariant slow manifolds lie within an O(ε) neighborhood of nor-
mally hyperbolic critical manifolds of slow-fast systems [14]. In typical settings, invariant
manifolds are not unique, but their distance from each other is O(exp(−c/ε)) for a suitable
c > 0. The critical manifold y = x2 of system (2.1) is normally hyperbolic away from the fold
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Figure 3. (a) A bifurcation diagram showing the growth of periodic orbits emerging from a Hopf bifurcation
(labeled “H”) of system (2.2) as μ is varied. The maxima and minima of X along the periodic orbits are drawn
as a magenta curve. Torus and period-doubling bifurcations along the family of periodic orbits are labeled “T”
and “PD.” The parameters (A,B,C) = (−0.09, 0, 0.1). (b) Five periodic orbits within the family, including
those at the torus and period-doubling bifurcations.

curve x = y = 0, with a stable sheet in the half space x > 0 and an unstable sheet in the half
space x < 0. The slow stable and unstable manifolds associated to these sheets of the critical
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Figure 4. Curves of torus and period-doubling bifurcations in a two dimensional slice of the parameter
space with varying (μ,B). The values of A and C are 0.1 and −0.08. The curve of torus bifurcations is drawn
in green and points of second (R2), third (R3), and fourth (R4) order resonance are marked as red dots along
the curve. Additional resonances occur near the red dot at the right-hand bend in this curve. The curve of
period-doubling bifurcations is drawn in blue. The two bifurcation curves intersect at the point of second order
resonance.

manifold are important objects in the phase portrait of the system. Away from the critical
manifold, the vector field is almost parallel to the x axis. The critical manifold and the slow
stable and unstable manifolds separate trajectories on which x decreases rapidly from those
on which x increases rapidly. The region of trajectories flowing from x = +∞ to the stable
slow manifold W s

s is denoted M−, and the region of trajectories flowing toward x = −∞ from
the unstable slow manifold W u

s is denoted M+. On the fast time scale, trajectories are drawn
toward W s

s and away from W u
s . In many cases, parts of W s

s and W u
s lie on the boundary

of the domain of attraction for bounded attractors. This section visualizes these manifolds,
examining their intersections with each other and with the stable and unstable manifolds of
the equilibrium.

4.1. Intersections of stable and unstable slow manifolds. Numerical investigations are
more convenient with the rescaled system (2.2) than with system (2.1). The stable and unsta-
ble slow manifolds of system (2.2) lie close to the parabolic cylinder Y = X2 for large values of
|X|, though the theory does not specify how large. The stable slow manifold W s

s is computed
by forward numerical integration starting with initial conditions on a curve parallel to the Z
axis with X suitably larger than

√
Y , while the unstable slow manifold W u

s is computed by
backward numerical integration starting with initial conditions on a curve parallel to the Z
axis with X suitably smaller than −

√
Y . In the examples below, the initial conditions are

chosen with X = ±5 and Y = 10. These trajectories approach W s
s and W u

s exponentially
fast, so beyond a transient they give good approximations to the manifolds. Estimates for
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how close the trajectories are to W s
s and W u

s can be obtained by comparing their distance
from trajectories with initial conditions on the critical manifold since the critical manifold lies
on the opposite side of the slow manifolds from the curves of initial conditions.

Figure 5(a) visualizes portions of the slow stable manifold W s
s (blue) and the slow unstable

manifold W u
s (red) of system (2.2) as bundles of trajectories that begin on the lines X = ±5,

Y = 10 until they reachX = ∓5, Y = 11, or T = 500. Note that these stopping criteria extend
the stable and unstable slow manifolds beyond the region where they lie close to the critical
manifold. The parameter values used in Figure 5 are (μ,A,B,C) = (0,−0.05,−0.01, 0.1). The
equilibrium is at the origin for these parameter values. It is on the fold curve and is stable
with eigenvalues approximately −0.0506,−0.0247±0.9934i. The strong stable manifold of the
equilibrium tangent to the eigenvector of its real eigenvalue is drawn in green. One branch
of the strong stable manifold with X and Z negative approaches the slow unstable manifold
while the other branch tends to ∞ in the X direction after its projection onto the (X,Y )
plane makes a loop. The manifolds W s

s and W u
s appear to intersect transversally along a

single trajectory Γ whose intersection with the plane Z = X is depicted in Figure 5(b). In
Figure 5(b), Y ′ = Z − X = 0 is the stopping criterion for the trajectories and piecewise
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Figure 5. (a) Trajectories approaching and flowing along the slow stable manifold W s
s are drawn in blue;

trajectories approaching and flowing along the slow unstable manifold Wu
s are drawn in red. The initial condi-

tions for these trajectories lie on the lines defined by X = ±5, Y = 10. The magenta curve approximates the
intersection Γ of these two manifolds. The strong stable manifold of the equilibrium point is drawn in green.
The equilibrium point is the forward limit set of the cyan trajectory and the dark blue trajectories above it. The
blue trajectories below the magenta trajectory are unbounded, tending to x = −∞ in finite time. Trajectories in
the unstable manifold above the magenta trajectory tend to x = +∞ as time decreases. The trajectories in the
unstable manifold below the magenta trajectory tend to a branch of the strong stable manifold of the equilibrium
which itself approaches the slow unstable manifold as time decreases. The slow unstable manifold Wu

s bounds
the basin of attraction of the equilibrium point. (b) The same trajectories approaching W s

s and Wu
s are drawn

up to their intersection with the plane Y ′ = Z −X = 0. It is apparent that the intersection of these manifolds
is transverse. The parameter values are (μ,A,B,C) = (0,−0.05,−0.01, 0.1).
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linear interpolations of the endpoints of these trajectories are drawn. An approximation to
Γ is plotted as a magenta curve in Figure 5(a). Trajectories in W s

s above Γ approach the
equilibrium point, while trajectories below Γ tend to −∞ along the X direction. The lowest
trajectory in W s

s above Γ is drawn in cyan to distinguish it from the others; the highest
trajectory in W u

s below Γ is drawn in black. In W u
s , the trajectories above Γ tend to ∞ along

the X direction while the trajectories below Γ spiral around the strong stable manifold of the
equilibrium point. These observations motivate the conjecture that W u

s is the boundary of
the basin of attraction of the equilibrium point.
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Figure 6. (a) Trajectories approaching and flowing along the slow stable manifold W s
s are drawn in blue;

trajectories approaching and flowing along the slow unstable manifold Wu
s are drawn in red. The initial con-

ditions for these trajectories lie on the lines defined by X = ±5, Y = 10. A stable periodic orbit is drawn
in green. All of the computed trajectories in W s

s reach the plane X = −5 on their way to X = −∞. The
thick red trajectory shows that some of the trajectories in Wu

s that tend to X = ∞ oscillate before doing so.
(b) The slow stable and unstable manifolds W s

s and Wu
s intersect transversally. The parameter values are

(μ,A,B,C) = (0.0084,−0.05,−0.01, 0.1).

4.2. Intersections of the unstable slow manifold with the unstable manifold of the
equilibrium point. As μ increases, the phase portraits of system (2.2) become more compli-
cated. The equilibrium point has a supercritical Hopf bifurcation near μ = 0.0008 and the
periodic orbits born in this Hopf bifurcation enter a cascade of period-doubling bifurcations
near μ = 0.008, as illustrated in Figure 1. While μ increases, the asymptotic properties of the
slow stable and unstable manifolds also change. Figure 6(a) visualizes portions of the slow
stable (blue) and unstable (red) manifolds of system (2.2) as bundles of trajectories that begin
on the lines X = ±5, Y = 10 and end on the plane defined by Z ′ = 0. The parameter values
are (μ,A,B,C) = (0.0084,−0.05,−0.01, 0.1) used for the green period-doubled orbit displayed
in Figure 1. This periodic orbit is also drawn in green here. As shown in Figure 6(b), the
manifolds W s

s and W u
s intersect transversally, as they do when μ = 0. However, in contrast to
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Figure 7. (a) Three pairs of trajectories for system (2.2) with parameter values (μ,A,B,C) =
(0.003686,−0.05,−0.01, 0.1). The black and blue trajectories are forward trajectories that approach the slow
stable manifold W s

s ; the magenta and red trajectories are backward trajectories that approach the slow unstable
manifold Wu

s ; and the olive and green trajectories are forward trajectories starting close to the unstable mani-
fold of the equilibrium point. Note that the olive and green trajectories approach Wu

s but then diverge from it in
opposite directions. (b) A detailed view showing how the green trajectory spirals around the red stable manifold
of the equilibrium point before approaching the periodic orbit.

the situation with μ = 0, trajectories above the intersection in W s
s escape the bounded region

containing the periodic orbits, and some trajectories above the intersection in W u
s oscillate

before they tend to X = ∞. The dynamical events that produce these qualitative changes in
W s

s and W u
s as μ increases from 0 to 0.0084 are hardly clear.

For values of μ slightly larger than the Hopf bifurcation value, the equilibrium is a saddle
with a two dimensional unstable manifold W u

p bounded by the periodic orbit. As μ increases,
W u

p begins to spiral around the periodic orbit as the eigenvalues of its return map become
complex. Near μ = 0.003686, it appears that W u

p begins to intersect W u
s , the unstable slow

manifold. Figure 7 presents evidence for this intersection. Figure 7(a) plots three pairs of
trajectories, each of which is separated by the slow manifolds. The black and blue trajectories
are forward trajectories with initial conditions (5, 10,−0.704948) and (5, 10,−0.704947). The
black trajectory lies below the intersection of W s

s and W u
s and flows to X = −∞, while the

blue trajectory turns back toward positive values of X and then appears to spiral around the
stable manifold of the equilibrium point before approaching the periodic orbit. The magenta
and red trajectories have initial conditions (−5, 10,−0.291832) and (−5, 10,−0.291831) and
are followed backward. The magenta orbit lies below the intersection of W s

s and W u
s and flows

backward to X = −∞ while the red trajectory flows backward to X = ∞. The olive and green
trajectories have approximate initial conditions (−0.073363697, 0.005235108,−0.072670595)
and (−0.073363704, 0.005235153,−0.072670597), points that lie close to the unstable manifold
of the equilibrium. These trajectories approach the unstable slow manifold W u

s and follow
it to near its intersection with Y = 6 before separating. The olive trajectory then tends to
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X = −∞ while the green trajectory follows a similar path as the blue trajectory, spiraling
around the stable manifold of the equilibrium and then approaching the periodic orbit. One
might conjecture that the equilibrium point has a homoclinic orbit for a value of μ close to
0.003686. Figure 7(b) shows the green trajectory spiraling around the red stable manifold of
the equilibrium point in more detail. However, the close approach of the trajectory to the
equilibrium point does not imply that the parameters are close to those with a homoclinic
orbit. As explained by Guckenheimer and Willms [19], the stable manifold of the equilibrium
may be transversally stable as one moves away from the equilibrium, and large volumes of the
state space may flow close to the stable manifold. This example demonstrates that qualitative
changes in the intersections of invariant manifolds for system (2.2) typically occur at different
parameter values than those where there are local bifurcations of the equilibrium point or
periodic orbits of the system.

4.3. Intersections of the stable slow manifold with the stable manifold of the equilib-
rium point. When the equilibrium point has a one dimensional stable manifold, intersections
of that manifold with the slow stable manifold might be expected to occur as codimension one
bifurcations. This section presents evidence for this bifurcation by examining parameters with
A = B = μ = 0 and C > 0. For these parameters, the equilibrium is at the origin, the plane
Z = 0 is invariant under the flow and time reversible, and there is a family of periodic orbits
surrounding the origin and bounded by the parabola Y −X2 = −1/2 in the plane Z = 0. The
orbits below this parabola are unbounded, tending to X = −∞ in finite time as t increases
and to X = ∞ as t decreases. The family of periodic orbits is normally hyperbolic: each
orbit has a strong stable manifold consisting of trajectories that tend toward it as t → ∞.
Figure 8(a) shows a branch of the stable manifold of the origin for six values of C, namely
(0.01, 0.1002, 0.1004, 0.1006, 0.1008, 0.101). Figure 8(b) shows the intersection of the stable
manifolds with the plane X = 3 for 51 equally spaced values in the C interval [0.01, 0.0101].
Figure 8(c) shows the intersections from a much finer mesh of 5001 parameter values in this
interval. It is evident that the stable manifold W s

p of the origin oscillates in the (X,Y ) plane
as Z increases. These oscillations cease and X tends to ∞ for values of Z that depend upon
C. Since trajectories tend to ∞ in finite time, the values of (Y,Z) typically approach finite
limits along W s

p . However, there are values of C where these limits appear to jump. These are
produced by small ranges of C in which W s

p crosses W s
s . Figure 8(d) visualizes one crossing.

The intersection of W s
p with the plane Y = 3 is plotted in red as C varies through a regular

mesh of 11 points in the interval [0.01000965, 0.01000975]. As C varies in this interval, the
intersections of W s

s with the plane Y = 3, drawn as a set of 11 blue curves in Figure 8(d),
hardly move. The three dimensional manifold in (X,Y, Z,C) space swept out by W s

s and the
surface swept out by W s

p clearly intersect transversally. When A, B, and μ are perturbed so
that the equilibrium point becomes a saddle, the transverse intersection persists.

4.4. Contrasts between systems with one and two slow variables. The figures of this
section hardly begin a systematic analysis of the global bifurcations of the invariant manifolds
of system (2.2). Since the system likely has chaotic attractors for some parameter values, a
complete analysis does not seem feasible. The behavior displayed here contrasts with the sim-
pler two dimensional flows of singular Hopf bifurcations in systems with one slow variable and
one fast variable. There, the slow stable and unstable manifolds are each a single trajectory
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Figure 8. (a) Trajectories lying in the stable manifold of the equilibrium point of system (2.2) for six
different values of the parameter C: 0.01, 0.1002, 0.1004, 0.1006, 0.1008, 0.101. The remaining parameters are
zero. (b) Numbered intersections of the stable manifold of the equilibrium point of system (2.2) with the plane
X = 3 for varying values of the parameter C in the interval [0.01, 0.0101]. Parameters μ,A,B are all zero.
(c) Intersections from a mesh of 5001 parameter values in the interval [0.01, 0.0101]. (d) Intersections with
the plane Y = 3 of the stable manifold of the equilibrium (red) for a mesh of 11 values of C in the interval
[0.01000965, 0.01000975] and intersections of the slow stable manifold (blue) with the plane Y = 3. There are
11 blue curves that are indistinguishable at this resolution.

and the global bifurcation happens when the manifolds coincide. In the three dimensional
setting investigated here, the slow stable and unstable manifolds are two dimensional and
appear to intersect transversally in the vicinity of singular Hopf bifurcations. These intersec-
tions separate portions of the slow manifolds that turn in different directions. In some cases,
parts of the manifolds become entangled with periodic orbits and the stable and unstable
manifolds of the equilibrium. Sometimes the trajectories of these tangles remain bounded and
sometimes they reemerge from the region of entanglement and proceed to X = ±∞. Further
analysis of the intersections of these invariant sets is not pursued in this paper.

5. Mixed-mode oscillations in an example. Mixed-mode oscillations (MMOs) have been
observed and studied in chemical systems, for example, the Belousov–Zhabotinsky reac-
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tion [20], and in the oxidation of carbon monoxide on platinum catalysts [22]. Several models
have been proposed for these systems, but previous analysis has not identified that many of
the properties seen in both the experimental data and models can be produced by singular
Hopf bifurcations. Barkley [4] suggested that the minimum dimension of a system that fit the
characteristics of MMOs in the Belousov–Zhabotinsky reaction was four. The more recent
literature on MMOs in neural systems has focused upon MMOs produced by folded nodes
[9, 30, 16], but some MMOs associated with singular Hopf bifurcations have characteristics
that differ from those seen in the folded-node MMOs. Note that systems with singular Hopf
bifurcations also have folded nodes, so singular Hopf bifurcations may produce MMOs that
pass through folded nodes as well as ones that do not.

This section revisits one of the simplest models for MMOs—the autocatalator studied by
Petrov, Scott, and Showalter [28] and Milik and Szmolyan [27]. The equations for this model
are

ȧ = μ(κ+ c) − ab2 − a,

εḃ = ab2 + a− b,

ċ = b− c.

(5.1)

In the studies of this system cited above, κ = 2.5 was held fixed and the parameters μ and/or
ε were varied. The critical manifold of this system is given by a = b/(1+b2) and its fold curve
is defined by a = 1/2, b = 1. At equilibrium points, b = c, so the equilibrium is on the fold
curve when b = c = 1, a = 1/2, implying that μ = 1/(1+κ). In general, if we parametrize the
equilibria of the system by c, then the curve of equilibrium points is given by a = c/(1 + c2),
b = c, μ = c/(c+ κ). Computing the Jacobian of the system (5.1), we find that the criterion
for Hopf bifurcation of the system is a polynomial expression that is affine in κ and quadratic
in ε, so we can readily parametrize the Hopf bifurcation as a function of the variables c and
ε. In addition to the equilibrium equations,

κhopf

= −
c
(
9 c2ε+ 2 − c2 + 5 ε+ 6 c4ε+ 5 c6ε2 + 9 c4ε2 + 7 c2ε2 + 3 c6ε+ 2 ε2 + c8ε2 + c8ε− c6

)
2 + 3 c4ε+ 5 c6ε2 + c8ε2 + 6 c2ε+ 9 c4ε2 + 7 c2ε2 + 2 c6ε+ c8ε− c2 + 4 ε+ 2 ε2 − c6

.

The function κhopf is singular at c = 1, ε = 0. For fixed κ, the Hopf criterion defines c as
a smooth function of ε that vanishes at c = 1 and has slope (3 + 2κ)/(1 + κ). Thus, there
is indeed a singular Hopf bifurcation in this system. This does not appear in the analysis of
Milik and Szmolyan [27] because they transform the parameters to set μ = εμ̄+1/(1+κ) and
then use μ̄ and ε as the parameters they vary. In this representation, the Hopf bifurcations
have parameter values that are close to μ̄ = 0.4375 and are apparent as ε → 0 only if μ̄ is
also varied in the region near this Hopf value. Indeed, they do not analyze properties of the
equilibrium point at all except at the values at which the Hopf bifurcation lies on the fold
curve, a point termed a folded saddle-node in their work.

Petrov, Scott, and Showalter [28] studied the periodic orbits of system (5.1) using
AUTO [11]. They work with two values of ε, namely, ε = 0.01 and ε = 0.013. For ε = 0.013,
they observe that there is a supercritical Hopf bifurcation at μ ≈ 0.29202 and a second super-
critical Hopf bifurcation at μ ≈ 0.77372. The first of these is the singular Hopf bifurcation: the
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value of (a, b) is approximately (0.49977, 1.031080). Petrov, Scott, and Showalter [28] observe
that there is a narrow band of values of μ ∈ [0.297, 0.303] where the system has complex dy-
namics. The periodic orbits born at the singular Hopf bifurcation undergo a period-doubling
cascade to a small amplitude chaotic attractor. Near μ = 0.29795, the chaotic attractor
disappears, and trajectories starting near the previous attractor approach a periodic MMO.
Milik and Szmolyan use geometric and singular perturbation methods to study this system,
producing return maps for some of the attractors. Figures 9 and 10 extend this analysis using
the insights into the singular Hopf bifurcation described in this paper.

MMOs are formed from trajectories which concatenate small and large amplitude oscil-
lations. In system (5.1), the large amplitude oscillations come from trajectories that pass
“outside” the unstable slow manifold; i.e., they have larger values of a. To test whether tra-
jectories with small amplitude oscillations flow to the outside of the unstable slow manifold,
trajectories in the unstable manifold of the equilibrium were computed, similar to the calcula-
tions of the singular Hopf normal form illustrated in Figures 5, 6, and 7. Figures 9(a) and 9(b)
display trajectories on the unstable manifold of the equilibrium point in blue and trajectories
on the unstable slow manifold in red for parameter values (ε, κ, μ) = (0.013, 2.5, 0.2963) and
(ε, κ, μ) = (0.013, 2.5, 0.2964), respectively. It appears that as μ increases from 0.2963 to
0.2964, the unstable manifold of the equilibrium point begins to intersect the unstable slow
manifold. The intersection of these invariant manifolds seems to be intimately related to the
formation of MMOs. Nonetheless, it is difficult to make definitive statements about these
dynamics because the periodic orbits of the system have followed a period-doubling route
to chaotic attractors for smaller values of μ, similar to the behavior displayed by the singu-
lar Hopf normal form (2.2) for parameters (A,B,C) = (−0.05,−0.01, 0.1) and increasing μ
(cf. Figure 1). Here, Petrov, Scott, and Showalter [28] showed that there are several families
of MMOs as well as the small amplitude chaotic attractors in parameter ranges close to those
displayed here.

Figure 9 suggests that intersections of the unstable slow manifold with the basins of small
amplitude attractors are critical to the formation of MMOs. The value of ε used in this figure
makes the system only moderately stiff. Figure 10 displays similar calculations for the smaller
value ε = 0.001. Subfigure (a) shows trajectories in the unstable manifold of the equilibrium
(blue) and the unstable slow manifold (blue) for (ε, κ, μ) = (0.001, 2.5, 0.2864). There is a
stable periodic orbit, and this orbit forms the boundary of the unstable manifold of the equi-
librium point. Subfigure (b) shows analogous information for (ε, κ, μ) = (0.001, 2.5, 0.2865).
The stable periodic orbit persists, but some trajectories near the equilibrium point flow to the
outside of the unstable slow manifold and generate MMOs. Figure 11 shows a portion of one
of these MMOs as it passes close to the equilibrium point. The large amplitude excursions
of the trajectory approach the stable manifold of the equilibrium point closely, and these are
followed by slowly growing small amplitude oscillations similar to those that can appear in
the aftermath of a subcritical Hopf bifurcation [19]. For these parameter values, the birth of
MMOs is clearly the direct result of the intersections of the unstable slow manifold with the
unstable manifold of the equilibrium.

6. Discussion. As a slow-fast system, the equations for singular Hopf bifurcation are
reduced to a three dimensional vector field that can be rescaled so that the Hopf frequency
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Figure 9. (a) Trajectories on the unstable manifold of the equilibrium point (blue) and unstable slow
manifold (red) of system (5.1) are drawn for (ε, κ, μ) = (0.0013, 2.5, 0.2963). The unstable manifold of the
equilibrium point remains to the left side of the slow unstable manifold. (b) Analogous trajectories are drawn
for (ε, κ, μ) = (0.0013, 2.5, 0.2963). Here the unstable manifold of the equilibrium point intersects the unstable
slow manifold. Some trajectories with initial conditions near the equilibrium point make large excursions before
approaching the small amplitude attractor.
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Figure 10. (a) Trajectories on the unstable manifold of the equilibrium point (blue) and unstable slow
manifold (red) of system (5.1) are drawn for (ε, κ, μ) = (0.001, 2.5, 0.2864). The unstable manifold of the
equilibrium point remains to the left side of the slow unstable manifold and lies in the basin of attraction of a
stable periodic orbit. (b) Analogous trajectories are drawn for (ε, κ, μ) = (0.001, 2.5, 0.2865). Here the unstable
manifold of the equilibrium point intersects the unstable slow manifold. Some trajectories with initial conditions
near the equilibrium point make large excursions and approach MMOs.
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Figure 11. (a) A portion of an MMO trajectory of system (5.1) is drawn for (ε, κ, μ) = (0.001, 2.5, 0.2865)
and initial condition (0.5, 1, 1). The trajectory was computed to time 2000, and its intersections with a region
around the equilibrium point were plotted for the time interval [1700, 2000]. The trajectory approaches the
stable manifold of the equilibrium and flows out along its unstable manifold with slowly growing small amplitude
oscillations before making another large excursion. The trajectory is approximately periodic, but the calculations
do not conclusively rule out the possibility that there is a more complicated attractor that is very “thin.” (b) The
final cycle of the time series displaying the c coordinate of the trajectory displayed in subfigure (a).

remains close to one as the singular perturbation parameter ε tends to zero. This scaling
emphasizes the fast time scale whose singular limit is a vector field with an equilibrium
point with pure imaginary and zero eigenvalues and a one parameter family of periodic orbits
emanating from the equilibrium. Two coefficients of the Taylor expansion of the rescaled
vector field, the real eigenvalue of its equilibrium and the first Lyapunov coefficient of its Hopf
bifurcation, are O(ε1/2). An interesting aspect of the normal form analysis is that an O(ε)
term in the Taylor expansion of the rescaled system still contributes to the first Lyapunov
coefficient of the Hopf bifurcation at O(ε1/2). The truncated normal form used in this paper
includes this O(ε) term. Thus the normal form has five parameters: the singular perturbation
parameter, a primary parameter that drives the equilibrium point across the fold curve of the
critical manifold, and three secondary parameters that can be regarded as moduli.

This paper highlights the complexity of Hopf bifurcation in multiple time scale systems
with two slow variables and one fast variable. Numerical simulations and continuation calcula-
tions with the normal form demonstrate that periodic orbits near a singular Hopf bifurcation
can have secondary bifurcations that produce quasiperiodic or chaotic trajectories of these
systems in an O(ε) neighborhood of the equilibrium undergoing Hopf bifurcation. The de-
pendence of the secondary bifurcations on the moduli in the normal form is clearly very
complicated. There are additional global bifurcations that separate parameter regimes with
only small amplitude attractors from parameter regimes in which trajectories starting near
the equilibrium can make large excursions. These transitions have been studied here by test-
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ing for intersections of the two dimensional unstable manifold of the equilibrium point with
the unstable slow manifold. From a pragmatic point of view, the boundary between trajec-
tories that remain in the vicinity of the equilibrium point of the system and those that leave
a neighborhood of the equilibrium point is an important aspect of the dynamics of singular
Hopf bifurcation.

This paper is partly motivated by attempts to understand the mechanisms that create
MMOs in slow-fast systems. MMOs have been observed in diverse physical systems and dy-
namical models. These MMOs appear to fall into different dynamical classes that have yet to
be clearly delineated or analyzed. One class that has been identified and studied are MMOs
associated with flow through a folded node [9, 16]. This paper identifies singular Hopf bifur-
cation as another mechanism for generating MMOs. As illustrated with the model chemical
system (5.1), the intersections of the unstable slow manifold with the unstable manifold of
a saddle-focus equilibrium point can produce MMOs. These intersections are a byproduct
of singular Hopf bifurcation. The small oscillations of MMOs associated with singular Hopf
bifurcation often begin with very small amplitude as they approach a saddle-focus equilibrium
along its stable manifold and depart with growing oscillations along its unstable manifold. In
contrast, the trajectories that pass through a folded node have oscillations that first decrease
and then increase in amplitude. Figure 12 displays a trajectory of the system

ẋ = y − x2,

ẏ = z − x,

ż = −0.002

with initial conditions (50, 395, 0.16). The oscillations of this trajectory typify the small
oscillations that one finds for MMOs produced by folded nodes. Compare this figure with
Figure 11, showing an MMO associated with singular Hopf bifurcation in the autocatalator.
In the normal form for the folded node, the numbers of oscillations with decreasing and
increasing amplitude are equal. Further work to analyze the dynamical origins of MMOs
from experimental observations of chemically reacting systems might be of interest [20]. It
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Figure 12. Oscillations of a trajectory passing through a folded node.
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seems likely that MMOs associated with folded nodes and those associated with singular Hopf
bifurcations both occur as well as MMOs that are far from these bifurcations.
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Eulerian Equilibria of a Gyrostat in Newtonian Interaction with Two Rigid Bodies∗

J. A. Vera†

Abstract. In this paper the noncanonical Hamiltonian dynamics of a gyrostat in the three body problem will
be examined. By means of geometric-mechanics methods we will study the approximate dynamics
that arises when we develop the potential in Legendre series and truncate the series to the second
harmonics. Some relative equilibria, called Eulerian, of the dynamics of a gyrostat in Newtonian
interaction with two rigid bodies will be studied. Taking advantage of the results obtained in
previous papers, working on the reduced problem, we will study the bifurcations of these relative
equilibria. The instability of Eulerian relative equilibria if the gyrostat is close to a sphere is proven.
The rotational Poisson dynamics of the gyrostat placed in an Eulerian equilibrium and the study
of the nonlinear stability of some equilibria are considered. The analysis is done in vectorial form
avoiding the use of canonical variables and the tedious expressions associated with these variables.
In this way, the classic results on equilibria of the three body problem, many of them obtained by
other authors who had made used of more classic techniques, are generalized.

Key words. three body problem, gyrostat, Eulerian, stability, energy-Casimir
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1. Introduction. In the study of configurations of relative equilibria by differential ge-
ometry methods or by more classical methods we will mention here the papers of Wang,
Krishnaprasad, and Maddocks [11], about the problem of a rigid body in a central Newto-
nian field, and Maciejewski [4], about the problem of two rigid bodies in mutual Newtonian
attraction. These papers have been generalized to the case of two gyrostats by Mondéjar and
Vigueras [5].

For the problem of three rigid bodies, we would like to mention that Vidyakin [9] and
Dubochine [1] proved the existence of Euler and Lagrange configurations of equilibria when
the bodies possess symmetries; Zhuravlev and Petrutskii [13] reviewed the results up to 1990.
These works use canonical variables for the deduction of their results.

On the other hand, if a rigid solid model is used to represent celestial bodies instead of the
point masses model, the possibility of internal or relative motions in the celestial bodies will
not be considered. This hypothesis is not appropriate in many cases, as shown by Volterra [10]
in his study on the variation of the latitude in the Earth’s surface.

In relation to the previous point, let us remember what is known as a gyrostat, which
is a mechanical system S, composed of a rigid body S′, and other bodies S′′ (deformable or
rigid) connected to it, in such a way that their relative motion with respect to its rigid part
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does not change the distribution of mass of the total system S (see Leimanis [3] for details).
Examples of such systems are bodies that represent mobile internal cavities (for example,
fluids) or bodies with coupled symmetrical rotors that can be activated by remote control.

In Vera [7] and a recent paper of Vera and Vigueras [8] we study the noncanonical Ham-
iltonian dynamics of n+ 1 bodies in Newtonian attraction, where n of them are rigid bodies
with spherical distribution of mass or material points and the other body is a triaxial gyro-
stat. Using the symmetries of the system, we carried out two reductions, giving in each step
the Poisson structure of the reduced space. Then, we obtained the equations of motion, the
Casimir function of the system, and the equations that determine the equilibria and global
conditions for the existence of the equilibria.

This paper is a concrete application of the general methods of [8] to the study of certain
types of equilibria of a gyrostat in Newtonian attraction with two rigid bodies (see Figure
1). We describe the approximate dynamics that arises in a natural way when we take the
Legendre development of the potential function and truncate this to the second harmonics. If
the involved bodies are at much more mutual distances than the individual dimensions of the
involved bodies, this approximate dynamics is a good description of the full dynamics of the
problem.

Additionally, we suppose that the attitude dynamics of the two rigid bodies is the same
as a rigid body in torque free motion. The two rigid bodies have revolution symmetry about
the third axis of inertia. On the other hand, the Newtonian interaction of the gyrostat with
the rigid bodies is the same as that of a material particle in Newtonian interaction with two
rigid bodies. The Newtonian interaction among the two rigid bodies is the same as that of
two material particles.

Under these hypotheses, we give global conditions on the existence of relative equilibria,
and analogous to classic results on the topic (see [12] for details), we study the existence
of relative equilibria that we will denominate of Euler type in the case in which S1, S2 are
spherical or symmetrical bodies and S0 is a gyrostat. Necessary and sufficient conditions for
their existence in this approximate dynamics are obtained, and we give explicit expressions of
the Eulerian equilibria, useful for the later study of their stability. A complete study of the
number of the Eulerian equilibria is made when S1, S2 are spherical rigid bodies. Concerning
to the stability of these equilibria, the instability of the Eulerian equilibria is proven.

On the other hand, the rotational Poisson dynamics of the gyrostat placed in an Eulerian
equilibrium is considered. The nonlinear stability of some rotational equilibria, called cylin-
drical equilibria, is studied by means of the energy-Casimir method. By means of the tangent
flow of this dynamics in the cylindrical equilibrium we obtain necessary conditions for the
nonlinear stability of the cylindrical equilibria.

This analysis was done in vectorial form, giving to this problem a very compact treatment
which avoids the use of canonical variables (Eulerian or Andoyer–Deprit variables) and the
tedious expressions associated with these variables. This is a typical characteristic of the
classic literature on these systems that the paper overcomes with this vectorial approach.
Contrary to the canonical variables, this analysis is free of singularities.

We should note that the studied system has potential interest both in astrodynamics
(dealing with spacecrafts) as well as in the understanding of the evolution of planetary systems
recently found (and more to appear), where some of the planets may be modeled like gyrostats
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rather than rigid bodies. In fact, the equilibria reported might well be compared with those
taken for the “parking areas” of the space missions (GENESIS, SOHO, DARWIN, etc.) around
the Eulerian points of the Sun-Earth and the Earth-Moon systems (see [2] for details).

To finish this introduction, we describe the structure of the article. The paper is orga-
nized into seven sections, two appendices, and the bibliography. In these sections we study
the equations of motion, the Casimir function and integrals of the system, and the relative
equilibria and the existence of Eulerian equilibria, in particular the study of the bifurcations
of Eulerian equilibria in the approximate dynamics. The rotational Poisson dynamics of the
gyrostat placed in an Eulerian equilibrium and the study of the stability of some equilibria
are considered.

Figure 1. Gyrostat in the three body problem.

2. Equations of motion. Let S0 be a gyrostat of mass m0, and let S1, S2 be two sym-
metrical rigid bodies of masses m1 and m2, respectively; I = {O,u1,u2,u3} is an inertial
reference frame; J = {C0,b1,b2,b3} is a body frame fixed at the center of mass C0 of S0 (see
Vera and Vigueras [8] for details).

The following notation is used:

M2 = m1 +m2, M1 = m1 +m2 +m0, g1 =
m1m2

M2
, g2 =

m0M2

M1
.

For u,v ∈ R
3, u · v is the dot product; |u| is the Euclidean norm of the vector u;

u × v is the cross product; IR3 is the identity matrix; and 0 is the zero matrix of order
three. Consider I0 = diag(A0, B0, C0) the diagonal tensor of inertia of the gyrostat and
Ii = diag(Ai, Ai, Ci) the diagonal tensors of inertia for the rigid bodies Si, i = 1, 2. The
generic expression z = (Π1,Π2,Π0,λ,pλ,μ,pμ) ∈ R

21 is a vector of the twice reduced
problem obtained by applying the symmetries of the system. The vector z is obtained by
a Poisson reduction by means of the group SO(3) and a symplectic reduction by means of
the translation group; see Vera and Vigueras [8] for details. The vector Π0 = I0Ω0 + lr is
the total rotational angular momentum vector of the gyrostat in the body frame, which is
attached to its rigid part and whose axes have the direction of the principal axes of inertia
of S0; the vector lr = (0, 0, l) is the constant gyrostatic momentum (this vector models the
internal motions of the gyrostat) and Πi = IiΩi (i = 1, 2) are the total rotational angular
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momentum vectors for the two rigid bodies. The elements λ, μ, pλ, and pμ are, respectively,
the barycentric coordinates and the linear momenta expressed in the body frame J.

Following the results of Vera and Vigueras [8], according to the hypotheses formulated
in the introduction of this paper, a good approximation to the potential of the system is
expressed by

V = V1 + V2,

where

V1 = −
(
Gm1m2

|λ| +
Gm1m0

|μ − m2
M2

λ| +
Gm2m0

|μ + m1
M2

λ|

)
,

V2 = −1
2

(
Gm0α1

|μ − m2
M2

λ|3 +
Gm0α2

|μ + m1
M2

λ|3 − 3Gm0f1

|μ − m2
M2

λ|5 − 3Gm0f2

|μ + m1
M2

λ|5

)
,

and

α1 = 2A1 + C1, α2 = 2A2 + C2,

f1(λ,μ) = μ · I1μ − 2m2

M2
λ · I1μ +

(
m2

M2

)2

λ · I1λ,

f2(λ,μ) = μ · I2μ +
2m1

M2
λ · I2μ +

(
m1

M2

)2

λ · I2λ.

The Hamiltonian function of the system adopts the form

H(z) =
|pλ|2
2g1

+
|pμ|2
2g2

+
1
2
Πt

0I
−1
0 Π0 − lr · I−1

0 Π

+
1
2
Πt

1I
−1
1 Π1 +

1
2
Πt

2I
−1
2 Π2 + V(λ,μ).

Let (M, { , },H) with M = R
21 be the Poisson manifold, where { , } is the Poisson bracket

defined by means of the Poisson tensor

B(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π̂1 0 0 0 0 0 0
0 Π̂2 0 0 0 0 0
0 0 Π̂0 λ̂ p̂λ μ̂ p̂μ

0 0 λ̂ 0 IR3 0 0
0 0 p̂λ −IR3 0 0 0
0 0 μ̂ 0 0 0 IR3

0 0 p̂μ 0 0 −IR3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In B(z), v̂ is considered to be the image of the vector v ∈ R
3 by the standard isomorphism

between the Lie algebras R
3 and so(3), i.e.,

v̂ =

⎛
⎝ 0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎠ .
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The equations of the motion are given by

dz
dt

= {z,H(z)} = B(z)∇zH(z),

with ∇uV being the gradient of V with respect to an arbitrary vector u.
Calculating {z,H(z)}, the following group of vectorial equations of motion can be written

as

dΠ0

dt
= Π0 × Ω0 + λ × ∇λV + μ × ∇μV,

dλ

dt
=

pλ

g1
+ λ ×Ω0,

dpλ

dt
= pλ × Ω0 − ∇λV,

dμ

dt
=

pμ

g2
+ μ × Ω0,

dpμ

dt
= pμ × Ω0 − ∇μV,

dΠ1

dt
= Π1 × Ω1,

dΠ2

dt
= Π2 ×Ω2.

(1)

Important elements of B(z) are the associated Casimir functions. The vector

L0 = Π0 + λ × pλ + μ × pμ

is a part of the total angular momentum L given by

L = Π2 + Π1 + L0.

Then the following result can be concluded.
Proposition 1. If ϕi (i = 0, 1, 2) are real smooth functions, then ϕ0(

|L0|2
2 ), ϕi(

|Πi|2
2 ) (i =

1, 2) are Casimir functions of the Poisson tensor B(z). Furthermore, KerB(z) = 〈∇zϕ0,
∇zϕ1,∇zϕ2〉. We also have dL

dt = 0, which means the total angular momentum vector remains
constant. If Π0 = (π1

0,π
2
0,π

3
0), then π3

0 is an integral of the motion.

3. Relative equilibria. If ze = (Πe
2,Π

e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) is a generic relative equilib-

rium, the following vectorial equations are verified:

Πe
0 × Ωe

0 + λe × (∇λV)e + μ × (∇μV)e = 0,(2)
pe

λ

g1
+ λe ×Ωe

0 = 0, pe
λ × Ωe

0 = (∇λV)e,

pe
μ

g2
+ μe × Ωe

0 = 0, pe
μ × Ωe

0 = (∇μV)e,

Πe
1 × Ωe

1 = 0, Πe
2 × Ωe

2 = 0,

where (∇λV)e and (∇μV)e are the values of ∇λV and ∇μV at ze.
According to the relationships provided by Vera and Vigueras [8], the following results are

obtained.
Lemma 2. Whenever ze = (Πe

2,Π
e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) is a relative equilibrium, the fol-

lowing relationships are satisfied:



EULERIAN RELATIVE EQUILIBRIA OF A GYROSTAT 1383

|Ωe
0|2|λe|2 − (λe ·Ωe

0)
2 =

1
g1

(λe · (∇λV)e),

|Ωe
0|2|μe|2 − (μe · Ωe

0)
2 =

1
g2

(μe · (∇μV)e).

The previous two identities will be used to obtain necessary conditions for the existence
of relative equilibria.

Certain relative equilibria will be studied assuming that vectors Ωe
0, λe, and μe satisfy

special geometric properties.
Definition 1. ze is said to be an Eulerian relative equilibrium when λe and μe are propor-

tional and Ωe is perpendicular to the straight line that they generate.
From the above definitions, the following property is deduced.
Proposition 3. In an Eulerian relative equilibrium, the forces that derive the potential do

not exercise moments on the gyrostat.
Next, necessary and sufficient conditions for the existence of Eulerian relative equilibria

will be obtained.

4. Eulerian relative equilibria. According to the relative position of the gyrostat S0

with respect to S1 and S2, there are three possible equilibrium configurations: (a) S0S2S1,
(b) S2S0S1, and (c) S2S1S0 (see Figure 2 for details on the configuration S2S1S0).

Figure 2. Eulerian relative equilibria in configuration S2S1S0.

4.1. Necessary conditions of existence. The following lemma is a direct consequence of
the geometry of the problem.

Lemma 4. If ze = (Πe
2,Π

e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) is a relative equilibrium of Euler type, then

for the configuration S0S2S1∣∣∣∣μe − m2

M2
λe

∣∣∣∣ = |λe| +
∣∣∣∣μe +

m1

M2
λe

∣∣∣∣ .
In a similar way, for the configuration S2S0S1

|λe| =
∣∣∣∣μe − m2

M2
λe

∣∣∣∣+
∣∣∣∣μe +

m1

M2
λe

∣∣∣∣ .
Finally, for the configuration S2S1S0∣∣∣∣μe +

m1

M2
λe

∣∣∣∣ =
∣∣∣∣μe − m2

M2
λe

∣∣∣∣+ |λe|.
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If ze is an Eulerian relative equilibrium, then

g1|Ω0
e|2|λe|2 = λe · (∇λV)e,

g2|Ω0
e|2|μe|2 = μe · (∇μV)e,

with

μe − m2

M2
λe = ρλe, μe +

m1

M2
λe = (1 + ρ)λe, μe =

((1 + ρ)m2 + ρm1)
M2

λe,

where ρ ∈ (−∞,−1) in the configuration (a), ρ ∈ (−1, 0) in the configuration (b), and
ρ ∈ (0,+∞) in the configuration (c). Moreover, it is possible to obtain

(∇λV)e = h1(ρ)λe, (∇μV)e = h2(ρ)λe

with

h1(ρ) =
Gm1m2

|λe|3 +
Gm0m1sgn(1 + ρ)

M2|λe|3

(
m2

(1 + ρ)2
+

β2

(1 + ρ)4|λe|2

)
(3)

− Gm0m2sgn(ρ)
M2|λe|3

(
m1

ρ2
+

β1

ρ4|λe|2

)
and

h2(ρ) =
Gm0sgn(1 + ρ)

|λe|3

(
m2

(1 + ρ)2
+

β2

|λe|2(1 + ρ)4

)
(4)

+
Gm0sgn(ρ)

|λe|3

(
m1

ρ2
+

β1

|λe|2ρ4

)
,

where β1 = 3(C1 −A1)/2, β2 = 3(C2 −A2)/2, and

sgn(x) =
{

1 if x > 0,
−1 if x ≤ 0.

Now, from the identities

λe · (∇λV)e = |λe|2h1(ρ),

μe · (∇μV)e =
((1 + ρ)m2 + ρm1)

M2
|λe|2h2(ρ),

the following equations are deduced:

|Ωe
0|2 =

(m1 +m2)h1(ρ)
m1m2

,

|Ωe
0|2 =

(m0 +m1 +m2)h2(ρ)
m0 ((1 + ρ)m2 + ρm1)

.

Then for an Eulerian relative equilibrium, ρ must be a real root of the following equation:

(5) m0(m1 +m2) ((1 + ρ)m2 + ρm1)h1(ρ) = m1m2(m0 +m1 +m2)h2(ρ).
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The following proposition summarizes all these results.
Proposition 5. If ze = (Πe

2,Π
e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) is an Eulerian relative equilibrium, the

equation (5) has at least one real root in which the functions h1(ρ) and h2(ρ) are given by the
expressions (3), (4). The modulus of the angular velocity of the gyrostat is

(6) |Ωe
0|2 =

(m1 +m2)h1(ρ)
m1m2

.

Remark 1. When |λe| has a fixed value, if an Eulerian relative equilibrium exists, then
(5) has real solutions. The number of real roots of (5) will depend, obviously, on the parameters
which exist in the system.

4.2. Sufficient conditions of existence. The following proposition indicates how to cal-
culate solutions of (2).

Proposition 6. When |λe| has a fixed value, let ρ be a solution of (5), where the functions
h1(ρ) and h2(ρ) are given by the expressions (3), (4). Then ze = (Πe

2,Π
e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ)

are given by

λe = (λe, 0, 0), μe = (μe, 0, 0), Ωe
0 = (0, 0, ωe

0),
pe

λ = (0, g1ωe
0λ

e, 0), pe
μ = (0, g2ωe

0μ
e, 0), Πe

0 = (0, 0, C0ω
e
0 + l),

where
μe =

((1 + ρ)m1 + ρm2)
M2

λe, (ωe
0)

2 =
(m1 +m2)h1(ρ)

m1m2

is an Eulerian relative equilibrium. The total angular momentum of the system is expressed
by

L = (0, 0, C2ω
e
2 + C1ω

e
1 + C0ω

e
0 + l + g1(ωe

0)
2λe + g2(ωe

0)
2μe),

with l being the gyrostatic momentum. The vectors Πe
2, Πe

1 verify the vectorial equations

Πe
1 × Ωe

1 = 0, Πe
2 × Ωe

2 = 0.

4.3. Eulerian relative equilibria when S2 and S1 are spherical rigid bodies. Consider
the existence and number of solutions for Eulerian relative equilibria when S2 and S1 are
spherical rigid bodies. In this case C1 = A1, C2 = A2, and (5) is equivalent to the following
polynomial equation:

(m1 +m2)ρ5 + (3m2 + 2m1)ρ4 + (3m2 +m1 +m0(sgn(1 + ρ)(7)

− sgn(ρ)))ρ3 + (m2 −m2sgn(1 + ρ) −m1sgn(ρ) − 3m0sgn(ρ))ρ2

− (3sgn(ρ)m0 + 2sgn(ρ)m1)ρ− (m0sgn(ρ) +m1sgn(ρ)) = 0.

This equation, by Descartes’s rule of signs, has a unique real solution in the intervals
(−∞,−1), (−1, 0), and (0,+∞). Therefore, only one Eulerian relative equilibrium exists.

On the other hand,

|Ωe
0|2 =

G(m1 +m2)
|λe|3

(
1 +

m0

(m1 +m2)

(
sgn(1 + ρ)
(1 + ρ)2

− sgn(ρ)
ρ2

))
,
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where ρ is the only solution of (7).
Proposition 5 gathers the results about Eulerian relative equilibria when S2 and S1 are

spherical rigid bodies in the configurations (a), (b), and (c).
Proposition 7. 1. If ρ is the unique positive root of the equation

(m1 +m2)ρ5 + (3m2 + 2m1)ρ4 + (3m2 +m1)ρ3

− (3m0 +m1)ρ2 − (3m0 + 2m1)ρ− (m0 +m1) = 0

with

|Ωe
0|2 =

G(m1 +m2)
|λe|3

(
1 +

m0

(m1 +m2)

(
1

(1 + ρ)2
− 1
ρ2

))
,

then ze = (Πe
2,Π

e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ), given by

λe = (λe, 0, 0), μe = (μe, 0, 0), Ωe
0 = (0, 0, ωe

0),(8)
pe

λ = (0, g1ωe
0λ

e, 0), pe
μ = (0, g2ωe

0μ
e, 0), Πe

0 = (0, 0, C0ω
e
0 + l),

is the unique solution of relative equilibrium of Euler type in the configuration S2S1S0.
2. If ρ ∈ (−1, 0) is the unique root of the equation

(m1 +m2)ρ5 + (3m2 + 2m1)ρ4 + (3m2 +m1 + 2m0)ρ3

+ (3m0 +m1)ρ2 + (3m0 + 2m1)ρ+ (m0 +m1) = 0

with

|Ωe
0|2 =

G(m1 +m2)
|λe|3

(
1 +

m0

(m1 +m2)

(
1

(1 + ρ)2
+

1
ρ2

))
,

then ze = (Πe
2,Π

e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) given by (8) is the unique solution of relative equilib-

rium of Euler type in the configuration S2S0S1.
3. If ρ ∈ (−∞,−1) is the unique root of the equation

(m1 +m2)ρ5 + (3m2 + 2m1)ρ4 + (3m2 +m1)ρ3

+ (3m0 +m1 + 2m2)ρ2 + (3m0 + 2m1)ρ+ (m0 +m1) = 0,

where

|Ωe
0|2 =

G(m1 +m2)
|λe|3

(
1 +

m0

(m1 +m2)

(
1
ρ2

− 1
(1 + ρ)2

))
,

then ze = (Πe
2,Π

e
1,Π

e
0,λ

e,pe
λ,μ

e,pe
μ) given by (8) is the unique solution of relative equilib-

rium of Euler type in the configuration S0S2S1.
These results agree with the classical Newtonian three body problem; see [12] for details.

4.4. Eulerian relative equilibria when S2 and S1 are not spherical rigid bodies. In the
present case, after carrying out the appropriate calculations, we reduce (5) to the study of the
positive real roots of the nine degree equation

(9) β2q(ρ) −m1m2a
2ρ2(ρ+ 1)2p(ρ) = 0,
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where

p(ρ) = (m1 +m2)ρ5 + (3m2 + 2m1)ρ4 + (3m2 +m1 +m0(sgn(1 + ρ)(10)

− sgn(ρ)))ρ3 + (m2 −m2sgn(1 + ρ) −m1sgn(ρ) − 3m0sgn(ρ))ρ2

− (3sgn(ρ)m0 + 2sgn(ρ)m1)ρ− (m0sgn(ρ) +m1sgn(ρ))

and

q(ρ) = m0(ksgn(ρ)m2 − sgn(1 + ρ)m1)ρ5 +m2(sgn(1 + ρ)m1

+ 5sgn(ρ)m0k + km1sgn(ρ))ρ4 + 2m2ksgn(ρ)(2m1 + 5m0)ρ3

+ 2m2ksgn(ρ)(3m1 + 5m0)ρ2 + ksgn(ρ)m2(4m1 + 5m0)ρ
+ ksgn(ρ)m2(m0 +m1),

where
β1 = 3(C1 −A1)/2, β2 = 3(m1 +m2)(C2 −A2)/2

with β1 = kβ2, a = |λe|, and k ∈ R.
In order to study the number of real roots of the polynomial (9), the rational function

β2 = R(ρ) =
m1m2a

2ρ2(ρ+ 1)2p(ρ)
q(ρ)

will be studied.
In practical applications m0 is very small; then up to first order in m0

β2 = R1(ρ) =
a2ρ2(ρ+ 1)2p1(ρ)

q1(ρ)
+ o(m0),

where

p1(ρ) = ρ5 + (2 + μ)ρ4 + (1 + 2μ)ρ3 + (μ− μsgn(1 + ρ)

− (1 − μ)sgn(ρ))ρ2 − 2sgn(ρ)(1 − μ)ρ− (1 − μ)sgn(ρ)

and

q1(ρ) = (sgn(1 + ρ) + sgn(ρ)k)ρ4 + 4sgn(ρ)kρ3 + 6sgn(ρ)kρ2 + 4sgn(ρ)kρ+ sgn(ρ)k,

where μ = m2
m2+m1

.
The polynomial q1 has no roots in (0,+∞) and (−1, 0) if k > 0 and k < 0, respectively.

On the other hand, q1 has only one root, ρ1, in (0,+∞) and (−1, 0) if k < 0 and k > 0,
respectively. ρ0 will be denoted as the only root of p1. The implicit curve Res(k, μ) = 0,
where Res is the resultant of the polynomials p1 and q1, is used to study the graph of R1.
When μ0 has a fixed value, the only k0 which verifies Res(k0, μ0) = 0 exists according to the
implicit function theorem. Consider the only root, ρ̃1 = ρ0(μ0), of q1 for k0 and μ0. The
expressions

(ρmax, ξ1(k) = R1(ρmax)), (ρmin, ξ2(k) = R1(ρmin))
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are the local maximum and minimum of the function R1.
In the configuration S2S1S0, for any value of μ fixed

lim
k→+∞

ξ2(k) = 0, lim
k→0+

ξ2(k) = −∞

if k > 0. For k < 0

lim
k→+∞

ξ1(k) = 0, lim
k→0+

ξ2(k) = +∞

if ρ1 > ρ̃1. If ρ1 ≤ ρ̃1, then R1 is strictly increasing.
For the configuration S2S0S1, if ρ̃1 ≤ ρ1 and k > 0, then the function R1 has just one

minimum, which verifies

lim
k→0+

ξ2(k) = ξ0.

If ρ1 < ρ̃1, then

lim
k→+∞

ξ2(k) = 0.

If k < 0, then R1 verifies that

lim
k→0−

ξ2(k) = ξ0, lim
k→0−

ξ1(k) = +∞,

lim
k→−∞

ξ2(k) = 0, lim
k→−∞

ξ1(k) = 0.

The results for the configuration S0S2S1 will be deduced from the configuration S2S1S0.
According to these statements, the following proposition can be stated.
Proposition 8. In the configuration S2S1S0 for k > 0,
1. if β2 < R1(ρmin), then Eulerian relative equilibria do not exist.
2. If β2 = R1(ρmin), a unique 2-parametric family of Eulerian relative equilibria exists.
3. If R1(ρmin) < β2 < 0, two 2-parametric families of Eulerian relative equilibria exist.
4. If β2 > 0, a unique 2-parametric family of Eulerian relative equilibria exists. For
k0 < k < 0 and β2 > 0,

5. if β2 ∈ (ξ1(k), ξ2(k)), Eulerian relative equilibria do not exist.
6. If β2 = ξ1(k) or β2 = ξ2(k), then a unique 2-parametric family of Eulerian relative

equilibria exists.
7. If β2 > ξ2(k), two 2-parametric families of Eulerian relative equilibria exist.
8. If 0 < β2 < ξ1(k), two 2-parametric families of Eulerian relative equilibria exist. For
k0 < k < 0 and β2 < 0,

9. a unique 2-parametric family of Eulerian relative equilibria exists. For k < k0 and
β2 > 0,

10. two 2-parametric families of Eulerian relative equilibria exist. For k < k0 and β2 < 0,
11. a unique 2-parametric family of Eulerian relative equilibria exists.
Similar results are obtained for the configuration S2S0S1. Figures 3, 4, 5, and 6 illustrate

the bifurcations of the equilibria.
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Figure 3. Function R1(ρ) for the configuration S2S1S0 and k > 0.

Figure 4. Function R1(ρ) for the configuration S2S1S0 for k0 < k < 0 and β2 > 0, β2 < 0, respectively.

Figure 5. Function R1(ρ) for the configuration S2S0S1.

5. Stability of Eulerian relative equilibria. The tangent flow of (1) in an Eulerian relative
equilibrium ze is expressed by

dδz
dt

= U(ze)δz,

with δz = z − ze and U(ze) being the Jacobian matrix of (1) in ze.
The characteristic polynomial U(ze) is expressed as

(11) P (X) = X3(X2 +Φ2
0)(X

2 +Φ2
1)(X

2 +Φ2
2)(X

4 +mX2 +n)(X8 +pX6 + qX4 + rX2 + s),

with Φ2
i = (Ci−Ai)ωe

i +l
Ai

. The coefficients present in the above polynomial are functions of the
parameters of the problem and ρ, where ρ is taken as the root of (5).
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Figure 6. Function R1(ρ) for the configuration S2S0S1.

5.1. S2 and S1 are spherical rigid bodies. The characteristic polynomial (11) of U(ze)
simplifies to

(12) P (X) = X5(X2 + Φ2
0)(X

2 + Φ2
1)(X

2 + Φ2
2)(X

2 + (ωe
0)

2)2(X2 + p)(X4 + qX2 + r)

with coefficients shown in Appendix B.
If p ≥ 0, q ≥ 0, r ≥ 0, q2 − 4r ≥ 0, then ze is spectrally stable. These conditions are not

verified since r < 0.
Proposition 9. If ze is the only relative equilibrium in the configuration S0S2S1 of the zero

order approximate dynamics, then it is unstable.

5.2. S2 and S1 are close to a sphere. The case in which Si (i = 1, 2) are close to a
sphere will now be analyzed. In this case Ci −Ai ≈ 0, and this is the reason why, by applying
the implicit function theorem, ze is unstable.

If Ci−Ai is not close to zero, the coefficients of the polynomial (11) have very complicated
expressions. Numeric calculations prove that linear stable Eulerian relative equilibria exist
for certain values of the parameters Ci −Ai (i = 1, 2) (see Vera and Vigueras [8] for details).
These results are also applicable to configurations S2S0S1 and S2S1S0.

6. Rotational Poisson dynamics in an Eulerian equilibrium. To describe the rotational
Poisson dynamics in an Eulerian equilibrium, we consider the gyrostat fixed frame J = Rorb =
{e,b,n} with origin in the mass center of the gyrostat. The versors e and n denote the
radial and the orbital angular velocity directions, respectively, and b = n × e. We consider
Ωorb = Ω0 − ωe

0n with ωe
0 given by (6). The rotational equations of the motion of a gyrostat

placed in an Eulerian equilibrium are

dΠ0

dt
= Π0 ×Ω0 + M,

de
dt

= e × Ωorb,
db
dt

= b× Ωorb,
dn
dt

= n× Ωorb,

M being the gravitational torque acting on the gyrostat. The following formula is verified for
the gravitational torque:

M = ∇eU ,
with

U(e) =
3k
2

e · I0e.

The parameter k is given by

k =
G

|λe|3

(
m1

|1 + ρ|3 +
m2

|ρ|3

)
,
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and ρ is determined by (5).
Keeping in mind that Ω0 = I

−1
0 Π − lr with lr = I

−1l̃r, the equations of motion are

dΠ0

dt
= Π0 × I

−1
0 Π0 − Π0 × lr + 3k e × Ie,

de
dt

= e ×
(
I
−1
0 Π0 − lr − ωe

0n
)
,

db
dt

= b×
(
I
−1
0 Π0 − lr − ωe

0n
)
,

dn
dt

= n×
(
I
−1
0 Π0 − lr

)
.

As can be easily deduced, we obtain the closed system of nine equations of motion

dΠ0

dt
= Π0 × I

−1Π0 − Π0 × lr + 3k e × Ie,

de
dt

= e ×
(
I
−1Π0 − lr − ωe

0n
)
,

dn
dt

= n×
(
I
−1Π0 − lr

)
.

(13)

The system (13) is a Poisson system in R
9. For it, given two arbitrary functions f, g ∈

C∞(R9) and u ∈ R
9, we define the Poisson bracket {·, ·} by {f, g} = (∇uf)tΓ(u)∇ug, where

u = (Π, e,n)t and Γ is

Γ(u) =

⎛
⎝ Π̂ ê n̂

ê 0 0
n̂ 0 0

⎞
⎠ .

Then, system (13) can be written as

du
dt

= Γ(u)∇uH

with

(14) H =
1
2
Πt

0I
−1
0 Π0 − lr · Π0 − ωe

0 Π0 · n + U

and U(e) = 3k
2 e · Ie.

We can therefore conclude that (13) is a Hamiltonian system in the Poisson manifold
(R9, {·, ·}) with Hamiltonian function (14). The Poisson structure is noncanonical; that is,
there exist nonconstant Casimir functions which are the following geometric integrals:

Φ1(u) = e · e, Φ2(u) = n · n, Φ3(u) = e · n.
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6.1. Rotational equilibrium conditions. We know that a necessary and sufficient condi-
tion in order for ue = (Πe, ee,ne)t to be a equilibrium of the equations of motion (13) is that
there must exist λ1, λ2, λ3 ∈ R such that d(H̃) = d(H−λ1Φ1 −λ2Φ2 −λ3Φ3) = 0. From this,
we deduce the following vectorial equations:

I
−1Πe

0 − lr − ωe
0ne = 0,

3kIee − 2λ1ee − λ3ne = 0,

−ωe
0Πe − 2λ2ne − λ3ee = 0.

From these equations we obtain the relations

Ωe
0 = ωe

0ne, λ1 = 3k
2 ee · I

−1
0 ee, λ2 = −ωe

0
2 Πe

0 · ne, λ3 = 0.

We call cylindrical equilibrium to the following expression:

Πe
0 = (0, 0, C0ω

e
0 + l), ee = (1, 0, 0), ne = (0, 0, 1),

λ1 =
3k
2A

, λ2 = −ωe(C0ω
e
0 + l)

2
, λ3 = 0.

In this paper we obtain necessary and sufficient conditions for the nonlinear stability of the
cylindrical equilibrium. Other equilibria and stability conditions are studied in an upcoming
paper.

6.2. Necessary and sufficient conditions of stability of the cylindrical equilibrium. By
means of the tangent flow of this dynamics in the cylindrical equilibrium, we obtain necessary
conditions for the nonlinear stability. After some standard calculations we obtain the following
expressions:

C0 −A0 ≥ 0,

p = C0[ω2
e(B0 − C0) + ωel] +A[((ωe

0)
2 − 3k)(B0 −A0) + ωe

0l]

+ [ωe
0(B0 − C0 −A0) + l]2 ≥ 0,

q = [(ωe
0)

2(B0 − C0) + ωel][((ωe
0)

2 + 3k)(B0 −A0) + ωe
0l] ≥ 0,

p2 − 4qC0A0 ≥ 0.

By means of the energy-Casimir method (see [6] for details), we obtain conditions for
nonlinear stability of the cylindrical equilibria. Following the process, we will need to evaluate

d2(H̃)(ue) =

⎛
⎝ I

−1 0 −ωe
0IR3

0 3kI − 2λ1IR3 0
−ωe

0IR3 0 −2λ2IR3

⎞
⎠

with λ1 = 3k/2A and λ2 = −ωe(Cωe + l)/2. This matrix restricted to

W = Ker(dΦ1(ue)) ∩ Ker(dΦ2(ue)) ∩ Ker(dΦ3(ue))
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is

d2(H̃)|W(ue)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
A0

0 0 0 −ωe
0 0

0
1
B0

0 0 0 −ωe
0

0 0
1
C0

0 0 0

0 0 0 3k(B0 −A0) 0 0
−ωe

0 0 0 0 3k(C0 −A0) + ωe
0(C0ω

e
0 + l) 0

0 −ωe
0 0 0 0 ωe

0(C0ω
e
0 + l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using Sylvester’s theorem, we obtain the following conditions for nonlinear stability of the
cylindrical equilibrium:

C0 −A0 > 0,

(ωe
0)

2(B0 − C0) + ωe
0l > 0,

((ωe
0)

2 + 3k)(B0 −A0) + ωe
0l > 0.

7. Conclusions and future work. In this paper we have investigated some important
periodic solutions of the dynamics of a gyrostat in Newtonian interaction with two symmetric
rigid bodies. With the hypotheses formulated in the introduction, working in the double
reduced space of configuration of the problem, both the equations of motion and those which
determine the relative equilibria have been derived. The Eulerian relative equilibria have
been completely determined by a polynomial equation of degree nine. The obtained results
generalize those of [12, 1, 9]. The bifurcations of these equilibria have been carried out
when m0 is very small. The instability of Eulerian relative equilibria has been proven if the
gyrostat S0 is close to a sphere. The rotational Poisson dynamics of the gyrostat placed in an
Eulerian equilibrium is considered. The nonlinear stability of some rotational equilibria, called
cylindrical equilibria, is studied by means of the energy-Casimir method. By means of the
tangent flow of this dynamics in the cylindrical equilibrium, we obtain necessary conditions for
the nonlinear stability of the cylindrical equilibria. Diverse results, which had been obtained by
means of classic methods in previous works, have been obtained and generalized in a different
way. The methods employed in this work are suitable for use in similar problems. Numerous
problems are open; among them, it is necessary to consider the study of the “inclined” relative
equilibria, in which Ωe

0 forms an angle α 
= 0 and π/2 with the vector λe.

Appendix A. Some numerical results. In order to obtain the values of Ci −Ai (i = 1, 2),
the following relationships will be utilized:

C1 −A1 = (1 − μ)
(eS1

Z

)2
JS1

2 ,

C2 −A2 = μ
(eS2

Z

)2
JS2

2 ,
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where eSi and pSi represent the equatorial and polar radii of Si (i = 1, 2), JSi
2 = 2

5εi, respec-
tively, and εi = eSi

−pSi
eSi

. S1, S2 are considered to be homogeneous ellipsoids. The distances
are measured in kilometers.

S2S1S0 (m0 → 0) Without oblat. Oblat. of S2 Oblat. of S2 and S1

Earth-Moon-S0 448879.206 448879.221 448879.251

Mars-Phobos-S0 9414.945 9414.958 9414.958

S0S2S1 (m0 → 0) Without oblat. Oblat. of S2 Oblat. of S2 and S1

S0-Earth-Moon 381679.691 381679.763 381679.763

S0-Mars-Phobos 9310.642 9310.666 9310.668

S2S0S1 (m0 → 0) Without oblat. Oblat. of S2 Oblat. of S2 and S1

Earth-S0-Moon 326409.744 326409.780 326409.751

Mars-S0-Phobos 9339.156 9339.196 9339.196

Appendix B. Coefficients of the characteristic polynomial in Eulerian relative equilibria
S0S2S1. The coefficients of the characteristic polynomial (12) are

ω2
e =

G((m2 +m1)ρ4 + (2m1 + 2m2)ρ3 + (m2 +m1)ρ2 − 2m0ρ−m0)
λ3

e(1 + ρ)2ρ2
,

p =
G((m2 + 4m0 +m1)ρ3 + (3m2 + 6m0)ρ2 + (4m0 + 3m2)ρ+m0 +m2)

(1 + ρ)3ρ3λ3
e

,

q =
G((−2m1ρ

4m2 + (−2m0m1 +m2
1 +m2

2 − 2m1m2 − 2m0m2)ρ3

((1 + ρ)3ρ3λ3
e)

+
(3m2

2 +m1m2 − 6m0m1)ρ2 + (−m1m2 + 3m2
2 + 2m0m2 − 4m0m1)ρ

((1 + ρ)3ρ3λ3
e)

+
m2

2 −m0m1 +m0m2 −m1m2))
((1 + ρ)3ρ3λ3

e)
,

r =
G2(a1ρ

4 + a2ρ
4 + a3ρ

2 + a4ρ+ a5)
((1 + ρ)8ρ8λ9

e)
.

B.1. Coefficients ai (i = 1, . . . , 5).

a1 = −42m7
2m1 − 48m7

2m0 − 147m6
2m

2
1 − 336m6

2m1m0 − 129m6
2m

2
0

− 207m5
2m

3
1 − 782m5

2m
2
1m0 − 673m5

2m1m
2
0 − 81m5

2m
3
0 − 150m4

2m
4
1

− 869m4
2m

3
1m0 − 1325m4

2m
2
1m

2
0 − 378m4

2m1m
4
0 − 64m3

2m
5
1

− 513m3
2m

4
1m0 − 1270m3

2m
3
1m

2
0 − 702m3

2m
2
1m

3
0 − 14m2

2m
6
1

− 165m2
2m

5
1m0 − 610m2

2m
4
1m

2
0 − 648m2

2m
3
1m

3
0 − 24m2m

6
1m0

− 119m2m
5
1m

2
0 − 297m2m

4
1m

3
0 + 2m6

1m
2
0 − 54m5

1m
3
0,
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a2 = −60m7
2m1 − 54m7

2m0 − 243m6
2m

2
1 − 474m6

2m1m0 − 173m6
2m

2
0

− 399m5
2m

3
1 − 1345m5

2m
2
1m0 − 999m5

2m1m
2
0 − 135m5

2m
3
0 − 329m4

2m
4
1

− 1846m4
2m

3
1m0 − 2223m4

2m
2
1m

2
0 − 648m4

2m1m
3
0 − 138m3

2m
5
1

− 1364m3
2m

4
1m0 − 2506m3

2m
3
1m

2
0 − 1242m3

2m
2
1m

3
0 − 24m2

2m
6
1

− 536m2
2m

5
1m0 − 1530m2

2m
4
1m

2
0 − 1188m2

2m
3
1m

3
0 − 90m2m

6
1m0

− 477m2m
5
1m

2
0 − 567m2m

4
1m

3
0 − 56m6

1m
2
0 − 108m5

1m
3
0,

a3 = −42m7
2m1 − 36m7

2m0 − 183m6
2m

2
1 − 342m6

2m1m0 − 93m6
2m

2
0

− 349m5
2m

3
1 − 1097m5

2m
2
1m0 − 630m5

2m1m
2
0 − 81m5

2m
3
0 − 358m4

2m
4
1

− 1776m4
2m

3
1m0 − 166m4

2m
2
1m

2
0 − 405m4

2m1m
3
0 − 189m3

2m
5
1

− 1614m3
2m

4
1m0 − 2256m3

2m
3
1m

2
0 − 810m3

2m
2
1m

3
0 − 31m2

2m
6
1

− 827m2
2m

5
1m0 − 1683m2

2m
4
1m

2
0 − 810m2

2m
3
1m

3
0 − 6m2m

7
1

− 228m2m
6
1m0 − 666m2m

5
1m

2
0 − 405m2m

4
1m

3
0 − 30m7

1m0

− 81m5
1m

3
0 − 111m6

1m
2
0,

a4 = −12m7
2m1 − 12m7

2m0 − 56m6
2m

2
1 − 114m6

2m1m0 − 24m6
2m

2
0

− 130m5
2m

3
1 − 387m5

2m
2
1m0 − 162m5

2m1m
2
0 − 179m4

2m
4
1

− 687m4
2m

3
1m0 − 432m4

2m
2
1m

2
0 − 140m3

2m
5
1 − 693m3

2m
4
1m0

− 588m3
2m

3
1m

2
0 − 52m2

2m
6
1 − 387m2

2m
5
1m0 − 432m2

2m
4
1m

2
0 − 6m2m

7
1

− 108m2m
6
1m0 − 162m2m

5
1m

2
0 − 12m7

1m0 − 24m6
1m

2
0,

a5 = −(m0 +m2)(18m0m
6
2 + 12m1m

6
2 + 94m5

2m0m1 + 36m2
1m

5
2

+ 81m4
2m

2
0m1 + 168m4

2m0m
2
1 + 42m4

2m
3
1 + 128m3

2m0m
3
1

+ 27m3
2m

4
1 + 15m2

2m
5
1 + 31m2

2m0m
4
1 + 126m2

2m
2
0m

3
1 + 18m2

0m
5
2

+ 54m2m
2
0m

4
1 + 12m2m0m

5
1 + 5m2m

6
1 + 7m6

1m0 + 9m2
0m

5
1

+ 144m3
2m

2
0m

2
1).
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[5] F. Mondéjar and A. Vigueras, The Hamiltonian dynamics of the two gyrostats problem, Celestial
Mech. Dynam. Astronom., 73 (1999), pp. 303–312.

[6] J. P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria, Nonlinearity, 12 (1999), pp.
693–720.

[7] J. A. Vera, Reducciones, equilibrios y estabilidad en dinámica de sólidos ŕıgidos y giróstatos, Ph.D.
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Snaking of Multiple Homoclinic Orbits in Reversible Systems∗

J. Knobloch† and T. Wagenknecht‡

Abstract. We study N-homoclinic orbits near a heteroclinic cycle in a reversible system. The cycle is assumed
to connect two equilibria of saddle-focus type. Using Lin’s method, we establish the existence of
infinitely many N-homoclinic orbits for each N near the cycle. In particular, these orbits exist
along snaking curves, thus mirroring the behavior of 1-homoclinic orbits. The general analysis is
illustrated by numerical studies for a Swift–Hohenberg system.

Key words. bifurcation, multiple homoclinic orbits, heteroclinic cycle, homoclinic snaking, Lin’s method

AMS subject classifications. 34C37, 37C29, 37G20

DOI. 10.1137/070695800

1. Introduction. Spatially localized structures, such as solitary pulses, appear in many
systems described by higher-order nonlinear partial differential equations (PDEs). Particular
examples have been found in structural mechanics [11], nonlinear optics [20], and water wave
problems [4]. A common feature of these cases is the onset of the localized patterns in a
sequence of fold bifurcations, which are connected by a snaking curve.

In one spatial dimension this phenomenon can be explained by a sequence of bifurcations
in the associated ordinary differential equation (ODE) for traveling waves. Localized patterns
correspond to homoclinic solutions of this ODE, and it has been found that infinitely many
of such orbits can exist near a heteroclinic cycle in the ODE. These homoclinic orbits all lie
on a snaking curve, along which they undergo infinitely many fold bifurcations, while thereby
getting wider and developing new oscillations about their center at each fold. An important
requirement for this scenario to happen is the time-reversibility of the traveling-wave ODE.

In addition to time-reversibility, the type of the heteroclinic cycle plays an important role
for the dynamics. Homoclinic snaking has been observed in a neighborhood of a heteroclinic
cycle between an equilibrium p1 and a saddle-focus equilibrium p2 (EE cycle) and near cy-
cles connecting an equilibrium p1 and a periodic orbit P (EP cycle). The homoclinic orbits
occurring along a snaking curve are asymptotic to p1.

In the case of an EE cycle the snaking occurs locally around some critical value of a family
parameter at which a codimension one heteroclinic cycle exists. This feature allows one to
study the scenario using a local bifurcation analysis. In an earlier paper [14], it was shown
rigorously by the authors that heteroclinic cycles between symmetric equilibria of saddle-focus
type generate a snaking behavior. In contrast to that behavior, the snaking related to an EP
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cycle is generically a global phenomenon in parameter space; that is, it can be observed in
a region in parameter space. (This difference is also apparent in the shape of corresponding
snaking curves (see Figures 1 and 7).) For a geometric explanation for why homoclinic snaking
occurs in this case, we refer the reader to [23, 7]; see also [1] for a recent analytical description.

If p1 is also of saddle-focus type, then general results by Häerterich [8] (see also [3, 18])
show that homoclinic orbits to p1 will be accompanied by a plethora of N -homoclinic orbits,
i.e., homoclinic orbits to p1 that pass p2 N times before closing the loop. For each N there
exist infinitely many N -homoclinic orbits, which are distinguished by the times they spend
near p1. In the situation studied here, one may now expect these orbits to snake under
variation of the parameter, too. Our goal is to describe this snaking.

More precisely, we understand a snaking curve as a graph {(ω, λ(ω)), ω ∈ I} that intersects
a line {(ω, λ∗), ω ∈ I} infinitely many times. Moreover, in the case of an EE cycle, λ(ω) tends
to λ∗ as ω tends to infinity. So, a snaking curve looks qualitatively similar to the one in
Figure 1. Here ω is some intrinsic parameter characterizing the N -homoclinic orbit, taken
from some infinite interval I, and λ(ω) is the family parameter of the ODE at which the
N -homoclinic orbit exists. Roughly speaking, ω is the length of stay near p2 during a certain
passage of the N -homoclinic orbit near p2. In the analysis in section 4, we will particularly
focus on the case where ω is the first passage past p2, and we will discuss other possibilities
only briefly.

λ

ω

Figure 1. Snaking curve for symmetric N-homoclinic orbits.

This paper can be seen as a follow-up to [14], where we discussed 1-homoclinic orbits near
an EE cycle. There it was also shown that p2 has to be of saddle-focus type in order to find
snaking behavior of 1-homoclinic orbits. Furthermore, it was shown there that p1 has to be
of saddle-focus type, too, if N -homoclinic orbits to this equilibrium are to exist.

Similar to the procedure in [14] we will use Lin’s method [12, 17] to derive bifurcation
equations for N -homoclinic orbits near the cycle. The general setup will be introduced in
section 3. Under certain genericity assumptions it will be shown in section 4 that the cycle
is accompanied by a multitude of N -homoclinic orbits, which exist on snaking curves. In
section 5 we briefly discuss snaking near EP cycles. Numerical results for this case disclose
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a remarkable difference in the behavior of 2-homoclinic orbits in comparison with the results
for EE cycles, derived in the present paper.

Before the general bifurcation analysis, however, we will illustrate the problem we are
interested in by numerical results for a generalized Swift–Hohenberg equation in the next
section.

2. N-pulses in a generalized Swift–Hohenberg equation. We consider the generalized
Swift–Hohenberg equation studied in [10]

(2.1)
∂u

∂t
= ru−

(
∂2

x + q2c
)2
u+ vu2 − gu3.

Stationary localized solutions of this equation, that is, homoclinic solutions to 0 of the fourth-
order equation

(2.2) u′′′′ + 2q2cu
′′ + (q4c − r)u− vu2 + gu3 = 0,

have been discussed in detail in [2]. In particular, several snaking scenarios have been found
to occur in (2.2).

We stress the fact that (2.2) is reversible. This means that there is a linear involu-
tion R such that the corresponding first-order system is invariant under the transformation
((u, u′, u′′, u′′′), x) �→ (R(u, u′, u′′, u′′′),−x). Here the involution R is defined by (u, u′, u′′, u′′′)
�→ (u,−u′, u′′,−u′′′). The reversibility plays an important role for the dynamics of (2.2). In
particular, it leads to the robust existence of those homoclinic solutions, for which u is an
even function. As is common, we will call such solutions symmetric. We refer the reader to
section 3 for more general comments about reversible systems.

Note that, in addition to being reversible, (2.2) is also conservative and preserves a first
integral. However, both in our computations for (2.2) and in the general analysis afterward,
we will focus on symmetric homoclinics, and for these the reversibility of (2.2) is the most
important property.

Following computations in [2], we set qc = 0.5, v = 0.75, and g = 1 and consider (2.2) as
an equation depending only on r. Then the 0 equilibrium is a saddle focus for all r < 0; i.e.,
the linear part of the vector field has a quadruple of complex eigenvalues. Furthermore, there
are two additional equilibria u± = (3 ±

√
5 + 64r)/8 if r > −5/64.

We compute symmetric homoclinic orbits to 0 by shooting for orbits in the unstable
manifold of this equilibrium, which intersect the symmetry section Fix(R) = {(u, u′, u′′, u′′′) :
u′ = u′′′ = 0}. The behavior and bifurcations of these orbits under variation of r are studied
using the software package AUTO/HomCont [24].

Figure 2 shows a bifurcation diagram for a particular 1-homoclinic solution H1. In this
diagram we plot the L2-norm of the solution vector (u, u′, u′′, u′′′) forH1 against the parameter
r. We see that H1 emerges at r = 0 in a local bifurcation of the 0-equilibrium and then
undergoes a sequence of fold bifurcations along a snaking curve which accumulate at r∗ =
−1/16.

Inspection of the solutions, contained in the accompanying boxes, shows that along the
snaking curve the middle part of the homoclinic orbit approaches the equilibrium u+, and
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Figure 2. Snaking curve for 1-homoclinic orbits of (2.2).

indeed a heteroclinic cycle Γ between 0 and u+ is found to exist at r∗; see also [2]. Note that
Γ is invariant under R; it is the limit of symmetric homoclinic orbits.

Remark 2.1. In all of the numerically obtained diagrams in this paper we plot the L2-norm
of the solution u against the parameter because this solution measure is numerically convenient.
We note, however, that this norm is also directly related to the transition times, which will be
used in the general analysis (compare with Figure 1). Indeed, the part of the solution that is
close to u+ is the one that predominantly contributes to its L2-norm.

Note that for r = r∗ there exist infinitely many homoclinic orbits to 0. Since 0 is of
saddle-focus type for that parameter value, the results by Härterich [8] suggest the existence
of N -homoclinic orbits to 0. These N -homoclinic orbits are computed using a homoclinic
branch-switching method developed in [16]. We find a multitude of symmetric N -homoclinic
orbits and consider only a few of them with N = 2, 3 here.

Figure 3 contains a bifurcation diagram for two symmetric 2-homoclinic orbits existing
near the cycle Γ. As before, we plot the L2-norm against the parameter r and find a snaking
curve for each orbit, which accumulates at r = r∗. Note that the snaking curves in the diagram
stop at some finite norm. This is caused by numerical difficulties in continuing the solutions.

Some solutions along the green curve are shown to the right of the diagram. As for H1,
we find that along the snaking curve the pulses widen, and their middle parts approach u+.
It is interesting to observe that the central part of the solutions between the pulses remains
unchanged.

We note that the diagram in Figure 3 shows only half of the L2-norm of the 2-homoclinic
solutions, in order to allow for comparison with the snaking curve for the 1-homoclinic orbit.
(The snaking curve for H1 is shown in grey.) The green snaking curve is not close to the
1-homoclinic snaking curve, but we find a much better approximation in the red curve. This
red curve corresponds to a 2-homoclinic solution for which the two pulses are further separated;
compare also with the solution plots to the left of the diagram. This suggests that the snaking
curves move closer together if the pulses become further separated. However, we encounter
numerical difficulties in finding and continuing such solutions.

Next we discuss numerical results for 3-homoclinic orbits near Γ. In Figure 4 we present
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Figure 3. Snaking curves for 2-homoclinic orbits of (2.2).

two bifurcation diagrams for 3-homoclinic orbits near H1. The orbits in this figure are created
in saddle-node bifurcations and follow only parts of the snaking curve of H1. Nevertheless, as
the L2-norm of the solutions increases, the curves approach the parameter value r∗.

But now the solution plots show that there are two different types of behavior along the
snaking curves. Along the red snaking curves the outer pulses develop additional oscillations,
whereas the middle pulse hardly changes. On the other hand, for orbits on the green curve it
is the middle pulse that spreads out, and the outer pulses remain unchanged. In fact, solutions
along the green curve approach a 2-heteroclinic cycle between 0 and u+. The existence of such
cycles will be investigated in section 4.4. We note that for both types of snaking the times
separating the pulses are again virtually constant along all snaking curves.

As before, we rescale the L2-norm of the 3-homoclinic orbits in Figure 4 to make the
curves comparable with the one for H1, whose snaking curve (in parts) is again shown in grey.
Note that we again plot half of the L2-norm of the solution vector, in order to accommodate
the behavior along the red curves. This means that we plot an approximation to the L2-norm
of one of the outer pulses. Hence, there is a better match of the red and grey curves.

In summary, we have found 2- and 3-homoclinic orbits near H1 which mirror the behavior
of this 1-homoclinic solution in that they exist on snaking curves, along which certain pulses
become wider and approach a steady state u+. Furthermore, we expect to find different types
of behavior along snaking curves for N -homoclinic orbits with N > 2.

3. Notation and setup. We aim to understand the numerical results above in a more
general context and are thus interested in bifurcations from a heteroclinic cycle between
two symmetric equilibria of saddle-focus type in the class of time-reversible systems. Let us
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Figure 4. Two bifurcation diagrams for 3-homoclinic orbits near the heteroclinic cycle. Two different types
of snaking behavior are encountered along the red and green curves, respectively.

describe this configuration in detail.
We consider a system of ODEs

(3.1) ẋ = f(x, λ), x ∈ R
2n, λ ∈ R,

with a smooth vector field f , which is assumed to be (time-)reversible; that is, the vector
fields anticommute with some linear involution R:

Rf(x, λ) = −f(Rx, λ).

In a reversible system, the image RX of an orbit X is also an orbit. Orbits for which RX = X
are called symmetric. It is well known that orbits of a reversible system are symmetric if and
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only if they intersect the fixed space Fix(R) := {x ∈ R
2n : Rx = x} of the involution R. We

refer the reader to [15, 21] for a collection of fundamental results about reversible systems.
We will be concerned with bifurcations from a heteroclinic cycle Γ in (3.1). More precisely,

Γ is a collection of two equilibria p1, p2 and heteroclinic orbits connecting p1 to p2 and p2 to
p1 in this order, respectively. Let us first discuss the equilibria.

We assume that (3.1) possesses two symmetric equilibria of saddle-focus type. More
precisely, we assume that there are p1, p2 ∈ Fix(R) such that

f(pk, 0) = 0, k = 1, 2,

and the stable spectrum of Dxf(pk, 0) has the structure

(3.2) σs(Dxf(pk, 0)) = {−μk(0) ± ϕk(0)i} ∪ σss
k , with μk(0), ϕk(0) > 0.

In (3.2), σss
k denotes the strong stable spectrum such that �μ < −μk for all μ ∈ σss

k . Moreover,
the principal eigenvalues −μk(0) ± ϕk(0)i are assumed to be simple. Due to the symmetry of
the equilibria pk, we find for the unstable spectrum that

(3.3) σu(Dxf(pk, 0)) = −σs(Dxf(pk, 0)).

By hyperbolicity the equilibria will persist as symmetric equilibria for small λ, and thus, with
no loss of generality, we may assume that f(pk, λ) = 0 for all λ. Furthermore, the leading
eigenvalues of the linearized vector field vary smoothly with λ; this means that both μk(·) and
ϕk(·) are smooth functions of λ.

Let W s(u)(pk, λ) denote the (un)stable manifold of pk with respect to f(pk, λ). Again, due
to the symmetry and hyperbolicity of the equilibria, these manifolds are n-dimensional; see
also (3.3). Moreover, reversibility implies W s(pk, λ) = RW u(pk, λ).

Finally, we assume the existence of a heteroclinic orbit Γ1 = {γ1(t) : t ∈ R} connecting
p1 to p2 for λ = 0. By reversibility, this orbit is part of a heteroclinic cycle Γ, together
with Γ2 = RΓ1 and the equilibria p1 and p2. Our analysis will require certain nondegeneracy
conditions to be fulfilled. These will be imposed on Γ1, and reversibility ensures that they are
fulfilled along Γ2, too.

First, we assume Γ1 to be nondegenerate; that is, we assume

(3.4) dim
(
Tγ1(0)W

u(p1, 0) ∩ Tγ1(0)W
s(p2, 0)

)
= 1,

where TqM denotes the tangent space of a manifold M at the point q. As a consequence of
(3.4), the equation v̇ = −Dxf(γ1(t), 0)∗v has a unique bounded solution ψ1. We assume that
both γ1 and ψ1 converge along the leading directions to the equilibria and zero, respectively;
that is, we assume

lim
t→−∞

eμ1t‖γ1(t) − p1‖ 
= 0, lim
t→∞

eμ2t‖γ1(t) − p2‖ 
= 0,(3.5)

lim
t→−∞

eμ2t‖ψ1(t)‖ 
= 0, lim
t→∞

eμ1t‖ψ1(t)‖ 
= 0.(3.6)

Conditions (3.5) and (3.6) are known as nonorbit flip and noninclination flip conditions, re-
spectively [18]; see also [13] for an equivalent geometric statement.
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Finally, we also assume a generic unfolding of the heteroclinic connection Γ1, which should
break up under variation of the parameter λ. This can be ensured by assuming that a Melnikov
integral M does not vanish [18]:

(3.7) M :=
∫ ∞

∞
〈ψ1(t),Dλf(γ1(t), 0)〉 dt 
= 0.

3.1. The main result. We are interested in N -homoclinic orbits to p1 that lie in a suffi-
ciently small neighborhood of the cycle Γ. Our main result reads as follows.

Theorem 3.1. Consider (3.1) near the heteroclinic cycle Γ under the conditions set up in
section 3. Let N ≥ 1 be fixed.

At λ = 0 there exist countably many symmetric N -homoclinic orbits H to p1 which can
be continued on a snaking curve λH(·) defined on (ΩH,∞). The functions λH have countably
infinitely many zeros, and |λH(ω)| tends exponentially quickly to zero as ω tends to infinity.

The graphs of λH are depicted in Figure 1. As already mentioned, we will prove Theo-
rem 3.1 for the case where ω is the length of stay of the first passage of H near p2. For a
precise definition of ω, we refer the reader to section 4. However, the numerical results for
3-homoclinic orbits of (2.2) demonstrate that there are other possibilities for the choice of ω.
We will discuss these issues briefly in section 4.4.

Note that forN = 1 the theorem has already been proved in [14]. In this case all symmetric
1-homoclinic orbits (to p1) lie on the same snaking curve.

For N > 1 it turns out that the lengths of all the other passages near p1 and p2 remain
bounded as ω tends to infinity. This phenomenon can also be observed in the numerical
bifurcation diagrams; see, for example, Figure 4. Along the red branch in that figure, the
outer pulses (representing the first and last passages near p2) become and wider as the L2-
norm increases, while both the inner pulse and the time intervals, by which the pulses are
separated, remain nearly unchanged.

Remark 3.2. In addition, for fixed N there are infinitely many different snaking curves.
For example, two N -homoclinic orbits H and H′ (which might exist for the same λ) are not
on the same snaking curve if their numbers of rotations around p1 and p2 are “too different.”

4. The analysis. We will analyze the existence of N -homoclinic orbits to p1 using Lin’s
method [17, 12]. In a first step we determine N -homoclinic Lin orbits near the cycle Γ. An N -
homoclinic Lin orbit to p1 is a piecewise continuous orbit that starts in the unstable manifold
of p1, follows the cycle Γ, and finishes after N loops in the stable manifold of p1. Thereby, the
discontinuities are allowed to lie only in certain places and have well-defined jump directions.
Figure 5 shows an impression of a 2-homoclinic Lin orbit near Γ.

4.1. Setup of the bifurcation equation. In the following we work exclusively in a neigh-
borhood U of Γ. To define N -homoclinic Lin orbits precisely, let Σ1 be a hyperplane intersect-
ing Γ1 transversally at γ1(0), and let Σ2 := RΣ1. We are concerned with four different types
of partial orbits. First, let X− = {x−(t) : t ∈ (−∞, 0]}, such that x−(0) ∈ Σ1 ∩W u(p1, λ)
and x−(t) /∈ Σk for all t < 0. Similarly, let X+ = {x+(t) : t ∈ [0,∞)}, such that
x+(0) ∈ Σ2 ∩W s(p1, λ) and x+(t) /∈ Σk for all t > 0. Finally, for positive numbers ωi

2, ω
j
1, we

consider orbits Xi
2 =

{
xi

2(t) : t ∈
[
0, 2ωi

2

]}
and Xj

1 =
{
xj

1(t) : t ∈
[
0, 2ωj

1

]}
, such that
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p1 p1p2 p2 p1

Σ1 Σ2 Σ1 Σ2

X1
2 X1

1 X2
2X− X+

Figure 5. A 2-homoclinic Lin orbit near the cycle Γ. The original heteroclinic orbits are shown in grey.
Note that for the purpose of illustration Γ is shown as a heteroclinic chain.

xi
2(0) ∈ Σ1, x

i
2

(
2ωi

2

)
∈ Σ2, and xi

2(t) /∈ Σ2 for t ∈
(
0, 2ωi

2

)
,

xj
1(0) ∈ Σ2, x

j
1

(
2ωj

1

)
∈ Σ1, and xj

1(t) /∈ Σ1 for t ∈
(
0, 2ωj

1

)
.

Now, we introduce a space Z1 ⊂ Tγ1(0)Σ1, complementary to Tγ1(0)W
u(p1, 0)+Tγ1(0)W

s(p2,
0). Note that because of (3.4) we have dimZ1 = 1. Furthermore, let Z2 = RZ1 ⊂ Σ2. Then
a collection of partial orbits

L =
(
X−,X1

2 ,X
1
1 ,X

2
2 , . . . ,X

N−1
1 ,XN

2 ,X
+
)

is called an N -homoclinic Lin orbit to p1 if the jump between two consecutive partial orbits
is parallel to Z1 or Z2, respectively.

Note that the lower index k of Xi
k indicates that this partial orbit passes pk while the

upper index i counts the number of passages past the equilibrium pk. The indices in the
corresponding quantities xi

k and ωi
k have the same meaning.

Lin orbits can be characterized by the times ωi
2 and ωj

1, and by the parameter λ. More
precisely, we have the following result.

Lemma 4.1 (see [17, 12]). There are positive numbers λ̂ and ω̂ such that for each |λ| < λ̂
and each set ω1 =

{
ω1

1, . . . , ω
N−1
1

}
and ω2 =

{
ω1

2, . . . , ω
N
2

}
with

min
{
ωj

1, ω
i
2 : j = 1, . . . , N − 1, i = 1, . . . , N

}
> ω̂

there exists a unique N -homoclinic Lin orbit L (ω1,ω2, λ) as introduced above.
The detection of N -homoclinic orbits near Γ now amounts to finding those Lin orbits

without discontinuities (jumps), which are given by

Ξ1
1 = x−(0) − x1

2(0),

Ξi
1 = xi−1

1

(
2ωi−1

1

)
− xi

2(0), i = 2, . . . , N,

Ξi
2 = xi

2

(
2ωi

2

)
− xi

1(0), i = 1, . . . , N − 1,

ΞN
2 = xN

2

(
2ωN

2

)
− x+(0).

The lower index k of Ξi
k indicates in which cross-section the jump takes place, and the upper

index i counts the jumps in these cross-sections.
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Setting Ξ1 = (Ξ1
1, . . . ,Ξ

N
1 ) and Ξ2 = (Ξ1

2, . . . ,Ξ
N
2 ), we find by Lemma 4.1 that Ξi =

Ξi (ω1,ω2, λ). In order to detect actual N -homoclinic orbits to p1 we have to solve the
bifurcation equations

Ξ1 (ω1,ω2, λ) = 0, Ξ2 (ω1,ω2, λ) = 0.

Within the general framework of Lin’s method we can derive expressions for the terms
Ξk, k = 1, 2. We will do this for Ξ1 only, since it turns out that only this is needed when we
focus on symmetric orbits.

For the jumps Ξi
1 = Ξi

1 (ω1,ω2, λ) it has been shown in [17, 12] that

Ξi
1 (ω1,ω2, λ) = ξ∞(λ) + ξi

1 (ω1,ω2, λ) ,

where ξ∞(λ) measures the splitting of W u(p1, λ) and W s(p2, λ) in the direction Z1. Obviously,
ξ∞(0) = 0, and according to assumption (3.7) we have Dξ∞(0) 
= 0. Hence, with no loss of
generality we may assume that

ξ∞(λ) = λ.

While ξ∞ depends only on λ, the terms ξi
1 measure the influence of the finite transition times

between the Σi, too. The leading terms in the ξi
1 depend on the asymptotic behavior near the

equilibria p1 and p2. Applying general results from [17, 12], we find the following lemma.
Lemma 4.2. Assuming the nondegeneracy conditions (3.2), (3.5), and (3.6) the jumps ξi

1

have the following representation:

ξ11 (ω1,ω2, λ) = L2(ω1
2 , λ) + R1,

ξi
1 (ω1,ω2, λ) = L1(ωi−1

1 , λ) + L2(ωi
2, λ) + Ri, i = 2, . . . , N,

where

Lk(ω, λ) := ck(λ)e−2μk(λ)ω sin (2ϕk(λ)ω + ϑk(λ)) , k = 1, 2,

R1 = O
(
e−2αμ2(λ)ω1

2

)
, Ri = O

(
e−2αμ1(λ)ωi−1

1

)
+ O

(
e−2αμ2(λ)ωi

2

)
,

i = 2, . . . , N . Here α is some real number greater than one. The quantities c1, c2 and ϑ1, ϑ2

depend smoothly on λ, and we have c1(0) 
= 0, c2(0) 
= 0.
Also, from [17, 12] we know that the jumps ξi

k are differentiable, and moreover we have
the following estimates of the derivatives.

Lemma 4.3. Under the assumptions of Lemma 4.2, the mappings ξi
1 : R

N−1×R
N ×R → R

are smooth and the partial derivatives Djξ
i
1, j ∈ {1, 2, 3}, can be estimated as follows:

Djξ
1
1 (ω1,ω2, λ) = DjL2(ω1

2 , λ) + o
(
e−2μ2(λ)ω1

2

)
,

Djξ
i
1 (ω1,ω2, λ) = Dj

(
L1(ωi−1

1 , λ) + L2(ωi
2, λ)

)
+ O

(
e−2αμ1(λ)ωi−1

1

)
+ O

(
e−2αμ2(λ)ωi

2

)
,

i = 2, . . . , N . Again α is some real number greater than one.
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In the following we will focus on symmetric N -homoclinic orbits to p1. Those orbits
correspond to symmetric N -homoclinic Lin orbits to p1, which are characterized by

X− = RX+, Xi
1 = RXN−i

1 , i = 1, . . . , �N/2�, and

Xi
2 = RXN+1−i

2 , i = 1, . . . , �(N + 1)/2�,

where �r� denotes the integer part of the real number r. If N is even, then the partial orbit
X

N/2
1 is symmetric and the N -homoclinic Lin orbit intersects FixR near p1, while for N odd

X
(N+1)/2
2 is symmetric and the N -homoclinic Lin orbit intersects FixR near p2.

In particular, this implies that

(4.1) ωi
1 = ωN−i

1 , i = 1, . . . �N
2 �, and ωi

2 = ωN+1−i
2 , i = 1, . . . , �N+1

2 �.

Taking these particulars of the transition times into consideration, we will henceforth write

ω := ω1
2, ω := (ω1

1 , . . . , ω
�N

2
�

1 , ω2
2 , . . . , ω

�N+1
2 �

2 ).

Furthermore, the symmetry of an N -homoclinic Lin orbit implies

(4.2) Ξi
1 = RΞN+1−i

2 , i = 1, . . . , N.

Hence, Ξ1 = 0 if and only if Ξ2 = 0, and the bifurcation equation for symmetric N -homoclinic
orbits to p1 reads

Ξ(ω,ω, λ) := Ξ1(ω1,ω2, λ) = 0.

In what follows we just write Ξi instead of Ξi
1. With this notation we have

Ξ1 = λ+ L2(ω1
2, λ) + R1,

Ξi = λ+ L1(ωi−1
1 , λ) + L2(ωi

2, λ) + Ri, i = 2, . . . , �N+1
2 �,

Ξi = λ+ L1(ωN+1−i
1 , λ) + L2(ωN+1−i

2 , λ) + Ri, i = �N+1
2 � + 1, . . . , N.

(4.3)

Note that all Ξi and Ri depend on (ω,ω, λ).

4.2. Reformulation of the bifurcation equation. We define

(4.4) ri
k := e−2μk(0)ωi

k , r := r12, r := (r11, . . . , r
�N

2
�

1 , r22, . . . , r
�N+1

2
�

2 ).

We want to emphasize that by definition all r as well as all components of r are greater than
zero.

With that we write the jumps as quantities depending on (r, r, λ):

Ξ̂(r, r, λ) = (Ξ̂1(r, r, λ), . . . , Ξ̂N (r, r, λ)) := Ξ(ω(r),ω(r), λ).
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Corollary 4.4. The (r, r)-dependent jumps read as follows:

Ξ̂1 = λ+ R̂1,

Ξ̂i = λ+ L̂1(ri−1
1 , λ) + L̂2(ri

2, λ) + R̂i, i = 2, . . . , �N+1
2 �,

Ξ̂i = λ+ L̂1(rN+1−i
1 , λ) + L̂2(rN+1−i

2 , λ) + R̂i, i = �N+1
2 � + 1, . . . , N − 1,

Ξ̂N = λ+ L̂1(r11, λ) + R̂N ,

where R̂i = R̂i(r, r, λ) and

L̂k(s, λ) := ck(λ)s
μk(λ)

μk(0) sin
(
−ϕk(λ)
μk(0)

ln s+ ϑk(λ)
)
, k = 1, 2,

and, with some α > 1,

R̂1 = L̂2(r, λ) + O
(
rα
)
,

R̂i = O
(
(ri−1

1 )α
)

+ O
(
(ri

2)
α
)
, i = 2, . . . , N − 1,

R̂N = L̂2(r, λ) + O
(
(rN−1

1 )α
)

+ O
(
(rN

2 )α
)
.

And similarly, we get estimates for the derivatives of the residual terms R̂i = R̂i(r, r, λ)
from Lemma 4.3.

Corollary 4.5. The statement of Lemma 4.3 for the (r, r)-dependent jumps reads as follows:

D1R̂1 = D1L̂2(r, λ) + O
(
rα−1

)
, D2R̂1 = O

(
rα
)
,

D3R̂1 = D3L̂2(r, λ) + O
(
rα
)
,

D2R̂i = O
(
(ri−1

1 )α−1
)

+ O
(
(ri

2)
α−1
)
, i = 2, . . . , N,

D3R̂i = O
(
(ri−1

1 )α
)

+ O
(
(ri

2)
α
)
, i = 2, . . . , N − 1,

D3R̂N = D3L̂2(r, λ) + O
(
(rN−1

1 )α
)

+ O
(
(rN

2 )α
)
.

Our goal is to rewrite the bifurcation equation Ξ̂ = 0 as a fixed point equation. For this
we introduce

L̂(r, λ) :=
(
L̂1(r11, λ), . . . , L̂1(r

�N
2
�

1 , λ), L̂2(r22, λ), . . . , L̂2(r
�N+1

2
�

2 , λ)
)T
,

R̂ :=
(
R̂1, . . . , R̂N

)T
.

There is an invertible constant (N ×N)-matrix M such that

Ξ̂(r, r, λ) = M
(
L̂(r, λ)
λ

)
+ R̂(r, r, λ).

We comment on properties of M in the remark at the end of this section.
That Ξ̂(r, r, λ) = 0 is equivalent to

(4.5)
(
L̂(r, λ)
λ

)
= −M−1R̂(r, r, λ).
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In the next step we rewrite (4.5) into a fixed point equation. For that we choose r̂ such that
L̂(̂r, 0) = 0. Note that there are infinitely many candidates for such r̂ which accumulate at
zero. However, for any such r̂ the partial derivative with respect to the first variable D1L̂(̂r, 0)
is an invertible diagonal matrix D, and the absolute values of the entries in the diagonal are
either | c1(0)ϕ1(0)

μ1(0) | or | c2(0)ϕ2(0)
μ2(0) |. We want to emphasize that these quantities do not depend on

the particular choice of r̂ (as long as L̂(̂r, 0) = 0).
With that, the Taylor expansion of L̂ at (r, λ) = (̂r, 0) with second order residual term

L̂res,̂r reads

(4.6) L̂(r, λ) = D(r− r̂) +D2L̂(̂r, 0)λ+ L̂res,̂r(r, λ).

Combining (4.5) and (4.6), we find the following fixed point equation for r which is equivalent
to Ξ̂(r, r, λ) = 0:(

r

λ

)
=
(
r̂−D−1(D2L̂(̂r, 0)λ + L̂res,̂r(r, λ))

0

)
− (MD̂)−1R̂(r, r, λ)

=: Tr̂(r, r, λ),
(4.7)

where D̂ =
(D 0

0 1

)
. The right-hand side Tr̂ of this equation can be read as a mapping

Tr̂ : R+ × R
N−1
+ × R → R

N−1
+ × R.

The lower index “+” denotes the restriction to positive numbers.
Remark 4.6. Let M = (mi,j) be the above-defined (N × N)-matrix. The entries mi,j are

either one or zero. From the representation of Ξ̂ given in Corollary 4.4 we find that exactly
the following entries are equal to one:

m1,N ,

mi,i−1, mi,�N
2
�+i−1, mi,N , i = 2, . . . , �N+1

2 �,

mi,N+1−i, mi,�N
2
�+N−i, mi,N , i = �N+1

2 � + 1, . . . , N − 1,

mN,1, mN,N .

To show that M is indeed nonsingular, we simply compute its determinant by using Laplace’s
formula. We expand alternately along the first or the last line of the corresponding minor
arising in the course of this procedure. This finally yields that the absolute value of the deter-
minant of M is equal to one; in more detail,

|detM| =

{
m1,N ·mN,1 ·m2,�N

2
�+1 ·mN−1,2 · · · · ·m�N+1

2
�,�N+1

2
�−1, N even,

m1,N ·mN,1 ·m2,�N
2
�+1 ·mN−1,2 · · · · ·m�N+1

2
�,N−1, N odd.

4.3. Proof of Theorem 3.1. Our goal is to solve the reformulated bifurcation equation
(4.7) for (rr̂, λr̂)(r) near (r, λ) = (̂r, 0), r ∈ (0, ε). We will do this by applying the Banach
fixed point theorem. Our strategy is as follows. First we construct for the “principal part”(

r

λ

)
=
(
r̂−D−1(D2L̂(̂r, 0)λ + L̂res,̂r(r, λ))

0

)
=: Tred,̂r(r, r, λ)
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of that equation a domain Cr̂ × Br̂, which will be mapped contractively into itself by Tred,̂r.
Then we make clear that for small r̂ this can be carried forward to Tr̂.

In the next step we consider L̂k, which represents the components of L̂. To simplify
matters we omit the lower index k in further considerations:

L̂(s, λ) := c(λ)s
μ(λ)
μ(0) sin

(
−ϕ(λ)
μ(0)

ln s+ ϑ(λ)
)
.

The zeros sn of L̂(·, 0) are explicitly given by sn = e
− μ(0)

ϕ(0)
(nπ−ϑ(0)), n ∈ Z. For our purpose we

are interested only in those zeros which are close to s = 0, so we may assume n ∈ N sufficiently
large.

Let δ := D1L̂(sn, 0). Note that δ represents an element in the diagonal of D and that |δ|
does not depend on n.

By L̂res,n we denote the second-order residual term of the Taylor expansion of L̂ at (sn, 0).
Let B[s, ρ] be the closed ball centered at s with radius ρ.

Lemma 4.7. There are β,K > 0 such that for all sufficiently large n ∈ N the following
estimates hold true: For all s ∈ B[sn, ρn], ρn := snβ, and all λ ∈ B[0, lsn ], lsn = Ksn,

(4.8) |D1L̂res,n(snβ, λ)| < δ

3
, |D2L̂res,n(snβ, λ)| < δ

3
,

and

(4.9)
∣∣δ−1

(
D2L̂(sn, 0)λ + L̂res,n(s, λ)

)∣∣ < 2
3
ρn.

Proof. First we prove the estimates regarding the derivatives of Lres,n. With A(s, λ) :=
−ϕ(λ)

μ(0) ln s+ ϑ(λ) we get

L̂res,n(s, λ) = c(λ)s
μ(λ)
μ(0) sin(A(s, λ)) − δ(s − sn) −D2L̂(sn, 0)λ,

and therefore

D1L̂res,n(s, λ) = c(λ)s
μ(λ)
μ(0)

−1[μ(λ)
μ(0) sin(A(s, λ)) − ϕ(λ)

μ(0) cos(A(s, λ))
]
− δ.

Obviously, D1L̂res,n(sn, 0) = 0. Writing s = snβ one finds that there exist β and l̃sn such that
for all β ∈ [1 − β, 1 + β] and all λ ∈ B[0, l̃sn ] the first estimate in (4.8) holds true. Note that
for those β the corresponding s = snβ belong to B[sn, ρn].

For the derivative of L̂res,n with respect to λ we find

D2L̂res,n(s, λ) =
[
c′(λ)s

μ(λ)
μ(0) + c(λ)s

μ(λ)
μ(0)

−1 μ′(λ)
μ(0)

]
sin(A(s, λ))

+ c(λ)s
μ(λ)
μ(0) cos(A(s, λ))D2A(s, λ) −D2L̂(sn, 0).

Because lims→+0 s
α ln s = 0 for α > 0, we have that c(λ)s

μ(λ)
μ(0) cos(A(s, λ))D2A(s, λ) tends to

zero as s → 0, uniformly in λ, and also that limn→∞D2L̂(sn, 0) = 0. So, again we find that
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there are a β and an l̃sn such that for all β ∈ [1 − β, 1 + β] and all λ ∈ B[0, l̃sn ] the estimate
for D2L̂res,n holds true.

Note that indeed in both estimates l̃sn may depend on n. The decisive term in this respect

is s
μ(λ)
μ(0)

−1. Using differentiability of μ at λ = 0, this term can be written as sO(λ)
n βO(λ). If

|λ| < Ksn for some K, then s
O(λ)
n tends to 1 as n tends to infinity. This finally proves the

estimates given in (4.8).
Our above consideration shows that D2L̂(sn, 0) remains bounded (as n tends to infinity)

and that D2L̂res,n(s, λ) remains bounded if s and λ are close to zero. Applying the mean
value theorem yields

|L̂res,n(s, λ)| ≤ sup
s∈B[sn,ρn]
λ∈B[0,lsn ]

|D1L̂res,n(s, λ)| |s − sn| + sup
s∈B[sn,ρn]
λ∈B[0,lsn ]

|D2L̂res,n(s, λ)| |λ|

≤ δ
3(|s − sn| + |λ|).

Hence,

∣∣δ−1
(
D2L̂(sn, 0)λ + L̂res,n(s, λ)

)∣∣ ≤ |δ|−1

(
|D2L̂(sn, 0)| |λ| +

δ

3
(|s − sn| + |λ|)

)
.

Recall that |D2L̂(sn, 0)| tends to zero as n → ∞, and therefore there is a K such that
|D2L̂(sn, 0)| < K for all sufficiently large n. Then with the particular

K =
δβ

3

(
K +

δ

3

)−1

,

(4.9) is also proved.
Now we return to the original fixed point equation (4.7). First we introduce some simpli-

fying notation.

Let r := (r11, . . . , r
�N

2
�

1 , r22 , . . . , r
�N+1

2
�

2 ) ∈ R
N−1
+ . We define projections πi

k as follows:

πi
k : R

N−1
+ → R+, πi

k

(
(r11 , . . . , r

�N
2
�

1 , r22, . . . , r
�N+1

2
�

2 )
)

= ri
k.

Now let L̂(̂r, 0) = 0. By Lemma 4.7, each r̂i
k has a ρi

k = r̂i
kβk and a corresponding Bi

k :=
B[r̂i

k, ρ
i
k] assigned to it. With these we define the cylinder

Cr̂ := B1
1 × · · · ×B

�N
2
�

1 ×B2
2 × · · · ×B

�N+1
2

�
2 .

Further, we define
β := max{β1, β2}, β := min{β1, β2}

and similarly
ρ(̂r) := max{ρi

k}, ρ(̂r) := min{ρi
k}.

For r = (r1, . . . , rN−1) ∈ R
N−1
+ ⊂ R

N−1 we introduce

r := max{ri, i = 1, . . . , N − 1} = ‖r‖, r := min{ri, i = 1, . . . , N − 1},
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and with that we define
κ(r) := r/r = r/‖r‖.

From these definitions it follows that

(4.10) r̂ β ≤ ρ(̂r) ≤ ρ(̂r) ≤ ‖r̂‖β.

Therefore, sup{‖r‖ : r ∈ Cr̂} ≤ ‖r̂‖(1 + β).
In accordance with Lemma 4.7 there is a constant K̂ such that l̂r = K̂ρ(̂r). Finally, we

define Br̂ := B[0, l̂r ].
Lemma 4.8. Let κ∗ ∈ (0, 1]. There is an η = η(κ∗) such that for all r̂ with κ(̂r) ≥ κ∗,

‖r̂‖ < η, there is an εr such that for all r ∈ (0, εr) the fixed point equation (4.7) has a unique
fixed point (rr̂, λr̂)(r) ∈ Cr̂ × Br̂. Moreover, rr̂ and λr̂ depend smoothly on r.

Proof. First we show that there is an appropriate η̃ such that Tr̂(r, ·, ·) is a contraction on
Cr̂ × Br̂. We introduce for (r, λ) ∈ R

N−1 × R the norm ‖(r, λ)‖ := ‖r‖ + |λ|. Then, from the
definition of Tr̂ (see (4.7)) we find

‖D(2,3)Tr̂(r, r, λ)‖ ≤ ‖D−1D2L̂(̂r, 0)‖
+ max{‖D−1D1L̂res,̂r(r, λ)‖, ‖D−1D2L̂res,̂r(r, λ)‖}
+ ‖(MD̂)−1‖ ‖D(2,3)R̂(r, r, λ)‖.

Since limn→∞D2L̂(sn, 0) = 0, there is an η1 such that ‖r̂‖ < η1/1+β implies

‖D−1D2L̂(̂r, 0)‖ < 1
3
.

Moreover, due to Lemma 4.7, the constant η1 can be chosen such that for ‖r̂‖ < η1/1+β and
(r, λ) ∈ Cr̂ × Br̂ also

‖D−1D1L̂res,̂r(r, λ)‖ < 1
3
, ‖D−1D2L̂res,̂r(r, λ)‖ < 1

3
.

According to Corollary 4.5, there are an ε̃r and an η2 < η1 such that for all r < ε̃r, all r with
‖r‖ < η2, and all λ ∈ Br̂, we have

(4.11) ‖(MD)−1‖ ‖D(2,3)R̂(r, r, λ)‖ < 1
6
.

Therefore, if ‖r̂‖(1 + β) < η2, then (4.11) holds true for all r ∈ Cr̂.
Thus, we have shown that if ‖r̂‖ < η2/1+β, then ‖D(2,3)Tr̂(r, r, λ)‖ < 1 for all (r, λ) ∈

Cr̂ × Br̂, r < ε̃r. In other words, the mapping Tr̂(r, ·, ·) is a contraction on Cr̂ × Br̂.
Next we verify that Tr̂(r, ·, ·) maps Cr̂ × Br̂ into itself. Lemma 4.7 provides that for all

(r, λ) ∈ Cr̂ × Br̂

(4.12)
∣∣∣πi

k

(
r̂−D−1(D2L̂(̂r, 0)λ+ L̂res,̂r(r, λ))

)∣∣∣ < 2
3ρ

i
k.
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It remains (see (4.7)) to consider the term (MD̂)−1R̂(r, r, λ). Let (r, λ) ∈ Cr̂ × Br̂. In
accordance with Corollary 4.4, there are constants C and Ĉ such that

‖R̂(r, r, λ)‖ ≤ Cr + Ĉ‖r̂‖α.

For any given r̂ we can choose εr = εr (̂r) < ε̃r small such that

‖(MD̂)−1‖Cr < min{(1/6)ρ(̂r), (1/2)l̂r}.

Further, due to (4.10) we find that ρ(̂r) ≥ βκ∗‖r̂‖, and because of l̂r = K̂ρ(̂r) we have
l̂r ≥ K̂βκ∗‖r̂‖. Hence there is an η3 ≤ η2 such that for r̂, ‖r̂‖(1 + β) < η3,

‖(MD̂)−1‖ Ĉ‖r̂‖α < min{(1/6)ρ(̂r), (1/2)l̂r}.

This finally shows for those r̂ and r < εr that

‖(MD̂)−1‖ ‖R̂(r, r, λ)‖ ≤ min{(1/3)ρ(̂r), l̂r}.

Together with (4.12) this implies that Tr̂(r, ·, ·) maps Cr̂ × Br̂ into itself.
Now we can apply the Banach fixed point theorem to prove the existence of (rr̂, λr̂)(r).
Finally, let (r, λ) = Tr̂(r, r, λ). Applying the implicit function theorem provides the smooth

dependence of (rr̂, λr̂) on r.
Remark 4.9. The mapping Ξ̂(·, r, λ) and hence also Tr̂(·, r, λ) can be continuously extended

for r = 0. Lemma 4.8 remains true in this case. As a consequence of the uniform contraction
principle (see [5]), we find that (r, λ)(·) is continuous in r = 0.

To complete the proof of Theorem 3.1, we consider the function λr̂. Our above consider-
ations show that, in particular,

Ξ̂1(r, rr̂(r), λr̂(r)) = λr̂(r) + L̂2(r, λr̂(r)) + O(rα) ≡ 0.

Due to the structure of L̂2 the function λr̂ has infinitely many zeros. Moreover, it follows
that limr→0 λr̂(r) = 0. Let r0 be such that λr̂(r0) = 0. Then (r0, rr̂(r0)) corresponds to an
N -homoclinic orbit Hr̂(r0) (to p1) of the vector field f(·, 0).

Let λHr̂(r0)(ω) := λr̂(r(ω)), defined on some interval (a,∞). Then λHr̂(r0) has infinitely
many zeros, and |λHr̂(r0)(ω)| tends exponentially quickly to zero as ω tends to infinity.

To conclude, we return to the remark given at the end of section 3. The analysis in the
proof of Lemma 4.8 was performed for fixed r̂. However, there is a sequence (r̂i)i∈N such that
all r̂i are in accordance with the assumptions of Lemma 4.8, r̂i → 0, and Cr̂i

∩ Cr̂j
= ∅, i 
= j.

With this, the sets Hr̂i
(r) and Hr̂j

(r) are disjoint for i 
= j, meaning that Hr̂i
(r) and Hr̂j

(r)
are not on the same snaking curve.

4.4. Further homoclinic orbits. So far we have proved the existence of infinitely many
N -homoclinic solutions to the equilibrium p1 which lie on snaking curves and whose “outer”
pulses become wider along the snaking curves. In what follows we denote the corresponding
homoclinic orbits by Hout. The numerical experiments for the generalized Swift–Hohenberg
equation, however, show that there are also snaking curves different from the ones we described
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so far analytically. In Figure 4 there are 3-homoclinic orbits depicted where the snaking is due
to the middle part; in other words, the snaking curve is parametrized by ω2

2. We denote these
homoclinic orbits by Hmid. In what follows we shall attempt to explain these observations in
light of Theorem 3.1.

In the sketch of our further analysis, we restrict ourselves to the consideration of symmetric
3-homoclinic orbits and show that two different types of behavior along snaking curves can
occur. However, the arguments are easily generalized to arbitrary N -homoclinic orbits, for
which we expect to find �(N + 1)/2� different types of behavior along snaking curves.

To simplify notation we write

(r12 , r
1
1, r

2
2) =: (r1, r2, r3).

In accordance with Corollary 4.4 the bifurcation equation for 3-homoclinic orbits reads

0 = Ξ̂1 = λ+ L̂2(r1, λ) + R̂1,

0 = Ξ̂2 = λ+ L̂1(r2, λ) + L̂2(r3, λ) + R̂2,

0 = Ξ̂3 = λ+ L̂1(r2, λ) + L̂2(r1, λ) + R̂3,

(4.13)

where R̂1 = O(rα
1 ), R̂2 = O(rα

2 ) + O(rα
3 ), and R̂3 = O(rα

2 ) + O(rα
1 ) for some α > 1. In

section 4.3 we have solved this equation for (r2, r3, λ) = (r2, r3, λ)out(r1). The corresponding
snaking curve is parametrized by ω1

2 =: ω1 (resp., r1), which we call the snaking parameter.
In the limit r1 → 0 (4.13) becomes

0 = Ξ̂1 = λ,

0 = Ξ̂2 = λ+ L̂1(r2, λ) + L̂2(r3, λ) + R̂2
r1=0,

0 = Ξ̂3 = λ+ L̂1(r2, λ) + R̂3
r1=0.

(4.14)

The lower index r1 = 0 should indicate that these R̂2/3
r1=0 do not depend on r1. We will call

the orbits corresponding to solutions of (4.14) the snaking limit.
Roughly speaking, for ω1 → ∞ (r1 → 0, respectively) the system (4.13) decouples: Ξ1 =

λ = 0 models the break-up of the original cycle Γ, and the solutions of Ξ2 = 0, Ξ3 = 0
correspond to symmetric 2-homoclinic orbits to p2. Note that, in addition to the homoclinic
orbits to p1, there also exist a multitude of homoclinic orbits to p2.

Let Hout
r̂ (r1) be the 3-homoclinic orbits belonging to the snaking curve λout

r̂ (r1). Hence
the snaking limit of Hout

r̂ (r1) for r1 → 0 (or, equivalently, for ω1 → ∞) is the union of Γ and
a particular (symmetric) 2-homoclinic orbit H2,2(̂r) to p2. We write

lim
r→0

Hout
r̂ (r) = Γ ∪H2,2(̂r).

Indeed, this limit exists in the sense of the Hausdorff metric.
In the same way (4.13) can be solved for (r2, r1, λ) = (r2, r1, λ)mid(r3). Then the corre-

sponding snaking curve is parametrized by ω2
2 =: ω3 (resp., r3). The right-hand side of (4.13)

tends to the right-hand side of (4.15) as r3 tends to zero:
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0 = Ξ̂1 = λ+ L̂2(r1, λ) + R̂1
r3=0,

0 = Ξ̂2 = λ+ L̂1(r2, λ) + R̂2
r3=0,

0 = Ξ̂3 = λ+ L̂1(r2, λ) + L̂2(r1, λ) + R̂3
r3=0.

(4.15)

Here, R̂1
r3=0 = O

(
(r1)α

)
, R̂2

r3=0 = O
(
(r2)α

)
, and R̂3

r3=0 = O
(
(r2)α

)
+ O

(
(r1)α

)
; now the R̂

do not depend on r3.
Note that (4.15) is the bifurcation equation for 2-heteroclinic cycles connecting p1 and p2.

First we make clear that near Γ there are infinitely many of these cycles. In the same way as
outlined in section 4.2, system (4.15) can be written as a fixed point equation:

(4.16) (r2, r1, λ) = Tř(r2, r1, λ).

Let r := (r2, r1), and with that let ř have the same meaning as r̂ in section 4.2. Using the
arguments of the proof of Lemma 4.8, we find that (4.16) has a unique fixed point (rř, λř) in
Cř × [−εř, εř]. (So, depending on the choice of ř (4.16) has infinitely many solutions.)

Remark 4.10. Note that if the vector field f is conservative, as in the example of the Swift–
Hohenberg equation (2.2), then λř = 0 for all ř. Indeed, for λ 
= 0 the equilibrium points
p1 and p2 are in different level sets, and therefore they cannot be connected by a heteroclinic
orbit.

So, the snaking limit of Hmid
ř (r3) is a 2-heteroclinic cycle. Note that this cycle depends

on the particular choice of ř which again is strongly related to the transition times near p1

and p2 (of both the cycle and the “nonsnaking part” of the considered 3-homoclinic orbit).
We can also discuss this behavior from a different perspective. Each of the symmetric

2-heteroclinic cycles can be seen as a primary cycle in its own right. Then, due to [14], there
are 1-homoclinic orbits (to p1) having this cycle as a snaking limit. But, related to Γ (in the
present context), these orbits are the observed 3-homoclinic orbits.

Finally, we note that ω1
1 =: ω2 (resp., r2) cannot serve as a snaking parameter; that is, the

times separating the pulses stay almost constant along snaking curves. This follows from the
fact that (4.13) cannot be solved for (r1, r3, λ)(r2), r2 ∈ (0, ε). To see this let us assume the
opposite. Then the corresponding snaking limit consists of two nonsymmetric 1-homoclinic or-
bits to p1, which are R-images of each other, and a symmetric 1-homoclinic orbit to p1. Indeed,
Ξ̂ = (Ξ̂1, Ξ̂2, Ξ̂3) given in (4.13) can be extended continuously for r2 = 0 and the correspond-
ing limit provides the equations for those orbits. Further, the limit limr2→0 (r1, r3, λ)(r2) also
exists (see Remark 4.9) and coincides with the solutions of (4.13) with r2 = 0. But there are
no nonsymmetric 1-homoclinic orbits near Γ: First note that nonsymmetric orbits come in
pairs. In the language of section 4.1 both (nonsymmetric) 1-homoclinic orbits correspond to
(different) 1-homoclinic Lin orbits {X−,X1

2 ,X
+} with the same transition time ω1. But, due

to Lemma 4.1, there is only one (unique) Lin orbit for given transition time.

5. Conclusions. In this paper we have studied the emergence of N -homoclinic orbits near
heteroclinic cycles between equilibria of saddle-focus type (EE cycles) in reversible systems.
Let us make some further comments and address topics for future research.

The complete bifurcation diagram for the SH equation. Our analysis has concerned the
behavior for large transition times ωi

1,2, or, equivalently, small ri
1,2, and has shown that for
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each N there are infinitely many N -homoclinic orbits, which exist on distinct snaking curves
near the cycle.

The numerical results for homoclinic orbits in the Swift–Hohenberg equation (2.2) show
that two different snaking curves can be connected globally in that they can emerge in fold
bifurcations close to a local bifurcation of the equilibrium at r = 0. This is illustrated in
the results for 2-homoclinic orbits in Figure 3. Note that we do not show the other branches
involved in the fold bifurcations in this figure.

A second possibility is revealed in the diagrams for 3-homoclinic orbits in Figure 4. Here,
the red and green snaking curves merge in fold bifurcations close to the primary snaking curve.
Such behavior seems to be in contrast to the results presented in section 4.3 above. In fact,
due to our analysis in that section, both rout

2 (r1) and rout
3 (r1) are bounded away from zero

as r1 → 0, as they stay in a neighborhood of r̂2 and r̂3. (We use the same notation as in
section 4.4 above.) Therefore, for r1 → 0, we have that, in particular, r1 � rout

3 (r1). Similarly
we find that r3 � rmid

1 (r3), as r3 → 0. Consequently the tails of the curves Hout
r̂ (r1) and

Hmid
ř (r3) do not intersect (independently on the concrete choice of r̂ and ř).

At the moment it is not clear whether fold bifurcations as in Figure 4, where the red and
green branches meet, can be covered by our analysis. But we note that their analysis deserves
further attention. For example, for 3-homoclinic orbits we have found that bifurcation curves
Hmid

ř and Hout
r̂ are globally connected. For N -homoclinic orbits with N > 4 there are more

different types of snaking behavior and thus more possibilities for such global connections of
snaking curves. It is of interest to investigate these bifurcation scenarios more closely.

Besides being reversible, (2.2) is also conservative, and thus nonsymmetric N -homoclinic
solutions will also exist robustly near the primary orbit; see, for example, [3] for a related
investigation. For the related case of snaking near an EP cycle (see also the last paragraph
below), nonsymmetric solutions have recently been found to bifurcate in pitchfork bifurcations
from the symmetric branches, creating a “snakes and ladder” structure; see [2]. Thus, our
future work on N -homoclinic orbits will also include nonsymmetric solutions in order to see
if similar structures can be found near EE cycles.

Stability of multipulses. For the related PDE (2.1) the N -homoclinic orbits discussed in this
paper describe N -pulse solutions bifurcating from the fronts that connect the two equilibrium
states. In this context the stability of the multipulses is of importance, since only stable
patterns will be observed in numerical simulations or experiments. It is well known that the
primary one-pulse solution alternates between being stable and unstable along the snaking
curve and that this change of stability occurs when the fold points are crossed; see, for example,
Figure 19 in [2]. In particular, note that at the bifurcation values, infinitely many stable 1-pulse
homoclinic orbits exist.

The stability of N -pulse solutions near fronts or pulses is a more delicate issue. We only
note here that stable N -pulse solution can exist near stable primary pulses. Of course, this
cannot be investigated within the finite-dimensional framework of this paper, but methods
are available to decide about stability rigorously; see [19].

For the Swift–Hohenberg equation simulations reveal striking similarities between the
behavior of 1-pulse and 2-pulse solutions. Some results are presented in Figure 6, where we
show the plots for 1- and 2-pulse orbits of (2.1). The simulations are based on a pseudospectral
code with the linear terms integrated exactly using the ETD method [6] due to stiffness within
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Figure 6. Simulations of 1-pulse and 2-pulse solutions in the Swift–Hohenberg equation (2.1).

the system. They have been performed for the critical parameter value r = −0.0625 over a
time interval t ∈ [0, 250]. As initial profiles we have used perturbations of the 1-homoclinic
orbit (panels (a)–(c)), and of the 2-homoclinic solutions along the green branch in Figure 3,
panels (d)–(f).

The panels below the diagram in Figure 6 show the time evolution of the pulses viewed
from the top with lighter regions corresponding to larger amplitudes. It can be seen that the
pulses in panels (a), (d) and (c), (f), respectively, are unstable, with the amplitude of the
pulses decaying to zero. Note that the decay in panels (a) and (d) is very slow. However,
the pulses in panels (b) and (e) show stable behavior under the evolution in time. Because of
the similarities in the evolution of 1-pulse and 2-pulse solutions, we can expect the emergence
of infinitely many stable multipulse solutions in snaking scenarios in the Swift–Hohenberg
equation.

N -homoclinic orbits near EP cycles. Finally, it is interesting to note that the behavior of N -
homoclinic orbits reveals a striking difference in the dynamics near EE cycles and EP cycles.
Note first that EP cycles can exist robustly in reversible systems, since the corresponding stable
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and unstable manifolds can intersect transversally. Therefore, the fold points along snaking
curves of homoclinic orbits in their neighborhood do not converge to a single parameter value
but rather oscillate between two values which converge to the boundaries of the parameter
interval in which the cycle exists; see also Figure 7.

This global character of bifurcations near an EP cycle makes a rigorous analytical treat-
ment difficult. Recently, an analysis of 1-homoclinic orbits was presented in [1]. In addition,
numerical results for N -homoclinic orbits near such a cycle have been described in [9, 22].

Below we present a corresponding result for the generalized Swift–Hohenberg equation
(2.2). Similar to section 2 we view the equation as depending on r, this time setting qc = 0.5,
v = 0.41, and g = 1. And, as in that section, 1-homoclinic orbits to 0 are computed using
shooting, and two-homoclinic orbits by the branch-switching method.

In Figure 7 we present a bifurcation diagram for symmetric 2-homoclinic orbits to 0 near
an EP cycle, which exists for r ∈ [−0.0146,−0.0125]. This EP cycle generates two snaking
curves of 1-homoclinic orbits, one which is shown in grey in the figure. In addition, the rescaled
continuation curve for a 2-homoclinic orbit is shown in red in the figure. And although this
curve follows (parts of) the snaking curve, we see a clear difference. In contrast to the EE
cycle case the 2-homoclinic orbit does not exist on a snaking curve, but rather on an isola in
the diagram.
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Figure 7. 2-homoclinic orbits near an EP cycle exist along an isola in (2.2).

A reason for this becomes apparent when we consider the plots for the 2-homoclinic
solutions along the snaking curve. Moving up on the bifurcation curve, we see that the
pulses of the solutions become wider, but in contrast to the EE cycle case, the pulses grow
symmetrically about their center such that they do not stay separated but approach each
other. (Note that instead of approaching an equilibrium solution the pulses now come close
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to a periodic orbit such that they grow additional oscillations.) Hence, in the notation of
section 4, the time ω1

1 decreases along the snaking curve. And this process cannot be repeated
ad infinitum, since the two pulses would have to meet, and therefore the 2-homoclinic orbit
cannot follow the full snaking curve. Similar behavior has been found for different examples
in [9, 22]. Indeed, so far, 2-homoclinic orbits near EP cycles have been found to lie only on
isolas and not on snaking curves.

The precise character of these isolas is the subject of current research. General bifurcation
results will be presented in a forthcoming paper. Furthermore, we also aim to understand the
geometrical reason for the different behavior of N -homoclinic orbits near EE cycles and EP
cycles, respectively.
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Hysteresis in a Rotating Differentially Heated Spherical Shell of Boussinesq Fluid∗
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Abstract. A mathematical model of convection of a Boussinesq fluid in a rotating spherical shell is analyzed
using numerical computations guided by bifurcation theory. The fluid is differentially heated on
its inner spherical surface, with the temperature increasing from both poles to a maximum at
the equator. The model is assumed to be both rotationally symmetric about the polar axis and
reflectionally symmetric across the equator. This work is an extension to spherical geometry of
previous work on the differentially heated rotating annulus. The spherical geometry is motivated
by applications to planetary atmospheres. As the temperature gradient increases from zero, large
Hadley cells extending from equator to poles form immediately. For larger temperature differences,
two or three convection cells appear in each hemisphere. An organizing center is shown to exist,
at which two saddle-node bifurcations come together in a codimension-2 hysteresis bifurcation (or
cusp) point, providing a mechanism for hysteretic transitions between different cell patterns as the
temperature gradient is varied.

Key words. cusp point, hysteresis bifurcation, flow transitions, Boussinesq fluid, flow in a rotating spherical
shell, numerical computation, large-scale geophysical flow
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1. Introduction. The atmosphere of a planet may be idealized as a spherical shell of
fluid surrounding the spherical surface of the planet. Many factors affect the circulation of
the atmosphere; chief among these are the rotation of the planet, the differential heating of
the surface and atmosphere by the planet’s sun, and the thickness and composition of the
atmosphere itself. In this paper we construct an idealized mathematical model of such a
planet, ignoring all local variations of surface features such as oceans, continents, mountains,
and glaciers. The symmetries of this model are exploited to make the computations more
tractable.

On the inner boundary surface a temperature profile is prescribed to reflect the differential
heating of the atmosphere by the sun, as follows. The average annual flux of solar radiation
on a planet whose axis of rotation is tilted approximately 20◦ with respect to the plane that
is perpendicular to the solar rays is nearly proportional to − cos(2θ) (see [19]), where θ is the
polar angle, which differs from the latitude only in its range (in particular, the latitude is given
by π/2 − θ). This flux is independent of the azimuthal variable ϕ and is a maximum at the
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equator (θ = π/2) and a minimum at the poles (θ = 0, π). This profile is similar to the annual
average of solar flux for many of the planets in our solar system, including Earth. Therefore,
we choose the temperature on the inner boundary surface to be fixed at T = Tr −ΔT cos(2θ),
where Tr is a reference temperature and the difference in the temperature from equator to
pole is 2ΔT . On a real planet, a flux of radiation of this form would not result exactly in
this prescribed temperature distribution on the surface, but we expect this model to capture
the gross effects of the differential heating. In the model, the spherical shell is filled with a
Boussinesq fluid, which means that its density varies linearly with temperature. Thus, the
gravitational force acting radially inward drives convective motions of the fluid when ΔT > 0.

We assume that both the inner and outer spheres are rigid, and that the fluid satisfies
no-slip conditions on both boundaries. For the temperature at the outer sphere, we assume
insulating boundary conditions. Inside the spherical shell, the fluid satisfies the Navier–
Stokes equations in the Boussinesq approximation. Complete details of the model are given in
section 2. The nonlinear equations for a steady state are solved using Newton iteration with
Keller continuation from the trivial solution at ΔT = 0. The linear stability problem is solved
using the implicitly restarted Arnoldi method following a generalized Cayley transformation.
The full methodology for analysis of the model is described in sections 3 and 4, and the results
are presented in sections 5 and 6.

It is not possible in an Earth-bound laboratory to perform an experimental study of
convection in a spherical shell as described here, because the gravitational force cannot be
directed radially towards the common center of the spheres. (However, experiments to study
spherical convection with a central force field under weightless conditions in a space lab are
an interesting possibility; see, for example, [11, 3].) Many laboratory experiments have been
performed on a differentially heated rotating cylindrical annulus, with Earth’s gravity acting
downward parallel to the cylinder axis and with centrifugal force acting radially. These exper-
iments typically used water as the working fluid. Much has been learned about the dynamics
of large-scale geophysical fluids from these laboratory experiments, even though the Reynolds
number is significantly smaller in the experimental fluids than in actual geophysical flows
[12, 24]. The Boussinesq approximation has been used as a basis for a mathematical model of
the differentially heated rotating annulus, using laboratory-scale parameters and with water
as the fluid [13, 20, 21]. The model has provided good agreement with the corresponding
laboratory experiments.

Therefore, in this prototype mathematical model of a differentially heated rotating spher-
ical shell of fluid, we adopt a philosophy of choosing the parameters of the fluid to be those
of water and using the laboratory scale rather than the geophysical. In this way, the com-
putations are tractable and the results obtained can be compared to both experiments and
theoretical calculations for the better understood case of a differentially heated rotating an-
nulus. This may provide insight into how the geometry of the system leads to the observed
flow transitions, and may serve as a step towards understanding the dynamical structure of
planetary systems. Although we have made quantitative choices for the fluid and the bound-
ary conditions, we expect that these choices will have little effect on qualitative features of
the results. This is supported by the numerous studies that have been performed on the
differentially heated rotating annulus. Many experiments have been performed with different
forms of heating, different geometries of the apparatus, and with different fluid properties,
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R

ΔT

Figure 1. The codimension-2 hysteresis bifurcation, showing the hysteresis loop as ΔT varies back and
forth. The cusp shown in the (R,ΔT ) parameter plane is the projection of the two curves of fold bifurcations
onto this plane.

and it is found that these have little qualitative effect on the types of transitions and form of
the transition curves that are observed.

The goal of this paper is to determine the flow patterns, their stabilities and their tran-
sitions (bifurcations) for a differentially heated rotating spherical shell, consistent with our
modeling assumptions. There are three bifurcation parameters of interest: the temperature
difference ΔT , the shell gap width R, and the rotation rate Ω. The results presented in
section 5 show that the qualitative features of the flow patterns do not change for moderate
changes of Ω, although the stability with respect to non–rotationally symmetric perturbations
is affected. However, for even very small ΔT > 0, the fluid immediately begins to flow in a
large stable convection cell with easterly flow toward the equator near the inner surface. This
flow is similar to the Hadley cell, which exists in the atmosphere between approximately the
equator and 30◦ latitude (in each hemisphere), except that it extends from equator to pole.
In this paper, we refer to this convection cell as the Hadley cell. For larger values of ΔT ,
two or even three convection cells may appear between the equator and pole. The Hadley cell
shrinks, always keeping one edge at the equator, while the additional cells appear between
it and the pole. When a second cell exists next to the Hadley cell, it is characterized by a
weaker counter-rotating flow, with a westerly component. The third cell, when it exists, has
the same sense of rotation as the Hadley cell but lies near the pole. In every case, there is a
region of high velocity azimuthal flow at high altitudes and midlatitudes, resembling Earth’s
jet stream.

Furthermore, we show that there exists a critical value of the pair (R,ΔT ) that is a hys-
teresis bifurcation point (also called a cusp point); see Figure 1. This is a codimension-2
steady-state bifurcation that is well understood in mathematical bifurcation theory. The
existence of this hysteresis point is demonstrated by an explicit calculation of its defining con-
ditions in section 6, where the study of this hysteresis bifurcation is presented in detail. Only
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its main features are outlined here. Figure 1 represents a generic hysteresis bifurcation. Here
M is a manifold of steady states, existing for given parameters (R,ΔT ), and the vertical axis
represents the amplitude of a steady state (determined by the stream function in section 6).
In a neighborhood of a hysteresis bifurcation point, the number of steady states (on M) can
vary from one to three as the parameters (R,ΔT ) vary. When three steady states coexist
in Figure 1, the middle one is unstable, but all other steady states not on the fold lines in
Figure 1 remain stable (attracting). Furthermore, there are abrupt upward and downward
transitions at two fold bifurcations (also called limit points or saddle-node bifurcations), as
shown in Figure 1, that occur at both ends of an interval of the bifurcation parameter ΔT ,
for appropriate fixed R. If ΔT is varied back and forth through this interval, the system
traces a hysteresis loop, as shown in Figure 1. Between these two abrupt transitions there is
an interval of ΔT that exhibits bistability ; that is, two solutions are stable simultaneously.

1.1. Relationship to previous work. The fundamental problem of convection in spherical
shells was formulated by Chandrasekhar [4, Chap. 6], who also solved the stability problem
in the Boussinesq approximation for the spherically symmetric case, in terms of spherical
harmonics. There is a large literature on spherically symmetric convection that is motivated
by Earth’s core and mantle, where the boundary conditions have full spherical symmetry (in
particular, a constant temperature on the inner sphere); see, for example, [3, 5, 22, 31]. The
present work differs from all of these because of the latitudinal temperature gradient.

Motivation for the present work is provided also by the classical Taylor–Couette exper-
iment, in which the flow of a fluid (usually water) between two differentially rotating long
coaxial cylinders is studied; see, for example, [2, 6, 8, 17]. In that experiment many interesting
flow patterns may form, including Taylor vortices, which are invariant tori stacked coaxially
between the cylinders in pairs with alternating clockwise and counterclockwise helical flows.
There is no differential heating in the Taylor–Couette experiment; even so, the Taylor vortices
resemble Hadley cells. Marcus and Tuckerman [25, 26] performed numerical simulations of
the flow between two differentially rotating spheres (without heating) and found bifurcations
to different numbers of cells that they called Taylor vortices, thus showing that Hadley-like
cells may form even without differential heating, if the spheres are rotated differentially. See
also [14].

2. Model equations. We use the Navier–Stokes equations in the Boussinesq approxima-
tion to model the fluid flow within the spherical shell. In the Boussinesq approximation, the
variations of all fluid properties except the density are considered to be negligible, and the
equation of state of the fluid is assumed to be

(2.1) ρ = ρ0 (1 − α (T − Tr)) ,

where ρ is the density of the fluid, T is the temperature, α is the (constant) coefficient of
thermal expansion, and ρ0 is the density at a reference temperature Tr. The dimensionless
quantity α (T − Tr) is assumed to be small. In the Boussinesq approximation the fluid is
considered to be incompressible, which is a significant simplification.

The fluid is contained within a spherical shell with inner sphere of radius ra and outer
sphere of radius rb. We assume gravity acts everywhere in the radial direction. The spherical
shell rotates at rate Ω about the polar axis, and the inner and outer spheres rotate at the
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same rate. The equations are written in spherical polar coordinates in a frame of reference
corotating at rate Ω with the shell. The radial, polar, and azimuthal coordinates are denoted
r, θ, and ϕ, respectively, with unit vectors er, eθ, and eϕ.

The Navier–Stokes Boussinesq equations describing the evolution of the vector fluid ve-
locity, u = u(r, θ, ϕ, t) = wer + veθ + ueϕ, and the temperature of the fluid, T = T (r, θ, ϕ, t),
are

∂u

∂t
= ν∇2u − 2Ω × u + [ger + Ω × (Ω× r)]α (T − Tr) −

1
ρ0

∇p− (u · ∇)u,(2.2)

∂T

∂t
= κ∇2T − (u · ∇)T,(2.3)

∇ · u = 0,(2.4)

where Ω = Ω (cos θer − sin θeθ) is the rotation vector, Ω = |Ω| is the rate of rotation about
the polar axis, p is the pressure deviation from p0 = ρ0g(R − r) + ρ0Ω2r2 sin2 θ/2, r =
rer + θeθ + ϕeϕ, ν is the kinematic viscosity, κ is the coefficient of thermal diffusivity, g
is the gravitational acceleration, ∇ is the usual gradient operator in spherical coordinates,
u is the azimuthal fluid velocity, often referred to as the zonal velocity, v is the polar fluid
velocity, and w is the radial fluid velocity. The spatial domain is defined by ra < r < rb,
0 ≤ ϕ < 2π, and 0 < θ < π. Thus, θ = 0, π correspond to the north and south poles of the
shell, respectively, while θ = π/2 corresponds to the equator. The equations can be rewritten
in planetary coordinates by performing the change of variable θ → π/2 − θ. The values of ν
and κ are chosen to be those of the fluid at the reference temperature Tr, and it is assumed
that the difference between the temperature of the fluid and Tr is everywhere small enough
so that ν and κ can be considered as constants. We have included the effects of centrifugal
buoyancy in the equations via the term Ω× (Ω× r). All dimensional quantities are measured
in CGS units.

As described in the introduction, the boundary conditions are

(2.5)

u = 0, T = Tr − ΔT cos(2θ) on r = ra,

u = 0,
∂T

∂r
= 0 on r = rb,

with 2π-periodicity in the azimuthal variable ϕ.
In this paper we investigate flows that preserve the symmetries of the model, that is, flows

that are invariant under rotation about the polar axis (i.e., axisymmetric flows) and that
are invariant under reflection across the equator (i.e., across the line defined by θ = π/2).
Therefore, we study solutions of (2.2)–(2.5) in the form

(2.6)
u = u(r, θ, t) = u(r, π − θ, t), v = v(r, θ, t) = v(r, π − θ, t),
w = w(r, θ, t) = w(r, π − θ, t), T = T (r, θ, t) = T (r, π − θ, t).

The assumed symmetries significantly simplify the analysis. We may use the analysis of the
symmetric system as a starting point for an analysis of the full system. Although it is not
written explicitly, the solutions also depend on the parameters.
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If we scale the radial coordinate as

(2.7) r → Rr′,

where R = rb − ra is the gap width, write the temperature as

(2.8) T → T ′ + Tr − ΔT cos(2θ),

substitute these into (2.2)–(2.4), and drop the primes, we obtain the following axisymmet-
ric equations describing the evolution of the fluid velocity u = w(r, θ, t)er + v(r, θ, t)eθ +
u(r, θ, t)eϕ, pressure deviation p = p(r, θ, t), and temperature deviation T = T (r, θ, t):

∂u

∂t
= νs∇2

0u− νs
1

r2 sin2 θ
u− 2Ω (sin θw + cos θv)

− 1
R

[
(u · ∇0) u+

cos θ
r sin θ

uv +
uw

r

]
,(2.9)

∂v

∂t
= νs∇2

0v − νs

(
1

r2 sin2 θ
v − 2

r2
∂w

∂θ

)
+ 2Ω cos θu− 1

ρ0Rr

∂p

∂θ

−
(
αΩ2Rr sin θ cos θ

)
(T − ΔT cos 2θ) − 1

R

[
(u · ∇0) v −

cos θ
r sin θ

u2 +
vw

r

]
,(2.10)

∂w

∂t
= νs∇2

0w − νs

(
2
r2

cos θ
sin θ

v +
2
r2
∂v

∂θ
+

2
r2
w

)
+ 2Ω sin θu− 1

ρ0Rr

∂p

∂r

− α
(
Ω2Rr sin2 θ + g

)
(T − ΔT cos 2θ) − 1

R

[
(u · ∇0)w − 1

r

(
u2 + v2

)]
,(2.11)

∂T

∂t
= κs∇2

0T +
4ΔTκs

r2
(
cos 2θ + cos2 θ

)
+

2ΔT
Rr

sin 2θv − 1
R

(u · ∇0)T,(2.12)

∇0 · u =
∂w

∂r
+

2
r
w +

1
r

∂v

∂θ
+

cos θ
r sin θ

v = 0,(2.13)

where νs = ν/R2, κs = κ/R2,

∇2
0 =

∂2

∂r2
+

2
r

∂

∂r
+

1
r2

∂2

∂θ2
+

cos θ
r2 sin θ

∂

∂θ
,

∇0 = er
∂

∂r
+ eθ

1
r

∂

∂θ
,

and

(2.14) (u · ∇0) f = w
∂f

∂r
+
v

r

∂f

∂θ

for any scalar function f = f(r, θ, t). The domain is now expressed as ra/R < r < rb/R,
0 ≤ θ < π/2, and the boundary conditions become

(2.15)

u = 0, T = 0 on r =
ra
R
,

u = 0,
∂T

∂r
= 0 on r =

rb
R
.
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The symmetry assumptions not only reduce the domain size (i.e., we now have 0 ≤ θ ≤
π/2), but also effectively introduce new boundary conditions at the equator and the pole. In
order to satisfy the symmetries, there can be no flow of fluid or heat across the equator or the
pole. In addition, the condition u = 0 at the pole is necessary to ensure that no discontinuity
occurs in the fluid velocity at the pole. Thus, we have the additional boundary conditions

u, v = 0,
∂w

∂θ
= 0,

∂T

∂θ
= 0 on θ = 0,

v = 0,
∂u

∂θ
=
∂w

∂θ
= 0,

∂T

∂θ
= 0 on θ =

π

2
.(2.16)

It is possible to write the equations completely in terms of dimensionless variables. How-
ever, this would not simplify the analysis, so we choose to work with the equations in the form
(2.9)–(2.13). This follows previous numerical work on similar problems, e.g., [13, 30, 20].

3. Analysis.

3.1. Nonlinear equations for steady solution. The analysis begins with the computation
of steady axisymmetric solutions that are invariant with respect to reflection across the equa-
tor; that is, we seek solutions of (2.9)–(2.13) that satisfy the boundary conditions (2.15)–(2.16)
and are independent of time.

The method of stream functions is used to solve the steady equations. If v and w are
written in terms of a (Stokes) stream function ξ, defined by

(3.1) v = − 1
r sin θ

∂ξ

∂r
, w =

1
r2 sin θ

∂ξ

∂θ
,

then the incompressibility condition (2.13) is automatically satisfied [1]. After using (3.1)
to replace v and w in the equations, the pressure terms can be eliminated. Subsequently,
the steady solution can be found from the resulting three equations in the three unknown
functions u, ξ, and T . These equations are found using the Maple symbolic computation
software package and are sufficiently complicated that no insight is gained by explicitly writing
them here. The boundary conditions for u and T are given by (2.15)–(2.16), as before, while
the conditions on v and w will be satisfied if ξ satisfies the boundary conditions

(3.2)

ξ = 0,
∂ξ

∂θ
= 0,

∂3ξ

∂θ3
= 0 on θ = 0,

ξ = 0,
∂2ξ

∂θ2
= 0 on θ =

π

2
,

ξ = 0,
∂ξ

∂r
= 0 on r =

ra
R
,
rb
R
.

The numerical algorithm to solve this system of nonlinear equations is described in section 4,
and the steady axisymmetric solutions obtained are presented in section 5.

3.2. Linear stability analysis. The linear stability of a steady solution is defined in terms
of the eigenvalues of the linearization of the dynamical equations about that solution. If the
real parts of all the eigenvalues are negative, then all perturbations from the steady solution
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will decay in the linearized equations. In this case, the solution is said to be linearly stable. If
any of the eigenvalues has positive real part, then some small perturbations will grow, and the
solution is linearly unstable. If there exist only eigenvalues with zero real part and negative
real part, the solution is called neutrally stable. If the real part of an eigenvalue crosses the
imaginary axis as a parameter is varied, then a qualitative change in the solution occurs;
i.e., a bifurcation takes place. Flows corresponding to linearly stable steady solutions can
be observed physically if the noise that is naturally present is sufficiently small. If a steady
solution is linearly unstable, then the corresponding flow cannot be observed because some
small perturbations due to the noise will tend to grow. Thus, it is expected that bifurcations
correspond to transitions in the observed flow.

We compute the steady axisymmetric solution and its linear stability as the parameters
of the system change, and we seek locations in the space of parameters where an eigenvalue
crosses the imaginary axis. We are primarily interested in solutions that do not break the
assumed symmetry, and therefore we initially require that this eigenvalue be associated with
an eigenfunction that respects the symmetry.

If we write

(3.3) u = u′ + u0, ξ = ξ′ + ξ0, T = T ′ + T0,

where u0, ξ0, T0 is a steady solution, and substitute into the three equations for u, ξ, and
T , we obtain the perturbation equations in u′, ξ′, and T ′. The trivial solution satisfies the
perturbation equations, and it corresponds to u0, ξ0, T0. If the perturbation equations are
linearized and we assume that the unknown functions may be written as

(3.4) u′(r, θ, t) = eλtψu(r, θ), ξ′(r, θ, t) = eλtψξ(r, θ), T ′(r, θ, t) = eλtψT (r, θ),

then a linear eigenvalue problem is obtained. Consequently, the eigenvalues λ can be found
from the generalized eigenvalue problem of the form

(3.5) λA0Ψ = L0Ψ,

where

Ψ =

⎛
⎝ ψu

ψξ

ψT

⎞
⎠

is the eigenfunction and A0 and L0 are 3 × 3 matrices of linear differential operators.
The perturbations u′, ξ′, and T ′ correspond to axisymmetric perturbations. If all eigen-

values corresponding to these perturbations have negative real part, then the steady solution
u0, ξ0, T0 is a linearly stable solution of the axisymmetric equations (2.9)–(2.13). For this
steady solution to be a corresponding linearly stable solution of the full three-dimensional
model (2.2)–(2.4), we must also compute the eigenvalues corresponding to the nonaxisymmet-
ric perturbations. To do this, we linearize the perturbation equations corresponding to the
three-dimensional model, and we assume that the eigenfunctions have the form

Φ(r, θ, ϕ) = Φ̂m(r, θ)eimϕ,
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where m = 1, 2, . . . is the azimuthal wave number. Unlike in the axisymmetric case, it is not
possible to solve this problem using a stream function approach. However, due to the form
of the eigenfunctions, it is possible to use the incompressibility condition and the equation
for the azimuthal velocity to eliminate the pressure and the azimuthal velocity, resulting in
a generalized eigenvalue problem for each wave number m. The eigenvalue problem has the
form (3.5) with Ψ̂m replacing Ψ, and where

Ψ̂m =

⎛
⎝ v̂m

ŵm

T̂m

⎞
⎠ ,

and the functions v̂m, ŵm, T̂m depend only on r and θ.
To ensure the continuity of solutions, we require that, for m �= 1, v̂m, ŵm, T̂m vanish at

the pole. Furthermore, to ensure that the solutions have continuous first derivatives at the
pole, we also require that, for m �= 1,

∂v̂m

∂θ
=
∂ŵm

∂θ
=
∂T̂m

∂θ
= 0 on θ = 0.

For m = 1, the condition of continuity also requires that ŵ1 and T̂1 vanish at the pole.
However, no such restriction applies to the meridional velocity, because the condition that
v(r, θ, ϕ) = −v(r, θ, ϕ + π) in the limit as θ → 0 allows for continuity in this case. However,
to avoid the difficulty of computing nonzero solutions at θ = 0, we look for stability only
with respect to perturbations that satisfy v̂1(r, θ = 0) = 0; this corresponds to perturbations
that do not exhibit flow across the pole. We consider this additional boundary condition to
be an additional simplifying assumption of the model. Furthermore, to reduce computational
requirements we also compute the stability only with respect to perturbations that do not
break the reflectional symmetry about the equator.

4. Numerical methods.

4.1. Discretization. Because it is not possible to find analytic solutions for either the
steady solution or the eigenvalue problem, the solutions are approximated numerically. Second
order centered finite differencing is used to discretize the spatial derivatives. We approximate
the value of the unknown functions at the locations of N × N uniformly spaced grid points
in the interior of the domain. The values of T on the outer boundary, on the equator, and
at the pole are not determined by the boundary conditions and must also be considered as
unknowns. This leads to discretized solution vectors of size 3N2 + 3N . Discretization of the
steady equations for u, ξ, and T leads to a system of nonlinear algebraic equations that can
be solved by Newton iteration and Keller continuation (as explained in section 4.2) to find an
approximation of the steady solution.

For the numerical approximation of the eigenvalues, the linearized perturbation equations
are discretized, and thus the values of the steady solution are needed only at specific locations
(the grid points) and the computed approximations are used. That is, the linearization is made
about the approximate solution. Thus, upon discretization, the partial differential eigenvalue
problem becomes a generalized matrix eigenvalue problem.
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4.2. Solution techniques. We are interested in computing the steady solution for a wide
range of parameter values. To do this, we implement pseudoarclength continuation with the
Keller correction condition (see, e.g., [10]) and use a Newton method to solve the resulting
equations. If a solution is known for a particular set of parameter values, then this method
can be used effectively to follow solutions as a parameter is varied, i.e., to find a solution curve
(with respect to the parameter).

Here, we know that for ΔT = 0 the trivial solution satisfies the equations for u, ξ, and
T . Thus, for ΔT small, the trivial solution is a reasonable prediction of the solution, and
Newton’s method is used for the correction. In pseudoarclength continuation, the parameter
is considered as an unknown, and initial guesses of the solution are found by following the
tangent, or a secant line approximation, to the solution curve. Increments are made approxi-
mately along the solution curve, and not by incrementing the parameter. The Keller condition
ensures that the corrections to the initial guesses occur approximately perpendicularly to the
tangent. This method is particularly useful because it is able to compute solutions along the
solution curve even when there is a limit point on the curve, i.e., when the solution curve
turns back on itself. In practice, the evaluation of the Jacobian is expensive, and therefore, in
order to reduce the number of Jacobian evaluations, we use a quasi-Newton method in which
the Jacobian is not updated on each iteration.

The generalized matrix eigenvalue problem that results from the discretization of (3.5)
is solved in Matlab using the implicitly restarted Arnoldi method [18], which is a memory-
efficient iterative method for finding a specified number of the largest eigenvalues. A general-
ized Cayley transformation [10] is made so that the Arnoldi iteration finds the eigenvalues of
interest. In particular, the generalized Cayley transformation

(4.1) C(L,A) = (L − α1A)−1 (L − α2A)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ
of the transformed matrix C(L,A) such that the eigenvalues λ with Real(λ) > (α1 + α2)/2
are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of
the Cayley transformation. The parameters of the transformation can be chosen to improve
convergence properties. The matrix C(L,A) does not have to be formed explicitly, because
the Arnoldi iteration only requires matrix-vector products involving C(L,A) [18]. Thus, the
full sparseness properties of L and A can be exploited, and computer memory requirements
can be reduced.

5. Existence and stability results. The specific values of the parameters that are used
in the computations are listed in Table 1. While these parameters remain fixed, we vary the
gap width R (and thus rb ≡ ra +R), differential heating ΔT , and the rate of rotation Ω, and
compute the azimuthal (or zonal) fluid velocity u, the stream function ξ, and temperature
deviation T .

For ΔT = 0, there is no movement of the fluid. However, for all ΔT > 0 fluid motion
is induced. For small values of ΔT > 0 a single convection cell develops, which we call
a Hadley cell. An example of such a solution for gap width R = 3.4 and rotation rate
Ω = 0.01 is plotted in Figure 2. In the figure, the stream function ξ = ξ(r, θ), the azimuthal
(zonal) velocity u = u(r, θ), and the temperature deviation from the temperature on the inner
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Table 1
The parameters of the spherical shell and fluid used in the computations. See section 2 for definitions of

the symbols.

ra 10 cm

ν 1.01e−2 cm2/sec

κ 1.41e−3 cm2/sec

α 2.06e−4 1/◦ C

ρ0 0.998 gm/cm3

Tr 20.0 ◦C

g 980 cm/sec2
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Figure 2. An example of a single-cell circulation pattern observed for heating parameter ΔT = 0.0016, gap
width R = 3.4, and rotation rate Ω = 0.01. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary.

boundary T = T (r, θ) are plotted on the unscaled domain ra ≤ r ≤ rb, 0 ≤ θ ≤ π/2. The figure
represents a cross section of the solution at an arbitrary value of the azimuthal variable ϕ. The
solution corresponding to the full equations (2.2)–(2.4) is obtained by rotating about the polar
axis and reflecting across the equator. The “+” and “−” indicate the contours corresponding
to positive and negative values of the functions, respectively. Contours of the stream function
ξ and the azimuthal velocity that intersect the inner or outer boundary necessarily correspond
to zeros of the function, while contours of the temperature deviation T that intersect the inner
boundary correspond to zeros. The polar velocity v and the radial velocity w can be found
from the stream function ξ using (3.1). In particular, the component of u that lies within a
meridional plane is tangential to the contours represented in Figure 2(a), and thus the flow
tends to follow these contours. More specifically, streamlines of the flow are restricted to lie
on isosurfaces of ξ. The arrows in Figure 2(a) indicate the direction of the flow along the
contours. In particular, in this flow, the fluid rises at the equator and falls at the pole. For
this figure and all others that follow, we have taken N = 40.

The eigenvalues with the ten largest real parts associated with the axisymmetric eigen-
functions, as well as those associated with the eigenfunctions for each wave number m between
1 and 8, are approximated using the techniques described in section 3. It is found that all
eigenvalues that are computed have negative real part. For the larger values of the wave
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Figure 3. An example of a three-cell circulation pattern observed for heating parameter ΔT = 0.0036, gap
width R = 3.4, and rotation rate Ω = 0.01. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary. In (a), the dashed lines represent contours at 1/20 of the interval of the solid contours.

number m, the eigenvalues become more negative as the wave number is increased. Thus we
expect that all eigenvalues associated with all wave numbers have negative real parts, and
we conclude that the circulation pattern in Figure 2 is a linearly stable solution of the full
three-dimensional equations.

If the heating parameter ΔT is increased further while keeping the gap width R fixed,
a transition is observed. First, the flow passes through an intermediate stage, in which the
stream function near the pole flattens. Then as ΔT is increased further, a three-cell pattern
develops (see Figure 3). The three-cell pattern resembles the zonally (azimuthally) averaged
circulation pattern observed in Earth’s atmosphere, with a strong cell close to the equator (the
Hadley cell), a weaker counter-rotating cell in the midlatitude (sometimes called the Ferrel
cell), and finally an even weaker cell near the pole with the same direction of rotation as
the Hadley cell [28]. Distinct differences between this pattern and that observed in Earth’s
atmosphere is that the equatorial cell extends to higher latitude than the Hadley cell of the
atmosphere, and the middle cell does not extend to the inner sphere as does the corresponding
cell of the atmosphere. However, as the differential heating ΔT is increased further, the
middle cell does extend to the inner surface. The azimuthal velocity u is also similar to the
azimuthally averaged azimuthal velocity observed in Earth’s atmosphere, except that in the
atmosphere the jet stream occurs at a somewhat lower latitude, and the negative velocity
near the surface does not extend as far from the equator [28]. It is found that this solution is
linearly stable to all axisymmetric and nonaxisymmetric perturbations considered, although
stability to nonaxisymmetric perturbations is lost as the differential heating ΔT is increased.

It is of particular interest that, although there is clearly a transition in the flow pattern as
ΔT is increased, there is no point at which the solution is neutrally stable; i.e., no eigenvalue
crosses the imaginary axis. This is not entirely unexpected. Other studies in which flow
transitions in systems with a lack of symmetry were investigated have revealed such behavior;
for example, see [7, 23, 15, 29, 27]. Although such transitions have been observed in the
absence of a corresponding nearby bifurcation (e.g., [7, 23]), they may be induced by a broken
pitchfork bifurcation or a perturbed hysteresis bifurcation (see below). Therefore, we search
for such a mechanism.
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Figure 4. An example of a single-cell circulation pattern observed for heating parameter ΔT = 0.014, gap
width R = 12, and rotation rate Ω = 0.1. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary.

Although our full system has SO(2) × Z2 symmetry, we are looking for solutions that
preserve this symmetry, so we have used the symmetry to simplify the equations for u, ξ, and
T . The simplified equations possess none of these symmetries. The symmetries of a system
determine the types of bifurcation that are likely to occur, i.e., which types are generic for
the system. For equations with no symmetry, saddle-node and Hopf bifurcations are generic
and are expected to be observed if a real eigenvalue crosses through zero or a complex pair of
eigenvalues crosses the imaginary axis, respectively, as a single parameter is varied.

The presence of a saddle-node bifurcation in itself cannot explain the observed transi-
tion, which occurs without a zero eigenvalue. However, such a transition may occur near an
organizing center or bifurcation of codimension 2. This implies that it will be necessary to
vary a second parameter to find it. The types of codimension-2 bifurcation points that could
occur generically in a system like ours are the broken pitchfork bifurcation [9, 15, 29] and the
hysteresis (or cusp) bifurcation [27] as described above and in [9, 16].

In order to clarify the origin of the observed transition, it is useful to explore the solutions
at larger gap width and rate of rotation. If the gap width is increased to R = 12 and the
rotation rate to Ω = 0.1, then, when the heating ΔT is small enough, the linearly stable
one-cell pattern is maintained, with a slight distortion of the stream function near the outer
boundary and an increase in the retrograde velocity near the equator. An example is plotted
in Figure 4. As the heating parameter ΔT is increased, there is a transition to a two-cell
pattern (Figure 5), and again this transition occurs without an eigenvalue corresponding to
an axisymmetric eigenfunction crossing the imaginary axis.

It is observed that as the gap width R and the rotation rate Ω are increased, the steady
solutions become less stable to nonaxisymmetric perturbations. As a result, although this two-
cell pattern is stable to axisymmetric perturbations, it is linearly unstable to nonaxisymmetric
perturbations. The loss of stability to the nonaxisymmetric perturbations occurs as a Hopf
bifurcation, and thus the bifurcating solution is expected to be a rotating wave with azimuthal
wave number m. This implies that this two-cell solution will not be physically observable
directly. However, because the loss of stability occurs near the one-cell to two-cell transition,
it is possible that the rotating wave will inherit the θ and r dependence of the two-cell solution;
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Figure 5. An example of a two-cell circulation pattern observed for heating parameter ΔT = 0.016, gap
width R = 12, and rotation rate Ω = 0.1. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary. In (a), the dashed lines represent contours at 1/5 of the value of the solid contours.

i.e., an azimuthal average of the rotating wave will have a two-cell structure. We do not show
this here, as it is secondary to our purpose for presenting this example. Regardless of the
stability with respect to nonaxisymmetric perturbations, the two-cell pattern is a linearly
stable solution of the axisymmetric equations, and it forms in qualitatively the same manner
as the transition that is observed at lower R and Ω (see below for further discussion). Thus,
an investigation of the transition to this flow, in the axisymmetric equations, will provide a
mechanism for the transition. Below we consider solutions and stability only with respect to
the axisymmetric equations.

As mentioned above, the transition at R = 12 and Ω = 0.1 occurs without an eigenvalue
corresponding to an axisymmetric eigenfunction crossing the imaginary axis. Because the
eigenvalue with largest real part is real, this implies that there is no parameter value at which
there is a zero eigenvalue. In Figure 6, we plot the real value of the (axisymmetric) eigenvalue
with largest real part as a function of the heating parameter ΔT , and we plot a “bifurcation
diagram” that indicates how the solutions change as ΔT changes, where the vertical axis is the
L2-norm of the stream function ξ. In the figure it can be seen that as the heating parameter
ΔT increases, the value of the eigenvalue increases until it reaches a maximum that is negative,
at which point it begins to decrease without ever reaching zero. Heuristically, it is observed
that the development of the two-cell pattern begins to occur near this maximum.

If the gap width is increased to R = 16.2, then for small values of ΔT a linearly stable
one-cell pattern is again observed; see Figure 7. A gap width of R = 16.2 corresponds to an
aspect ratio η = R/ra = 1.35. Although we are not necessarily interested in flows at large
aspect ratio, they will help to explain the transition that is observed for smaller gap width.

As we increase the differential heating ΔT , again we see a transition from the one-cell to
a two-cell pattern, shown in Figure 8. However, in this case, a real eigenvalue does cross the
imaginary axis. In Figure 9, we plot both the real part of the eigenvalue with largest real
part, as a function of ΔT , and the corresponding bifurcation diagram. The crossing of the
imaginary axis by a real eigenvalue corresponds to a saddle-node bifurcation, also referred to as
a limit point or fold. As the solution curve is followed past the bifurcation point, the solution
becomes linearly unstable, and the value of ΔT begins to decrease. For a short interval,
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Figure 6. Results for R = 12, Ω = 0.1. (top) Real part of eigenvalue with largest real part versus ΔT , and
(bottom) bifurcation diagram in ΔT ; the vertical axis represents the L2-norm of the stream function ξ.
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Figure 7. An example of a single-cell circulation pattern observed for heating parameter ΔT = 0.013, gap
width R = 16.2, and rotation rate Ω = 0.1. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary.

the real eigenvalue increases until it reaches a maximum, after which it begins to decrease.
Subsequently, it again crosses the imaginary axis, and a second saddle-node bifurcation is
observed. As we follow the curve past this point, the solution returns to being linearly stable,
and ΔT once again begins to increase. This pair of saddle-node bifurcations results in an
S-shaped bifurcation diagram. As we follow the solution curve, from the lower part of the S
to the upper part of the S, the real part of the eigenvalue with largest real part traces out
the loop seen in Figure 9. This form of solution curve results in a classical mechanism for
hysteresis, as seen in the hysteresis loop shown in Figure 1.
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Figure 8. An example of a two-cell circulation pattern observed for heating parameter ΔT = 0.015, gap
width R = 16.2, and rotation rate Ω = 0.1. (a) The stream function ξ—the flow tends to follow the contours;
(b) the azimuthal (or zonal) velocity u; and (c) the temperature deviation T from the temperature prescribed
on the lower boundary. In (a), the dashed lines represent contours at 1/5 of the value of the solid contours.
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Figure 9. Results for R = 16.2. (top) Real part of eigenvalue with largest real part versus ΔT , and (bottom)
bifurcation diagram in ΔT ; the vertical axis represents the L2-norm of the stream function ξ.

6. Hysteresis bifurcation. The behavior observed in Figures 6 and 9 is indicative of a
hysteresis (or cusp) bifurcation point. The typical behavior of a nonlinear system near a
hysteresis point is as shown in Figure 1. It can be expected that at some critical value
of the gap width R = Rc a one-dimensional bifurcation diagram in ΔT will have a single
vertical tangent, with slopes on either side being positive. For values of R < Rc we expect
no bifurcations as ΔT is increased (as in Figure 6), while for R > Rc we expect a pair of
saddle-node bifurcations (as in Figure 9). This behavior can be seen in Figure 1, where these
different one-dimensional bifurcation diagrams in ΔT may be obtained as slices through M ,
taken with different values of constant R. Mathematically, a hysteresis or cusp bifurcation
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point is determined by the following three conditions [16]:
1. There exists a steady solution.
2. There is a simple zero eigenvalue of the linearization of the equations about the steady

solution.
3. The coefficient of the second order term of the normal form equations on the center

manifold vanishes.
Therefore, in order to demonstrate that the observed behavior is indeed generated by a hys-
teresis bifurcation, it is necessary to show that each of the above three conditions is satisfied.
Although it may seem that this would be a daunting task, in fact these conditions can be
verified by an explicit calculation that can be performed numerically as follows; see [10, 16].
To elucidate these conditions and the means that we use to compute the hysteresis point, we
write the equations for ξ, u, and T in the abstract form:

(6.1) U̇ = LU +N(U,U),

where

U =

⎛
⎝ ξ

u
T

⎞
⎠

is the dependent variable, L is the linear operator such that LU is the linear part of the
equations, N(U,U) is the nonlinear part of the equations, and the dot represents differentiation
with respect to time. Note that the nonlinear part N has only quadratic terms (from the
Navier–Stokes equation), and thus we may write it in the bilinear form N(U,U).

Assume that for some critical values of the parameters (ΔT,R) = (ΔTc, Rc) there is a
steady solution U0 of (6.1); i.e., U0 satisfies

(6.2) LU0 +N(U0, U0) = 0.

Assume also that at (ΔT,R) = (ΔTc, Rc) the linearization L0 about the steady solution U0

has a simple zero eigenvalue λ0 = 0, while all other eigenvalues have negative real part, where
L0 is given by

(6.3) L0V = LV +N(V,U0) +N(U0, V ).

That is, we have

(6.4) L0Ψ = 0,

where Ψ is the eigenfunction corresponding to the zero eigenvalue.
Under certain conditions on L0, the dependent variable U can be written in the form

(6.5) U = wΨ + Φ,

where w ∈ R and thus wΨ ∈ span{Ψ}, and Φ ∈ Es. Here Es is called the stable subspace
and is the space spanned by all eigenfunctions corresponding to eigenvalues with negative real
part.
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If we write U as in (6.5), then under certain technical conditions a center manifold and
normal form reduction can be performed on (6.1) to obtain the equation on the center manifold
in normal form

(6.6) ẇ = β1 + β2w + aw2 + cw3 +O(w4),

where a and c are coefficients of the normal form and β1 and β2 are unfolding parameters that
are in general functions of the parameters ΔT and R. It can be shown that if c �= 0, then
neglecting the terms of O(w4) does not change the qualitative features of the solutions.

The center manifold and normal form theories state that for (ΔT,R) near (ΔTc, Rc) and
when the solutions are in some sense small, the dynamics of (6.1) can be deduced from (6.6).
In particular, solutions of (6.6) are in one-to-one correspondence with those of (6.1).

Formulas for the coefficients of the normal form equation can be derived by performing
a center manifold and normal form reduction in the general case [10, 16]. In particular, the
coefficient of the second order term is given by

(6.7) a = 1/2 〈Ψ∗, N(Ψ,Ψ)〉 ,

where Ψ is the eigenfunction corresponding to λ0, Ψ∗ is the corresponding adjoint eigenfunc-
tion corresponding to λ0, and

(6.8) 〈U, V 〉 =
∫∫

U · V dr

is the inner product on the domain.
For a = 0, a hysteresis bifurcation occurs when β1 = β2 = 0. For β2/c > 0, there is

a single solution to (6.6) for all β1. For β2/c < 0, there is a region in the two-dimensional
parameter space (β1, β2) in which there are three solutions. The borders of this region are
given asymptotically by the two curves

(6.9) β1 = ±2
3

√
−β2

c
β2.

As β2 approaches zero, these two curves approach each other and meet in a cusp at β1 = β2 =
0. This is the origin of the name “cusp bifurcation.”

In order to show that a hysteresis or cusp bifurcation occurs in the model, we need to
show that the three aforementioned conditions are satisfied. That is, we must find parameter
values (ΔT,R) = (ΔTc, Rc) such that the following three equations are satisfied:

LU0 +N(U0, U0) = 0,(6.10)
L0V = 0, 〈V, V 〉 = 1,(6.11)

a = 1/2 〈Ψ∗, N(Ψ,Ψ)〉 = 0,(6.12)

where L0 is given by (6.3).
These equations have the unfortunate property that for some values of ΔT �= ΔTc, R �= Rc,

L0 will not be singular, and thus (6.11) will not have a solution for any V . Therefore, it will
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be convenient to use the following defining system [10]:

LU0 +N(U0, U0) = 0,(6.13)
g = 0,(6.14)
g′ = 0,(6.15)

where g and g′ are scalars given by

L0V + gB = 0, 〈C, V 〉 = 1,(6.16)

L0V
′ + g′B = −N(V, V ),

〈
C, V ′〉 = 0,(6.17)

and where B is not in the range of L0, and C is not in the range of the adjoint operator L∗
0,

which is defined by
〈L0U, V 〉 = 〈U,L∗

0V 〉

for all U and V .
Each of the three equations (6.13)–(6.15) corresponds to one of the hysteresis point defining

conditions. Specifically, U0 is a steady solution of (6.1) when (6.13) is satisfied. If we set
g = 0 in (6.16) and there is a solution, then L0 has a zero eigenvalue with corresponding
eigenfunction V . Thus, the second hysteresis condition is satisfied when (6.14) is satisfied. In
this case, when L0 is not singular, there will still be a solution of (6.16), namely one for which
g �= 0. This is assured by choosing B not in the range of L0. If we set g′ = 0 in (6.17), and
there is a solution, then we have that N(V, V ) must be in the range of L0. If we also have
g = 0, then from above we have that V is the eigenfunction of L0 with zero eigenvalue; i.e.,
V = Ψ. Thus, if N(V, V ) is in the range of L0, then, by the “Fredholm alternative” property
of the adjoint, N(V, V ) must be orthogonal to the eigenfunction of L∗

0 corresponding to the
zero eigenvalue; i.e., we must have 〈Ψ∗, N(Ψ,Ψ)〉 = 0, and thus the second order coefficient
of the normal form vanishes. When L0 is nonsingular, (6.17) has a solution regardless of g′.
However, there is also the possibility that close to the cusp there are parameter values such
that L0 is singular, while N(V, V ) is not in the range of L0; this occurs at the saddle-node
bifurcations. Thus, there will be no solution of (6.17) for g′ = 0. However, because B is not
in the range of L0, we are assured a solution with g′ �= 0.

In order to make the equations linear in V and V ′, we can choose the normalization
conditions as shown. Solutions are assured when C is chosen to be not in the range of the
adjoint operator L∗

0. In practice, because the kernel of L0 is only one-dimensional, it is easy
to choose B and C with the required properties.

It can be proved that when the system (6.13)–(6.15) has a solution, then not only is the
nondegeneracy condition for a cusp bifurcation satisfied, but also the transversality condi-
tion [10]. Thus, we are assured that we have found a cusp bifurcation.

Upon discretization of (6.13)–(6.15) and (6.16)–(6.17) on an N × N grid, we obtain a
system of nonlinear algebraic equations. For various values of N , we find that there are
critical parameter values (ΔT,R) = (ΔTc, Rc) such that there are a U0, g, and g′ that satisfy
the discretized system. Results are listed in Table 2. Although for small N it appears that
we are not in the asymptotic range, the results for a higher value of N provide evidence of
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Table 2
Critical parameter values at which the hysteresis bifurcation occurs, for various values of N . The results

provide evidence of convergence.

N ΔT R

40 0.0143 16.0

80 0.0155 24.2

120 0.0163 27.8

160 0.0165 28.0

convergence. The large variation in R between the results at N = 40 and N = 80 is possibly
caused by the nonlinear dependence of the equations on R; see (2.9)–(2.13). In particular,
for large R, we expect that a large change in R is required to produce even a small change in
behavior of the solutions. This could also be an indication that the boundary layers are not
resolved sufficiently at low resolution to put us in the asymptotic range of the convergence.
Regardless, the results provide evidence that a hysteresis bifurcation does in fact exist in the
model with cusp point (ΔTc, Rc) ≈ (0.017, 28), and thus the lower resolution captures the
correct qualitative behavior.

There is strong evidence that the transition from the one-cell to the two-cell pattern, which
is observed at gap width R = 12 as the differential heating ΔT is increased, is associated with
this cusp bifurcation. We also postulate that the transition from the one-cell to the three-cell
pattern, which is observed at gap width R = 3.4 as the differential heating ΔT is increased,
not only is the same mechanism, but is associated with the same bifurcation. This is evident
if we consider the transition from the one-cell pattern for a sequence of gap widths R and
rotation rates Ω that decrease from R = 12, Ω = 0.1 to R = 3.4, Ω = 0.01. For all transitions
in this sequence, regardless of whether the transition results in a two-cell or three-cell pattern,
the eigenvalue with largest real part behaves in the same manner (as shown in Figure 6) with
only small quantitative changes. Furthermore, in all cases, the stream function component
of the eigenfunctions corresponding to the eigenvalue with largest real part has a two-cell
structure. The azimuthal velocity component of the eigenfunctions also shows little variation.
There is nothing to indicate that there is another bifurcation that is taking place. That is,
all solutions discussed above lie on a single solution manifold that is folded at the cusp point;
see the manifold M in Figure 1. In [27], such a manifold is shown to connect qualitatively
different solutions in a model of rotating convection in a cylinder with centrifugal buoyancy.

Furthermore, there is a smooth variation of the qualitative behavior as R is varied. For
large R, the transition from a one-cell to two-cell pattern begins with a flattening of the
stream function ξ near the pole, corresponding to a decrease in fluid velocity in this region,
and is followed by the formation of the counter-rotating cell near the pole. The new cell is
first observed as a small cell adjacent to the pole and grows as the differential heating ΔT is
increased. Changes in the rotation rate Ω affect the stability of the solution to nonaxisymmet-
ric perturbations but do not affect the qualitative features of the transition, and therefore,
here, we refer only to changes in gap width R. If R is decreased, the flattening becomes
more pronounced before the second cell is observed. When the cell is observed, it grows more
quickly with ΔT than when the gap width is larger. If the differential heating is increased
sufficiently, a transition from the two-cell pattern to a three-cell pattern is observed. For a
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yet smaller gap width (e.g., R = 3.4), again the transition begins with a flattening. However,
in this case, the second cell does not first appear adjacent to the pole but peeks out a small
distance from the pole. This transitional stage is not in essence a two-cell pattern, because
between the new cell and the pole there is a very weak (almost quiescent) region in which the
fluid rotates in the same sense as the large cell near the equator.

The development of the two-cell pattern is easily explained in terms of the lowest order
dynamics of the cusp bifurcation. To lowest order, the solution U to the perturbation equa-
tions will be given by wΨ, where w ∈ R and Ψ is the eigenfunction corresponding to the
eigenvalue with largest real part; see (6.5). Thus, to first order, the solution to the axisym-
metric equations will be wΨ plus the solution about which we have linearized, i.e., the one-cell
solution. Thus, because the stream function component of the eigenfunction Ψ has a two-cell
structure, we expect that, to lowest order, the solution will also develop a two-cell structure.
The development of the three-cell pattern in this context is not as easily explained. However,
it may be possible that insight could be gained from a higher order computation.

We have already pointed out that the variation of the rotation rate Ω has relatively smaller
qualitative effect on the solutions of the axisymmetric equations. Indeed, a cusp is observed
if the rotation is held fixed at Ω = 0.01 and only the gap width R is increased. We choose
not to present this example because, in this case, an additional saddle-node bifurcation occurs
at values of the differential heating slightly larger than where the cusp is observed. As the
rotation rate is increased, this bifurcation moves further away from the cusp, and thus the
example for Ω = 0.1 more clearly indicates the origin of the observed transitions.

7. Discussion and conclusions. This work has shown that a Boussinesq fluid in a rotating
spherical shell, differentially heated on its inner surface, can exhibit a variety of stable rota-
tionally symmetric flow patterns. Distinctive features of these flow patterns include a Hadley
cell with a flow pattern much like the Hadley cells of Earth, and a high azimuthal velocity jet
stream located at high altitudes and midlatitudes, much like the jet stream in each hemisphere
of Earth. For small values of the differential heating parameter ΔT > 0, the Hadley cell exists
and extends from equator to pole. For larger values of ΔT , first one then two or more addi-
tional convection cells may form between the Hadley cell and the pole in the mid- and polar
latitudes. The first cell to form after the Hadley cell exhibits counter-rotating flow (westerly
winds near the inner surface), and the third cell has Hadley-like rotation (easterly winds near
the polar surface). The observed transitions are distinctly related to the spherical geometry
of the system. This is evident because, in all models of differentially heated fluids in domains
with cylindrical geometry, such transitions that do not break the rotational symmetry occur
only at very high differential heating.

The features of the transitions are not affected by moderate changes in the rate of ro-
tation Ω, although the solutions become less stable to nonaxisymmetric perturbations as Ω
is increased. However, changes in the gap width R can induce significant changes. Mathe-
matical analysis of the axisymmetric model demonstrates that it possesses a codimension-2
hysteresis (or cusp) bifurcation for a critical choice of the parameters (R,ΔT ) = (Rc,ΔTc).
In a neighborhood of this hysteresis point, for larger R, there exists a region of bistability in
which two different states of the system are both linearly stable solutions of the axisymmetric
equations. These two stable states are separated by a third unstable state. For such R (fixed),
there exists an interval of values of ΔT exhibiting a hysteresis loop, as illustrated in Figure 1.
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At each end of this interval, a small change in ΔT can cause a transition in the state of the
system, to a qualitatively different flow pattern, e.g., one with a different number of convection
cells.

The results of this paper lead to more questions than answers and will form the basis
of much future work. In the model, changes in the Hadley cell have no influence on the
temperature difference parameter ΔT . This is not the case in a real planetary system, where
convection cells are known to act as “thermal conveyor belts.” In the case of small ΔT and
a large Hadley cell extending from equator to pole, this conveyor belt would have the effect
of warming the polar region and cooling the equatorial region, thus reducing the temperature
difference ΔT . This can be seen in the temperature deviation plots of Figures 2 and 4, in which
the gradient of the temperature deviation is essentially opposite to the imposed differential
heating. Therefore, the thermal conveyor belt function of a large Hadley cell enhances its
persistence. On the other hand, if ΔT increases (for some other reason) to a value where
the single Hadley cell is replaced by multiple cells, this would curtail the thermal conveyor
belt acting from equator to pole. As a result, the polar regions would cool relative to the
equatorial regions and ΔT would increase, pushing the system further to the right along the
bifurcation curve. We conjecture that this feedback mechanism, from the convection cell flow
back to the temperature difference ΔT , is present in real planetary atmospheres and implies
a modification of the predictions of our model. The effect is most easily stated with reference
to Figure 1: the interval of bistability in ΔT would lengthen and the cusp point would move
to smaller values of R. In other words, the net effect of this thermal feedback would be to
increase both the likelihood and the amplitude of the hysteresis behavior demonstrated in the
model.

In addition, the model should be reconsidered to take into account the fact that the
atmosphere of the earth is a strongly stratified compressible fluid, with properties very different
from water. The vertical motion of a strongly stratified fluid is inhibited, thus causing an
elongation (in θ) of the cells. The cells in a Boussinesq fluid typically have an aspect ratio
close to 1, which implies that R must be rather large in order to see only three cells. In
a strongly stratified fluid, a much smaller R (for a similar ΔT ) would be sufficient to see a
similar number of cells. Therefore, we predict that the phenomena exhibited in this model
could exist in the atmosphere of a planet such as Earth, but for much smaller aspect ratios
R/ra. Thus, both the thermal feedback and the stratified fluid properties of real atmospheres,
which have been neglected in this simple model, can be expected to amplify rather than inhibit
the hysteresis mechanism demonstrated for the model.

In further work the model could be extended to physical dimensions on the scale of a
planet such as Earth. Another future goal is an analysis of the nonaxisymmetric bifurcations
that would lead to rotating waves, as well as analyses of spherical shell models that break the
north-south reflectional symmetry or satisfy different boundary conditions.
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Stable Synchrony in Globally Coupled Integrate-and-Fire Oscillators∗
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Abstract. A model of integrate-and-fire oscillators is studied. In the special case of identical oscillators, the
model was first proposed and analyzed by Mirollo and Strogatz [SIAM J. Appl. Math., 50 (1990),
pp. 1645–1662]. We assume, as in Mirollo and Strogatz’s model, that each oscillator xi evolves
according to a map fi. Our main results are to demonstrate that the concavity structure of fi plays
an important role in determining whether Peskin’s second conjecture holds true. Specifically, the
following statements are proved. First, the system of convex oscillators (i.e., f ′′

i < 0 for all i), in
general, synchronizes when the oscillators are not quite identical. Second, the system of a certain
class of concave oscillators (i.e., f ′′

i > 0 for all i) will not achieve synchrony for initial conditions
in a set of positive measure when the oscillators are nearly identical. Third, the system of concave
oscillators may achieve synchrony under certain sufficient conditions, provided that the oscillators
are not quite nonidentical and that its concavity is small.

Key words. stable synchrony, nonidentical oscillators, integrate-and-fire, concavity
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1. Introduction. Large assemblies of oscillator units can spontaneously evolve to a state
of large scale organization. Synchronization is the best known phenomenon of this kind, where
after some transient regime a coherent oscillatory activity of the set of oscillators emerges. This
interesting phenomenon is quite common in many different disciplines such as engineering [62],
physics [15, 35, 51], chemistry [36], as well as biology [61]. For example, in southeastern
fireflies, thousands of individuals gathered on trees may flash in unison. Other examples of
biological oscillators are the rhythmic activity of cells of the heart pacemaker [29, 40, 43, 55],
of cells of the pancreas [48, 49], and of neural networks [9, 13, 20, 43, 45, 50]. Synchronization
of oscillators has been studied in both phase-coupled models [3, 4, 5, 6, 11, 16, 17, 18, 19,
30, 33, 37, 38, 39, 42, 44, 52, 53, 55, 56, 57, 60, 58, 63], where the interaction between the
oscillators is smooth and continuous in time, and pulse-coupled models [1, 7, 10, 12, 23, 24,
25, 27, 28, 31, 32, 36, 41, 46, 47, 57, 59], where the membrane voltage is discontinuously reset
to a fixed value once it reaches a certain threshold. It should be noted that pulse-coupled
models are of greater relevance for neuroscience applications since synaptic coupling is often
spike mediated.

This paper deals with a population of integrate-and-fire oscillators with all-to-all pulse
coupling. We begin with describing Peskin’s model of n integrate-and-fire oscillators. Let
the state of the ith oscillator be denoted by xi, where xi are subject to the dynamics dxi

dt =
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−rixi+Ii, 0 ≤ xi ≤ 1, i = 1, 2, . . . , n, with input Ii > 0, a normalized threshold 1, and leakiness
ri ≥ 0. When xi = 1, the ith oscillator fires and xi jumps back to zero. As a consequence of
the firing of the ith oscillator, the activation of any other oscillator j is incremented by the
coupling ωi,j. Should no confusion arise, we write ωi,j as ωij. This model was later generalized
by Mirollo and Strogatz [41]. It was assumed that the state variable xi evolves according to
a map fi. When xi reaches the threshold, the oscillator fires and xi jumps back instantly to
zero, and the activation of any other oscillator j is incremented by the positive coupling ωji.
Specifically, xi evolve according to xi = fi(φi), where fi : [0, 1] → [0, 1] is smooth and strictly
increasing, i.e., f ′i > 0 on (0, 1). Here φi is a phase variable so that (i) dφi

dt = 1
Ti

, where Ti

is the cycle period for oscillator xi when evolving freely; (ii) φi = 0 when the oscillator is at
its lowest state xi = 0; and (iii) φi ≡ 1 at the end of cycle when the oscillator reaches the
threshold xi = 1. Therefore, fi satisfy fi(0) = 0, fi(1) = 1. These maps fi are to be called
evolution maps. The inverses of fi are to be denoted by gi. If fi ≡ f , Ti ≡ T , and ωij ≡ ω for
all i, j, then the corresponding system is called identical. Otherwise, it is called nonidentical.
To describe the dynamics of the model, let Φ0 = (φ0

1, φ
0
2, . . . , φ

0
n) ∈ R

n be the initial condition
of the oscillators. Here 0 = φ0

1 ≤ φ0
2 ≤ · · · ≤ φ0

n < 1. Further, Φk = (φk
k1
, φk

k2
, . . . , φk

kn
), where

0 = φk
k1

≤ φk
k2

≤ · · · ≤ φk
kn

< 1, is the state of n oscillators after the kth firing. Denote
by Vk(Φ0) the set of the indexes of oscillators reaching threshold simultaneously and thus
firing the kth time at the same instance. After the (k − 1)th firing, there will be at least
one oscillator ready to fire at the next instance. Such an index set Vk(Φ0) of the next firing
oscillators is called the trigger set with respect to the initial condition Φ0 at the kth stage.
Let Uk(Φ0) be the index set of oscillators which reach the threshold at the kth stage. Note
that Uk(Φ0) ⊃ Vk(Φ0). Hence, Uk(Φ0) may contain the index of the oscillators which reach
the threshold after receiving activations from other oscillators in Vk(Φ0). Such a set Uk(Φ0) is
to be termed the spike set with respect to the initial condition Φ0 at the kth stage. The terms
for sets Uk and Vk were first used in [57]. Should no confusion arise, we shall write Vk(Φ0)
and Uk(Φ0) as Vk and Uk, respectively. Immediately after the first firing, the resulting state
Φ1 = (φ1

11
, φ1

12
, . . . , φ1

1n
), 0 = φ1

11
≤ φ1

12
≤ · · · ≤ φ1

1n
< 1, is given by

φ1
1�

= g1�

(
f1�

(
Ti0

T1�

(1 − φ0
i0) + φ0

1�

)
+
∑
j∈U1

ω1�,j

)

=: g1�
(f1�

(δ1�
) + ω1�

), i0 ∈ V1 and 1� ∈ {1, 2, . . . , n} − U1 =: Sn − U1.(1.1)

Note that the first firing consists of firings due to some oscillators reaching threshold simul-
taneously as well as any other oscillators then reaching threshold due to chain reaction of the
earlier firings that are infinitesimally apart. All those chains of firings can be lumped into one
set of “simultaneously firing” oscillators. The states Φk = (φk

k1
, φk

k2
, . . . , φk

kn
) of n oscillators

after the kth firing can then be defined accordingly. If the cardinality of the spike set Uk,
k = 1, 2, . . . , n, is one, then we shall say that the system of n oscillators undergoes one whole
cycle of firings or no absorption occurs for the system of n oscillators within one cycle of firings.
For Peskin’s model, fi(φ) = Ii

ri
(1 − e−riTiφ) and Ti = ln( Ii

Ii−ri
)/ri. Peskin conjectured that,

first, for identical oscillators, the system approaches a state in which all oscillators are firing
synchronously for almost all initial conditions and that, second, this remains true even when
the oscillators are not quite identical. The first part of the conjecture was essentially proved



STABLE SYNCHRONY INTEGRATE-AND-FIRE 1447

by Mirollo and Strogatz [41] with convex oscillators (i.e., f ′′i < 0). The second part of Peskin’s
conjecture was verified by Urbanczik and Senn [57] with flat oscillators (i.e., f ′′i ≡ 0). The
key feature in those proofs relies on the nonconcavity of the evolution functions fi. However,
Bottani [8] numerically showed that even concave oscillators (i.e., f ′′i > 0) can synchronize,
provided that the concavity is not too large. The purpose of this paper is two-fold. First, we
prove the second part of Peskin’s conjecture for the system of convex oscillators. Second, we
prove Bottani’s numerical results and more. Specifically, we shall show that for the system of
n “identical” concave oscillators, no synchronization occurs for initial values in a set of posi-
tive measure, provided that n = 3 or n is even or phase responding curve h(x) = g(f(x) + ω)
is concave upward. That is to say, in general, concave oscillators may synchronize for almost
all initial conditions only if the concavity of the evolution maps is small. Indeed, we prove
that the imbalance between the speeds and/or coupling strengths of the oscillators induces the
synchronization of the system, provided that the concavity of the evolution maps is sufficiently
small.

Since the work of Mirollo and Strogatz, current research into pulse-coupled or integrate-
and-fire oscillators has become motivated by more elaborate questions (see, e.g., [25, 32, 47]).
There have been many papers [7, 13, 25, 26, 39, 45, 46, 47] discussing those more advanced
and complicated models. Some progress has also been made for more realistic biophysical
models such as oscillators subject to small noise [36], constant delays [21], or a finite duration
of synaptic response [2, 14, 22, 26].

We conclude this introductory section by mentioning the organization of the paper. Sec-
tion 2 is devoted to the stability conditions for systems of two or more oscillators. In section 3,
we derive the absorption conditions for systems of two or more oscillators. In particular, the
necessary and sufficient condition for the absorption of two oscillators is given. This, in turn,
provides some insight into the role that concavity of the evolution maps plays in determining
the absorption process for systems of more than two oscillators. Some sufficient conditions
for the absorption conditions for systems of more than two oscillators are derived. The main
results of the paper are also recorded in this section.

2. Stable partial and full synchrony. Before beginning the analysis, we give an intuitive
account of the way that synchrony develops as the system evolves: oscillators begin to clump
together in “groups” that fire at the same time. For nonidentical oscillators, such groups of
oscillators when they reach partial/full synchrony may break up again as the system continues
to evolve. Consequently, it is desirable to find stability conditions for which a group of oscilla-
tors reaching the threshold at the same time will remain coordinated in the future. Such stable
partial synchrony then gives rise to a positive feedback process, and thereby tends to grow by
“absorbing” other oscillators. Absorptions reduce the number of groups until ultimately only
one group remains—at that point the population is synchronized. The scenario above was first
pointed out for a different system by Winfree [60], and the phrase “absorption” was coined
by Mirollo and Strogatz [41]. With the characteristic of constant speed and equal coupling
strengths, the system of identical oscillators always has the stability conditions satisfied. In
this section, we shall derive stability conditions. The absorption conditions of the system are
to be derived in section 3.

Unless otherwise stated, throughout this paper, the system of oscillators under consider-
ation is either one of two types: convex or concave oscillators.
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2.1. Stability conditions for two oscillators. We begin with the study of the system of
two oscillators, which provides some insight as to why the system may or may not synchronize.
The stability condition for two oscillators is to be derived in this subsection. To this end, we
first need certain common properties shared by f and its inverse g.

Lemma 2.1. Let hi : [0, 1] → [0, 1] be smooth and strictly increasing maps with hi(0) = 0
and hi(1) = 1. Moreover, we assume that hi have no inflection points and that limx→0+ xh′i(1−
x) = 0 and limx→0+ xh′i(x) = 0. For each i, let two points, A = (a1, a2) and B = (b1, b2), be
on y = hi(x) with b1 − a1 ≥ ωmin. Here ωmin, the minimum of coupling strength, is defined to
be

(2.1a) ωmin = min
i,j

ωij.

Let mh and Mh be, respectively, the minimum and maximum slope of the secant to hi with the
difference in x being at least ωmin. They are, respectively, defined as follows:

(2.1b) mh = min
i

{
min

{
hi(ωmin)
ωmin

,
1 − hi(1 − ωmin)

ωmin

}}

and

(2.1c) Mh = max
i

{
max

{
hi(ωmin)
ωmin

,
1 − hi(1 − ωmin)

ωmin

}}
.

Then

(2.2) Mh ≥ hi(b1) − hi(a1)
b1 − a1

≥ mh, mh ≤ 1 and Mh ≥ 1.

The equalities hold only if b1 − a1 = ωmin and a1 = 0 or b1 = 1.
Proof. We illustrate only the case that h′′i (x) > 0 on (0, 1). Clearly, hi(a+x)−hi(a)

x ≥ hi(x)
x

for any a ≥ 0, x > 0, and 1 ≥ a + x ≥ 0. Moreover, hi(x)
x is increasing and bounded above

by 1, and 1−hi(1−x)
x is decreasing and bounded below by 1. Consequently, Mh ≥ 1−hi(1−ωmin)

ωmin
≥

hi(b1)−hi(a1)
b1−a1

≥ hi(ωmin)
ωmin

≥ mh.
Remark 2.1.

1. The geometric and physical meanings of mh and Mh can be roughly interpreted as
follows. Let the difference of two points in the vertical axis be the sum

∑
ωij of certain

coupling strengths due to the firings of certain oscillators; then the resulting difference
in h is no smaller than mh

∑
ωij and no better than Mh

∑
ωij. See Figure 1.

2. Let ωmax = maxi,j ωij. An immediate application to Lemma 2.1 and Remark 2.1.1 is
the following interpretation of the meaning of the quantities Mgωmax and mgωmin.
(a) If an oscillator is within the distance mgωmin of the threshold, then it will reach

the threshold whenever it receives an activation jump due to the firings of other
oscillators. On the other hand, if an oscillator is at least Mgωmax away from the
threshold, then it will not reach the threshold whenever it receives an activation
jump due to a single firing of another oscillator.
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Figure 1. Points O, C, A, B, D, and E are on a convex map y = h(x). In this situation, mOC is defined
as the slope of OC = Mh and mDE = mh. The assertions of Lemma 2.1 can easily be seen from the figure.

(b) If the ith oscillator has just received an impulse of strength ωij at x from the jth
oscillator, then its phase jump, gi(fi(x)+ωij)−x, is at least mgωmin and at most
Mgωmax away from the origin.

Theorem 2.2. Let

(2.3) tmax = max
i,j

Ti

Tj
, ΔT = tmax − 1, and ωmin = min

i,j
ωij.

Suppose that fi satisfy the same assumption as those maps hi in Lemma 2.1. Let

(2.4) mgωmin ≥ ΔT.

Then the system of two oscillators is stable.
Proof. Let Φ0 = (φ0

1 = 0, φ0
2 = 0) ∈ R

2. We may assume that φ0
2 has a greater speed 1

T2

and, hence, is the one that first reaches the threshold. Thus, φ1
1 = g1(f1(T2

T1
)+ω12). Therefore,

φ1
1 < 1 if and only if 1−g1(1−ω12)

ω12
ω12 < 1 − T2

T1
. If f ′′i (x) > 0, or equivalently, g′′i (x) < 0, and

(2.4) holds, then we conclude, via (2.2), that φ1
1 ≥ 1. Consequently, the assertion of the

theorem holds. Suppose that f ′′i (x) < 0, or equivalently, g′′i (x) > 0, and that (2.4) is satisfied.
Then 1−g1(1−ω12)

ω12
ω12 ≥ g1(ω12)

ω12
ω12 ≥ mgωmin ≥ ΔT ≥ 1 − T2

T1
. We have completed the proof of

the theorem.
The quantity ΔT is the phase difference between the fastest and slowest oscillators when

evolving freely from their lowest state 0 toward the threshold. Therefore, if (2.4) holds, then
two oscillators will remain firing synchronously according to Remark 2.1.2(a). To derive the
stability condition and the absorption condition of the system, we make use of Lemma 2.1.
From here on, we shall consider only the evolution maps that cannot turn “too” sharply
at both ends. That is, the evolution maps fi under consideration have the property that
limx→0+ xf ′i(1 − x) = 0 and limx→0+ xf ′i(x) = 0. It should be noted that each of the inverses
of maps fi cannot turn too sharply at both ends either.

2.2. Stable partial synchrony for n oscillators. To derive stable partial synchrony for
n oscillators, we first need to derive conditions to exclude the possibility that one oscillator
will run “too fast.” The following proposition gives conditions that will prevent any oscillator
from running too fast.
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Proposition 2.3. Let hi be given as in Lemma 2.1, and let Δh and Δω be given as follows:

(2.5a) Δh = max
i,j

max
0≤φ≤1

|hi(φ) − hj(φ)|

and

(2.5b) Δω = max
i,j
i�=j

max
T

(∑
�∈T

|ωi� − ωj�|
)
,

where T ⊂ Sn − {i, j}. If n = 2, then
∑

�∈T |ωi� − ωj�| is to be interpreted as |ωij − ωji|.
1. Let Φ0 = (φ0

1, . . . , φ
0
n) with φ0

1 just reaching the threshold and being reset to zero.
Assume Uk′ , k′ = 1, 2, . . . , k, are mutually exclusive and that 1, i ∈ Sn −

⋃k
k′=1 Uk′

with φ0
i 	= 0. Suppose

m2
gmfωmin ≥

⎛
⎝k−1∑

j=0

1
(mfmg)j

⎞
⎠ (MgΔω + Δg +Mg(Mf (ΔT + 1)ΔT + Δf))(2.6a)

=:

⎛
⎝k−1∑

j=0

1
(mfmg)j

⎞
⎠Δ.

Then φk′
i ≥ φk′

1 , k′ = 1, 2 . . . , k.
2. Let

(2.6b) m2
gmfωmin ≥

⎛
⎝n−1∑

j=0

1
(mfmg)j

⎞
⎠Δ.

Suppose an oscillator has just reached the threshold. Then such an oscillator will not
reach the threshold again until every other oscillator does. Moreover, suppose that the
system of n oscillators undergoes one whole cycle of firings. Let the resulting phase of
the system of oscillators be Φn = (φn

i1
, φn

i2
, . . . , φn

in). Then the firing order for the next
cycle with respect to the new initial condition Φn is preserved. That is, φik2

fires no
earlier than φik1

does whenever k1 > k2.
3. Let φm

i and φm
j be any two oscillators with φm

i = φm
j < 1 and i, j /∈ Um+1. Then

the quantity Δ represents the maximum phase difference between these two oscillators
after the next firing. That is, |φm+1

i − φm+1
j | < Δ.

Proof. Let δi and ωi be given as in (1.1). Applying the mean value theorem, we get that

fi(δi) − fi(δ1) = f ′i(ξ)
(

(1 − φ0
i0)
Ti0

Ti

(
1 − Ti

T1

)
+ φ0

i

)

≥ f ′i(ξ)
(

(1 − φ0
i0)
Ti0

Ti

(
1 − Ti

T1

)
+ g(ωi1)

)
≥ mfmgωmin −Mf tmaxΔT.(2.7a)
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Here f ′i(ξ) = fi(δi)−fi(δ1)
δi−δ1

. The assumption that φ0
1 just reach the threshold and Lemma 2.1

have been used to justify the inequalities in (2.7a). Using (2.5a), (2.5b), (2.6a), and (2.7a),
we get that

φ1
i − φ1

1 = [gi(fi(δi) + ωi) − gi(fi(δi) + ω1)] + [gi(fi(δi) + ω1) − gi(fi(δ1) + ω1)]
+ [gi(fi(δ1) + ω1) − gi(f1(δ1) + ω1)] + [gi(f1(δ1) + ω1) − g1(f1(δ1) + ω1)]

≥

⎛
⎝k−1∑

j=1

1
(mfmg)j

⎞
⎠Δ.(2.7b)

Inductively, we have that

φk′
i − φk′

1 ≥

⎛
⎝k−1∑

j=k′

1
(mfmg)j

⎞
⎠Δ, k′ = 1, 2, . . . , k − 1,

and φk
i − φk

1 ≥ 0,(2.8)

and the first part of the proposition follows. It should be noted that on the induction part,
φ0

i in (2.7a) is to be replaced by φk′−1
i −φk′−1

1 . Other parts of the estimates remain the same.
Let Φ0 be given. Suppose that the second assertion of the proposition were false. Then there
exists a pair of indexes (i, j) such that the ith oscillator is the first oscillator reaching the
threshold and the jth oscillator is the index of the first nonzero state oscillator that is outrun
by the ith oscillator. To save notation, let the resulting phase state when the ith oscillator
reaches the threshold be reset as φ0

1, and the old index j be reset as j again. That is, φ0
1

has just arrived at the threshold. Let k be the number of firings needed for φ0
1 to reach the

threshold. From how the indexes of 1 and j are chosen, we conclude that k ≤ n− 1 and that
the spike sets associated with those firings are mutually disjoint. It follows from the first part
of the proposition that if φk

1 ≥ 1, then φk
i ≥ φk

1 ≥ 1, a contradiction. We have just completed
the proof of the first assertion of the second part of the proposition, and the second assertion
of the second part of the proposition follows. To complete the proof of the last assertion
of the proposition, we see that φm+1

i − φm+1
j can be similarly expressed as those in (2.7b).

The corresponding four terms in the brackets of (2.7b) are, respectively, bounded by MgΔω,
MgMf tmaxΔT , MgΔf , and Δg.

We are now ready to state the stability conditions for synchrony.
Theorem 2.4. Assume that the following stability condition holds:

(2.9) m2
gmfωmin ≥ max

⎧⎨
⎩

n−1∑
j=0

1
(mfmg)j

,

n−2∑
j=0

(MfMg)j

⎫⎬
⎭Δ.

Then any group of oscillators which reaches the threshold simultaneously at some point will
keep doing so in the future.

Proof. Let the ith and the jth oscillators be any two oscillators in the group spiking
synchronously. Now reset both oscillators as φ0

1 = φ0
2 = 0. Suppose 1 ∈ Uk+1 and 2 /∈⋃k+1

k′=1 Uk′ . It then follows from Proposition 2.3.2 that Uk′ , k′ = 0, 1, . . . , k + 1, are mutually
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disjoint and that k ≤ n− 2. Following from Proposition 2.3.3, we conclude that |φ1
1 −φ1

2| ≤ Δ
and, inductively, |φk

1 − φk
2 | ≤ (

∑k−1
j=0

1
(Mf Mg)j )Δ. Since φk+1

2 = g2(f2(T1
T2

(1 − φk
1) + φk

2) +∑
�∈Uk+1

ω2�), the index 2 being not in the set
⋃k+1

k′=1 Uk′ implies that T1
T2

(1 − φk
1) + φk

2 <

g2(1 −
∑

�∈Uk+1
ω2�). Upon using (2.2), we conclude that mgωmin ≤ g′2(ξ)

∑
�∈Uk+1

ω2� <

1− T1
T2

(1−φk
1)−φk

2 ≤ ΔT+(
∑k−1

j=0 MfMg)Δ ≤ (
∑n−2

j=0 MfMg)Δ, a contradiction to (2.9).
Each of the terms in (2.9) can be verified analytically. Moreover, the inequality in (2.9)

gives a measurement as to how not quite identical the system can be to get the stability condi-
tion. Roughly speaking, stability condition (2.9) amounts to saying that the total “weighted”
measurements in how “nearly” identical the system is should be less than the minimum of
the coupling strengths of the oscillators. In particular, the system of identical oscillators is
always stable.

3. Absorption conditions. In this section, we shall derive the conditions for which the
absorption process of the system will forge ahead. In fact, we will show that the absorption
process always occurs for a system of convex oscillators satisfying stability condition (2.9).
On the other hand, the absorption process generally will not occur for a “nearly” identical
system of concave oscillators. However, for a system of concave oscillators whose concavity is
small, the absorption process is made possible by inducing an imbalance between the speeds
and coupling strengths of the oscillators.

3.1. Absorption conditions for two oscillators. We begin with the study of two oscil-
lators. Let Φ0 = (φ0

1, φ
0
2) with 0 ≤ φ0

1 < φ0
2 < 1. Assume that U1 = {2} and U2 = {1}.

Letting φ0
2 = φ, the return map R2(φ) is defined to be φ2

2, the phase of the second oscillator
immediately after the second firing. Specifically,

φ1
1 = g1

(
f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12

)
=: h1(φ),(3.1a)

φ2
2 = g2

(
f2

(
T1

T2
(1 − φ1

1)
)

+ ω21

)
=: h2(φ1

1),(3.1b)

φ2
2 = h2h1(φ) =: R2(φ).(3.1c)

Define the absorption map A2(φ) as

(3.1d) A2(φ) = R2(φ) − φ.

The domain of the return map is the set of points for which U1 = {2} and U2 = {1}. That
is, no absorption occurs within one cycle of the firings whenever the initial values are in the
domain of the return map. Now, U1 = {2} if and only if

(3.2a) φ0
2 > �12, where �ij =: 1 − Ti

Tj
gi(1 − ωij),

and U2 = {1} if and only if

(3.2b) φ1
1 > �21.
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It should be noted that the positivity of �ij can be guaranteed by (2.4). The inequalities (3.2a)
and (3.2b) amount to saying that there are limitations as to how close φ0

2 can be to 0(= φ0
1)

and 1(= φ0
1), respectively. To see why the second observation holds true, let

(3.3) γij = gj(ωji) − �ij.

Note first that (3.2b) is equivalent to

(3.4a) f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12 > f1(�21).

If

(3.4b) ω12 > f1(�21) or, equivalently, γ21 > 0,

then φ0
2 can be taken arbitrarily close to 1 from the left and (3.4a) still be satisfied. On the

other hand, if γ21 < 0, then φ0
2 cannot get too close to 1. In fact, φ0

2 < h−1
1 (�21) < 1. Thus,

the sign of γ21 determines how close φ0
2 can be to 1 and therefore determines what is the

boundary of the domain of the return map at the right end, which, in turn, influences the
direction of the flow of the return map near the boundary of the domain. Such direction of
the flow then determines whether the absorption process for the system of concave oscillators
is to occur. (See Proposition 3.3.) We next show that for “nearly” identical oscillators the
signs of γij are determined by the concavity structure of the evolution maps.

Lemma 3.1. Let ∇g be a measurement for the concavity of gi, which is defined as follows:

(3.5) ∇g = min
i

∣∣∣∣gi(ωmax) + gi(1 − ωmax) − 1
ωmax

∣∣∣∣ .
Let Δ̃ω = maxi�=j |ωij − ωji|. Assume that (2.4) and the following inequality, which is to be
called the nearly identical condition, hold:

(3.6) ωmin∇g > Δg +MgΔ̃ω + ΔT.

Then γij < 0 (resp., > 0) for all i 	= j, provided that f ′′i < 0 (resp., > 0) for all i.
Proof. Let h̃(x) =: h(x)+h(1−x)−1

x . Here h is a map satisfying the assumptions of the
maps given in Lemma 2.1. Then h̃(x) is increasing (resp., decreasing) on (0, 1), provided that
h′′(x) > 0 (resp., < 0). To see this, we have that h̃′(x) = x(h′(x)−h′(1−x))−(h(x)+h(1−x)−1)

x2 =:
h̃1(x)

x2 and h̃1
′
(x) = x(h′′(x) + h′′(1 − x)) > 0. Therefore, limx→0+ h̃1(x) = 0, and so h̃(x) is

increasing on (0, 1). The case for h′′(x) < 0 can be similarly obtained. It is also clear that
h̃(x) ≤ 0 (resp., ≥ 0) whenever h′′(x) > 0 (resp., < 0). Consequently,

|−1 + g1(ω12) + g1(1 − ω12)| =
∣∣∣∣−1 + g1(ω12) + g1(1 − ω12)

ω12
ω12

∣∣∣∣ ≤ ∇gωmin.

Suppose (3.6) holds. Then

γij = −1 + gj(ωji) + gj(1 − ωji) + gi(1 − ωji) − gj(1 − ωji)

+ gi(1 − ωij) − gi(1 − ωji) +
(
Ti

Tj
− 1
)
gi(1 − ωij) < 0 (resp., > 0),(3.7)
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provided that f ′′i (x) < 0 (resp., > 0), and the assertions of the lemma now follow.
Remark 3.1.
1. The consequences of Lemma 3.1 give that if the system of two oscillators is “nearly”

identical in the sense that (3.6) are satisfied, then the domain of the absorption map
A2 is (T1

T2
φ0

1+�12, h−1
1 (�21)) (resp., (T1

T2
φ0

1+�12, 1)), provided that f ′′i < 0 (resp., f ′′i > 0)
for all i.

2. If φ0
2 is not in the domain of the absorption map, then the two oscillators must fire

simultaneously within one cycle of the firings. The corresponding system then will stay
firing synchronously, provided that stability condition (2.4) is satisfied.

The domain and monotonicity of the absorption map A2 play an important role in deter-
mining whether the system is to forge ahead in the absorption process. The following lemma
shows that the monotonicity of the absorption map depends on the concavity structure of f .

Lemma 3.2. ∂A2
∂φ > 0 (resp., < 0) on its domain, provided that f ′′i < 0 (resp., > 0) on

[0, 1] for all i.
Proof. We illustrate only the case that f ′′i < 0. The other cases can be similarly obtained.

Applying the chain rule, we get

∂R2

∂φ
=
∂φ2

2

∂φ

= g′2

(
f2

(
T1

T2
(1 − φ1

1)
)

+ ω21

)
f ′2

(
T1

T2
(1 − φ1

1)
)

· g′1
(
f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12

)
f ′1

(
T2

T1
(1 − φ0

2) + φ0
1

)
.

Using the facts that g′′i > 0 and g′i(fi(x)), f ′i(x) = 1, i = 1, 2, we see immediately that ∂R2
∂φ > 1,

and hence ∂A2
∂φ > 0.

Proposition 3.3. Assume that (2.4) is satisfied. Then the following statements hold:
1. Let (3.6) hold or γ21 < 0. Then R2(φ) has a repelling fixed point, provided that f ′′i < 0

for all i. If γ12 − T1
T2
φ0

1 > 0, then R2(φ) − φ > 0 for all φ in its domain.
2. If f ′′i > 0 for all i and γ21 < 0, then R2(φ) − φ > 0 for all φ in its domain.
3. Let f ′′i > 0 for all i. Assume that (3.6) holds. If φ0

1 <
T1
T2
γ12, then R2(φ) has a stable

fixed point. If φ0
1 >

T2
T1
γ12, then R2(φ) − φ < 0 for all φ in its domain.

Proof. Let φ = T1
T2
φ0

1 + �12. Then

(3.8a) A2(φ) = γ12 −
T1

T2
φ0

1.

Thus A2(φ) < 0, provided that γ12 < 0. On the other hand,

(3.8b) A2(h−1
1 (�21)) = h2(�21) − h−1

1 (�21) = 1 − h−1
1 (�21) > 0,

and the first part of the proposition now follows. The second part of the proposition is a
direct consequence of Lemma 3.1, Lemma 3.2, and (3.8a). To complete the last part of the
proposition, it remains to show that A2(1) < 0 or, equivalently, f2(T1

T2
(1− g1(ω12))) +ω21 < 1
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or, equivalently, γ12 > 0, which follows from Lemma 3.1. We have just completed the proof
of the proposition.

Theorem 3.4.
1. Assume that (2.4) holds. Then we have the following:

(a) The system of two convex oscillators, in general, fires synchronously. Specifically,
if γ21 > 0, then the synchrony of the system occurs for all initial values. Other-
wise, that is, if γ21 ≤ 0, it synchronizes for almost all initial values. Consequently,
for such a system, stability alone implies synchronization.

(b) The system of two concave oscillators converges for all initial values to synchro-
nous firing if and only if

(3.9) γ21 < 0 or γ12 < 0.

The inequalities in (3.9) are to be called the absorption condition for the system
of two concave oscillators.

2. Assume that (2.4) and (3.6) hold. Let φ0
1 = 0. Then the system of two concave

oscillators will settle into a fixed nonfiring state if and only if φ0
2 is in the domain of

the absorption map A2, that is, if �12 < φ0
2 < 1.

Proof. To discuss synchrony for the system of two oscillators, we may just assume φ0
1 = 0.

The statement 1(a) now follows from Proposition 3.3.1. The statement 2 follows easily from
Proposition 3.3.3 and Lemma 3.1. It remains to prove statement 1(b). Consider the worst
possible cases: (i) γ21 < 0 and γ12 > 0 or (ii) γ21 > 0 and γ12 < 0. The system will achieve
synchronization at finite time for all initial conditions. To see this, we consider the case (ii).
Let Φ0 = (φ0

1, φ
0
2) with 0 ≤ φ0

1 < φ0
2 < 1. Then either Φ1 is in synchrony or Φ1 = (φ1

2, φ
1
1) with

0 = φ1
2 < φ1

1 < 1. Consequently, if no synchrony is achieved after the first firing, then the
return map R2 with respect to the initial phase state Φ0 has a stable fixed point, while the
return map R2 with respect to the initial phase state Φ1 has the property that R2(φ)−φ > 0.
However, the latter case will win out because it takes φ1

1 finite time to reach the threshold
and it takes φ0

2 infinite time to reach the fixed point. On the other hand, if both γ21 and γ12

are nonnegative, then the corresponding return map has a stable fixed point.
For the system of two convex oscillators, the associated return map is (volume) expanding;

i.e., there exists some r > 1 such that |A2(φ)−A2(φ)| > r|φ− φ| for all φ 	= φ in the domain.
Thus, the absorption is bound to happen except for the initial value being the fixed point of
the absorption map. The sign of γ12 (or γ21) then plays the role of determining whether the
absorption map has a (repelling) fixed point or not. On the other hand, for the system of
concave oscillators, the corresponding return map is (volume) contracting. If the flow of the
return map at both ends of the domain points inward, which is the case for a nearly identical
system (see Proposition 3.3.3), then its return map has a stable fixed point. As a result, the
corresponding system converges to a nonfiring state. To make the system of concave oscillators
fire synchronously, the flow of the return map at both ends has to point in the same direction,
which in turn makes the absorption process go forward. The above scenario occurs whenever
there is a certain degree of imbalance between oscillators (i.e., γ12 < 0 or γ21 < 0). To see this,
note that γ12 < 0 is equivalent to g2(ω21)+ T1

T2
g1(1−ω12) < 1. For identical concave oscillators,

the inequality above will not be satisfied. Thus, to drive such a system into synchrony, the
variations in the speed and/or the coupling strength cannot be too small.
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Figure 2. The shaded area is the set of parameters satisfying (3.10).

3.2. Feasible parameter and examples. For practical purposes, we consider how feasible
it is to verify those stability and absorption conditions. Some numerical results are also
provided to support the validity of the theorem. To simplify our calculations, we consider
the following three cases: (i) fi(x) =

√
x, gi(x) = x2, and ω12 = ω21 = ω; (ii) fi(x) = x2,

gi(x) =
√
x, and ω12 = ω21 = ω; (iii) fi(x) = x2, gi(x) =

√
x, and T1 = T2.

Case (i): Since mg = ω, (2.4) becomes

(3.10) ω2 ≥ ΔT.

In the ω − ΔT plane, the equality in (3.10) is a parabola. As shown in Theorem 3.4, no
absorption condition is needed to achieve synchrony for the system considered here. By
choosing parameters randomly from the feasible region (see Figure 2), the numerical results
(see Figure 3) indeed support our theory.

Case (ii): For case (ii), if (3.6) is satisfied, then no absorption occurs. Thus, the system
in general will not fire synchronously unless φ0

2 is too close to φ0
1 = 0. To see this, note that

∇g =
√

ω+
√

1−ω−1
ω , mg = 1−

√
1−ω

ω , and Δg = Δω = 0. The stability condition and (3.6) for
the associated system then reduce to

(3.11) (1 −
√

1 − ω) ≥ ΔT

and

(3.12)
√
ω +

√
1 − ω − 1 > ΔT,

respectively. The feasible parameters region in the ω −ΔT plane is nonempty (see Figure 4).
Picking parameters from this region, we see, via Figure 5, that if 0 ≤ φ0

2 < �12, then each of
the corresponding systems will fire synchronously. Otherwise, they will settle into a nonfiring
state. In fact, we choose various sets of parameters from different locations of the region, and
all the corresponding systems behave as predicted in Theorem 3.4.2 (see Figure 5).
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Figure 3. The evolution of the synchronization order parameter χ(k) is defined as the sum of the minimum
distances between any two oscillators at the kth stage =

∑n
i=1

∑n
j=i+1 d(φ

k
i , φ

k
j ), where d(x, y) = min(|x −

y|, |x− y + 1|, |x− y − 1|). If χ(k) = 0 for some large k, then the system fires synchronously at finite time. If
limk→∞ χ(k) = 0, then the system fires synchronously eventually or asymptotically.

Figure 4. The shaded area is the set of parameters satisfying (3.11) and (3.12).

Case (iii): The absorption condition studied here is (3.9). Since ΔT = 0, the stability
condition is automatically satisfied. Moreover, (3.9) becomes

(3.13) (ω12)
1
2 + (1 − ω21)

1
2 < 1.

The feasible parameters region in the ω21-ω12 plane, as given in Figure 6, shows the “imbal-
ance” between parameters ω12 and ω21. The numerical results, as demonstrated in Figure 7,
also support our theory.
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Figure 5. Choosing parameters Ti and ω from the shaded part in Figure 4, we see that after 500 firings,
the synchronization order parameter χ(500) is a step function with respect to the initial state φ0

2. As predicted,
if �12 < φ0

2 < 1, then the system settles into a nonfiring state. Otherwise, it fires synchronously.

Figure 6. The shaded area is the stability region for case (iii).

3.3. Absorption conditions. To understand the absorption process of a system of more
than two oscillators, we begin with defining the return map, which was originally defined
in [41]. Throughout this section, we shall assume that stability condition (2.9) holds. Unlike
the system of two oscillators, the corresponding return map under study in this section is now
a high-dimensional map. Let the system of n oscillators undergo one whole cycle of firings.
Assume that the resulting phase is denoted by (φ0

1 = 0, φ0
2, . . . , φ

0
n). Let Φ0 = (φ0

2, . . . , φ
0
n).

Then the return map Rn : Domain(Rn) =: An ⊂ R
n−1 → R

n−1 is defined to be

(3.14a) Rn(Φ0) = Φn = (φn
2 , φ

n
3 , . . . , φ

n
n) =: (r2,n(Φ0), . . . , rn,n(Φ0)).
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Figure 7. Let the speed of the oscillators be 1. Pick the parameters ωij from the shaded region in Fig-
ure 6. The synchronization order parameter χ(k) reaches zero after 5 firings. The imbalance of parameters in
activation gives the synchrony of the system.

It should be noted, via Proposition 2.3.2, that the maps in (3.14a), (3.14b) are well defined.
Moreover,

(3.14b) Rn(Φ0) = Hn · · ·H2H1(Φ0),

where

(3.14c) Hi = τiΣ(Φ).

Here Φ = (φ2, φ3, . . . , φn),

Σ(Φ) = (σ2, σ3, . . . , σn)

=:
(
Tn

T1
(1 − φn),

Tn

T2
(1 − φn) + φ2, . . . ,

Tn

Tn−1
(1 − φn) + φn−1

)
,

and
τi(σ2, σ3, . . . , σn) = (g1(f1(σ2) + ω1,n), . . . , gn−1(fn−1(σn−1) + ωn−1,n)).

Note that we have implicitly relabeled the oscillators, so each of the image vectors Hi(Φ)
represents the phases of the oscillators 1, 2, . . . , n − 1. That is, the original oscillator 1 has
become 2, oscillator 2 has become 3, . . . , and oscillator n has become oscillator 1. It also follows
from Proposition 2.3.3, Remark 2.1.2(b), and stability condition (2.9) that domain (Rn) ⊂ S,
where S = {Φ0 = (φ0

2, . . . , φ
0
n) ∈ R

n−1 : 0 < φ0
2 < φ0

3 < · · · < φ0
n < 1}. In fact, the domain of

the return map Rn is the set of points in S so that the spike sets Ui = {n−i+1}, i = 1, 2, . . . , n.
Having such spike sets is equivalent to the following inequalities:

(3.15) φi−1
n−i+1 −

Tn−i

Tn−i+1
φi−1

n−i > �n−i, n−i+1, i = 1, 2, . . . , n,
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where �n−i, n−i+1 are defined as in (3.2a) and T0, �0,1, and φ0 are interpreted as Tn, �n,1, and
φn, respectively. Consequently, the domain An of the return map is

(3.16a) An = {Φ0 ⊂ S : the inequalities in (3.15) hold}.

Since An is the finite intersection of open sets, it is open. Moreover, the domain Ak of Hk is
the set of initial points satisfying the inequalities in (3.15) for i = 1, 2, . . . , k. So Ai is the set
of initial values that will have at least i firings before an absorption occurs. Then

(3.16b) A =
∞⋂
i=1

Ai = the set of initial values that live forever without any absorptions.

We next state some properties of the return map Rn : An → S. The first assertion of the
theorem below is essentially due to Mirollo and Strogatz (see Theorem 3.1 of [41]).

Theorem 3.5. Assume that stability condition (2.9) holds for a system of n oscillators. The
following hold true:

1. Let f ′′i < 0 for all i. Then Rn is volume-expanding on An. Consequently, the set A
has Lebesgue measure zero.

2. Let f ′′i > 0 for all i. Then Rn is volume-contracting on An.
Proof. To prove the first assertion of the theorem, it suffices to show that the Jacobian

determinant of Rn has absolute value greater than one. From (3.14b) and (3.14c) and the
definitions of τi and Σ, det(DRn) =

∏n
i=1 det(DHi) =

∏n
i=1 det(Dτi) det(DΣ). The map Σ is

affine and satisfies σn = I, so det(DΣ) = ±1. Note that Dτi is a diagonal matrix; thus it is
easily seen that detDΣ > 1 under the assumption that each of the evolution maps is convex.
Hence |det(DR)| > 1. The arguments for proving the second assertion of the theorem are
similar to those of the first.

Since the return map of the system of convex oscillators is volume-expanding, the set of
initial values that live forever without any absorptions has measure zero. Hence, it is the
nature of the system of convex oscillators to grow by absorbing other oscillators. On the other
hand, if the flow of the return map of the system of concave oscillators near the boundary
of the domain points inward, such as that of identical concave oscillators, then the system
converges to a fixed point, which is a nonfiring state. Hence, to break such a natural tendency
of the system one has to introduce some imbalance between the parameters so as to make the
direction of the flow point outward near a certain portion of the boundary, as in the case for
two oscillators, where a necessary and sufficient condition has been established. Due to the
technical difficulty of this, only sufficient conditions are established for systems of more than
two oscillators. Such a result is stated in the following.

Theorem 3.6. Let the number of concave oscillators under consideration be no less than
three. Assume the following absorption condition, which is to say that the imbalance measure-
ment is greater than or equal to the concavity of the inverse of the evolution maps:

(3.17)
Mg

mg
≤ max

0≤i≤n−1

(
Tiωi,i+1

Ti+1ωi+1,i

)
.

Suppose that (2.9) and (3.17) hold. Then the absorption of the system must occur.
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Figure 8. A visualization of the claim in Step 3 of Theorem 3.6.

Proof. Let max0≤i≤n−1
Tiωi,i+1

Ti+1ωi+1,i
= Tmωm,m+1

Tm+1ωm+1,m
for some m. Suppose that no absorption

occurs after the first (n − m) firings; then we may relabel oscillators so that the indexes
m+ 1, . . . , n, 1, . . . ,m of the oscillators become 1, 2, . . . , n, respectively. We then may assume
that max0≤i≤n−1

Tiωi,i+1

Ti+1ωi+1,i
= Tnωn,1

T1ω1,n
. The proof the theorem then breaks into three steps. The

first part is to prove that sufficient condition (3.17) is so given that the inequality in (3.15)
with i = n is violated whenever φ0

n is sufficiently close to 1 from the left. Consequently,
if the system is to undergo one whole cycle of firings, φ0

n must stay away from 1. That is,
φ0

n < un = un(φ0
1, . . . , φ

0
n−1) < 1 for some un depending on φ0

1, . . . , φ
0
n−1 and being away

from 1. Here un = un(φ0
1, . . . , φ

0
n−1) is a portion of the boundary of the domain of the return

map described by φn−1
1 − Tn

T1
φn−1

n = �n,1. The second step of the proof is to show that the
direction of the flow points outward to the boundary whenever φ0

n is sufficiently close to un

from the left. Finally, to complete the proof the theorem, we need to show that the return
map has no periodic points.

Step 1. Let φ0
n be sufficiently close to 1 from the left so that φ1

1 − φ1
n(= 0) < Mgωmin.

We have used Lemma 2.1 to ensure that the above assertion can be done. Note that each of
gi(fi(φ) + ω) − φ, the phase jump at φ, is decreasing in φ. Hence, the phase jump is greater
when the phase position φ is closer to the origin. Upon using Lemma 2.1, we conclude that

φn−1
1 − Tn

T1
φn−1

n < φ1
1 − φ1

n +
(

1 − Tn

T1

)

< Mgω1,n +
(

1 − Tn

T1

)
≤ Tn

T1
mgωn,1 +

(
1 − Tn

T1

)
< �n,1.

We just proved that the boundary of the domain of the return map cannot get arbitrarily
close to φ0

n = 1. Note that if n = 2, then φ1
2 = 0, and so the first inequality above is not

necessarily true.
Step 2. Suppose that φ0

n is close to un. Then φn−1
1 − Tn

T1
φn−1

n is close to �n,1. Consequently,
φn

n is close to 1. Therefore, φn
n > φ0

n whenever φ0
n is sufficiently close to un.

Step 3. Since Rn is volume-contracting, any of its periodic points, if one exists, must
be stable. Assume, to the contrary, that there exists a periodic point Φ with period k. Let
R = Rk

n. Then Φ becomes a stable fixed point of R. Moreover, the direction of the flow under
R near the boundary of the domain still points outward. Consequently, there must exist a
unstable fixed point Φ of R, a contradiction (see Figure 8).
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Using Steps 1–3, we conclude that the direction of the flow of the return map points
outward to the boundary un. Hence, the absorption must occur. We have just completed the
proof of the theorem.

From the proof of the above theorem as well as that of Theorem 3.4.1(b), it is easily con-
cluded that for the system of concave oscillators to undergo the absorption process, the domain
of the return map contains only the points for which their φ0

n’s must stay away from 1. This,
in turn, makes the direction of flow near the boundary un = un(φ0

1, . . . , φ
0
n−1) point outward.

While the best possible condition to ensure such a scenario for the system of two concave os-
cillators can be obtained, it is not clear whether the condition that min1≤i≤n γi−1,i < 0 (here
γ0,1 is to be interpreted as γn,1) is the best absorption condition for the system of more than
two oscillators. Nevertheless, if the concavity of a system is small, then the inequalities in
(3.17) can be satisfied by inducing an imbalance between the speeds and weights of oscillators,
which will be demonstrated in Proposition 3.7.

We next discuss the dynamics under iteration of the absorption maps. Assume an initial
value Φ0, not necessarily in the domain of the return map. Suppose after initial firings that
the system forms k partially synchronous groups. Let the ith group, 1 ≤ i ≤ k, contain ki

oscillators, where
∑k

i=1 ki = n, and let these be treated as one new oscillator, denoted by
φi. Clearly, when oscillator φi is firing, the activation of each oscillator φj in the (i + 1)th
synchronous group, where (

∑i
�=1 k�) + 1 ≤ j ≤

∑i+1
�=1 k� =: σi+1, is incremented by the

positive coupling
∑σi

k=σi−1+1 ωjk =: ω̃ji. For each j, σi−1 + 1 ≤ j ≤ σi, we may define
ω̃ji+1 similarly. Since the ith and (i + 1)th synchronous groups may contain more than one
oscillator, the new cycle periods T i and T i+1 of the new oscillators φi and φi+1 are chosen as
the minimum cycle periods among the oscillators in each group, i.e., T i = minσi−1+1≤i≤σi Ti

and T i+1 = minσi+1≤i≤σi+1 Ti. That is, the speed of each group is chosen to be the fastest
speed among oscillators in the group. With T i and T j now being fixed, the corresponding
new coupling strengths ωi,i+1 and ωi+1,i are so chosen that

(3.18) max
σi−1+1≤�≤σi

(
max

σi+1≤j≤σi+1

T iω̃�,i+1

T i+1ω̃j,i

)
=

T iωi,i+1

T i+1ωi+1,i

.

The idea for such choices is to make the inequality (3.17) as easy as possible to satisfy. Due to
the presence of the stability condition, we are allowed to make such choices. For these newly
formed synchronous groups to continue their absorption process, we need to further assume
that for any permissible set {k, k1, k2, . . . , kk}, where 2 < k ≤ n and

∑k
i=1 ki = n,

(3.19)
Mg

mg
≤ max

0≤i≤k−1

(
T iωi,i+1

T i+1ωi+1,i

)
.

The right-hand side of the inequality above is to be called the imbalance measurement for
the system of more than two oscillators. Note that the quantity Mg

mg
is a measurement for the

concavity of g. The closer Mg

mg
is to 1, the more flat the g is. With such an absorption condition,

the system continues to grow by absorption until it reaches full synchrony or reduces to two
synchronous groups of oscillators. To ensure that these two synchronous groups continue to
grow by absorption, we need to have a modified absorption condition for these two groups.



STABLE SYNCHRONY INTEGRATE-AND-FIRE 1463

To this end, we assume that the first group consists of old oscillators φ�1 , . . . , φ�2 , where
1 ≤ �1 < �2 < n or 1 < �1 < �2 ≤ n, while the second group contains the remaining
oscillators. Then the parameters in γ12 and γ21, as given in (3.3), need to be updated as
well. Let N1 = {�1, . . . , �2} and N2 = {1, 2, . . . , n} − N1. Set ω̃j1 =

∑
i∈N1

ωji, j ∈ N2,
and ω̃j2 =

∑
i∈N2

ωji, j ∈ N1. Define the new cycle periods of groups N1 and N2 to be the
minimum cycle periods among the oscillators in each group. Denote such new periods by T 1

and T 2. Let

(3.20a) γ12(�1, �2) = min
i∈N1
j∈N2

(
gj(ω̃j1) − 1 +

T 1

T 2

gi(1 − ω̃i2)
)

and

(3.20b) γ21(�1, �2) = min
j∈N1
i∈N2

(
gj(ω̃j2) − 1 +

T 2

T 1

gi(1 − ω̃i1)
)
.

Then the absorption condition for any two sizes of synchronous groups of oscillators is

(3.20c) min
{

max
�1,�2

γ12(�1, �2),max
�1,�2

γ21(�1, �2)
}
< 0.

The left-hand side of the inequality in (3.20c) is to be called the imbalance measurement for
the system of two oscillators. With those absorption conditions on hand, one would expect the
full synchrony of the system. The drawback of absorption conditions (3.19) and (3.20c) is that
when n is large, there are enormously many cases needing to be checked. As a consequence,
the question of nonemptiness of the set of parameters satisfying the constraints (3.19) and
(3.20c) has to be addressed.

Proposition 3.7. Let the coupling strengths ωij(= ω) of a system of n oscillators all be
equal. Let the period cycles of oscillators all be different. Assume that ω < 2

n and that

(3.21)
[n3 ] + 1

[n3 ]
> tmax.

Then the absorption conditions (3.19) and (3.20c) are satisfied, provided that the concavity of
the evolution maps is sufficiently small.

Proof. With the speed of oscillators being all different, tmax > 1. Suppose that the
absorption occurs after the initial firings. Assume that the system evolves into k, k > 2,
synchronous groups with sizes of groups being k1, k2, . . . , and kk. If k1 = k2 = · · · = kk,
then the system continues to grow by absorption, provided that Mg

mg
is sufficiently close to 1.

Suppose that the sizes of k synchronous groups are not all equal. Then there must exist an
index i for which ωi,i+1

ωi+1,i
≥ ([n3 ] + 1)/[n3 ] > tmax. Here [x] is the greatest integer that is equal

to or less than x. Consequently, the imbalance measurement for this system is greater than
one. The system then must reach full synchrony or reduce to the system of two synchronous
groups, provided that the concavity of the evolution maps is small. In the case of the latter,
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we assume that the sizes of these two groups N1 and N2 are � and n− �, respectively, and let
fi(x) = x for all i. Then (3.20c) reduces to

γ12(�, n − �) = �ω −
(
T i

T j

)
(n− �)ω +

T i

T j

− 1, i ∈ N1, j ∈ N2,

γ21(�, n − �) = (n− �)ω −
(
T j

T i

)
�ω +

T j

T i

− 1, i ∈ N1, j ∈ N2.

If n is even and � = n− �, then

γ12(�, n− �) =
(
T i

T j

− 1
)(

1 − nω

2

)
and γ21(�, n− �) =

(
T j

T i

− 1
)(

1 − nω

2

)
.

Since tmax > 1, either γ12(�, n− �) or γ21(�, n− �) is negative. If n− � = �+ �1, where �1 ≥ 1,
then γ12(�, n − �) = ( T i

T j
− 1)(1 − �ω) − T i

T j
�1ω. Suppose T i

T j
≤ 1. Then γ12(�, n − �) < 0.

If T i

T j
> 1, then γ12(�, n − �) < ΔT − ωmin ≤ 0. The last inequality is justified by stability

condition (2.4). The case that � = (n − �) + �1, where �1 ≥ 1, can be similarly addressed.
Therefore, the remaining two synchronous groups will achieve full synchrony, provided that
the concavity of the evolution maps is small.

The result of the proposition supports the numerical observation of Bottani [8]. We next
define phase responding function h(x) and phase difference function D(x). Both functions are
helpful in determining the direction of the flow of the system near the boundary of the return
map whenever the number of oscillators is greater than three. Assume that an oscillator
receives an activation ω at x. Let the resulting phase g(f(x) + ω) be denoted by h(x), and
define D(x) as

(3.22) D(x) = h(x+ a) − h(x).

Here a > 0 is a constant.
Proposition 3.8.
1. Consider an identical system of three concave oscillators. That is, fi ≡ f , gi ≡ g,
Ti ≡ T , and ωij = ω. Then the direction of the flow near the boundary of the domain
of the return map points inward.

2. Suppose h′′(x) > 0. Then D(x) is increasing in x.
3. Consider an identical system of n concave oscillators. If h′′(x) > 0, then

(3.23) φ0
n − φ0

n−1 < φn
n − φn−1

n−1

whenever φ0
n−φ0

n−1 is sufficiently close to �ij = 1−g(1−ω) from the left. Consequently,
the direction of the flow of the system points inward near the boundary of the domain
of the return map.

Proof. The boundary of the domain of the return map consists of three pieces of curves
Γ1, Γ2, and Γ3 defined by φi−1

n−i+1 − φi−1
n−i = 1− g(1−ω), i = 1, 2, 3, respectively. To prove the

first part of the proposition, it suffices to show that for i = 1, 2, 3

(3.24) φi−1
n−i+1 − φi−1

n−i < φn+i−1
n−i+1 − φn+i−1

n−i
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Figure 9. The initial position and ending position of each arrow are (φ0
2, φ

0
3) and (φ3

2, φ
3
3), respectively.

The direction of the flow near the boundary of the domain of the return map indeed points inward as predicted.

whenever φi−1
n−i+1−φ

i−1
n−i are sufficiently close to 1−g(1−ω). The inequalities in (3.24) amount

to saying that R(φ0
2, φ

0
3) = (φ3

2, φ
3
3) are moving further away from their respective boundaries

whenever (φ0
2, φ

0
3) are near Γ1, Γ2, and Γ3, respectively (see Figure 9). To this end, we first

prove that Γ3 can be interpreted as φ0
3 = 1. For any φ0

3 < 1, we have that φ1
1 > g(ω). And

so, for any φ0
2 + 1 − g(1 − ω) < φ0

3 < 1, we see that φ2
1 − φ2

3 = φ1
1 − (φ2

3 − (φ2
1 − φ1

1)) >
g(ω) − (g(ω) − (1 − g(1 − ω))) = 1 − g(1 − ω). We have used the fact that the phase jump
function h(x) − x is decreasing to justify the above inequality. Hence, Γ3 can be interpreted
as claimed. Now, if φ0

3 − φ0
2 ≈ (1− g(1−ω))−, then φ1

2 ≈ 1−, and so φ2
3 − φ2

2 ≈ (g(ω))+. Here
φ2

2 = 0. Consequently, φ3
3−φ3

2 = φ2
3−((φ3

2−φ2
2)−(φ3

3−φ2
3)) > g(ω)−(g(ω)−(1−g(1−ω))) =

1 − g(1 − ω). To prove (3.24) for i = 1, it remains to show that there exists an ε > 0 such
that φ3

3 − φ3
2 = 1 − g(1 − ω) + ε whenever (φ0

2, φ
0
3) is near the boundary of Γ1. To prove

this, we need to make sure that R(φ0
2, φ

0
3) stay away from 1 − g(1 − ω) whenever (φ0

2, φ
0
3)

are near Γ1 ∩ Γ2 and Γ1 ∩ Γ3 (see Figure 9). Suppose that (φ0
2, φ

0
3) is near the boundaries

of Γ1 and Γ2. Then φ2
1 ≈ 1−. Thus, φ3

3 − φ2
3 ≈ g(2ω) − g(ω) = 1 − g(1 − ω) + ε, where

ε > 0. Similarly, if (φ0
2, φ

0
3) is near the boundaries of Γ1 and Γ3, φ3

3 −φ3
2 is also bounded away

from 1 − g(1 − ω). Hence, φ3
3 − φ3

2 is bounded away from 1 − g(1 − ω) whenever (φ0
2, φ

0
3) is

near the boundary of Γ1. Similarly, one can prove that (3.24) holds for i = 2, 3. We have
completed the first assertion of the proposition. The second assertion of the proposition is
obvious. Suppose φ0

n − φ0
n−1 ≈ (1− g(1− ω))−. Then φ1

n−1 ≈ 1−. Since D(x) is increasing in
x, φ2

n − φ2
n−1 ≥ h(ω) − h(0) = g(ω). Inductively, we see that

φn
n − φn

n−1 ≥ g((n − 1)ω) − g((n − 2)ω) > 1 − g(1 − ω).

The second assertion of the proposition has been used repeatedly to justify the first inequality
above. The second inequality above follows from (2.2). Therefore, (3.23) holds whenever φ0

n

is sufficiently close to 1 − g(1 − ω). Hence, the direction of the flow of the system near the
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Figure 10. For the choice of f , its phase responding function h(x) is concave upward. The system in
general does not synchronize as predicted in Proposition 3.8.3 and Theorem 3.9.2(b).

Figure 11. For the choice of f , its phase responding function h(x) is concave downward. Nevertheless, the
system in general does not synchronize either.

piece of boundary defined by φ0
n − φ0

n−1 = 1 − g(1 − ω) points inward. Similarly,

φi−1
n−i+1 − φi−1

n−i < φn+i−1
n−i+1 − φn+i−1

n−i , i = 2, . . . , n,

whenever φi−1
n−i+1 − φi−1

n−i is close to 1 − g(1 − ω). We have just completed the proof of the
proposition.

Two questions naturally arise from the proposition above. First, is the restriction h′′(x) >
0 necessary for the validity of the second assertion of Proposition 3.8? Second, what kind of
evolution maps with f ′′ > 0 satisfy the constraint h′′(x) > 0? For the first question, we expect
that the answer should be no (see Figures 10 and 11). However, we are unable to prove this.
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Figure 12. Two graphs of h(x) with two different f ’s are shown above. Their graphs are all concave upward.

For the second question, we see in Figure 12, via the help of the computer, that f(x) = xr,
r > 1, and f(x) = 1 − cos(πx/2) satisfy h′′(x) > 0.

We are now ready to state the main result of the paper.

Theorem 3.9.

1. Suppose that stability condition (2.9) holds. Then the system of convex oscillators will
achieve synchrony for all initial values, except possibly for those in a set of measure
zero. In particular, the system of identical convex oscillators is to fire synchronously
for all initial values, expect for those in a set of measure zero.

2. (a) The identical system with an even number of concave oscillators will not achieve
full synchrony for certain initial values in a set of positive measure.

(b) Suppose that the phase responding function h(x) is concave upward. Then the
identical system of concave oscillators will not synchronize for all initial values
in the domain of its return map.

(c) The identical system of three concave oscillators will not synchronize for all initial
values in the domain of its return map.

3. Suppose that stability condition (2.9) and the absorption conditions (3.19) and (3.20c)
are satisfied. Then the system of concave oscillators will achieve synchrony for all
initial values.

Proof. As shown in Theorem 3.5.1, the natural tendency of the system of convex oscillators
is to grow by absorption regardless of their coupling strengths and speeds. Therefore, the
system will continue to grow by absorption even though we need to update the new coupling
strengths and speeds at each stage. The assertion of the first part of the theorem now follows.
The third assertion of the theorem is now obvious. It remains to prove the second assertion
of the theorem. To this end, let the number of oscillators be 2k, and let ω and T be the
constant coupling strength and constant cycle period, respectively. Pick Φ0 = (φ0

1, φ
0
2, . . . , φ

0
n)
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Figure 13. The choice of f as above has the properties that f ′′(x) > 0 and h′′(x) < 0. Since the number of
oscillators chosen in this case is even, the numerical result demonstrated as above is consistent with the result
of Theorem 3.9.2(a).

to satisfy that

φ0
j ∈ (1 −mgω,1), j = k + 1, . . . , n, and(3.25)

φ0
1, . . . , φ

0
k ∈ (Mg(k + 1)ω −mgω, Mg(k + 1)ω).

It then follows from Remark 2.1.2(a) that the system will reduce to two synchronous groups
after initial firings. In fact, the first group contains oscillators φ1

1, . . . , φ
1
k. The new coupling

strengths for these two groups are equal. Denote by γ̃21 and γ̃12 the new corresponding γ21

and γ12, respectively. Then γ̃21 = γ̃12 = g(kω) + g(1 − kω) − 1 > 0. Therefore, such a set of
the initial values, which has a positive measure, will converge to a nonfiring state (see Figure
13). The assertions in 2(b) and 2(c) are now direct consequences of Proposition 3.8. We have
just completed the second part of the theorem.

The numerical stimulation suggests that a “nearly” identical system of any number of
oscillators in general will not synchronize with or without the requirement that the phase
responding curve be concave upward. Such a conjecture remains to be completed.

3.4. Examples and discussion. For the illustration of Theorem 3.9, the following three
cases of systems of three oscillators are considered: (i) fi(x) =

√
x, ωij = ω; (ii) fi(x) = x1.3

or fi(x) = 7
2 −

√
(7
2)2 − 6x, Ti = T , and ωij = ω; (iii) fi(x) = xr, where r > 1, and ωij = ω.

Case (i): For this case, mg = ω, mf = 1−
√

1−ω
ω , Mg = 2 − ω, and Mf = 1√

ω
. Moreover,

we have that 1
mgmf

≥MgMf . Thus, as n = 3, equation (2.9) becomes

(3.26)
m4

gm
3
fω

(1 +mfmg +m2
fm

2
g)MfMg

≥ ΔT (ΔT + 1).

The corresponding feasible parameters region in ω − ΔT is plotted in Figure 14. In the
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Figure 14. The shaded part of the region is the set of parameters (ω,ΔT ) satisfying stability condition (3.26).

Figure 15. χ(t), the synchronization order parameter, is defined in Figure 3. The parameters ωij and Ti

are chosen so as to be from the stability region, Figure 14. With initial state being given as above, the system
reaches full synchrony in 10 firings.

numerical simulations, we pick randomly more than 20 sets of parameters with various sets
of initial values; all the numerical results suggest the synchrony of the system. One such
set of parameters and initial values and its corresponding numerical results are recorded in
Figure 15.

Case (ii): The identical system is considered here. Let the number of oscillators be three.
Figures 16 and 17 give the set of initial values not reaching synchrony, which contains the
domain of the return map. Γ3 is interpreted as φ0

3 = 1.
Case (iii): The case under consideration is the system of concave oscillators satisfying

stability condition (2.9) and a modified absorption condition, which is stronger but easier to
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Figure 16. The set of initial values reaching synchrony numerically is denoted by the dotted region. The
points not in the dotted region, including the shaded region, will not acquire synchrony. In fact, the shaded
region is the domain of the return map. This figure is consistent with the assertion of Theorems 3.9.2(b) and
3.9.2(c).

Figure 17. The set of initial values reaching synchrony numerically is denoted by the dotted region. The
points not in the dotted region, including the shaded region, will not acquire synchrony. In fact, the shaded
region is the domain of the return map. This figure supports the assertion of Theorem 3.9.2(c).

verify. Specifically, we consider the following absorption condition:

(3.27)
n

n− 2
> tmax = ΔT + 1 >

Mg

mg
.

With such a stronger condition, the system will achieve full synchrony or reduce to two
synchronous groups. However, in the case of the latter, to acquire full synchrony, the concavity
of the evolution maps is still required to be sufficiently small. Numerically, we have that the
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(a) The shaded part above is the region
satisfied by both stability condition (2.9)
and absorption conditions (3.27) for n = 4.

(b) The shaded part above is the region
satisfied by both stability condition (2.9)
and absorption conditions (3.27) for n = 5.

Figure 18.

Figure 19. Let f(x) = x1.005. χ(t), the synchronization order parameter, is defined in Figure 3. The
parameters ωij and Ti are so chosen to be in the stability region, Figure 18. Note that 5 is a prime number.
Hence, when absorption occurs, the system breaks into a number of synchronous groups with their sizes being
not all equal. Such an imbalance in coupling strength speeds the process of full synchrony. With initial state
being given as above, the system reaches full synchrony in 6 firings.

line
{
(ω,ΔT ) : ΔT = [ n

3
]+1

[ n
3
]

}
does not intersect with the boundary of the stability condition.

The parameter regions in the ω−ΔT space satisfying (2.9) and (3.27) are, respectively, shown
in the shaded regions in Figure 18(a) and (b). Picking the parameters from these regions,
we see, in Figures 19 and 20, that the systems of both five and four concave oscillators reach
full synchrony after a number of firings, provided that the concavity of the evolution maps is
small. It should be mentioned that if n is a prime number, whenever the absorption occurs the
system will acquire full synchrony in a short period of time. In this scenario, the imbalance
in coupling strengths for the newly formed system is significant. In fact, it needs only six
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Figure 20. With the evolution map, parameters, and initial state being given as above, the system reaches
full synchrony in 180 firings. The reason that it takes so long for the system to synchronize is because n
is an even number. When the absorption occurs, each of the synchronous groups may still have equal cou-
pling strengths. Consequently, it takes longer for the system to synchronize since the imbalance in speed is
insignificant.

Figure 21. The horizontal axis is the exponent of the evolution map of the form f(x) = xr, r > 1. We plot
χ(k), 1000 ≤ k ≤ 1010, on the vertical axis. 1000 firings are needed to determine whether the corresponding
system will achieve full synchrony or not. From the computer simulation, we see that the system will reach full
synchrony, provided that r is roughly less than 1.009.

firings to achieve full synchrony for n = 5. As for n = 4, the number of firings is 180 to
secure synchrony. (See Figures 19 and 20, respectively.) To further support the validity of
Proposition 3.7, we consider the evolution maps of the form f(x) = xr, r > 1. The smaller r
is, the smaller its concavity is. Treat r as a bifurcation parameter; Figures 21–23 show how
we determine the smallest r that will make its corresponding system synchronize with various
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Figure 22. Since 5 is a prime number, the imbalance measurement is “relatively” large if and when the
system reduces to two synchronous groups. Therefore, the system is allowed to have a “larger” concavity at
r ≈ 1.3.

Figure 23. With a greater number of oscillators present in the system, the computer simulation is consistent
with the theory predicted in Proposition 3.7.

choices of sizes of oscillators.
In conclusion, we prove stable synchrony for an integrate-and-fire model provided by

Mirollo and Strogatz. Our results include the proof of Peskin’s second conjecture. The
next question is whether the results obtained here can be generalized to higher dimensional
oscillators such as conductance-based models of neurons and/or phase-coupled networks via
phase-response curves (see, e.g., [25] and the work cited therein). Note that the system
presented here is just a special case for the phase-response curves approach. Nevertheless, the
key ingredients for proving the full synchrony for those more current and advanced models
should remain the same even though new technical difficulties might arise. For instance,
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we still need to derive stability conditions so that the nonidentical system behaves like the
identical system. We also need to have some kind of absorption conditions. For example,
if the underlining model is dissipative, i.e., its time T -map decreases volume for all T > 0,
then the natural tendency of the system would be to settle into a nonfiring state unless the
direction of the flow of the “associated” return map points outward. If, on the other hand,
the underlining model is volume-expanding, then the absorption process of the system tends
to occur. It is certainly worthwhile to work on those problems.

Acknowledgments. The authors would like to thank the editor and referees for their
helpful comments.
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1. Introduction. There has been a significant increase in computer-assisted proofs in
dynamical systems in the past ten years. Many of these studies use topological techniques
and carry at heart ideas introduced by Conley [Con78] as well as extensions derived from
them. Conley’s ideas, which were generalizations of Morse’s theory for gradient-like flows,
have spawned two computational approaches for studying complicated dynamics in discrete
dynamical systems. The first is the method of correctly aligned windows (also known as the
method of covering relations), which traces its roots to work on windows introduced by Easton
in [Eas75]. In this paper, we exploit the algorithmic nature of a second approach that relies
on the more general tools of Conley index theory. While many of the algorithms for this
approach were introduced in earlier works (see, e.g., [Szy95], [DJM04], [Day03] and references
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particular, we describe in section 3.1 extended techniques for locating a region of the domain to
be used for computations, and present in section 3.2 a newly developed automated procedure
for taking a computed Conley index and producing an appropriate representative symbolic
dynamical system.

We use the computational techniques based on Conley index theory to build a semicon-
jugacy from a map f : S → S, S ⊂ R
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corresponding lower bound on the topological entropy (one measure of complexity) for the
system. Since the symbols we use to construct the symbolic dynamics correspond to disjoint
regions of the phase space R

n, one benefit of this approach is that the symbolic dynamics
offers a description of the dynamics on S, including information about the location of points
along trajectories in S. Furthermore, the symbolic dynamics acts as a lower bound (via the
semiconjugacy) for the dynamics of f on S; for any trajectory in the symbolic system there
is at least one corresponding trajectory of f in S. It follows, as stated in Theorem 2.7, that
the topological entropy of the symbolic system is a lower bound for the topological entropy
of f . Since our goal is to compute a high lower bound, our approach relies on trying to max-
imize the complexity of the constructed symbolic system. We discuss our main approach for
maximizing the complexity of the constructed system in section 3.

Topological entropy is a measurement that many have studied (see, e.g., [NBGM08],
[AAC90], [ACE+87], [Col02], [Gal02]) using a variety of techniques. We see as the two main
strengths in our approach the automation of our techniques and their independence from the
typical constraint that stable and unstable manifolds are one-dimensional and restricted to
the plane. Indeed, results in [DJM04] lead to entropy bounds for the infinite-dimensional
Kot–Schaffer map in a way similar to the work described here, and in future work we plan to
apply the automated techniques introduced in section 3 to this map to improve the bounds.
In this paper, we apply our approach to the well-studied Hénon map in order to obtain results
to compare with previous work in this area. We use our automated computational approach
based on the ideas outlined above to construct a semiconjugacy between the dynamics on
an appropriate subset of the Hénon attractor and a constructed symbolic dynamical system.
Based on this construction, we give a rigorous lower bound of 0.4320 on the topological en-
tropy of the Hénon map in Theorem 4.2. Section 4 also contains a comparison of this sample
result with other work in this area.

This paper is organized in the following way. In section 2, we review the necessary back-
ground from dynamical systems and computational Conley index theory. Section 3 contains
a detailed description of our extensions of this work to produce automated procedures for
constructing complicated semiconjugate symbolic dynamics. Finally, in section 4 we apply
these procedures to give sample results for the Hénon system.

2. Background. In this section we review some basic definitions and ideas from dynamical
systems theory and computational Conley index theory. We will state definitions and theorems
which are relevant to our work, and refer the reader to [Rob95], [Con78], [MM02] and references
therein for further development and details.

2.1. Symbolic dynamics and topological entropy. Let f : X → X ⊂ R
n be a continuous

map. We will focus on maps that exhibit complicated dynamics on a compact subset S ⊂ X.
Because the study of such maps and sets can be very complicated, they are often studied via
a representation on a symbol space, giving rise to symbolic dynamics.

We focus on symbolic dynamics in the form of subshifts of finite type. Fix an integer
m ≥ 2, and let T be an m ×m matrix with entries tij ∈ {0, 1}. The corresponding symbol
space is

ΣT := {s = (s0s1 . . .) | tsksk+1
= 1 for all k}.

Although the matrix T is often referred to as the adjacency matrix in graph theory literature,
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we will refer to T as the symbol transition matrix since it captures the allowed or admissible
“transitions” between symbols. Finally, we define the shift map σT : ΣT → ΣT by

σT (s) := s′, where s′i = si+1.

In this framework, (ΣT , σT ) is called a subshift of finite type, denoting both that we are working
with only a finite list of (m) symbols and that only a subset of the set of all sequences on
these m symbols is allowed by the symbol transition matrix T .

It is important to note that for an appropriate choice of metric on ΣT , σT is a continuous
map and σT : ΣT → ΣT is a dynamical system (see, e.g., [Rob95]). Subshifts of finite type
are particularly nice in that dynamical objects of interest are often readily identifiable. For
example, if one is looking for a period n orbit, then one checks that there is a symbol sequence
s∗ = (s0, s1, . . .) ∈ ΣT such that si+n = si for all i = 0, 1, . . . . If we view T as an adjacency
matrix defining a directed graph, then s∗ corresponds to an n-cycle, or cycle of length n, in
the graph. For clarity, we include the following definition of the terms cycle and simple cycle.

Definition 2.1. A path of length n in the directed graph G is a sequence of vertices v0, v1,
. . . , vn such that each pair (vi, vi+1) is an edge in G. If, in addition, v0 = vn, then v0, v1, . . . , vn

is a cycle of length n. Finally, a cycle v0, v1, . . . , vn is a simple cycle provided that it contains
no shorter cycles, namely, vi = vj with i �= j if and only if i, j ∈ {0, n}.

While subshifts of finite type and symbolic dynamical systems in general are nice to work
with from a mathematical point of view, many interesting dynamical systems do not come
in this form. Instead, as mentioned above, we may seek to represent a more general discrete
dynamical system by symbolic dynamics. This representation often comes in the form of a
topological conjugacy or topological semiconjugacy.

Definition 2.2. A continuous map ρ : X → Y is a topological semiconjugacy between
f : X → X and g : Y → Y if ρ ◦ f = g ◦ ρ and ρ is surjective (onto). If, in addition, ρ is
injective (one-to-one), then ρ is a topological conjugacy.

Topological conjugacies preserve many properties of dynamical systems. One such example
is the following theorem. (For more details, see [Dev89].)

Theorem 2.3. Let ρ be a topological conjugacy between f : X → X and g : Y → Y . Then
y ∈ Y is a periodic point of period n under g (i.e., gn(y) = y) if and only if ρ−1(y) is a
periodic point of period n under f .

If f is topologically conjugate to a subshift of finite type, then we have a convenient list
of trajectories of f given by the subshift. Indeed, in this case, the topological conjugacy
acts as a coordinate transformation of the original system onto a decipherable (symbolic)
system. In practice, such a complete description may be beyond our reach, and we instead
construct topological semiconjugacies to appropriate subshifts of finite type. As illustrated
by Theorem 2.7, these semiconjugate subshift systems offer lower bounds for the complexity
of the dynamics of the original system.

One way to quantify the complexity of a given dynamical system is to compute its topolog-
ical entropy. The following is based on Bowen’s definition of topological entropy in [Bow71].

Definition 2.4. Let f : X → X be a continuous map. A set W ⊂ X is called (n, ε, f)-
separated if for any two different points x, y ∈ W there is an integer j with 0 ≤ j < n so
that the distance between f j(x) and f j(y) is greater than ε. Let s(n, ε, f) be the maximum
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cardinality of any (n, ε, f)-separated set. The topological entropy of f is the number

(2.1) htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))
n

.

As a measurement of chaos, we say that a map f for which htop(f) > 0 is chaotic, and, if
htop(f) > htop(g), then f is “more chaotic” than g.

Once again, we can turn to symbolic dynamics in order to perform concrete computations.
Theorem 2.5 (see Robinson [Rob95]). Let T be a symbol transition matrix, and let σT :

ΣT → ΣT be the associated subshift of finite type. Then

htop(σT ) = log(sp(T )),

where sp(T ) is the spectral radius of T .
In essence, (n, ε, σT )-separation is encoded in the representation of the system and may

be computed directly from the symbol transition matrix T .
Computing the topological entropy of a system not given as a subshift proves to be more

challenging. In this setting and from a computational perspective, (2.1) may appear daunting.
For one thing, sensitive dependence on initial conditions, a property commonly associated with
chaotic systems, makes careful, precise measurements of (n, ε, f)-separation for large n and
small ε difficult if not impossible. One technique for dealing with this problem is to focus
on computing periodic points up to some cut-off period N rather than length N segments of
general trajectories. The problem of finding periodic points may be reduced to finding fixed
points for a sufficiently high iterate of the map, and two different periodic orbits of period n
are necessarily (n, ε, f)-separated for sufficiently small ε. One then checks that{

log(#{periodic points of period n})
n

}
n≤N

appears to be converging. Galias employed this approach in his study of the Hénon map in
[Gal01]. The question now becomes, “is N sufficiently large to yield a good approximation
for topological entropy?” This leads us to a second fundamental obstacle to a mathematically
rigorous computational approach—the need to obtain asymptotic measurements in both n
and ε. In Theorem 2.7 we use a special construction of a semiconjugacy to a subshift system
to overcome these difficulties and to compute a rigorous lower bound.

This construction relies on tools from Conley index theory discussed in section 2.2. We
use these tools to build the subshift system with the itinerary function serving as the semi-
conjugacy linking the systems.

Definition 2.6. Suppose that N ⊂ X may be decomposed into m < ∞ disjoint, closed
subsets (N = ∪i=1,...,mNi). Let S be the maximal invariant set in N (i.e., S is the largest set
such that S ⊂ N and f(S) = S). Then f j(S) ⊂ N for all j = 0, 1, . . . . Finally, let T be the
m×m symbol transition matrix given by

tij =
{

1 if f(S ∩Nj) ∩Ni �= ∅,
0 otherwise.
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The itinerary function ρ : S → ΣT is given by ρ(x) = s0s1 . . . , where sj = i for f j(x) ∈ Ni.
This function is continuous under the appropriate choice of metrics. (See [Dev89], [Rob95]
for more details.)

Finally, the following theorem allows us to use this semiconjugacy to obtain a lower bound
for the topological entropy of the system under study.

Theorem 2.7. Suppose that the itinerary function ρ is a semiconjugacy from f : S → S to
σT : ΣT → ΣT for some S ⊂ X and subshift of finite type (σT ,ΣT ) with symbol transition
matrix T . Then

htop(f) ≥ log(sp(T )) = htop(σT ),

where sp(T ) is the spectral radius of T .
Proof. Let d(Ni, Nj) := minx∈Ni, y∈Nj d(x, y) > 0 be the minimal distance between the

two disjoint, closed sets Ni and Nj . Since there are only a finite number of these sets,
ε∗ := min1≤i	=j≤m d(Ni, Nj) > 0.

For s = (s0, s1, . . .) ∈ ΣT , call the sequence of n symbols, Bn := (s0, . . . , sn−1), an
admissible n-block under T . For each admissible n-block Bn = (s0, . . . , sn−1), choose xBn ∈ S
such that ρ(xBn) = (s0, s1, . . . , sn−1, sn, . . .) ∈ ΣT . Such a point exists in S since ρ maps
S onto ΣT . Furthermore, for ε < ε∗, the points chosen in S corresponding to two different
admissible n-blocks must be (n, ε, f)-separated since, within n iterates, their itineraries carry
them to two disjoint subsets of S ∩N , separated by a distance of at least ε∗.

We now have that for ε < ε∗, s(n, ε, f) ≥ #{admissible n-blocks under T}. The asymptotic
size of the set of admissible n-blocks may be computed as follows (see Theorem 1.9(b) in
[Rob95]), to obtain the desired result:

htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))
n

(2.2)

≥ lim sup
n→∞

log(#{admissible n-blocks under T})
n

= log(sp(T ))
= htop(σT ).

Thus, we may bound the topological entropy of a map f from below by finding a semi-
conjugacy from f to an appropriate subshift of finite type. The higher the spectral radius
of the symbol transition matrix T , the better the lower bound we achieve for the topological
entropy of the original system.

2.2. Conley index theory. We now present some of the topological tools used to build
the subshift of finite type required for Theorem 2.7. These tools are based on Conley index
theory for which we now give definitions, facts, and theorems which are relevant to our work.
A discussion of the implementation of these ideas in a computational framework follows in
section 2.4.

Let f : R
n → R

n be a continuous map. A trajectory through x ∈ R
n is a sequence

(2.3) γx := (. . . , x−1, x0, x1, . . .)



1482 SARAH DAY, RAFAEL FRONGILLO, AND RODRIGO TREVIÑO

such that x0 = x and xn+1 = f(xn) for all n ∈ Z. We now define the invariant set relative to
N ⊂ R

n as

(2.4) Inv(N, f) := {x ∈ N | there exists a trajectory γx with γx ⊂ N}.

One example of a relative invariant set is the domain S = Inv(N, f) on which we defined the
itinerary function ρ in Definition 2.6.

We are now ready to present some of the basic structures in Conley index theory.
Definition 2.8. A compact set N ⊂ R

n is an isolating neighborhood if

(2.5) Inv(N, f) ⊂ int(N),

where int(N) denotes the interior of N . S is an isolated invariant set if S = Inv(N, f) for
some isolating neighborhood N .

We use the next two definitions to encode the dynamics on an isolating neighborhood.
Definition 2.9. Let P = (P1, P0) be a pair of compact sets with P0 ⊂ P1 ⊂ X. The map

induced on the pointed quotient space (P1/P0, [P0]) is

(2.6) fP (x) :=
{
f(x) if x, f(x) ∈ P1 \ P0,
[P0] otherwise.

Definition 2.10 (see [RS88]). The pair of compact sets P = (P1, P0) with P0 ⊂ P1 ⊂ X is
an index pair for f , provided that

1. the induced map, fP , is continuous,
2. P1 \ P0, the closure of P1 \ P0, is an isolating neighborhood.

In this case, we say that P is an index pair for the isolated invariant set S = Inv(P1 \ P0, f).
The following definition is required for the definition of the Conley index.
Definition 2.11. Two group homomorphisms, φ : G → G and ψ : G′ → G′ on abelian

groups G and G′, are shift equivalent if there exist group homomorphisms r : G → G′ and
s : G′ → G and a constant m ∈ N (referred to as the “lag”) such that

r ◦ φ = ψ ◦ r, s ◦ ψ = φ ◦ s, r ◦ s = ψm, and s ◦ r = φm.

The shift equivalence class of φ, denoted [φ]s, is the set of all homomorphisms ψ such that ψ
is shift equivalent to φ.

Definition 2.12. Let P = (P1, P0) be an index pair for the isolated invariant set S =
Inv(P1 \ P0, f), and let fP∗ : H∗(P1, P0) → H∗(P1, P0) be the map induced on the relative
homology groups H∗(P1, P0) from the map fP . The Conley index of S is the shift equivalence
class of fP∗,

(2.7) Con(S, f) := [fP∗]s.

The Conley index for the isolated invariant set S given in Definition 2.12 is well defined;
namely, every isolated invariant set has an index pair, and the corresponding shift equivalence
class remains invariant under different choices for this index pair (see, e.g., [MM02]).

So far we have passed from continuous maps to induced maps on relative homology. Our
overall goal, however, is to describe the dynamics of our original map. Here we present
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measurements based on the map on homology that may give us information about the original
map. The first theorem is Ważewski’s principle in the context of Conley index theory.

Theorem 2.13. If Con(S, f) �= [0]s, then S �= ∅.
By requiring additional structure in the isolating neighborhood N of S, we can use a

modification of Theorem 2.13 to study finer structure in S.
Corollary 2.14. Let N ⊂ X be the union of disjoint compact sets N1, . . . , Nm, and let

S := Inv(N, f) be the isolated invariant set relative to N . Let

S′ = Inv(N1, fNn ◦ · · · ◦ fN1) ⊂ S,

where fNi denotes the restriction of the map f to the region Ni. If

(2.8) Con(S′, fNn ◦ · · · ◦ fN1) �= [0]s,

then S′ �= ∅. More specifically, there exists a point in S whose trajectory under f travels
through the regions N1, . . . , Nn in the prescribed order.

We here note that, given the hypotheses of Corollary 2.14, there is a nice technique for
obtaining the index of S′ given the computed index map fP∗, where P = (P1, P0) is an index
pair with N = P1 \ P0. Using an approach developed by Szymczak in [Szy95], we set

(2.9) f ij
P (x) :=

{
f(x) if x ∈ Ni and f(x) ∈ Nj,
[P0] otherwise.

Then f ij
P∗ : H∗(P1, P0 ∪ (∪l 	=iNl)) → H∗(P1, P0 ∪ (∪l 	=j Nl)). Given fPk in matrix form

representing the linear map on Hk(P1, P0), we may label the columns/rows by location of
the associated relative homology generators in the subgroups Hk(P1, P0 ∪ (∪l 	=1Nl)), . . . ,
Hk(P1, P0 ∪ (∪l 	=nNl)). To simplify notation, we say that generator g is in region Ni if
g ∈ Hk(P1, P0 ∪ (∪l 	=iNl)). Then f ij

Pk is the nj ×ni submatrix with ni columns corresponding
to the ni generators in Ni and nj rows corresponding to the nj generators in Nj. Furthermore,
(P1, P0 ∪ (∪l 	=1Nl)) is an index pair for the isolated invariant set S′ = Inv(N1, fNn ◦ · · · ◦ fN1)
with index map fn1

P∗ ◦ · · · ◦ f12
P∗ : H∗(P1, P0 ∪ (∪l 	=1Nl)) → H∗(P1, P0 ∪ (∪l 	=1Nl)). Therefore,

(2.10) Con(S′, fNn ◦ · · · ◦ fN1) = [fn1
P∗ ◦ · · · ◦ f12

P∗]s.

Since the more general problem of determining whether the linear map fPk : Hk(P1, P0) →
Hk(P1, P0) is not shift equivalent to 0 may be difficult, we here focus on a computable sufficient
condition. Trace is preserved by shift equivalence, and we adopt the notation

trk(Con(S, f)) := tr(fPk),

where tr(fPk) denotes the trace of the linear map fPk : Hk(P1, P0) → Hk(P1, P0). Then if
trk(Con(S, f)) �= 0 for some k, Con(S, f) �= [0]s.

Corollary 2.15. If trk(Con(S′, fNin
◦ · · · ◦ fNi1

)) �= 0 for some k, then there exists x ∈ S′

with ρ(x) = i1i2 . . . ini1i2 . . . in . . . .
Taking this approach, we are close to showing something stronger, namely that there is a

periodic orbit under f with the corresponding cyclic symbol sequence. This stronger statement
relies on computing the Lefschetz number.
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Definition 2.16. Let S be an isolated invariant set. The Lefschetz number of S is defined
as

(2.11) L(S, f) :=
∑

k

(−1)k tr(fPk),

where P = (P1, P0) is an index pair for S.
The Lefschetz number is essential to the following theorem and its corollary.
Theorem 2.17. Let S be an isolated invariant set. If

(2.12) L(S, f) �= 0,

then S contains a fixed point.
For a proof, see [Szy96]. As before, a refinement of the approach allows us to study

symbolic dynamics.
Corollary 2.18. Let N ⊂ X be the finite union of disjoint compact sets N1, . . . , Nm, and let

S := Inv(N, f). Let S′ = Inv(N1, fNn ◦ · · · ◦ fN1) ⊂ S, where fNi denotes the map f restricted
to the region Ni. If

(2.13) L(S′, fNn ◦ · · · ◦ fN1) �= 0,

then fNn ◦ · · · ◦ fN1 contains a fixed point in S′ that corresponds to a periodic point of period
n in S that under f travels through the regions N1, . . . , Nn in order.

In what follows, we will develop algorithms based on Corollary 2.15 to construct and verify
symbolic dynamics. However, in the special case where the index map fP∗ is nontrivial on
exactly one level (as occurs with the Hénon map), we may use Corollary 2.18 to show that
the constructed semiconjugate symbolic system has the added stronger property that every
periodic orbit in the symbolic system corresponds to a periodic orbit in the original system
of the same period.

2.3. Multivalued and combinatorial maps. Now that we have the relevant tools from
Conley index theory, we can begin applying them algorithmically to extract information about
the dynamical system f : X → X. In this section, we describe the construction of a combi-
natorial representation of f . The first step is to define a multivalued map F that will be used
to incorporate bounded errors in the representation.

Definition 2.19. The multivalued map F : X ⇒ X is a map from X to its power set; i.e.,
for all x ∈ X, F (x) ⊂ X. If, for a continuous single-valued map f : X → X, f(x) ∈ F (x)
and F (x) is acyclic (i.e., has the homology of a point) for all x ∈ X, then f is a continuous
selector of F , and F is an enclosure of f .

In what follows, we discuss how to construct an enclosure of the map under study. The
purpose of the enclosure is to incorporate round-off and other errors that occur in computa-
tions. This construction requires rigorous small error bounds in order to create an enclosure
whose images are not so large as to obscure all relevant dynamics. Given an appropriate enclo-
sure, the topological tools from section 2.2 may be used to uncover dynamics of the underlying
map. Furthermore, there are algorithms for both the construction of the enclosure and the
computation of the Conley index. These algorithms require a further step—discretizing the
domain in order to store it in the computer as a finite list of objects.



ALGORITHMS, ENTROPY BOUNDS, AND SYMBOLIC DYNAMICS 1485

We begin by using the subdivision procedure implemented in the software package GAIO
[DFJ01] to create a grid G on a compact (rectangular) region in X. In practice, the region
chosen for representation is usually determined either experimentally through nonrigorous nu-
merical simulations or analytically given a special structure or symmetry for the system (e.g., a
compact attracting region). We partition a specified rectangular set W =

∏n
k=1 [x−k , x

+
k ] ⊂ R

n

into a cubical grid

G(d) :=

{
n∏

k=1

[
x−k +

ikrk
2d

, x−k +
(ik + 1)rk

2d

] ∣∣∣∣∣ ik ∈
{
0, . . . , 2d − 1

}}
,

where rk = x+
k −x−k is the radius of W in the kth coordinate and the depth d is a nonnegative

integer. We call an element of the grid, B =
∏n

k=1

[
x−k + ikrk

2d , x
−
k + (ik+1)rk

2d

]
, a box. For a col-

lection of boxes, G ⊂ G = G(d), define the topological realization of G as |G| := ∪B∈GB ⊂ R
n.

Constructing a useful combinatorial enclosure involves bounding all round-off and other
errors. In our study of the Hénon map in section 4, we construct a combinatorial enclosure
by computing images of f(|G|) using interval arithmetic software. This produces a bounding
box, f̃(|G|), for the image f(|G|), which is then intersected with the grid G to produce the
combinatorial enclosure image

F(G) := {G′ ∈ G : |G′| ∩ f̃(|G|) �= ∅}.

This combinatorial enclosure, F : G ⇒ G, yields an enclosure F = |F| of f in the following
way: define |F| : W ⇒ W , where W = ∪G∈G |G|,

(2.14) |F|(x) :=
⋃

G∈G with x∈|G|
|F(G)|.

More importantly, efficient algorithms exist for computing isolating neighborhoods, index
pairs, and Conley indices for f from an appropriate combinatorial enclosure F of f .

2.4. Computational Conley index theory. Now we give algorithms for computing the
isolating neighborhoods, index pairs, and Conley indices first introduced in section 2.2 in the
setting of combinatorial enclosures.

Definition 2.20. A combinatorial trajectory of a combinatorial enclosure F through G ∈ G
is a bi-infinite sequence γG = (. . . , G−1, G0, G1, . . .) with G0 = G, Gn ∈ G, and Gn+1 ∈ F(Gn)
for all n ∈ Z.

Definition 2.21. The combinatorial invariant set in N ⊂ G for a combinatorial enclosure
F is

Inv(N ,F) := {G ∈ G : there exists a trajectory γG ⊂ N}.

Definition 2.22. The combinatorial neighborhood of B ⊂ G is

o(B) := {G ∈ G : |G| ∩ |B| �= ∅}.

This set, |o(B)|, sometimes referred to as a one box neighborhood of B in G, is the smallest
representable neighborhood of |B| in the grid G.
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While there are different characterizations of isolation in the setting of combinatorial
enclosures, we chose the following for this work.

Definition 2.23. If
o(Inv(N ,F)) ⊂ N ,

then N ⊂ G is a combinatorial isolating neighborhood under F .
Note that, by construction, the topological realization |N | of a combinatorial isolating

neighborhood N under F is an isolating neighborhood under any continuous selector f ∈ |F|.
This definition is stronger than what is actually required to guarantee isolation on the topo-
logical level. It is, however, the definition that we will use in this work and is computable
using the following approach.

Let S ⊂ G. Set N = S, and let o(N ) be the combinatorial neighborhood of N in G. If
Inv(o(N ),F) = N , then N is isolated under F . If not, set N := Inv(o(N ),F) and repeat the
above procedure. In this way, we grow the set N until either the isolation condition is met
or the set grows to intersect the boundary of G, in which case the algorithm fails to locate
an isolating neighborhood in G. This procedure is outlined in more detail in the following
algorithm from [DJM04].

Algorithm 1 (Grow isolating neighborhood).

INPUT: grid G, combinatorial enclosure F on G, set S ⊂ G
OUTPUT: a combinatorial isolating neighborhood N containing S

or N = ∅ if the isolation condition is not met
N = grow isolating neighborhood(G, F, S)

G boundary := {G ∈ G : |G| ∩ ∂|G| �= ∅};
N := S;
while Inv(o(N ),F) �⊂ N and N ∩ G boundary = ∅,

N := Inv(o(N ),F);
end
if N ∩ G boundary = ∅, return N;
else return ∅;
end

Once we have an isolating neighborhood for f , our next goal is to compute a corresponding
index pair. The following definition of a combinatorial index pair again emphasizes our goal
of using the combinatorial enclosure to compute structures for f .

Definition 2.24. A pair P = (P1,P0) of cubical sets is a combinatorial index pair for a
combinatorial enclosure F if the corresponding topological realization P = (P1, P0), where
Pi := |Pi|, is an index pair for any continuous selector f ∈ |F|. Namely, P1 \ P0 = |P1 \P0| is
an isolating neighborhood under f , and the map fP , as defined in Definition 2.9, is continuous.

The following algorithm produces a combinatorial index pair associated with a combina-
torial isolating neighborhood produced via Algorithm 1. While there are other algorithms for
producing combinatorial index pairs, this algorithm works well with later index computations.
For more details, see the description of modified combinatorial index pairs in [Day03].

Algorithm 2 (Build index pair).

INPUT: grid G, combinatorial enclosure F on G,
combinatorial isolating neighborhood N produced by Algorithm 1
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OUTPUT: combinatorial index pair P = (P1,P0) with P1 \ P0 = N
[P1,P0] = build index pair(G, F, N)

P0 := ∅;
New := F(N ) ∩ o(N ) \ N;
while New �= ∅

P0 := P0 ∪ New;
New := (F(P0) ∩ o(N )) \ P0;

end
P1 := N ∪ P0;
return [P1,P0];

We now have an isolating neighborhood |N | and corresponding index pair P := (|P1|, |P0|)
for f . What remains in computing the Conley index for the associated isolated invariant set,
S := Inv(|N |, f), is to compute the map fP∗ : H∗(|P1|, |P0|) → H∗(|P1|, |P0|). Once again,
the combinatorial enclosure offers the appropriate computational framework, and we use the
software program homcubes in [Pil98] to compute fP∗. This step is outlined in Algorithm 3.

Algorithm 3 (Compute index map).

INPUT: grid G, combinatorial enclosure F on G,
combinatorial index pair P = (P1,P0) produced by Algorithm 2

OUTPUT: relative homology groups H∗(|P1|, |P0|),
the induced index map fP∗ : H∗(|P1|, |P0|) → H∗(|P1|, |P0|),
and the induced submaps {f ij

Pk} on connected components

[fP∗ H∗(|P1|, |P0|) {f ij
Pk}] = compute index map(G, F, P1, P0)

Q1 = F(P1);
Q0 = F(P0);
[fP∗ H∗(|P1|, |P0|) {f ij

Pk}] := homcubes(P1, P0, Q1, Q0, F);

return [fP∗ H∗(|P1|, |P0|) {f ij
Pk}];

Algorithm 3 produces a sequence of matrices for the maps fP0, fP1, . . . , fPn, where n is
the dimension of the phase space X. For k > n, fPk = 0. The associated Conley index is
Con∗(S) = [fP∗]s for S := Inv(|P1 \ P0|, f). The submaps f ij

Pk : Hk(|P1|, |P0| ∪l 	=i |Nl|) →
Hk(|P1|, |P0| ∪l 	=j |Nl|), where |N1|, . . . , |Nn| are the connected components of |P1 \ P0|, are
given as submatrices of fPk. These are the maps required for Corollaries 2.14, 2.15, and 2.18.
In the following section, we describe an algorithmic procedure for using this index information
to construct the appropriate subshift of finite type.

3. Constructing and verifying complicated symbolic dynamics. Given f : X → X, the
general method we adopt for computing a lower bound on topological entropy consists of the
following steps:

• constructing a fixed cubical grid G on a subset of X and a combinatorial enclosure F
of f on G (section 2.3),

• locating a region of interest S in G (section 3.1),
• computing the associated Conley index (section 2.4),
• constructing semiconjugate symbolic dynamics (section 3.2),
• using the constructed symbolic dynamical system to compute a lower bound on the

topological entropy of f (Theorem 2.7).
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While many steps of this general procedure have been carried out in previous work (e.g.,
[DJM04] for the first four steps, and [Gal01] for the last step), we here seek to uncover
far more complicated symbolic dynamics. This requires a more automated approach based
on setting verifiable conditions for uncovering and proving the existence of cyclic symbolic
dynamics and ignoring or giving up on the verification of dynamics that does not satisfy
these conditions. Along these lines, we now give algorithms for locating a region of interest
(section 3.1) and processing the resulting index information (section 3.2) that allow us to
uncover more complicated dynamics than previously found using related techniques. This
improved procedure produces the entropy bounds presented in section 4.

3.1. Locating a region of interest. We now turn to the second task in this list—that
of locating the region of the grid where we will attempt to compute interesting symbolic
dynamics. More specifically, the set that we are calling the region of interest will serve as the
input, S, for Algorithm 1. We show three different methods for locating regions of interest for
the Hénon map in sections 4.1, 4.2, and 4.3. In this section, we focus on the method that, of
these three, both is general (i.e., is not restricted to studies of the Hénon map) and yields high
entropy bounds. This is the method followed in section 4.2. The first step in this approach is
similar in spirit to the work of Cvitanović and others in using periodic orbits of low periods
to approximate chaotic attractors. We begin by finding short cycles in the combinatorial
enclosure (directed graph) F . These short cycles correspond to possible periodic orbits of low
period for f . We then add a level of complexity by searching for paths in the directed graph
between these short cycles. From a dynamics point of view, these paths represent possible
mixing between the periodic regions.

We construct a list of short cycles in G by setting ourselves a computational param-
eter Max Cycle Length ∈ Z

+ and locating the cycles in F of length k with 1 ≤ k ≤
Max Cycle Length. These cycles are nonzero entries on the diagonal of F (when viewed
as a transition matrix) raised to the kth power. The corresponding computed vertices in F
are the regions in G that may contain period k points of f . Starting with S = ∅, we begin
adding the short cycles to S one by one, starting with the shortest. Just before adding a
cycle to S, we grow its isolating neighborhood using Algorithm 1 and then check that this
neighborhood does not intersect the isolating neighborhood of the current collection. This
corresponds to a possible increase in the number of symbols and/or the number of admissible
transitions between symbols in the resulting constructed symbolic system and may eventually
lead to a higher entropy bound. If this condition is not met, we do not add the cycle but
move to the next cycle in the list, continuing until the list is exhausted. We next use breadth
first search (BFS) to find shortest path, pairwise connections between the short cycles in S
and add these connecting paths to S. This procedure is outlined in Algorithm 4.

Algorithm 4 (Locating region of interest/joining low cycles).

INPUT: grid G, combinatorial enclosure F on G,
computational parameter Max Cycle Length

OUTPUT: region of interest S ⊂ G
S = find and connect low cycles(G, F, Max Cycle Length)

S = ∅;
N = ∅;
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for n = 1 : Max Cycle Length,
for each length n cycle c in F,

Nc = grow isolating neighborhood(G, F, c);
if Nc ∩ N = ∅,

S = S ∪ c;
N = grow isolating neighborhood(G, F, N ∪ c);

end
end

end
Sc := S;
for each vertex vi ∈ Sc,

for each vertex vj ∈ Sc,
γ = shortest path in F from vi to vj in G\o(o(S));
S := S ∪ γ;

end
end
return S;
Here, we explicitly compute cycles with lengths up to Max Cycle Length, which in practice

is small. However, we obtain many new cycles by adding pairwise connections between the
computed cycles. This allows us to uncover complicated dynamics without having to explicitly
search for the long cycles that correspond to periodic orbits of high period. As illustration,
Figure 1 depicts a subshift of finite type constructed from a region of interest consisting of a
length 2 cycle, two length 4 cycles, and pairwise shortest connecting paths between these three
objects. Note that the resulting subshift system contains infinitely many cycles (of lengths 5,
8, 10, and higher) and positive topological entropy.

Figure 1. Symbol transition graph constructed from a 2-cycle, two 4-cycles, and pairwise connections.

While effective in computation of entropy bounds for the Hénon map (see section 4.2),
this approach for the construction of the region of interest, S, could be improved. Given a
fixed combinatorial enclosure F on a grid G, one goal would be to optimize the construc-
tion of S in order to produce a subshift of finite type with the highest possible entropy. As
a first step along these lines, the relationship between the entropy bound and the maximal
cycle length used in Algorithm 4 in a study of the Hénon map is depicted in Figure 5. In
addition, there is a clear trade-off between refining the grid in order to find, isolate, and
connect more low period cycles to produce a higher bound and the associated increase in
computational cost. (The effect of refining the grid on increasing the bound is illustrated
for the Hénon map in Figure 6.) Another improvement to these techniques related to this
balance would involve making the computation of G, and therefore S, adaptive. The goal
here would be to refine the grid in areas where new low-period periodic orbits and connec-
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tions may be uncovered without having to recompute structures in the remainder of the
space.

3.2. Processing index information. Recall that our goal is to compute complicated sym-
bolic dynamics. If we are successful in locating an appropriate region of interest in the domain
(one approach is described in section 3.1), the corresponding Conley index computed by the
algorithms described in section 2.4 is given as a large matrix representing the map induced
on an index pair consisting of many disjoint components.

From this index map, we wish to find a symbol transition matrix T such that f is semicon-
jugate to the subshift on ΣT . We first use some properties of shift equivalence to simplify the
computed index map. We then construct T from a collection of cycles, called verified cycles,
that satisfy the hypotheses of Corollary 2.15.

3.2.1. Removing transient generators. We begin our processing of the index map fP∗ :
H∗(P1, P0) → H∗(P1, P0) by removing generators from H∗(P1, P0) that do not correspond
to asymptotic invariant behavior. More specifically, we utilize the fact that the Conley
index, Con∗(S, f), is the shift equivalence class of fP∗ to construct a new representative
of the class obtained by removing generators α ∈ Hk(P1, P0) such that f l

Pk(α) = 0 or
α /∈ f l

Pk(Hk(|P1|, |P0|)) for some l ∈ Z.
Note that since we are considering continuous maps f on R

n, fPk : Hk(P1, P0) →
Hk(P1, P0) are linear maps on (finite) vector spaces. We therefore choose to think of fPk

as a square matrix. Suppose that fPk is similar to a matrix A, i.e., fPk = B−1AB for some
invertible matrix B. Then, by setting r = B, s = B−1, and m = 0 in Definition 2.11, we see
that [fPk]s = [A]s. In what follows, B will be an appropriate reordering of the basis so that
A takes on the block lower-triangular form required for the following theorem.

Theorem 3.1. Let

A =

⎡
⎣ A11 0 0
A21 A22 0
A31 A32 A33

⎤
⎦

be a 3× 3 block lower-triangular matrix, with square matrices Aii on the diagonal. If Al
11 = 0

and Al
33 = 0 for some l, then A is shift equivalent to A22.

Proof. For i = 1, 2, 3, let ni×ni be the size of the square matrix Aii, and define projection
and inclusion maps respectively as follows:

π =
[
0n22×n11 In22 0n22×n33

]
and

ι = π
.

One can check that the maps R := πAl and S := Alι satisfy the conditions stated in
Definition 2.11 to give the desired shift equivalence between A and A22 with lag constant
m = 2l.

The motivation for the previous theorem was to find a simpler representative for the shift
equivalence class of fPk. This relies on finding a reordering of the basis for fPk that yields a
similar matrix A satisfying the hypotheses of Theorem 3.1. In order to use existing efficient
algorithms, we now turn to a graph interpretation of the l × l matrix fPk. More specifically,
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we consider the directed graph G = (V,E) with vertices 1, . . . , l and edges (j, i) ∈ E if and
only if fPk(i, j) �= 0. Let

V3 := {v ∈ V | any path starting at v has length less than l},(3.1)

V1 := {v ∈ V \ V3 | any path ending at v has length less than l},(3.2)

and

(3.3) V2 := V \ (V1 ∪ V3).

Note that since there are l vertices, V1 is the set of vertices that are not connected to cycles
in backward time and V3 is the set of all vertices that are not connected to cycles in forward
time. The following two lemmas show that the partition {V1, V2, V3} of the vertex set V is
useful for finding zeros in the matrix fPk.

Lemma 3.2. The submatrix fPk(V1, V2 ∪ V3) of fPk corresponding to the rows indexed by
V1 and columns indexed by V2 ∪ V3 is the zero matrix of the appropriate size.

Proof. Suppose that fPk(w, v) �= 0 for w ∈ V1 and v ∈ V2∪V3. Then (v,w) is an edge in the
associated directed graph G. Since v is not in V1, there exists a path v1, . . . , vl, v in G. Then
v1, . . . , vl, v, w is a length l + 1 path in G, contradicting our assumption that w ∈ V1.

Lemma 3.3. The submatrix fPk(V2, V3) of fPk corresponding to the rows indexed by V2 and
columns indexed by V3 is the zero matrix of the appropriate size.

Proof. Suppose that fPk(w, v) �= 0 for w ∈ V2 and v ∈ V3. Then (v,w) is an edge in the
associated directed graph G. Since w is not in V3, there exists a path w, v1, . . . , vl in G. Then
v,w, v1, . . . , vl must also be a path in G, contradicting our assumption that v ∈ V3.

We have now shown that if we reorder the basis by listing the basis elements in V1, followed
by those in V2, followed by those in V3, we obtain the following block form (with rows and
columns labeled by location in the specified sets):

fPk ∼ A =

⎛
⎝

V1 V2 V3

V1 A11 0 0
V2 A21 A22 0
V3 A31 A32 A33

⎞
⎠.

What remains to show in order to use Theorem 3.1 is the following lemma.
Lemma 3.4. The two matrices Al

11 and Al
33 are zero matrices of the appropriate sizes.

Proof. We obtained the block lower-triangular matrix A by a reordering of the basis for
the matrix fPk. Therefore, the associated directed graph GA for A is the directed graph G
with relabeled vertices. With a slight abuse of notation, we consider again the subsets V1, V2,
V3 in GA to be the sets satisfying (3.2), (3.3), and (3.1), respectively. Interpreting nonzero
entries of A to be weights on the corresponding edges, we may use powers of A to study paths
in GA. More specifically, Al(i, j) �= 0 implies that there exists a length l path from vertex j to
vertex i in GA (see, e.g., [Die05]). Now suppose that Al(i, j) = Al

11(i, j) �= 0 for some i, j ∈ V1.
Then, by the above argument, there exists a length l path in GA that ends at a vertex in V1.
This contradicts (3.2). Therefore, Al

11 = 0. A similar argument shows that Al
33(i, j) = 0 for

all i, j ∈ V3.
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We now have that fPk is similar (and hence shift equivalent) to A which is shift equivalent
to f̃Pk := A22 by Lemma 3.4 and Theorem 3.1. Therefore, we may take f̃Pk to be the new,
possibly smaller representative of the Conley index

Con(S, f) = [fPk]s = [f̃Pk]s.

This procedure is outlined in Algorithm 5. Here, algorithms based on depth or breadth first
search may be used to efficiently compute the required sets V1, V2, and V3. As we will show
in section 4 this technique may give a drastic decrease in the size of the representative index
map.

Algorithm 5 (Remove transient generators).
INPUT: square matrix fPk

OUTPUT: shift equivalent (square) matrix f̃Pk

f̃Pk = remove transient generators(fPk)
G = (V,E) is the directed graph associated with fPk;
V3 = {v ∈ V | any path starting at v is finite};
V1 = {v ∈ V | any path ending at v is finite};
V2 = V \ (V1 ∪ V3);
f̃Pk = fPk(V2, V2);
return f̃Pk;

3.2.2. Cycle verification. We now automate a procedure for using Conley index com-
putations to construct a semiconjugate subshift of finite type. As described in Theorem 3.6
below, we construct the subshift system from a collection of cycles that are verified using
Corollary 2.15. As will be seen in section 4, the automation of this procedure becomes nec-
essary as we build increasingly complicated subshifts of finite type. In particular, building a
subshift system containing infinitely many periodic orbits may, in principle, lead to an infinite
list of computations to verify that the hypotheses of Corollary 2.15 hold for each cycle. In the
following approach, we present an algorithm which uses a finite list of computations to verify
a possibly infinite set of cycles.

Given an index pair P = (P1, P0), we begin by labeling each of the (m) disjoint regions of
the isolating neighborhood N := P1 \ P0. Let N = ∪m

i=1Ni with Ni closed and nonempty and
Ni∩Nj = ∅ for all i �= j. By construction, each Ni has a corresponding cubical representation
Ni ⊂ N . Recall that the associated itinerary function ρ is defined by ρ(x) = (s0s1 . . .) with
sj = i if f j(x) ∈ Ni. Let T̃ be the matrix of admissible transitions between the regions Ni

allowed by F . More specifically, T̃ is the m×m matrix with entries

(3.4) tij =
{

1 if F(Nj) ∩ Ni �= ∅,
0 otherwise.

Then ρ : S̃ → ΣT̃ , where S̃ := Inv(N, f) and ΣT̃ and σT̃ : ΣT̃ → ΣT̃ are the subshift of
finite type defined in section 2. As previously discussed, ρ : S̃ → ΣT̃ may not be surjective,
and hence σT̃ : ΣT̃ → ΣT̃ may not be semiconjugate to f : S̃ → S̃. We will now construct
a subshift system, σT : ΣT → ΣT , with ΣT ⊂ ΣT̃ , that we prove is semiconjugate via ρ to
f : S → S with S ⊂ S̃.
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Let G = (V,E) be the directed graph associated with the symbol transition graph T̃
(viewed as an adjacency matrix). More specifically, the vertices are named for the regions
Ni with V = {1, 2, . . . ,m}, and the edge set E := {(j, i) ∈ V × V | tij = 1} represents the
admissible transitions between regions. In our approach, we begin by removing all paths in
G that are not contained in cycles. These paths correspond to dynamics that we will not
check using index theory. A practical way to perform this step is to remove edges and vertices
not contained in the strongly connected components (SCC) of G. We will now study Conley
indices for periodic symbol sequences in ΣT̃ represented by cycles in G.

As discussed in section 2.2, we consider restricted index maps

f ij
Pk : Hk(P1, P0 ∪ (∪l 	=iNl)) → Hk(P1, P0 ∪ (∪l 	=j Nl)).

To do this, we first group the generators of Hk(P1, P0) remaining after running Algorithm 5
by region. Again, thinking of fPk as a matrix with rows and columns corresponding to the
generators of Hk(P1, P0), we have that

(3.5) f ij
Pk := fPk(gNj , gNi),

where gNi are the (row/column) indices of generators in Hk(P1, P0 ∪
⋃

l 	=iNl) ⊂ Hk(P1, P0).
Here, f ij

Pk is as an nj × ni matrix, where ni and nj are the number of generators in regions
Ni and Nj, respectively. To simplify notation, for a path p = (s1, s2, . . . , sn), let

(3.6) fp
Pk := f

sn−1sn

Pk ◦ · · · ◦ f s1s2
Pk .

Definition 3.5. We say that a cycle c = (s1, s2, . . . , sn, s1) in G is verified if, for some k,

tr(f c
Pk) = trk Con(S′, fNsn

◦ · · · ◦ fNs1
) �= 0,

where S′ := Inv(Ns1 , f |Nsn→Ns1
◦ · · · ◦ f |Ns1→Ns2

). Note that, by Corollary 2.15, ρ−1(s) �= ∅,
where s = (s1s2 . . . sns1 . . . sn . . .) is the periodic symbol sequence corresponding to the verified
cycle.

Before discussing our automated approach for verifying cycles, we give the following the-
orem to serve as motivation for this work.

Theorem 3.6. Let ΣT be the space of symbol sequences with symbol transition matrix T ,
and let Per(ΣT ) be the set of periodic symbol sequences in ΣT under σT . Suppose that
ΣT = Per(ΣT ) and for each s = (s1 . . . sns1 . . . sn . . .) ∈ Per(ΣT ) the corresponding cycle
c = (s1, s2, . . . , sn, s1) in G has been verified according to Definition 3.5. Then the itinerary
function ρ is a semiconjugacy between f : S → S and σT : ΣT → ΣT , where S := ρ−1(ΣT ) ⊂ S̃.

Proof. The itinerary function ρ : S̃ → ΣT is continuous and ρ◦f = σT ◦ρ (see section 2 and
references therein). Furthermore, since each cycle in G corresponding to a periodic symbol
sequence in ΣT has been verified according to Definition 3.5, ρ maps onto Per(ΣT ). Since ρ
is continuous, S̃ := Inv(N, f) is compact, and ΣT is Hausdorff, ρ must map onto the closure
of the set of of periodic symbol sequences, Per(ΣT ) = ΣT . Therefore, ρ : S → ΣT is a
semiconjugacy.

The list of cycles that may be verified according to Definition 3.5 relies implicitly on the
form of fP and, more specifically, on f ij

Pk for k = 0, 1, 2, . . . and i, j ∈ {1, . . . ,m}. For the



1494 SARAH DAY, RAFAEL FRONGILLO, AND RODRIGO TREVIÑO

examples studied in section 4, the homology maps fPk are trivial for all k �= 1. Therefore,
for these examples we fix k = 1, as any other choice will necessarily lead to a zero trace and
failure to verify all cycles. For different systems, there may be more flexibility in the choice
of k. Given a fixed k, the question of how the list of verified cycles relies on choices of i and j
is far more subtle. We begin this discussion by fixing k and considering the case where each
region contains exactly one homology generator (ni = 1 for all i = 1, . . . ,m). We will then
discuss the more difficult case where some regions have multiple homology generators.

Note that if there is only one generator per region, then f ij
Pk is a scalar for all admissible

transitions t̃ji = 1 in T̃ . In this case, if f ij
Pk �= 0 for all admissible transitions, then for any

admissible periodic symbol sequence s = (s1s2 . . . sns1s2 . . . sn . . .) with corresponding cycle
c = (s1s2 . . . sns1), tr(f c

Pk) �= 0, and therefore all cycles in G are verified. If, on the other
hand, f ij

Pk = 0 for some admissible transition, then any cycle c with edge (i, j) will have
tr(f c

Pk) = 0 and cannot be verified using this approach. In this case, we remove this transition
from the set of admissible transitions by removing the edge (i, j) from G and, correspondingly,
by setting tji = 0 in T . In essence, cycle verification computations in the setting where there
is exactly one homology generator per component boil down to a (finite) check that entries in
fPk corresponding to admissible transitions in T are nonzero.

If there are regions that contain more than one generator of homology, then these compu-
tations become more complicated. In what follows, we will systematically process the cycles
in G. In the first phase of the procedure, we process paths and cycles in G in an attempt verify
cycles. Alternatively, one can think about identifying all cycles that may not be verified by
our approach. Along these lines, we will label certain cycles as unverifiable and certain paths
as unconcatenable. From these, we will identify a collection of edges that need to be removed
from the graph so that all remaining cycles are verified cycles. Note that in what follows,
labeling a path unconcatenable does not mean that cycles containing this path may not be
verified according to Definition 3.5, only that we may not verify some such cycles using our
prescribed list of finite computations. Let Max Iter be a nonnegative integer that will serve
as a computational parameter.

Definition 3.7. Define the edge set for a path p = (v0, . . . , vn) to be

E(p) := {(vi, vi+1) ∈ E(G) | i = 0, . . . , n− 1}

and the length of p to be |p| = n. Consider a cycle c = (s, v2, v3, . . . , vn−1, s) starting and
ending at vertex s. If tr(f c

Pk) = 0, then c is unverifiable. (See also Definition 3.5.)
A path p = (s, v2, v3, . . . , vn−1, t) from s to t of length |p| ≤ Max Iter is unconcatenable

if fp
Pk = 0.
For a path p = (s, v2, v3, . . . , vn−1, t) from s to t of length |p| = Max Iter, p is concatenable

if there exists a path p′ from s to t with |p′| < Max Iter, E(p′) ⊆ E(p), and fp
Pk = αfp′

Pk �= 0
for some α �= 0. If no such path p′ exists, then p is unconcatenable.

Finally, an edge set E is prohibited (at computational parameter Max Iter) if at least
one of the following holds:

1. there exists an unverifiable cycle c with |c| ≤ Max Iter and E(c) ⊆ E,
2. there exists an unconcatenable path p with E(p) ⊆ E.
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Lemma 3.8. If c is a cycle whose edge set E(c) is not prohibited, then c is a verified cycle.
Proof. Suppose that |c| ≤ Max Iter. Since E(c) is not prohibited, c must be a verified

cycle.
Next, notice that in the natural partial ordering on edge sets, if E′ is prohibited, then so

is E for any E containing E′. Therefore, E(c) must not contain any prohibited subsets. If
|c| > Max Iter, then c is the concatenation of two paths, p1 and p2, where |p2| = Max Iter.
We will use the notation p1p2 to denote the concatenation of paths p1 and p2. Label the
start/end vertices s1, t1 and s2, t2 of p1 and p2, respectively. Note that s1 = t2 and t1 = s2 by
construction. Since E(p2) ⊆ E(c) is not prohibited, there exists a path p′2 from s2 to t2 with
E(p′2) ⊆ E(p2), |p′2| < Max Iter, and fp2

Pk = αf
p′2
Pk for some α �= 0. Therefore,

f c
Pk = fp2

Pkf
p1

Pk

= αf
p′2
Pkf

p1

Pk

= αf c′
Pk,

where c′ = p1p
′
2 is a cycle with E(c′) = E(p1) ∪ E(p′2) ⊆ E(c) and length |c′| ≤ |c| − 1.

Continuing this process, we obtain a cycle c̃ with |c̃| ≤ Max Iter, E(c̃) ⊆ E(c), and f c
Pk = α̃f c̃

P k

for some α̃ �= 0. Since E(c̃) cannot be prohibited, c̃ must be verifiable and

tr(f c
Pk) = tr(α̃f c̃

P k) = α̃ tr(f c̃
P k) �= 0.

Therefore, c is a verified cycle.
Lemma 3.8 and Theorem 3.6 provide an outline of our approach for constructing the

semiconjugate system. By Lemma 3.8, we know that all cycles that do not have prohibited
edge sets are verified cycles and may be used to construct the semiconjugate system according
to Theorem 3.6. In practice, we use the prohibited edge sets to identify a collection of edges
to be removed from G, resulting in the desired semiconjugate system.

We now give an outline of our procedure for locating prohibited edge sets by collecting
and testing appropriate matrix products along paths in G. The algorithm outputs a collection
of minimal prohibited edge sets B; that is, for any prohibited edge set E, there is a prohibited
edge set E′ ∈ B with E′ ⊆ E.

Algorithm 6 (Find prohibited edge sets).
INPUT: graph G, index map fPk, computational parameter Max Iter;
OUTPUT: list of minimal prohibited edge sets B
B = find prohibited edge sets(G, {fPk}, Max Iter)

B = ∅;
for all s, t ∈ V (G), E ⊂ E(G), set all M(s, t, E, k) = ∅;
for all (s, t) ∈ E(G),

if s == t and tr(f st
Pk) == 0, B = B ∪ {(s, t)};

else M(s, t, {(s, t)}, 1) = {f st
Pk};

end
end
for k = 1 . . . Max Iter,

for s, t ∈ V (G), E ⊆ E(G), M ∈ M(s, t, E, k),
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for (t, u) ∈ E(G),
E′ = E ∪ (t, u);
M ′ = f tu

PkM;
if (M ′ == 0) or (s == u and tr(M ′) == 0),

B = B ∪ {E′};
set M(s′, t′, E′′, �) = ∅ for all s′, t′ ∈ V (G), E′ ⊆ E′′ ⊆ E(G), � ≤ k;

else if �M ′′ ∈
⋃

�<k
E′′⊆E′

M(s, t, E′′, �), with M ′′ == αM ′ for some α �= 0,

M(s, t, E′, k + 1) = M(s, t, E′, k + 1) ∪ {M ′};
end

end
end

end
B = B ∪ {E ⊂ E(G) | M(s, t, E, Max Iter) �= ∅ and E minimal};
return B;
In practice, it is more efficient to apply Algorithm 6 only to a subgraph of G that captures

the behavior of the system in the regions with multiple homology generators. More specifically,
we first study G restricted to the vertices for multiple generator regions and the neighboring
single generator regions. This allows us to take advantage of the fact that fp

Pk is a scalar for
all paths p starting and ending at vertices for single generator regions. By removing enough
edges so that there are no remaining prohibited edge sets in the subgraph, we can reduce the
check that cycles remaining in G are verified to a check that the maps f ij

Pk between single
generator regions are nonzero. This is the approach we adopt for the results described in
section 4.

For all cycles c in G that do not contain any prohibited edge sets (listed in B), c is a
verified cycle by Lemma 3.8. What remains for the construction of a subgraph G′ of verified
cycles is to remove enough edges so that we no longer have any cycles with prohibited edge
sets. Since our goal is to obtain a high lower bound for entropy, we will select one edge
from each prohibited edge set so that the removal of these edges results in the semiconjugate
symbolic system with highest entropy. Again, since the list of prohibited edge sets is finite
(and each prohibited edge set is finite), the computation of optimal edges to remove is finite.
Removing the edges yields a graph in which all cycles may be verified using Corollary 2.15.
By Theorem 3.6, the corresponding adjacency matrix, T , defines a semiconjugate symbolic
system.

The following is an outline of the procedure for breaking prohibited edge sets.
Algorithm 7 (Break prohibited edge sets).

INPUT: graph G, a list of prohibited edge sets B,
OUTPUT: graph G′ in which all cycles may be verified via Corollary 2.15
G′ = break prohibited edge sets(G, B)
if B = ∅, return G′ = G;
hmax = −1;
Ec = ∅;
for each set {e1, e2, . . . , eN}, where ei is an edge on the ith cycle in B,

let G′ be the subgraph of G obtained by removing edges e1, e2, . . . , eN;
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let T (G′) be the adjacency matrix for G′;
h = log(sp(T (G′)));
if h > hmax,
hmax = h;
Ec = {e1, e2, . . . , eN};

end
end
let G′ be the subgraph of G obtained by removing the edges in Ec;
return G′;

Combining Algorithms 6 and 7, Theorem 3.6 guarantees that the following algorithm
produces a symbol transition matrix T with σ : ΣT → ΣT semiconjugate to f : S → S. Noting
that f ij

Pk = 0 will cause the verification procedure to fail for any cycle containing edge (i, j),
we will start with a graph G on the same vertex set with the edge set E = {(i, j) | f ij

Pk �= 0}.
Algorithm 8 (Build subshift).

INPUT: index map fPk : Hk(|P1|, |P0|) → Hk(|P1|, |P0|),
computational parameter Max Iter

OUTPUT: symbol transition matrix T for semiconjugate subshift of
finite type

T = build subshift(fPk, Hk(|P1|, |P0|), Max Iter)
fPk = remove transient generators(fPk);
set m to be the number of disjoint components of Hk(|P1|, |P0|);
V = {1, . . . ,m};
E = {(i, j) ∈ V × V | f ij

Pk �= 0};
G = G(V,E);
G = SCC(G); (removes all edges not contained in cycles)
U = find prohibited edge sets(G, fPk, Max Iter);
G′ = break prohibited edge sets(G, U);
T is the adjacency matrix for graph G′;
return T;

4. An example: The Hénon map. As illustration, we now apply our techniques to the
Hénon map

(4.1) h(x, y) = (1 + y − ax2, bx)

at the classical parameters a = 1.4, b = 0.3. Since its first appearance in [Hén76], there has
been extensive research on the Hénon map. The first result concerning a real description of the
chaotic dynamics of the Hénon map is [MS80], where the existence of a transverse homoclinic
point, and hence the existence of horseshoe dynamics, is proved. In [Szy97], Szymczak used
Conley index theory to give a computer-assisted proof of the existence of periodic orbits of all
periods except three and five. In [Gal02], Galias employed the method of covering relations
(related to Easton’s windows) to give a computer-assisted proof of the existence of an infinite
number of homoclinic and heteroclinic trajectories. [Gal02] also contains a result which gives
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a rigorous lower bound for the topological entropy of the map htop(h) ≥ 0.4300. In [NBGM08],
Newhouse et al. use the planar structure of the Hénon map to compute htop(h) ≥ 0.46469,
the highest lower bound on the entropy for Hénon at the classical parameter values currently
reported.

For this work, we use the GAIO software package to construct grids, G(d), at discretization
depths 0 ≤ d ≤ 12, on the initial box [−1.425, 1.425]×[−0.425, 0.425] (see section 2.3). We then
use the interval arithmetic package INTLAB [Cse99] to compute a combinatorial enclosure,
H, on G(d) as

H(I1 × I2) = {G ∈ G(d) | h̃(I1, I2) ∩G �= ∅},

where I1 × I2 is an element in G(d) in interval product notation and h̃(I1, I2) denotes the
rectangular image of h(I1, I2) computed using (outward rounding) interval arithmetic. Finally,
we use Matlab scripts encoding the algorithms outlined throughout the paper to find and
compute the required Conley index structures and subshifts of finite type. In the following
sample results, we describe three different techniques for producing the region of interest
S ⊂ Gd. Given S, the main approach is the following.

Algorithm 9 (Main).

INPUT: grid Gd, combinatorial enclosure H on G,
region of interest S, computational parameter Max Iter

OUTPUT: lower bound on the topological entropy of h ENTROPY
ENTROPY = compute entropy lower bound(Gd, H, S, Max Iter)

ENTROPY = 0;
N = grow isolating neighborhood(S); (Algorithm 1)
[P1,P0] = build index pair(N); (Algorithm 2)
fP∗ = compute index map(P1, P0, H, Gd); (Algorithm 3)
for k = 1 . . . dim(Gd), with fPk �= 0,

T = build subshift(fPk, Hk(|P1|, |P0|), Max Iter); (Algorithm 8)
ENTROPY := max{ENTROPY, log(sp(T ))};

end
return ENTROPY;

4.1. Joining two short cycles. For purposes of illustration, we begin with a relatively
simple example on the grid at depth d = 7. Although the resulting entropy lower bound,
0.2406, is small, this example provides us with matrices of reasonable sizes for depicting the
results of various stages of the procedure. For this example, we locate a region of interest, S,
by searching the computed enclosure H on G(7) for a cycle of length 2, a cycle of length 4, and
shortest path connections from the 2-cycle to the 4-cycle and from the 4-cycle to the 2-cycle.
S is the union of these four objects. Applying Algorithms 1 and 2 to S results in the index
pair given in Figure 2.
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(a)

(b)

Figure 2. (a) A combinatorial index pair, (P1,P0), computed using Algorithms 1 and 2 for the Hénon map
at depth d = 7. (P0 is the collection of boxes shown in cyan.) (b) The corresponding symbol transition graph
produced by Algorithm 8.

Theorem 4.1. The topological entropy of the Hénon map (4.1) is bounded from below by
0.2406.

Proof. The computed index map for the index pair depicted in Figure 2(a) is

hP,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B B B B C D E F F

A 0 0 0 0 0 0 −1 0 0 −1
B 0 0 0 0 0 0 −1 0 0 0
B 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 0 0 0 1 0
C 1 0 0 0 0 0 0 0 0 0
D 0 1 0 1 0 0 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0
F 0 0 0 0 0 0 0 −1 0 0
F 0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The rows and columns are labeled by location of the corresponding homology generator in
the labeled regions of the isolating neighborhood (see Figure 2(a)). Applying Algorithm 5 for
removing transient generators to hP,1 produces the shift equivalent matrix
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B B C D E F F

A 0 0 0 0 −1 0 0 −1
B 0 0 0 0 −1 0 0 0
B 0 0 0 0 0 0 1 0
C 1 0 0 0 0 0 0 0
D 0 1 1 0 0 0 0 0
E 0 0 0 1 0 0 0 0
F 0 0 0 0 0 −1 0 0
F 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the matrix labeled A22 in Theorem 3.1 and is obtained by an appropriate reordering of
the basis. Note that this algorithm removed two of the homology generators in region B and,
therefore, reduced the size of the representative of the shift equivalence class/Conley index.

As an example computation, using Corollary 2.15 to verify the cycle (B,D,B), we check
that

tr1(Con(S′, f |D→B ◦ f |B→D)) = tr
(
hDB

P,1 h
BD
P,1

)
= tr1

([
−1

0

] [
1 1

])

= tr1

([
−1 −1

0 0

])
�= 0.

Running Algorithm 8 on A to verify a collection of cycles results in the construction of a
semiconjugate subshift system with symbol transition matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

A B C D E F

A 0 0 0 1 0 1
B 0 0 0 1 0 1
C 1 0 0 0 0 0
D 0 1 0 0 0 0
E 0 0 1 0 0 0
F 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠.

The corresponding symbol transition graph is given in Figure 2(b). Since the log of the
spectral radius of T is greater than 0.2406, the result follows from Theorem 2.7.

4.2. Joining low cycles (Algorithm 4). We now focus on improving the bound by refining
the grid and using Algorithm 4 to compute a more complicated region of interest.

This approach results in the following theorem.
Theorem 4.2. The topological entropy of the Hénon map (4.1) is bounded from below by

0.4320.
Outline of proof. Given the enclosure H on G(12), we use Algorithm 4 with Max Cycle Length

= 7 to produce the region of interest S. We then follow Algorithm 9. The index pair for S
appears in Figure 3. Algorithm 3 returns an index map on 1521 relative homology gener-
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Figure 3. The combinatorial index pair, (P1,P0), constructed starting with Algorithm 4 for Theorem 4.2
at depth 12. (P0 is the collection of boxes shown in cyan.)

ators. Algorithm 5 reduces this map to a shift equivalent map on 309 generators. Finally,
Algorithm 8 produces a semiconjugate subshift of finite type with 247 symbols. The symbol
transition matrix for the constructed subshift is depicted in Figure 4. The log of the spectral
radius of T is bounded from below by 0.4320. The result then follows from Theorem 2.7.

For the above result computed on the grid G(12), we choose the maximal cycle length
for Algorithm 4 to be Max Cycle Length = 7. This choice is made because choosing instead
Max Cycle Length < 7 yields a lower bound than that given in Theorem 4.2, and choosing
Max Cycle Length > 7 yields an entropy lower bound of 0. This behavior is depicted in
Figure 5. The reason that choosing a large maximal cycle length leads to a 0 lower bound is
that the corresponding isolating neighborhood produced by Algorithm 1 is a covering of the
entire attractor, with corresponding trivial symbolic dynamics.

In principle, improving the bound requires only extra computational cost. Figure 6 shows
the change in the computed entropy bound with increase in resolution of the grid (and cor-
responding increase in computational expense) for the Hénon map. The dip in the graph at
depth 11 is of interest because, in general, we expect a monotonic increase in the computed
entropy bound with increase in resolution of the grid. This nonmonotonic behavior indicates
that our choice of region of interest, S, in Algorithm 4 is indeed suboptimal. In fact, choosing
S to be the boxes in G(11) contained in the isolating neighborhood N returned by Algorithms
4 and 1 on G(10) would yield the same entropy as that computed at depth 10, and so it is
possible to compute a higher entropy bound at this resolution.
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Figure 4. A depiction of the nonzero entries of the 247 × 247 symbol transition matrix for the subshift of
finite type constructed for Theorem 4.2.
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Figure 5. Entropy lower bounds computed using Algorithm 4 for the Hénon map on grid G(12) at varying
maximal cycle lengths N .
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Figure 6. Entropy lower bounds for the Hénon map computed on regions given by Algorithm 4 on grids
G(d) of varying depth d.

4.3. Fold preimage removal. A priori knowledge of the Hénon map suggests another ap-
proach for constructing the region of interest S. We notice that indices for cycles traveling
too close to the “fold” of the attractor (at approximately (1.2717,−0.0207)) are necessarily
trivial. Here, the Hénon map loses hyperbolicity, and the resulting induced map on homol-
ogy maps the corresponding generator to zero. Out of curiosity, we now take the opposite
approach of removing boxes from the covering of the attractor in an attempt to find an iso-
lating neighborhood with interesting associated symbolic dynamics. Here we start with a box
covering of the maximal invariant set (in this case, Hénon’s strange attractor) and remove
a small box neighborhood of the fold. We then remove a fixed number of preimages of this
collection of boxes from the covering of the maximal invariant set. This procedure is outlined
in Algorithm 10. From the resulting region of interest, we grow an isolating neighborhood
and construct and verify symbolic dynamics as outlined in Algorithm 9.

Algorithm 10 (Fold preimage removal for constructing S).
INPUT: grid Gd, combinatorial enclosure H on Gd,

region N 0
f ⊂ Gd containing the fold point,

computational parameter Max Preimage Iter
OUTPUT: region of interest S
S = fold preimage removal(Gd, H, Max Preimage Iter)

Nf = N 0
f ;

S = Gd \ Nf;
for i = 1 . . . Max Preimage Iter,

Fold Iter = H−1(Nf );
S = S \ Nf;

end
return S;
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Figure 7. Entropy lower bounds computed using the fold preimage removal technique for the Hénon map on
grid G(12). The horizontal axis gives the number, Max Preimage Iter, of preimages of the fold removed before
growing the isolating neighborhood.

Figure 7 depicts entropy bounds resulting from computations made starting with Al-
gorithm 10 and various values of Max Preimage Iter. Removing too few preimages of the
fold boxes (Max Preimage Iter small) does not yield interesting symbolic dynamics since
we are unable to isolate this set at the given resolution. Removing too many preimages
(Max Preimage Iter large) results in a subshift system consisting of disjoint cycles with 0 en-
tropy. At depth 12, Max Preimage Iter = 11 provides the highest entropy bound, and this
optimal constant increases at greater depths.

We obtain the following theorem by applying this third approach to the Hénon map.
Theorem 4.3 (fold and preimage removal). The topological entropy of the Hénon map (4.1)

is bounded from below by 0.4225.
Outline of proof. Starting with a covering of the Hénon attractor by elements in G(12), we

use Algorithm 10 to remove Max Preimage Iter = 11 preimages (under H) of (1.2717,−0.0207)
+[−0.04, 0.04]×[−0.002, 0.002], a neighborhood of the “fold.” We then use the resulting region
of interest S together with G(12), and H as the input for Algorithm 9. The computed index
pair is shown in Figure 8. The homology map computed using Algorithm 3 is a map on 1281
generators of the first relative homology group. Algorithm 5 reduces the number of required
generators to 191 by computing an appropriate shift equivalent index map. Finally, Algo-
rithm 8 produces a topologically conjugate subshift on 129 symbols with topological entropy
bounded from below by 0.4225. The result follows from Theorem 2.7.

5. Concluding remarks. We have described an automated, algorithmic method for study-
ing the dynamics of a discrete dynamical system f : X → X. The method not only constructs
a semiconjugate subshift of finite type, but also uses this information to compute a rigorous
lower bound on the topological entropy for the system. The essential ingredient to this ap-
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Figure 8. The combinatorial index pair, (P1,P0), constructed starting with Algorithm 10 at depth 12. (P0

is the collection of boxes shown in cyan.) The red rectangle shows the neighborhood of the fold point whose
preimages were removed to construct the region of interest S.

proach is a computable “coarse” level of hyperbolicity in the map which is required to obtain
a nontrivial Conley index. As the procedure stands, greater computational effort may be em-
ployed to improve the bounds. However, further analysis and optimization of the procedure
described in section 3.1 for locating a region of interest should lead to even stronger results.
A referee suggestion to consider more general sofic shifts rather than subshifts of finite type
may also lead to the construction of semiconjugate symbolic dynamical systems with higher
entropy.

The index processing techniques introduced in section 3.2 will enable further studies along
these lines. As mentioned in the introduction, even infinite-dimensional systems may be
studied in this manner. For such systems, it is necessary to incorporate both a dimension
reduction for obtaining a computable system and analysis to overcome this reduction. These
ideas are described in more detail in [DJM04] and would not, in principle, hinder entropy
measurements of the type presented here.

Acknowledgments. The authors would like to thank Jim Wiseman and a referee for very
helpful comments on the content and the structure of this paper.
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Asymptotic Expansions of I-V Relations via a Poisson–Nernst–Planck System∗
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Abstract. We investigate higher order matched asymptotic expansions of a steady-state Poisson–Nernst–Planck
(PNP) system with particular attention to the I-V relations of ion channels. Assuming that the
Debye length is small relative to the diameter of the narrow channel, the PNP system can be viewed
as a singularly perturbed system. Special structures of the zeroth order inner and outer systems
make it possible to provide an explicit derivation of higher order terms in the asymptotic expansions.
For the case of zero permanent charge, our results concerning the I-V relation for two oppositely
charged ion species are (i) the first order correction to the zeroth order linear I-V relation is generally
quadratic in V; (ii) when the electro-neutrality condition is enforced at both ends of the channel,
there is NO first order correction, but the second order correction is cubic in V. Furthermore
(Theorem 3.4), up to the second order, the cubic I-V relation has (except for a very degenerate
case) three distinct real roots that correspond to the bistable structure in the FitzHugh–Nagumo
simplification of the Hodgkin–Huxley model.

Key words. singular perturbation, matched asymptotic expansion, I-V relations
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1. Introduction. The Poisson–Nernst–Planck (PNP) systems are basic electro-diffusion
equations modeling, for example, ion flow through membrane channels and transport of holes
and electrons in semiconductors (see, for example, [3, 4, 5, 10, 21, 32, 39, 18, 19, 34, 35]).
In the context of ion flow through a membrane channel, the flow of ions is driven by their
concentration gradients and by the electric field modeled together by the Nernst–Planck con-
tinuity equations, and the electric field is in turn determined by the concentrations through
the Poisson equation. The PNP system describes the current flow at low resolution; that is,
it is an approximate description of the transport process [3] appropriate when channel selec-
tivity (between different chemical species of ions) is not of importance, as, for example, in the
numerous classical studies of the gramicidin channel [51] most recently reviewed in [1, 2] (see
also [16, 36, 37, 11, 25, 51, 17, 20]). Derivation from a Langevin model of ionic diffusion [42]
shows how correlations are approximated in PNP systems and suggests extensions of the PNP
approach to deal with selectivity arising from excess chemical potentials [13, 14, 6]. The bio-
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logical properties of a channel called permeation can be described by the PNP equations. The
biological properties called selectivity can be described by the extended PNP equations. Both
permeation and selectivity are characterized by the current-voltage (I-V) relation measured
experimentally under different ionic conditions.

The domain for the PNP system is a three-dimensional region including both the channel in
the middle and the two baths at the ends of the tube. Thus there are some specifics regarding
the domain geometry: the middle part of the domain representing the channel is much more
narrow than the two ends that represent the two baths. A reasonable model of the domain
would be a tubular-like region for the channel and two widely open conical regions for the
baths. Another structure of the channel is its permanent charge, which is highly concentrated
at the neck (center) of the channel. To capture the essence of the three-dimensional dynamics,
one-dimensional PNP systems have been introduced with the key geometry (h(x) in (1.1)) of
the three-dimensional domain encoded in the equations. In particular, the following one-
dimensional (steady-state) PNP system for n types of ion species was suggested by Nonner
and Eisenberg in [32] and is derived in [42] and analyzed in [29] under the assumption that
the characteristic radius of the channel is much smaller than its length:

ε2

h(x)
d

dx

(
h(x)

d

dx
φ

)
= −

n∑
j=1

αjcj −Q(x),

dJk

dx
= 0, h(x)

dck
dx

+ αkckh(x)
dφ

dx
= −Jk, k = 1, 2, . . . , n.

(1.1)

Here the channel is normalized from x = 0 to x = 1; h(x) is the scaled area function of the
cross section of the channel at location x; Q(x) is the permanent charge density; ε2 = λ/r,
where λ is the Debye length and r is the characteristic radius of the channel; φ is the electric
potential; and, for each k = 1, 2, . . . , n, ck is the concentration, αk is the valence, and Jk

is the flux density (scaled by the diffusion constant) of the kth ion species. Note that Jk’s
are constant since we are considering the steady-state PNP system. The Debye length is
customarily computed from the concentrations of ions on one side of the channel or the other,
but we note for completeness that in some conditions the concentration of ions in the channel
itself is quite different from that in the baths, and so the “local” Debye length (describing the
inside of the channel) is quite different as well.

The baths are macroscopic regions in which the concentration of charges is nearly constant
(because the dimensions of the reservoirs are macroscopic and so the total number of charges
is hardly changed by the flows) and electrical potentials are nearly constant too. It is then
natural to impose the following boundary conditions:

(1.2) φ(0) = V, ck(0) = Lk > 0; φ(1) = 0, ck(1) = Rk > 0.

Here V is the electric potential in the bath at the left end relative to that at the right end,
and, for k = 1, 2, . . . , n, Lk and Rk are the concentrations of the kth ion species in the left
and right baths, respectively.

In our one-dimensional setting, we model the region by a finite interval (normalized to
[0, 1]). In this way, the interval can be partitioned into several subintervals so that the perma-
nent charge takes large (in magnitude) values in the middle subintervals and small values away
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from middle (zero near 0 and 1). There are other choices for the one-dimensional domain.
For example, in [44], the whole real line is taken instead of a finite interval, and the boundary
conditions are imposed at infinity. These two scalings correspond to different interpretations
of relative ratios of different lengths involved in the biological problem. The mathematical
treatment would be the same except at the boundaries. At this moment, it is not clear to us
which interprets the biology better. Since the types of channels are so rich, we suspect that
one scaling is better for certain types of channels and the other is better for other types.

With the setting in (1.1) and (1.2), the I-V relation means the dependence of the current
I =

∑
αkJk on the voltage V for fixed Lk’s and Rk’s. We remark that, in general, the I-V

relation is NOT unique (see [30, 38, 39, 45, 46, 10] for Q �= 0 and see [28] even for Q = 0).
Understanding the nonuniqueness issue is critical for ion channels because nonuniqueness
might explain the gating behavior of single channels, which switch suddenly and stochastically
from one current level to another [16, 40, 31, 15]. Nonuniqueness is directly related to the
stability of the corresponding steady states. The study of the stability problem is beyond the
scope of this work. In section 3, we will consider special cases where the I-V relation is indeed
unique.

System (1.1) together with the boundary condition (1.2) will be treated as a singular
boundary value problem with ε� 1 as the singular parameter. In, e.g., [5, 12, 27], the zeroth
order I-V relation is explicitly obtained for two types of ion species and Q = 0 (see [10, 28] for
a treatment of general situations and [44, 43] for a treatment using a three-dimensional PNP
model). The zeroth order I-V relation, in this case, is linear. Experimental data show clearly
a nonlinear I-V relation. But there is not much discussion on the nature of the nonlinearity
except the famous Goldman–Hodgkin–Katz (GHK) I-V equation, which has been used to
analyze experimental data for nearly 60 years but does not include such useful and necessary
parameters as the charge of the channel protein.

It is our goal in this paper to examine higher order asymptotic expansions of the I-V
relation. In particular, we are interested in higher order corrections to the zeroth order I-V
relation. To obtain higher order asymptotic expansions of the I-V relation requires higher
order asymptotic expansion of φ and ck’s. Both the classical matched asymptotic expansion
method and the geometric singular perturbation method work well for the zeroth order term
(see [5, 12, 27]) at least for the special case mentioned above. An advantage of the geometric
method is that it also provides a rigorous justification directly of the validity of the zeroth order
terms. But, for higher order terms, a direct application of the geometric singular perturbation
theory seems not to work. Roughly speaking, it is not clear how to fully incorporate the
information on the zeroth order terms in deriving systems for higher order terms. In fact,
some natural approaches for higher order terms result in singularly perturbed systems that
do not have the so-called slow manifolds. We therefore take the classical matched asymptotic
expansion approach for higher order terms.

It is known that higher order terms satisfy linear but nonautonomous and nonhomoge-
neous systems. The homogeneous parts of the linear systems are the same and are nothing
but the linearizations of the zeroth order nonlinear system along the zeroth order (inner and
outer) solutions. Also known is the fact that it is generally impossible to get explicit solutions
of a linear nonautonomous system. A special feature of the problem at hand is that the zeroth
order nonlinear system possesses a complete set of integrals, and each integral provides an
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integral for the linearization (see Propositions 2.1 and 2.2). It is this feature that allows us to
carry out a detailed asymptotic analysis. Theoretically, any order of the asymptotic expansion
can be found. But there are several technical difficulties even for obtaining the zeroth order
terms; that is, one has to solve some nonlinear algebraic systems that are too complicated
to expect explicit solutions in general. As a starting point, we will restrict ourselves to the
simplest case where n = 2, h = 1, Q = 0, α1 = −α2 = 1. From the biological point of view,
the most restrictive part of this constraint is Q = 0, since many channels have significant
permanent charge. However, many channels are analyzed without consideration of permanent
charge. The classical channel gramicidin, which has been simulated much more than any other
channel we know of, has often been approximated that way [2, 51, 36, 37]. Maltoporin—one
of the few channels with known high resolution crystallographic structure—has insignificant
permanent charge [50, 24, 7, 49, 41]. Mathematically, this simplification allows us to obtain
exact asymptotic expansions and, from those, explicit qualitative properties of I-V relations
can be derived. Furthermore, a perturbation argument will allow one to generalize the result
to cases where Q is small. Also, as mentioned above, we believe that the approach will work
for general cases, say, a piecewise constant Q for quantitative results, particularly with the
help of numerics. (This is a project that we will pursue in the future.) It should be clearly
understood that some biological phenomena of importance—e.g., selectivity between cations—
will not appear until three ions are considered, perhaps with different diffusion coefficients for
each ionic type. Readers interested in more general cases may carry out the analysis along
the lines of this paper with some extra analysis (see remarks in section 4).

For the special case where n = 2, α1 = −α2 = 1, h = 1, and Q = 0, our results give a
definite nonlinear characterization of the I-V relations up to the second order (O(ε2)). More
precisely, the first order correction to the zeroth order linear I-V relation is generally quadratic
in V given in (3.20), but, when the electro-neutrality condition is imposed at both ends of the
channel, the first order correction is zero. The second order correction is cubic in V even with
the electro-neutrality condition (see formula (3.26)). Furthermore, the coefficient of the cubic
term is always negative except for a highly degenerate case (see Theorem 3.4). The importance
of this negative sign is that, up to the second order, the cubic I-V function has three distinct
real roots—this agrees qualitatively with the I-V relation adopted in the FitzHugh–Nagumo
simplification of the Hodgkin–Huxley systems. The existence of three roots of the I-V relation
is responsible for the bistable structure in the FitzHugh–Nagumo system and may be related
to the instabilities in biological channels called single channel gating [16, 40, 31, 15] and to
the instabilities seen by [47, 48] in abiotic nanopores that have fixed structure. It should be
pointed out that our analysis via the PNP system describes current flow through a single
channel, and the FitzHugh–Nagumo equations (like the Hodgkin–Huxley system) describe an
ensemble of channels in a biological membrane. The current through an ensemble of channels
is determined by the current through a single channel and the gating process that determines
the number of open channels. The FitzHugh–Nagumo equations have not yet been applied to
abiotic channels of fixed structure [47, 48] as far as we know.

This paper is organized as follows. In section 2, we derive outer and inner systems for each
order in the asymptotic expansions for a general situation. Starting in section 3, we restrict
ourselves to the special case and examine the outer and inner expansions and matching. A
treatment for the zeroth order is included in subsection 3.1 for completeness, and the first order
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expansions and matching are detailed in subsection 3.2. In subsection 3.3, the analysis for the
second order is carried out under the electro-neutrality assumption. Possible generalizations
of our analysis and some general remarks are discussed in section 4.

For the reader’s convenience, we provide a table of some notation to be used in this paper:
x = 0: the left end of the channel;
x = 1: the right end of the channel;
φ(x): the electric potential over the channel;
0 = φ(1): the reference of the potential set at the right end;
V = φ(0): the relative potential at the left end;
ck(x): the concentration of the kth ion species over the channel;
Lk = ck(0): the concentration of the kth ion species at the left end;
Rk = ck(1): the concentration of the kth ion species at the right end;
Q(x): the permanent charge of the channel;
ε: the singular parameter related to the Debye length;
Jkj: the jth order in ε of the kth flux density;
Jk =

∑
j ε

jJkj : the flux density of the kth ion species;
Tj =

∑
k Jkj : the jth order in ε of the diffusion flux density;

Ij =
∑

k αkJkj: the jth order in ε of the current density;
T =

∑
j ε

jTj : the diffusion flux density;
I =

∑
j ε

jIj : the current density;
I-V relation: the dependence of I on V for fixed Lk, Rk, and Q.

2. Systems for asymptotic expansions. In this section, we derive the outer and inner
systems for the asymptotic expansions and describe the matching principle to be employed.
The outer systems govern the dynamics of ion flows within the channel, and the inner sys-
tems determine the potential boundary layers representing the effects of boundary conditions
coming from the bath conditions. The matching principle then provides the interaction be-
tween the boundary conditions and the internal dynamics. In this sense, the boundary layers
model the channel-bath interfaces. The process is standard but we will point out two special
structures, (2.4) and Proposition 2.1, that allow us to obtain explicit information.

2.1. Outer systems for each order. We assumeQ is constant and look for outer expansion
of the form, for k = 1, 2, . . . , n,

φ(x; ε) = φ0(x) + εφ1(x) + ε2φ2(x) + · · · ,
ck(x; ε) = ck0(x) + εck1(x) + ε2ck2(x) + · · · ,(2.1)

Jk = Jk0 + εJk1 + ε2Jk2 + · · · .

Substituting (2.1) into (1.1) and denoting the derivatives with respect to x by overdots,
with the convention that φ−1 = φ−2 = 0, δ0 = 1, and δj = 0 for j �= 0, the jth order system is

φ̈j−2 + h−1(x)hx(x)φ̇j−2 = −
n∑

l=1

αlclj − δjQ,

ċkj = −
∑

p+q=j

αkckpφ̇q − h−1(x)Jkj .
(2.2)
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Upon introducing uj = h(x)φ̇j , system (2.2) becomes

φ̇j−2 = h−1(x)uj−2,

u̇j−2 = −h(x)
n∑

l=1

αlclj − δjh(x)Q,(2.3)

ċkj = −h−1(x)
∑

p+q=j

αkckpuq − h−1(x)Jkj .

An observation is that the homogeneous part for Cj = (c1j , . . . , cnj)T is

(2.4) Ċj = −u0(x)
h(x)

DCj = −φ̇0(x)DCj ,

where D = diag{α1, . . . , αn} is a diagonal matrix. Once φ0(x) is found, system (2.4) can be
simply integrated:

Cj(x) = diag
{
e−α1(φ0(x)−φ0(0)), . . . , e−αn(φ0(x)−φ0(0))

}
Cj(0).

Hence, system (2.3) can be solved by the method of variation of parameters.

2.2. Inner systems for each order. There will be two sets of inner systems, one at the
boundary x = 0 and the other at the boundary x = 1.

2.2.1. Inner systems at the boundary x = 0. At the boundary x = 0, in terms of the
inner variable ξ = x/ε, let Φ(ξ; ε) = φ(εξ; ε), Ck(ξ; ε) = ck(εξ; ε). System (1.1) becomes, for
k = 1, 2, . . . , n,

h−1(εξ)
d

dξ

(
h(εξ)

d

dξ
Φ
)

= −
n∑

l=1

αlCl −Q,
dJk

dξ
= 0,

h(εξ)
dCk

dξ
+ αkCkh(εξ)

dΦ
dξ

= −εJk.

(2.5)

We look for the inner expansion of the form

Φ(ξ; ε) = Φ0(ξ) + εΦ1(ξ) + ε2Φ2(ξ) + · · · ,
Ck(ξ; ε) = Ck0(ξ) + εCk1(ξ) + ε2Ck2(ξ) + · · · ,(2.6)

Jk = Jk0 + εJk1 + ε2Jk2 + · · · .

Set
h(εξ) =

∑
p=0

εpr0pξ
p, h−1(εξ) =

∑
p=0

εps0pξ
p,

where

r0p =
1
p!
dph

dxp
(0) and s0p =

1
p!
dph−1

dxp
(0).
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Denote by primes the derivatives with respect to ξ, and substitute (2.6) into (2.5) to get,
for each j = 0, 1, . . . ,

∑
p+q+l=j

s0pξ
p(r0qξ

qΦ′
l)
′ = −

n∑
l=1

αlClj − δjQ,

C ′
kj = −

∑
p+q=j

αkCkpΦ′
q −

∑
p+q=j−1

s0pξ
pJkq.

(2.7)

By introducing Uj = a0Φ′
j, we recast system (2.7) as

Φ′
j = s00Uj , U ′

j = −r00
n∑

l=1

αlClj − δjr
0
0Q,

C ′
kj = −s00

∑
p+q=j

αkCkpUq −
∑

p+q=j−1

s0pξ
pJkq.

(2.8)

For j = 0, the system is

(2.9) Φ′
0 = s00U0, U ′

0 = −r00
n∑

l=1

αlCl0 − r00Q, C ′
k0 = −s00αkCk0U0,

and, for all j ≥ 1, system (2.8) has the same homogeneous part that is the linearization of the
zeroth order system (2.9).

A specific structure of system (2.9) is revealed in the following.
Proposition 2.1. The zeroth order inner system (2.9) has a complete set of (n + 1) first

integrals given by, for k = 1, 2, . . . , n,

Hk = Ck0e
αkΦ0 , Hn+1 =

s00
2r00

U2
0 −

n∑
l=1

Cl0 +QΦ0.

Proof. This can be verified directly (see also [28]).
A crucial result is given below. We believe it is known but did not find a reference in the

literature.
Proposition 2.2. Consider an autonomous system

(2.10) z′ = f(z), z ∈ Rm.

For a solution z0(t) of (2.10), consider the linearization along z0(t):

(2.11) Z ′ = Df(z0(t))Z, Z ∈ Rm.

If a C2 function H : Rm → R is an integral of system (2.10) (that is, H(z(t)) is independent
of t for any solution z(t) of (2.10)), then G(Z, t) = 〈∇H(z0(t)), Z〉 is an integral of the linear
system (2.11) (that is, G(Z(t), t) is independent of t for any solution Z(t) of (2.11)).
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Proof. Since H is an integral of (2.10), d
dtH(z(t)) = 0 for all t, or

〈∇H(z), f(z)〉 =
∑

j

∂jH(z)fj(z) = 0

for all z ∈ Rm. For any k = 1, 2, . . . ,m, take the partial derivative with respect to zk to get

(2.12)
∑

j

(
∂2

kjH(z)fj(z) + ∂jH(z)∂kfj(z)
)

= 0.

As a consequence of (2.12), a computation gives that d
dtG(Z(t), t) = 0.

As noted, the homogeneous part of (2.8) for j ≥ 1 is the linearization of the zeroth order
system (2.9); one can combine Propositions 2.1 and 2.2 to derive a complete set of integrals
for the homogeneous part of (2.8). An application of variation of parameters allows one to get
a closed form for the solutions of (2.8). For the general case presented in this section, certain
technical difficulties arise in evaluating integrals explicitly. This is the main reason that, in
section 3, we will restrict our analysis to a simple case.

2.2.2. Inner systems at the boundary x = 1. At the boundary x = 1, we use the inner
variable ξ = (−1 + x)/ε. Set Ψ(ξ; ε) = φ(1 + εξ; ε) and Dk(ξ; ε) = ck(1 + εξ; ε). We will then
look for the inner expansion of the form:

Ψ(ξ; ε) = Ψ0(ξ) + εΨ1(ξ) + ε2Ψ2(ξ) + · · · ,
Dk(ξ; ε) = Dk0(ξ) + εDk1(ξ) + ε2Dk2(ξ) + · · · ,(2.13)

Jk = Jk0 + εJk1 + ε2Jk2 + · · · .

In the same way as that for the boundary x = 0, one has, for each j,

∑
p+q+l=j

s1pξ
p(r1qξ

qΨ′
l)
′ = −

n∑
l=1

αlDlj − δjQ,

D′
kj = −

∑
p+q=j

αkDkpΨ′
q −

∑
p+q=j−1

s1pξ
pJkq,

(2.14)

where

r1p =
1
p!
dph

dxp
(1) and s1p =

1
p!
dph−1

dxp
(1).

By introducing Vj = r10Ψ
′
j, we get

Ψ′
j = s10Vj, V ′

j = −r10
n∑

l=1

αlDlj − δjr
1
0Q,

D′
kj = −s10

∑
p+q=j

αkDkpVq −
∑

p+q=j−1

s1pξ
pJkq.

(2.15)
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2.3. Asymptotic matching principle. To piece together the inner solution and outer so-
lution, one needs matching principles. There are two mainstreams in matching. One is the
method of intermediate matching of Kaplun and Lagerstrom and the other is the asymptotic
matching principle of Van Dyke (see [8, 9, 22, 23, 26]). The method of intermediate matching
is based rigorously on the so-called extension theorems, but in general the implementation is
more complicated than that of the asymptotic matching principle. The asymptotic matching
principle, with a suitable hypothesis, can be also rigorously justified. It turns out that, for the
problem handled in this paper, the so-called outer manifold is normally hyperbolic [10, 27],
and Van Dyke’s principle of asymptotic matching is justified (see, for example, [33]). We will
thus use the asymptotic matching principle for our matching purpose.

To state the principle of asymptotic matching, we recall the notion of kth order expansion
operators Ek

x and Ek
ξ in [26]: if, in terms of the outer variable x, g(x; ε) =

∑∞
j=0 ε

jgj(x) and,
in terms of the inner variable ξ = x/ε, f(ξ; ε) =

∑∞
j=0 ε

jfj(ξ), then

Ek
x(g(x; ε)) =

k∑
j=0

εjgj(x), Ek
ξ (f(ξ; ε)) =

k∑
j=0

εjfj(ξ).

To match f and g up to the kth order at x = 0, one needs to express both Ek
x(g(x; ε))

and Ek
ξ (f(ξ; ε)) in the same variable. For example, to express Ek

x(g(x; ε)) =
∑k

j=0 ε
jgj(x) in

terms of ξ, one replaces x by εξ in gj(x) and rewrites the expansion, say,

Ek
x(g(x; ε)) =

k∑
j=0

εjgj(εξ) =
∞∑

j=0

εjhj(ξ);

in particular,

Ek
ξE

k
x(g(x; ε)) =

k∑
j=0

εjhj(ξ).

The kth order asymptotic matching principle for f and g at x = 0 is (see, for example,
[8, 26]), in terms of the inner variable ξ,

(2.16) Ek
ξ (f) = Ek

ξE
k
x(g); that is, fj(ξ) = hj(ξ) for j = 0, 1, . . . , k.

3. Matched asymptotic expansion: Case study. In this section, we will derive the
matched asymptotic expansions for the case where n = 2, α1 = −α2 = 1, Q = 0, and
h = 1. The zeroth order I-V relation turns out to be linear in V. While the first order correc-
tion is quadratic in V in general, it is zero when both ends are electro-neutral (L1 = L2 and
R1 = R2). For this reason, we also carried out the analysis for the second order terms of the
I-V relation under the electro-neutrality conditions and found that the I-V relation is a cubic
in V.

For convenience, we set

(3.1) Ij =
∑

αkJkj and Tj =
∑

Jkj.

We point out that our main interest in the I-V relation is to derive the asymptotic expansion
I = I0 + εI1 + ε2I2 + · · · .
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3.1. Zeroth order I-V relation. The zeroth order has been obtained in [5] using the
asymptotic expansion method and in [27] using the geometric singular perturbation method.
Here we rederive the zeroth order terms explicitly. This is crucial for an explicit formulation
of higher order terms in the asymptotic expansions.

3.1.1. Zeroth order outer solution. From (2.3), the zeroth order outer system reads

(3.2) 0 = c10 − c20, ċ10 = −c10φ̇0 − J10, ċ20 = c20φ̇0 − J20.

It is easy to solve system (3.2) to deduce

(3.3) c10(x) = c20(x) =
a0 − T0x

2
, φ0(x) = b0 +

I0
T0

ln |a0 − T0x|

for some constants a0 and b0 to be determined through matching. Here I0 = J10 − J20 and
T0 = J10 + J20 from (3.1).

3.1.2. Zeroth order inner solution. At the boundary x = 0, the zeroth order inner system
(2.8) is

Φ′
0(ξ) = U0, U ′

0(ξ) = −C10 + C20,

C ′
10(ξ) = −C10U0, C ′

20(ξ) = C20U0.
(3.4)

In this case, Proposition 2.1 reads as follows.
Proposition 3.1. System (3.4) has three first integrals given by

H1 = C10e
Φ0 , H2 = C20e

−Φ0 , H3 =
1
2
U2

0 − C10 − C20.

One can then solve system (3.4) explicitly (see [5, 27]) to get

Φ0 = V +
1
2

ln
L1

L2
+ ln

(
1 + le−

√
Mξ

1 − le−
√

Mξ

)2

, U0 = − 4l
√
Me−

√
Mξ

1 − l2e−2
√

Mξ
,

C10 =
√
L1L2

(
1 − le−

√
Mξ

1 + le−
√

Mξ

)2

, C20 =
√
L1L2

(
1 + le−

√
Mξ

1 − le−
√

Mξ

)2

,

(3.5)

where

M = 2
√
L1L2, l =

L
1/4
2 − L

1/4
1

L
1/4
2 + L

1/4
1

.

Similarly, at the boundary x = 1 with ξ = (x− 1)/ε, we have

Ψ0(ξ) =
1
2

ln
R1

R2
+ ln

(
1 + re

√
Nξ

1 − re
√

Nξ

)2

, V0(ξ) =
4r
√
Ne

√
Nξ

1 − r2e2
√

Nξ
,

D10(ξ) =
√
R1R2

(
1 − re

√
Nξ

1 + re
√

Nξ

)2

, D20(ξ) =
√
R1R2

(
1 + re

√
Nξ

1 − re
√

Nξ

)2

,

(3.6)

where

N = 2
√
R1R2, r =

R
1/4
2 −R

1/4
1

R
1/4
2 +R

1/4
1

.
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3.1.3. Zeroth order matching. In view of the matching principle (2.16), the matching
conditions at the boundary x = 0 are

E0
ξE

0
x(ck) = E0

ξ (Ck) and E0
ξE

0
x(φ) = E0

ξ (Φ).

From (3.3) and (3.5), we get

E0
ξE

0
x(ck) =

a0

2
, E0

ξE
0
x(φ) = b0 +

I0
T0

ln a0,

E0
ξ (Ck) =

√
L1L2, E0

ξ (Φ) = V +
1
2

ln
L1

L2
.

The matching gives

(3.7) a0 = 2
√
L1L2 and b0 = V +

1
2

ln
L1

L2
− I0
T0

ln(2
√
L1L2).

Similarly, the matching at the boundary x = 1 requires

(3.8) a0 − T0 = 2
√
R1R2 and b0 +

I0
T0

ln(a0 − T0) =
1
2

ln
R1

R2
.

We deduce, from (3.7) and (3.8), that

T0 = 2
√
L1L2 − 2

√
R1R2,

I0 =
2(
√
L1L2 −

√
R1R2)(2V + ln(L1R2) − ln(L2R1))
ln(L1L2) − ln(R1R2)

.
(3.9)

In particular, at the zeroth order, the I-V relation I0 = I0(V ) is linear in V. When
L1 = L2 = L and R1 = R2 = R (electro-neutrality condition at both ends of the channel)
hold, we have

(3.10) T0 = 2(L−R), I0 =
2(L−R)

lnL− lnR
V.

Note also that, as L→ R, we have T0 → 0 and I0 → 2RV .

3.2. First order I-V relation. Since the higher order outer systems (2.3) and inner systems
(2.8) and (2.15) are nonautonomous, one cannot solve them explicitly in general. The upshot
for our problem is that they can actually be solved explicitly. For inner systems, the solvability
is due to Propositions 2.2 and 3.1.

3.2.1. First order outer solution. From (2.3), the first order outer system is

(3.11) c11 = c21, ċ11 = −(c10φ̇1 + c11φ̇0) − J11, ċ21 = (c20φ̇1 + c21φ̇0) − J21.

Recall, from (3.1), that T1 = J11 + J21 and I1 = J11 − J21. Using (3.3) for (φ0(x), c10(x),
c20(x)), one solves system (3.11) to get

c11(x) = c21(x) =
a1 − T1x

2
,

φ1(x) = b1 +
T0I1 − I0T1

T 2
0

ln |a0 − T0x| +
I0(a1T0 − a0T1)
T 2

0 (a0 − T0x)

for some unknown constants a1 and b1.
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3.2.2. First order inner solution. The first order inner system (2.8) at x = 0 is

Φ′
1 = U1, U ′

1 = −(C11 − C21),
C ′

11 = −(C10U1 + C11U0) − J10, C ′
21 = (C20U1 + C21U0) − J20.

(3.12)

As an application of Propositions 2.2 and 3.1, we have the next result.
Proposition 3.2. The homogeneous part of (3.12) has the following integrals:

Gh
1 = C11e

Φ0 + C10e
Φ0Φ1,

Gh
2 = C21e

−Φ0 −C20e
−Φ0Φ1,

Gh
3 = U0U1 − C11 − C21.

The full system (3.12) has the following integrals:

G1 = C11e
Φ0 +C10e

Φ0Φ1 + J10F1(ξ),
G2 = C21e

−Φ0 − C20e
−Φ0Φ1 + J20F2(ξ),

G3 = U0U1 − C11 − C21 − T0ξ,

where

F1(ξ) =
∫ ξ

0
eΦ0(s)ds = −

√
L1

L2

eV√
M

(
4

1 − le−
√

Mξ
− 4

1 − l
−

√
Mξ

)
,

F2(ξ) =
∫ ξ

0
e−Φ0(s)ds = −

√
L2

L1

e−V

√
M

(
4

1 + le−
√

Mξ
− 4

1 + l
−

√
Mξ

)
.

Proof. The first statement for the homogeneous part of system (3.12) follows from Propo-
sitions 2.2 and 3.1. The extra terms in the second statement are obtained by adding trial
functions and forcing the resulting functions to be integrals of (3.12). This leads to

F1(ξ) =
∫ ξ

0
eΦ0(s)ds and F2(ξ) =

∫ ξ

0
e−Φ0(s)ds.

Direct integrations with Φ0 in (3.5) give the explicit expressions for F1(ξ) and F2(ξ) as
claimed.

One can then use the integrals to solve system (3.12). Note that we have the initial
conditions Φ1(0) = 0 and C11(0) = C21(0) = 0, but U1(0) has to be determined via matching.
One finds, after careful integrations,

U1(ξ) =
U0(0)U1(0) − (C10 − C20)Φ1 − J10e

−Φ0F1 − J20e
Φ0F2 + T0ξ

U0
,

Φ1(ξ) = − 4l(T0 + lI0)
M3/2(1 + l)(1 − l)

− I0
M
ξ(3.13)

+
1

2
√
M

(
U1(0) +

I0 + lT0

(1 + l)(1 − l)M

)
e
√

Mξ + o(e−
√

Mξ).
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The term involving e
√

Mξ should disappear due to matching. Thus,

U1(0) = − I0 + lT0

(1 + l)(1 − l)M
.

In summary, we have

Φ1(ξ) = − 4l(T0 + lI0)
M3/2(1 + l)(1 − l)

− I0
M
ξ + o(e−

√
Mξ),

C11(ξ) = − 2l(I0 + lT0)√
M(1 + l)(1 − l)

− T0

2
ξ + o(e−

√
Mξ),(3.14)

C21(ξ) = − 2l(I0 + lT0)√
M(1 + l)(1 − l)

− T0

2
ξ + o(e−

√
Mξ).

Similarly, at x = 1 with x− 1 = εξ, we have

Ψ1(ξ) = − 4r(T0 + rI0)
N3/2(1 + r)(1 − r)

− I0
N
ξ + o(e−

√
Nξ),

D11(ξ) = − 2r(I0 + rT0)√
N(1 + r)(1 − r)

− T0

2
ξ + o(e−

√
Nξ),(3.15)

D21(ξ) = − 2r(I0 + rT0)√
N(1 + r)(1 − r)

− T0

2
ξ + o(e−

√
Nξ).

3.2.3. First order matching. We first consider the matching near x = 0. For the inner
expansion, we have, from (3.5) and (3.14), for k = 1, 2,

E1
ξ (Φ) = E1

ξ (Φ0(ξ) + εΦ1(ξ))

= V +
1
2

ln
L1

L2
− ε

(
4l(T0 + lI0)

M3/2(1 + l)(1 − l)
+
I0
M
ξ

)
,

E1
ξ (Ck) = E1

ξ (Ck0(ξ) + εCk1(ξ))

=
√
L1L2 − ε

(
2l(I0 + lT0)√
M(1 + l)(1 − l)

+
T0

2
ξ

)
.

(3.16)

On the other hand, for the outer expansion, we have

E1
x(φ) = E1

x(φ0(x) + εφ1(x)) = b0 +
I0
T0

ln a0 −
I0
a0
x

+ ε

(
b1 +

T0I1 − I0T1

T 2
0

ln a0 +
I0(a1T0 − a0T1)

T 2
0 a0

+O(x)
)
,

E1
x(ck) = E1

x(ck0(x) + εck1(x)) =
(
a0

2
− T0

2
x

)
+ ε

(
a1

2
− T1

2
x

)
.
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Therefore, in terms of the inner variable ξ,

E1
ξE

1
x(φ) = b0 +

I0
T0

ln a0

+ ε

(
b1 +

T0I1 − I0T1

T 2
0

ln a0 +
I0(a1T0 − a0T1)

T 2
0 a0

− I0
a0
ξ

)
,(3.17)

E1
ξE

1
x(ck) =

a0

2
+ ε

(
a1

2
− T0

2
ξ

)
.

The matchings E1
ξ (Φ) = E1

ξE
1
x(φ) and E1

ξ (Ck) = E1
ξE

1
x(ck) imply, from (3.16) and (3.17),

a0 = M = 2
√
L1L2, b0 = V +

1
2

ln
L1

L2
− I0
T0

ln a0,

a1 = − 4l(I0 + lT0)√
M(1 + l)(1 − l)

,

b1 = −I0(a1T0 − a0T1)
T 2

0 a0
− T0I1 − I0T1

T 2
0

ln a0(3.18)

− 4l(T0 + lI0)
M3/2(1 + l)(1 − l)

.

Note that the relation for a0 in (3.18) is consistent since M = 2
√
L1L2.

Similarly, the matching near x = 1 gives

a0 = N + T0 = 2
√
R1R2 + T0, b0 =

1
2

ln
R1

R2
− I0
T0

ln(a0 − T0),

a1 = T1 −
4r(I0 + rT0)√
N(1 + r)(1 − r)

,

b1 = −I0(a1T0 − a0T1)
2
√
R1R2T 2

0

− T0I1 − I0T1

T 2
0

ln(2
√
R1R2)

− 4r(T0 + rI0)
N3/2(1 + r)(1 − r)

.

(3.19)

As expected, one recovers (3.9) for T0 and I0 from the two expressions in (3.18) and (3.19)
for a0 and b0. Using the two expressions for a1 and b1, we get

T1 =
4r(I0 + rT0)√
N(1 + r)(1 − r)

− 4l(I0 + lT0)√
M (1 + l)(1 − l)

,

I1 = T−1
0 I0T1 −

T−1
0 I0(a1T0 − a0T1)

ln(R1R2) − ln(L1L2)

(
1√
R1R2

− 1√
L1L2

)
(3.20)

− 4rT0(T0 + rI0)√
R1R2N(1 + r)(1 − r)

+
4lT0(T0 + lI0)√

L1L2M(1 + l)(1 − l)
.

Note that T1 is linear in I0 and hence is linear in V ; I1 is quadratic in I0 and hence is also
quadratic in V . That is, the first order correction to the zeroth order linear I-V relation is
quadratic in V in general.
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What is interesting and potentially important is that, when L1 = L2 and R1 = R2 (electro-
neutrality), one deduces that T1 = I1 = 0. That is, under the electro-neutrality condition at
both ends, there is NO first order correction for the I-V relation.

3.3. Second order I-V relation with electro-neutrality. We now assume the electro-
neutrality condition L1 = L2 and R1 = R2 and examine the I-V correction at the second
order O(ε2).

3.3.1. Second order outer expansion. The second order outer system (2.3) is

φ̈0 = −c12 + c22,

ċ12 = −(c12φ̇0 + c11φ̇1 + c10φ̇2) − J12,(3.21)
ċ22 = (c22φ̇0 + c21φ̇1 + c20φ̇2) − J22.

Note that, under the assumption L1 = L2 and R1 = R2, we have

a1 = b1 = T1 = I1 = c11(x) = c21(x) = φ1(x) = 0.

Upon using (3.3), one solves system (3.21) to get

c12(x) =
a2 − T2x

2
+

I2
0 + 2I0T0

4(a0 − T0x)2
,

c22(x) =
a2 − T2x

2
+

I2
0 − 2I0T0

4(a0 − T0x)2
,

φ2(x) = b2 −
2I0T0

3(a0 − T0x)3
+

I3
0

6T0(a0 − T0x)3
+
I0(a2T0 − a0T2)
T 2

0 (a0 − T0x)

− I0T2

T 2
0

ln |a0 − T0x| +
I2
T0

ln |a0 − T0x|,

(3.22)

where a2 and b2 are unknown constants.

3.3.2. Second order inner expansion. The second order inner system (2.8) at x = 0 is

Φ′
2 = U2, U ′

2 = −(C12 − C22),
C ′

12 = −(C10U2 + C11U1 + C12U0) − J11,(3.23)
C ′

22 = (C20U2 + C21U1 + C22U0) − J21.

Similarly to the first order inner system, we have the following claim.
Proposition 3.3. System (3.23) has the following integrals:

G1 = C12e
Φ0 + C10e

Φ0Φ2 + J11F1(ξ) + F12(ξ),
G2 = C22e

−Φ0 − C20e
−Φ0Φ2 + J21F2(ξ) − F22(ξ),

G3 = U0U2 − C12 − C22 − T1ξ +
1
2
U2

1 ,

where F1(ξ) and F2(ξ) are given in Proposition 3.2 and

F12(ξ) =
∫ ξ

0
C11(s)U1(s)eΦ0(s)ds, F22(ξ) =

∫ ξ

0
C21(s)U1(s)e−Φ0(s)ds.
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Using L1 = L2 = L and R1 = R2 = R, we have, from (3.5) and (3.6), that

Φ0(ξ) = V, U0(ξ) = 0, C10(ξ) = C20(ξ) = L,

Ψ0(ξ) = 0, V0(ξ) = 0, D10(ξ) = D20(ξ) = R,

and, from (3.14) and (3.15), that

Φ1(ξ) = − I0
2L
ξ, U1(ξ) = − I0

2L
, C11(ξ) = C21(ξ) = −T0

2
ξ,

Ψ1(ξ) = − I0
2R

ξ, V1(ξ) = − I0
2R

, D11(ξ) = D21(ξ) = −T0

2
ξ.

Also,

J11 = J21 = 0, F12(ξ) =
I0T0

8L
eV ξ2, F22(ξ) =

I0T0

8L
e−V ξ2.

Applying the integrals in Proposition 3.3, we can solve (3.23) with Φ2(0) = C12(0) =
C22(0) = 0 to get

Φ2(ξ) =
(
I0T0

8L3
−A

)
e−

√
2Lξ +Ae

√
2Lξ − I0T0

8L3
− I0T0

8L2
ξ2.

The matching will force A = 0. Thus, for ξ ≥ 0,

Φ2(ξ) =
I0T0

8L3

(
e−

√
2Lξ − 1

)
− I0T0

8L2
ξ2,

C12(ξ) = −I0T0

8L2

(
e−

√
2Lξ − 1

)
, C22(ξ) =

I0T0

8L2

(
e−

√
2Lξ − 1

)
.

(3.24)

Similarly, at x = 1, the second order inner solution is, for ξ ≤ 0,

Ψ2(ξ) =
I0T0

8R3

(
e
√

2Rξ − 1
)
− I0T0

8R2
ξ2,

D12(ξ) = −I0T0

8R2

(
e
√

2Rξ − 1
)
, D22(ξ) =

I0T0

8R2

(
e
√

2Rξ − 1
)
.

(3.25)

3.3.3. Second order matching. From (3.22), in terms of ξ = x/ε, the outer expansion at
x = 0 is

E2
ξE

2
x(φ) = b0 +

I0
T0

ln a0 − ε
I0
a0
ξ

+ ε2
(
b2 −

I0(2T0 − I0)(2T0 + I0)
6T0a3

0

+
I0(a2T0 − a0T2)

T 2
0 a0

+
T0I2 − I0T2

T 2
0

ln a0 −
I0T0

2a2
0

ξ2
)
,

E2
ξE

2
x(c1) =

a0

2
− ε

T0

2
ξ + ε2

(
a2

2
+
I2
0 + 2T0I0

4a2
0

)
,

E2
ξE

2
x(c2) =

a0

2
− ε

T0

2
ξ + ε2

(
a2

2
+
I2
0 − 2T0I0

4a2
0

)
,
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and, in terms of ξ = (x− 1)/ε, the outer expansion at x = 1 is

E2
ξE

2
x(φ) = b0 +

I0
T0

ln(a0 − T0) − ε
I0

a0 − T0
ξ

+ ε2
(
b2 −

I0(2T0 − I0)(2T0 + I0)
6T0(a0 − T0)3

+
I0(a2T0 − a0T2)
T 2

0 (a0 − T0)

+
T0I2 − I0T2

T 2
0

ln(a0 − T0) −
I0T0

2(a0 − T0)2
ξ2
)
,

E2
ξE

2
x(c1) =

a0 − T0

2
− ε

T0

2
ξ + ε2

(
a2 − T2

2
+
I2
0 + 2T0I0

4(a0 − T0)2

)
,

E2
ξE

2
x(c2) =

a0 − T0

2
− ε

T0

2
ξ + ε2

(
a2 − T2

2
+
I2
0 − 2T0I0

4(a0 − T0)2

)
.

From (3.24) and (3.25), the inner expansion at x = 0 is

E2
ξ (Φ) = V − ε

I0
2L
ξ − ε2

(
I0T0

8L3
+
I0T0

8L2
ξ2
)
,

E2
ξ (C1) = L− ε

T0

2
ξ + ε2

I0T0

8L2
, E2

ξ (C2) = L− ε
T0

2
ξ − ε2

I0T0

8L2
,

and the inner expansion at x = 1 is

E2
ξ (Ψ) = −ε I0

2R
ξ − ε2

(
I0T0

8R3
+
I0T0

8R2
ξ2
)
,

E2
ξ (D1) = R− ε

T0

2
ξ + ε2

I0T0

8R2
, E2

ξ (D2) = R− ε
T0

2
ξ − ε2

I0T0

8R2
.

The matchings at x = 0 and at x = 1 then give

T2 =
(L−R)3(L+R)

2L2R2(lnL− lnR)2
,

I2 =
(L−R)4(L2 + LR+R2)

3L3R3(lnL− lnR)2
V − (L−R)3(L3 −R3)

3L3R3(lnL− lnR)4
ν3
0(3.26)

+
(L−R)2(L2 −R2)
2L2R2(lnL− lnR)3

V 3.

In particular, the second order correction I2(V ) to the zeroth order I-V relation I0(V ) is cubic
in V . Note also that, as L→ R, one finds that T2 → 0 and I2 → 0.

Theorem 3.4. If L �= R, then, up to the order of ε2, the I-V relation I = I(V ) in (3.26) is
a cubic function with three distinct real roots.

Proof. From (3.10) and (3.26), up to O(ε2), I = f(L,R; ε)V − ε2g(L,R)V 3, where

f(L,R; ε) =
2(L−R)

lnL− lnR
+ ε2

(L−R)4(L2 + LR+R2)
3L3R3(lnL− lnR)2

,

g(L,R) =
(L−R)3(L3 −R3)
3L3R3(lnL− lnR)4

− (L−R)2(L2 −R2)
2L2R2(lnL− lnR)3

.
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It is easy to see that f(L,R; ε) > 0 for L �= R (and f(R,R; ε) = 2R). It remains to show that
g(L,R) > 0 for L �= R. Note that g(L,R) = g(R,L). Thus, it suffices to show g(L,R) > 0 for
L > R. Assume now L > R and rewrite g(L,R) as

g(L,R) =
(L−R)3

6L3R3(lnL− lnR)4
h(L,R),

where h(L,R) = 2(L3 − R3) − 3LR(L + R)(lnL − lnR). To show h(L,R) > 0 for L > R,
we fix R and treat h(L) = h(L,R) as a function of L. Then, a direct computation gives
h(R) = h′(R) = h′′(R) = 0 but h′′′(L) > 0 for all L. Therefore, h(L) > 0 for L > R.

4. Some remarks. We investigated higher order asymptotic expansion of the I-V relation
for biological channels via a one-dimensional steady-state Poisson–Nernst–Planck system. For
the case of two oppositely charged ion species and zero permanent charge, we obtained explicit
information on the I-V relation up to the second order. In particular, we found that the
zeroth order I-V relation is linear, the first order correction to the zeroth order I-V relation
is generally quadratic, and, with the electro-neutrality condition at both ends of the channel,
there is NO first order correction but the second order correction is cubic. Furthermore, up to
the second order, the cubic I-V relation has three real roots (Theorem 3.4), which is potentially
related to the cubic-like feature of the average I-V relation of a population of channels in the
FitzHugh–Nagumo simplification of the Hodgkin–Huxley model.

For second order terms, we only treated the electro-neutrality case because this is a natural
biological assumption and the first order correction to the zeroth order linear I-V relation is
zero. This occurs in the special case when the permanent charge Q is zero. In general, a
realistic assumption is that Q is piecewise constant. To treat this general situation of Q, one
can follow our approach to first work on each subinterval where Q is constant (see [10] for the
zeroth order case). In doing so, one cannot assume the electro-neutrality condition since it
is known to hold only at the two baths (x = 0 and x = 1). Another direction to be further
explored is the case where three or more ion species are involved in the channel. We believe
our analysis can be extended to those cases.

Acknowledgment. The authors thank the referees for their valuable comments and sug-
gestions that helped improve the manuscript.
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Abstract. We construct a family of integrable volume-preserving maps in R
3 with a two-dimensional hetero-

clinic connection of spherical shape between two fixed points of saddle-focus type. In other contexts,
such structures are called Hill’s spherical vortices or spheromaks. We study the splitting of the sepa-
ratrix under volume-preserving perturbations using a discrete version of the Melnikov method. First,
we establish several properties under general perturbations. For instance, we bound the topological
complexity of the primary heteroclinic set in terms of the degree of some polynomial perturbations.
We also give a sufficient condition for the splitting of the separatrix under some entire perturbations.
A broad range of polynomial perturbations verify this sufficient condition. Finally, we describe the
shape and bifurcations of the primary heteroclinic set for a specific perturbation.
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1. Introduction. A fundamental question in dynamical systems is the effect that small
perturbations of a dynamical system cause on its unperturbed invariant sets. The most studied
unperturbed invariant sets are tori and stable/unstable invariant manifolds of hyperbolic sets.
Usually, the unperturbed dynamical system is integrable and has separatrices; that is, its
stable and unstable invariant manifolds overlap. After a generic perturbation, the perturbed
stable and unstable invariant manifolds intersect transversely, which gives rise to the onset of
chaos, through the creation of Smale horseshoes. This phenomenon is known as the problem
of splitting of separatrices. A widely used technique for detecting such intersections is the
Melnikov method.

Our goal is to apply the Melnikov method to the splitting of separatrices in the discrete
volume-preserving framework. Similar questions have been considered before. However, we
believe this is the first time that detailed analytical results about the structure of the primary
heteroclinic set and its bifurcations are established for specific maps. This represents a step
forward with respect to previous works [23, 24], in which once a formula for the Melnikov func-
tion in terms of an infinite series is written down, the approach becomes mainly numerical,
because of the technical difficulties that obstruct the analytical one. Here, we have overcome
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some of these difficulties using basic tools: complex variable theory, quasi-elliptic functions,
homology, and several algebraic tricks. Nevertheless, we have not been able to find an explicit
expression of the Melnikov function in terms of elementary functions for any specific pertur-
bation. In contrast, such explicit expressions (in terms of elliptic functions) have been known
for almost twenty years in the discrete area-preserving setting [18, 13].

This study is interesting because volume-preserving maps are the simplest and most nat-
ural higher-dimensional versions of the much-studied class of area-preserving maps. The
infinite-dimensional group of volume-preserving diffeomorphisms on R

3 is at the core of the
ambitious program to reformulate hydrodynamics [3]. Volume-preserving maps arise in a num-
ber of applications such as the study of the motion of Lagrangian tracers in incompressible
fluids or of the structure of magnetic field lines [19, 20, 33, 30]. Experimental methods have
only recently been developed that allow the visualization of particle trajectories in spatial
fluids [28, 32].

Given a system with a heteroclinic connection between two hyperbolic fixed points, the
Melnikov function computes the rate at which the distance between the manifolds changes
with a perturbation. After the introduction of the Melnikov method for periodic perturbations
of one-degree-of-freedom Hamiltonian systems, many different versions appeared, most of
them in continuous settings (flows). For instance, there are versions for three-dimensional
incompressible flows in [29, 6, 5].

There exist also discrete versions of this method, in which the Melnikov function is no
longer an integral, but an infinite sum whose domain is the unperturbed connection. The
first steps towards a discrete Melnikov theory were performed for area-preserving maps [17,
18, 13, 21], and next for symplectic maps [14], for twist maps [22], for general n-dimension
diffeomorphisms [9, 7, 25], and for spatial billiard maps [15]. Finally, volume-preserving
maps have been considered in [23, 24]. These papers deal with codimension-one heteroclinic
connections between fixed points of saddle-focus type and between hyperbolic invariant circles.
The current paper is a natural continuation and uses some of their ideas.

We shall construct a family of integrable volume-preserving maps f : R
3 → R

3 with a
two-dimensional heteroclinic connection between two fixed points. This family is derived from
another family of integrable planar maps introduced by McMillan [27]. The same construction
can be found in [23], but we have decided to study a completely new family to minimize the
overlap with previous works. Additionally, the new family has a purely rational character,
whereas the previous one contains trigonometric terms. In other words, our model can be
used to explore numerically phenomena that are connected to the splitting of separatrices. In
particular, numerical computations using a multiple-precision arithmetic are feasible.

The two-dimensional separatrix has a spherical shape, and the fixed points are its “north
pole” p+ and its “south pole” p−. Our integrable maps depend on two parameters: a charac-
teristic exponent h > 0 and a frequency ω ∈ T. These names refer to the fact that

spec[Df(p±)] =
{
e±2h, e∓h+iω, e∓h−iω

}
.

Thus, the fixed points are of saddle-focus type, the characteristic exponent measures the
hyperbolicity of the map, and the frequency quantifies the rotation speed of the trajectories
on the separatrix. There also exists a one-dimensional straight heteroclinic connection between
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Figure 1. In this figure we illustrate two possible intersections that appear as heteroclinic intersections of
the stable and unstable manifolds that we will be considering. On the left, we have an equatorial intersection.
On the right a vertical intersection.

the fixed points. The same configuration appears in fluid dynamics under the name of Hill’s
spherical vortex or bubble-type vortex breakdown [33] and as a model for the magnetic field
of stars. In a plasma physics context, the configuration is a confinement device that is called
spheromak [26]. From a more theoretical point of view, we note that the integrable normal
forms associated with families of volume-preserving flows with a Hopf-zero singularity have
the same structure in the phase space [10].

In general, volume-preserving perturbations split the separatrix, but the perturbed stable
and unstable manifolds still intersect along one-dimensional heteroclinic curves, which can be
vertical, equatorial, or bubble-type ones. (This terminology is borrowed from [23].) Vertical
curves are those heteroclinic intersections whose endpoints are both fixed points. Due to the
rotational dynamics of the unperturbed map, these curves look like spirals connecting both
poles when there is swirl ; that is, when ω �= 0. On the contrary, equatorial and bubble-type
curves are closed curves that do not approach the poles; in particular, they cannot appear
in autonomous flows. The difference between equatorial and bubble-type curves is that the
portions of the stable and unstable manifolds delimited by a bubble-type curve encircle a
contractible region in R

3; that is, a “bubble.” See Remark 7 and Figure 1 for more details.
We shall describe the structure of the set of primary intersections under some perturba-

tions. Roughly speaking, primary intersections are the sets of points where the stable and
unstable manifolds “first” meet. In fact, primary intersections are the only intersections that
can be followed by the perturbation. In the limit as ε → 0, they appear as zeroes of the
Melnikov function. Therefore, nonprimary intersections are missed by standard Melnikov
methods. See [23] for details.

First, we bound the topological complexity of the primary heteroclinic set in terms of the
degree of volume-preserving polynomial perturbations of the form

fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).
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In particular, it turns out that the primary heteroclinic set contains at most 2n vertical curves
when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y]. Throughout this paper, we will use the notation
Rm[x] for the set of degree-m polynomials in x with real coefficients and Rm[x, y] for the set
of degree-m polynomials in x and y.

Next, we shall give a sufficient condition for the splitting of the separatrix under some
entire perturbations. A broad range of polynomial perturbations verify this condition, for
instance, those with κ(x, y, z) = (0, 0, β(x, y)) for some even polynomial β(x, y) of degree
4l + 2, provided that e4kωi �= −1 for k = 1, . . . , 2l + 1. In particular, nonresonant frequencies
guarantee the breakdown of the unperturbed structure, which is in sharp contrast with some
known principles in KAM (Kolmogorov–Arnold–Moser) theory.

Finally, we shall consider the perturbation with κ(x, y, z) = (0, x, 0). The primary hetero-
clinic set under this perturbation consists of four vertical curves for ω �= ±π/2, whereas some
heteroclinic bifurcations take place at ω = ±π/2. Unfortunately, we have found a complete
proof of these facts only for h ≥ h0 ≈ 2.28, but we conjecture, based on numerical experi-
ments, that this picture holds for any h > 0. The previous upper bound on the number of
vertical curves is optimal for this perturbation.

The proof of each analytical result is based on different tools. The bounds on the topolog-
ical complexity follow from basic homology theory. The splitting result is obtained through
the study of the complex singularities of the Melnikov function, an idea that goes back to
Ziglin [35]. The part about bifurcations relies strongly on the fact that the Melnikov function
can be expressed in terms of a quasi-elliptic function of order two. Additionally, each part
has its own algebraic tricks.

We complete this introduction with a note on the organization of the paper. In section 2,
we recall the Melnikov theory for volume-preserving maps. In section 3, we construct the
family of integrable volume-preserving maps. In section 4, we derive an explicit expression
for the Melnikov function associated with some volume-preserving perturbations. The next
sections are devoted to bounding the topological complexity of the primary heteroclinic set
and to establishing some sufficient conditions for the splitting. The study about the bifurca-
tions of the primary heteroclinic set under the sample perturbation is contained in section 7.
Some analytical details and numerical experiments are relegated to Appendices A and B,
respectively.

2. The Melnikov theory for volume-preserving maps. In this section we shall briefly
describe the Melnikov theory for volume-preserving maps developed in [23, 24, 25]. Let fε :
R

3 → R
3 be a family of smooth volume-preserving maps such that the unperturbed map f = f0

has two hyperbolic fixed points a and b whose stable and unstable invariant manifolds coincide,
giving rise to a two-dimensional saddle connection Σ = W u(a, f)\{a} = W s(b, f)\{b}, where
W u(a, f) and W s(b, f) denote the unstable invariant manifold of the point a and the stable
invariant manifold of the point b, respectively. Both fixed points persist and remain hyperbolic
for small ε. We want to study how the perturbed invariant manifoldsW u(aε, fε) and W s(bε, fε)
intersect.

Our goal is to describe the topology of the set of primary intersections Pε ⊂W u(aε, fε) ∩
W s(bε, fε). We also try to elucidate when the separatrix Σ splits under the perturbation; that
is, when there is no smooth family of saddle connections Σε ⊂ W u(aε, fε) ∩W s(bε, fε) such
that Σ0 = Σ.
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We recall some concepts that are going to be used below. A point ξ of a manifold Σ is
a regular point of a smooth function M : Σ → R when the differential form dM does not
vanish at ξ, whereas r ∈ R is a regular value of M if every point in M−1(r) is a regular
point. A zero of M is called nondegenerate when it is a regular point. If r is a regular value
of M , then M−1(r) is a one-dimensional submanifold of Σ. On the contrary, M−1(r) can be
much more complicated if 0 is a singular value, although its subset of regular points is also
a one-dimensional submanifold of Σ. A diffeomorphism f is symmetric when there exists a
diffeomorphism S such that f ◦ S = S ◦ f , and then S is called a symmetry of the map f .
Analogously, f is reversible when there exists a diffeomorphism R such that f ◦R = R ◦ f−1,
and then R is called a reversor of the map f and we denote by FixR = {ξ ∈ R

3 : R(ξ) = ξ}
the set of its fixed points. These fixed points are called symmetric in the literature.

We collect in the following theorem the basic Melnikov-like results about this setup. See
[23, 25].

Theorem 1. Under the previous assumptions, there exists a smooth function M : Σ → R,
called the Melnikov function, with the following properties:

(i) If ξ0 is a nondegenerate zero of M , then W u(aε, fε) and W s(bε, fε) intersect trans-
versely, for ε small enough, at a point ξε = ξ0 + O(ε) ∈ Pε.

(ii) If 0 is a regular value of M , then the set of primary intersections Pε is, for ε small
enough, a one-dimensional submanifold of R

3 such that Pε = M−1(0) + O(ε).
(iii) M is invariant by the unperturbed map: M ◦ f = M .
(iv) If fε has a smooth family of

1. symmetries Sε : R
3 → R

3 such that S0(Σ) = Σ, then M ◦ S0 = M ;
2. reversors Rε : R

3 → R
3 such that R0(Σ) = Σ, then M ◦R0 = −M ;

3. saddle connections Σε ⊂W u(aε, fε) ∩W s(bε, fε) with Σ0 = Σ, then M ≡ 0.
The Melnikov function is constructed in such a way that it measures the distance between

the perturbed invariant manifolds W u(aε, fε) and W s(bε, fε) in first order. Because of this,
the zero-level set M−1(0) ⊂ Σ is strongly related to the primary intersection set Pε, and
any change in its topology gives rise to some heteroclinic bifurcation. Further, a sufficient
condition for the splitting of the separatrix is that the Melnikov function is not identically zero.

Symmetries, reversors, and symmetric heteroclinic points play an important role in the
study of (primary) heteroclinic intersections; see [16]. For instance, the set of primary inter-
sections is invariant by symmetries and reversors. Additionally, symmetric heteroclinic points
persist under reversible perturbations. Concretely, if fε is Rε-reversible and FixR0 is a smooth
curve that intersects transversely the saddle connection Σ at some point ξ0, then there exists
a unique point ξε = ξ0 + O(ε) ∈ Pε ∩ FixRε.

Remark 1. If fε is not Rε-reversible, but fε ◦ Rε − Rε ◦ f−1
ε = O(ε2) and R0(Σ) = Σ,

then M ◦R0 = −M . This has to do with the fact that the Melnikov function measures only
first-order behaviors. We present an explicit example of this situation in Proposition 4.

In order to apply this theory, we must compute the Melnikov function. This is easier when
the unperturbed map has a nondegenerate first integral I : R

3 → R and fε = (Id + εκ) ◦ f
for some map κ : R

3 → R
3. Under these assumptions, it is proved in [23, Lemma 8] that the

Melnikov function is the absolutely convergent series

(1) M =
∑
k∈Z

〈∇I, κ〉 ◦ fk.
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This is the formula for Melnikov functions that we shall use in this paper.
We are interested only in perturbations that do not destroy the volume-preserving charac-

ter of the unperturbed map f . This question has a simple answer: fε = (Id+ εκ)◦f preserves
volume if and only if the differential of the perturbation κ is nilpotent everywhere; see [23,
Lemma 3]. This allows us to create simple examples of volume-preserving perturbations. For
instance, we could take κ(x, y, z) = (0, α(x), β(x, y)) or κ(x, y, z) = (γ(y, z), δ(z), 0) for any
smooth functions α, δ : R → R and β, γ : R

2 → R.

3. The maps. In this section we shall construct, following a methodology developed
in [23], the perturbed volume-preserving maps fε that will be studied in the rest of the paper.
As a starting point, we shall describe the unperturbed maps f = f0 that form a family of
integrable volume-preserving maps with a two-dimensional heteroclinic connection between
a couple of hyperbolic fixed points. This integrable family is derived from another family of
integrable planar standard-like maps introduced by McMillan [27].

Let h > 0 be the parameter of the family of planar standard-like maps. Then we consider
the quantities c = cosh(h/2) and s = sinh(h/2), the rational transformation

(2) z �→ φ(z) =
cz + s

c+ sz
,

and the area-preserving map

(3) g(r, z) =
(
φ
(
r + φ−1(z)

)
− z, r + φ−1(z)

)
,

where φ−1(z) = (cz − s)/(c − sz) = −φ(−z) is the inverse transformation of (2). The phase
portrait of this map is sketched in Figure 2. Its main dynamical properties are described in
the next lemma.

Lemma 2. The area-preserving map (3) has the following properties:
(i) The points q± = (0,±1) are hyperbolic fixed points of g and

spec[Dg(q±)] =
{

eh, e−h
}
.

(ii) The function J(r, z) = (c2 − s2z2)r2 + 2cs(z2 − 1)r is a first integral, and the level
J−1(0) contains two heteroclinic connections between the hyperbolic fixed points.

(iii) These heteroclinic connections are Γ0 =
{
(r, z) ∈ R

2 : r = 0, |z| < 1
}

and

Γ =
{

(r, z) ∈ R
2 : r = φ(z) − φ−1(z) =

2cs(1 − z2)
c2 − s2z2

, |z| < 1
}
.

(iv) The diffeomorphism γ = (r, z) : R → Γ, z(t) = tanh(t/2), r(t) = z(t+ h) − z(t − h)
is a natural parametrization of the connection Γ; that is, g(γ(t)) = γ(t+ h).

(v) The map g is R-reversible and R(γ(t)) = γ(−t), where R(r, z) = (r,−z).
Proof. It is a direct computation, so it is more enlightening to explain how these formulae

are guessed. The canonical change of variables (r, z) �→ (z,w = r + φ−1(z)) transforms (3)
into the planar standard-like map

ḡ(z,w) = (w,ψ(w) − z), ψ(w) = φ(w) + φ−1(w) =
2w

c2 − s2w2
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Figure 2. The phase portrait of the area-preserving map (3) for h = 2. The solid squares denote the
hyperbolic fixed points q±. The thick lines denote the heteroclinic connections Γ0 and Γ. The arrows denote
the dynamics of the map on the connections.

introduced by McMillan, which has similar properties [27, p. 232]. For instance,

J̄(z,w) = s2(z2 − 1)(w2 − 1) − (z − w)2

is a known first integral of the McMillan map, and its zero-level set J̄−1(0) contains two
heteroclinic connections between the hyperbolic fixed points q̄− = (−1,−1) and q̄+ = (1, 1).
From the relation ψ(z) = φ(z) + φ−1(z), we get that

ḡk(z, φ±1(z)) =
(
φ±k(z), φ±(k+1)(z)

)
for all k ∈ Z. Thus, using that φ : (−1, 1) → (−1, 1) is a diffeomorphism such that
limk→±∞ φk(z) = ±1 for all z ∈ (−1, 1), we see that the heteroclinic connections are

Γ̄0 = {w = φ−1(z)}, Γ̄ = {w = φ(z)}.

The change (z,w) �→ (r = w − φ−1(z), z) transforms Γ̄0 into Γ0 = {r = 0} and Γ̄ into
Γ = {r = φ(z) − φ−1(z)}. Finally, the natural parametrization follows from the relations
φ(z(t)) = z(t+ h) and r(t) = φ(z(t)) − φ−1(z(t)) = z(t+ h) − z(t− h).

Next, we construct a volume-preserving map using the area-preserving map (3). The
methodology consists, roughly speaking, of “rotating” the right half-plane {r > 0} of Figure 2
around the vertical axis, using “canonical” cylindrical coordinates [23]. The map becomes fully
three-dimensional if we introduce any nontrivial dynamics in the cylindrical angular variable
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θ ∈ T := R/2πZ. For instance, a rigid rotation θ �→ Θ = θ + ω suffices. See also Remark 2.
The surface of revolution Σ obtained from the curve Γ is the two-dimensional heteroclinic
connection we were looking for.

The construction would be a little obscure if we directly used the Cartesian coordinates
(x, y, z). Hence, as an intermediate step, it is convenient to introduce the cylindrical angle
θ ∈ T and the cylindrical radius

√
2r > 0. That is, we will work with the canonical cylindrical

coordinates (r, θ, z) defined by the relations

(4) x =
√

2r cos θ, y =
√

2r sin θ, z = z.

The term canonical means that dx ∧ dy ∧ dz = dr ∧ dθ ∧ dz. Consider the map (r, θ, z) �→
(R,Θ, Z), given by

(5) Θ = θ + ω, (R,Z) = g(r, z),

where g is the area-preserving map (3). This map preserves volume, since

dX ∧ dY ∧ dZ = −dR ∧ dZ ∧ dΘ = −dr ∧ dz ∧ dθ = dx ∧ dy ∧ dz.

Let

ρ(r, z) =

{ √
(φ(r + φ−1(z)) − z)/r, r �= 0,√

φ′(φ−1(z)), r = 0.

This function ρ(r, z) is analytic at r = 0 for |z| < c/s. Using coordinates (4) in the map
defined by (5), we get that, in Cartesian coordinates, the map that we want is

(6)

⎛
⎝ X

Y
Z

⎞
⎠ = f

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ cosω − sinω 0

sinω cosω 0
0 0 1

⎞
⎠
⎛
⎝ ρ(r, z)x

ρ(r, z)y
r + φ−1(z)

⎞
⎠ ,

where r = (x2 + y2)/2. We check, using formulation (6), that the map is well defined and
analytic on {(0, 0, z) ∈ R

3 : |z| < c/s}. This was not immediately clear from (4), since the
change to cylindrical coordinates is singular at r = 0.

The map (6) is our unperturbed volume-preserving model. It depends on the character-
istic exponent h > 0 and the frequency ω ∈ T. The characteristic exponent measures the
hyperbolicity of the problem. In particular, numerical computations or analytical studies
about separatrix splittings for small values of h will be hard, due to their exponential small-
ness. For instance, we have only been able to prove a conjecture presented in section 7 for
h ≥ log 16 − log(

√
113 − 9) ≈ 2.282.

The main dynamical properties of the integrable volume-preserving map (6) are described
in the following lemma.

Lemma 3. The volume-preserving map (6) has the following properties:
(i) The points p± = (0, 0,±1) are hyperbolic fixed points of f such that

spec[Df(p±)] =
{
e±2h, e∓h+iω, e∓h−iω

}
.
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(ii) The function I(x, y, z) = J((x2 +y2)/2, z) is a first integral of f , and the level I−1(0)
contains two heteroclinic connections between the hyperbolic fixed points.

(iii) The heteroclinic connections are Σ0 =
{
(0, 0, z) ∈ R

3 : |z| < 1
}

and

Σ =
{

(x, y, z) ∈ R
3 : x2 + y2 =

4cs(1 − z2)
c2 − s2z2

, |z| < 1
}
.

(iv) The diffeomorphism σ : T × R → Σ, σ(θ, t) = (x(θ, t), y(θ, t), z(t)), given by

(7)

z(t) = tanh(t/2),
r(t) = z(t+ h) − z(t− h),

x(θ, t) =
√

2r(t) cos θ,
y(θ, t) =

√
2r(t) sin θ,

⎫⎪⎪⎬
⎪⎪⎭

is a natural parametrization of Σ; that is, f(σ(θ, t)) = σ(θ + ω, t+ h).
(v) The map f has the linear symmetry S(x, y, z) = (−x,−y, z) and the involutive linear

reversors R(x, y, z) = (x,−y,−z) and T (x, y, z) = (−x, y,−z). Additionally, S(σ(θ, t)) =
σ(θ + π, t), R(σ(θ, t)) = σ(−θ,−t), and T (σ(θ, t)) = σ(π − θ,−t).

Proof. In the cylindrical coordinates (r, θ, z), the map f acts in the way described in (5).
Therefore, these properties follow directly from the properties of the map g described in
Lemma 2 and the fact that the involutions θ �→ −θ and θ �→ π − θ are reversors of the rigid
rotations θ �→ θ + ω.

Remark 2. We could have assumed that the frequency is not constant, but that it depends
on the first integral: ω = ω(I). In that case, since the expression of the Melnikov function
only needs the values of the dynamics on the saddle connection Σ, only the value ω0 = ω(0)
appears in the Melnikov computations.

The fixed sets of the reversors R and T are smooth curves. In fact, FixR is the x-axis and
FixT is the y-axis. Additionally, each fixed set intersects the saddle connection transversely
at a couple of opposite points, namely,

Σ ∩ FixR = {ξ+, ξ−}, Σ ∩ FixT = {ζ+, ζ−},

where ξ± = (±η, 0, 0), ζ± = (0,±η, 0), and η = 2
√
s/c. Further, ξ+ = σ(0, 0), ξ− = σ(π, 0),

ζ+ = σ(π/2, 0), and ζ− = σ(3π/2, 0). The question about when these symmetric heteroclinic
points persist is answered in the following proposition.

Proposition 4. Let S, R, and T be the symmetry and the reversors introduced in Lemma 3.
Let ξ± and ζ± be the symmetric heteroclinic points of the map (6) on the x-axis and y-
axis, respectively. Let Pε be the set of primary heteroclinic intersections of the perturbed map
fε = pε ◦ f , where pε = Id + εκ and κ(x, y, z) = (0, α(x), β(x, y)).

(i) If α(x) is odd and β(x, y) is even, then fε is S-symmetric and S(Pε) = Pε.
(ii) If β(x, y) is even in y, then fε ◦ Rε − Rε ◦ f−1

ε = O(ε2), where Rε = pε ◦ R. If, in
addition, α(0) = 0 and β(0, α(x)) = 0, then fε is Rε-reversible, Rε(Pε) = Pε, and there exist
points ξ±ε = ξ± + O(ε) ∈ Pε ∩ FixRε.

(iii) If α(x) is odd and β(x, y) is even in x, then fε◦Tε−Tε◦f−1
ε = O(ε2), where Tε = pε◦T .

If, in addition, α(0) = 0 and β(0, α(x)) = 0, then fε is Tε-reversible, Tε(Pε) = Pε, and there
exist points ζ±ε = ζ± + O(ε) ∈ Pε ∩ Fix Tε.
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Proof. (i) If α(x) is odd and β(x, y) is even, then κ ◦ S = S ◦ κ and

pε ◦ S = (Id + εκ) ◦ S = S + εS ◦ κ = S ◦ (Id + εκ) = S ◦ pε.

Therefore, fε ◦ S = pε ◦ f ◦ S = pε ◦ S ◦ f = S ◦ pε ◦ f = S ◦ fε.
(ii) If β(x, y) is even in y, then κ ◦ R = −R ◦ κ. Further, p−1

ε = Id − εκ + O(ε2).
Therefore, Rε = (Id + εκ) ◦R = R − εR ◦ κ = R ◦ (Id − εκ) = R ◦ p−1

ε + O(ε2) and fε ◦Rε =
pε ◦ f ◦R ◦ p−1

ε + O(ε2) = pε ◦R ◦ f−1 ◦ p−1
ε + O(ε2) = Rε ◦ f−1

ε + O(ε2).
If α(0) = 0 and β(0, α(x)) = 0, then κ2(x, y, z) = (0, α(0), β(0, α(x))) = 0 and p−1

ε =
Id − εκ, so all the O(ε2) terms above vanish.

(iii) If α(x) is odd and β(x, y) is even in x, then κ ◦ T = −T ◦ κ, so it suffices to replace
R with T in the previous item.

When Rε and Tε are true reversors, their fixed sets are

FixRε = {(x, y, z) ∈ R
3 : y = εα(x)/2, z = εβ(x, εα(x)/2)/2},

Fix Tε = {(x, y, z) ∈ R
3 : x = 0, z = εβ(0, y)/2},

which are O(ε)-close to the x-axis and y-axis. (We have used that α(0) = 0.)

4. The Melnikov function. Next, we want to derive an explicit expression for the Mel-
nikov function associated with the volume-preserving perturbations

(8) fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).

Other perturbations can also be studied. We do not aspire to be exhaustive.
If α(0) = β(0, 0) = 0, then fε(0, 0, z) = f(0, 0, z), and the one-dimensional heteroclinic

connection Σ0 is preserved under the perturbation (8). There is no similar persistence result
for the two-dimensional heteroclinic connection Σ.

The first integral given in Lemma 3 is I(x, y, z) = J(r, z), where r = (x2 + y2)/2 and
J(r, z) = (c2 − s2z2)r2 + 2cs(z2 − 1)r. Additionally, r = 2cs(1− z2)/(c2 − s2z2) on the saddle
connection Σ. Finally, if the perturbation has the form (8), then the Melnikov function (1)
can be written as

(9) M : Σ → R, M(x, y, z) =
∑
k∈Z

m(xk, yk, zk),

where (xk, yk, zk) = fk(x, y, z) and

m(x, y, z) = 〈∇I(x, y, z), κ(x, y, z)〉
= ∂yI(x, y, z)α(x) + ∂zI(x, y, z)β(x, y)
= y∂rJ(r, z)α(x) + ∂zJ(r, z)β(x, y)

= 2csy(1 − z2)α(x) + 2szr(2c− sr)β(x, y).

On the other hand, the natural parametrization σ = (x, y, z) : T × R → Σ given in (7)
provides a diffeomorphism between the saddle connection Σ and the cylinder T × R, so that
objects defined over Σ can be considered as depending on an angular variable θ ∈ T and a
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hyperbolic variable t ∈ R. Henceforth, we will abuse the notation by not giving these objects
new names. Thus, the Melnikov function (9) becomes

(10) M : T × R → R, M(θ, t) =
∑
k∈Z

m(θ + kω, t+ kh),

where

m(θ, t) = λ(t)y(θ, t)α(x(θ, t)) + μ(t)β(x(θ, t), y(θ, t))
= ρ(t)λ(t)α

(
ρ(t) cos θ

)
sin θ + μ(t)β

(
ρ(t) cos θ, ρ(t) sin θ

)(11)

and

r(t) = z(t+ h) − z(t− h) =
2cs

cosh ((t+ h)/2) cosh ((t− h)/2)
,

ρ(t) =
√

2r(t),

λ(t) = 2cs
(
1 − z(t)2

)
= 4csz′(t) =

2cs
cosh2(t/2)

,

μ(t) = 2sz(t)r(t) (2c− sr(t)) = −4csr′(t).

(12)

The rest of the paper deals with the computation and description of the zero-level set

Z = M−1(0) = {(θ, t) ∈ T × R : M(θ, t) = 0}

for several simple perturbations (8). In order to make that easier, we recall that the Melnikov
function is invariant by the unperturbed map. In the current context, this implies that the
Melnikov function M satisfies

(13) M(θ + ω, t+ h) = M(θ, t) = M(θ + 2π, t),

and therefore the zero-set Z is (2π, 0) and (ω, h)-periodic. That is, if (θ∗, t∗) ∈ Z, then
(θ∗ + ω, t∗ + h) ∈ Z and (θ∗ + 2π, t∗) ∈ Z.

A tilde will always denote the projection of a periodic object to the quotient torus,

(14) τ̃(ω, h) = τ̃ := (T × R)/(ω, h)Z = R
2/((2π, 0)Z + (ω, h)Z),

which is diffeomorphic to the quotient of the saddle connection by the unperturbed map. The
study of the projected set Z̃ = M̃−1(0) ⊂ τ̃ is easier, because τ̃ is compact.

The torus is represented in Figure 3 as the rectangle [0, 2π] × [0, h] with the appropriate
identifications. We have not chosen the parallelogram shown in thin lines in that figure as the
representation of the torus because its shape changes in ω, hindering posterior comparisons
and the study of bifurcations that take place in ω.

Remark 3. Sometimes we will restrict ourselves to the case ω = 0, which is called no-swirl
in fluid dynamics. This is the simplest one, because then the quotient torus is a product:
τ̃(0, h) = (R/2πZ) × (R/hZ), and the variable t is defined modulo h. Although the unper-
turbed map has just a two-dimensional dynamics for ω = 0, it is still an interesting case—the
perturbation will create a real three-dimensional dynamics.
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ξ̃+ = (0, 0)

•
ζ̃+

•
ξ̃−

•
ζ̃−

•
ξ̃+ = (2π, 0)

•ξ̃+ •ζ̃+ •ξ̃− •ζ̃− ◦ξ̃+

•
ξ̃+ = (ω, h)

•
ζ̃+

•
ξ̃−

•
ζ̃−

◦
ξ̃+ = (2π + ω, h)

Figure 3. A rectangular representation of the torus τ̃ and the symmetric points described in Lemma 5 for
ω = π/3. Opposite sides of the rectangle are identified, although the identification of the horizontal ones is
shifted by an amount equal to ω.

Let us check that Z̃ contains at least eight symmetric points and has some useful symme-
tries and more periodicities when the perturbation preserves the symmetry and reversors of
the unperturbed map. The symmetric points are shown in Figure 3.

Lemma 5. Let Z̃ be the projection onto the torus (14) of the zero-level set of the Melnikov
function (10).

(i) If α(x) is odd and β(x, y) is even, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(ii) If α(x) is even and β(x, y) is odd, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(iii) If β(x, y) is even in y, then Z̃ contains (and is symmetric with regard to) the points

ξ̃+ = (0, 0), ξ̃− = (π, 0), ξ̃+ = (ω/2, h/2), and ξ̃− = (π + ω/2, h/2).
(iv) If α(x) is odd and β(x, y) is even in x, then Z̃ contains (and is symmetric with

regard to) the points ζ̃+ = (π/2, 0), ζ̃− = (3π/2, 0), ζ̃+ = (π/2 + ω/2, h/2), and ζ̃− =
(3π/2 + ω/2, h/2).

Proof. We could write a geometric proof based on the geometric properties established in
Proposition 4, but instead, we give a shorter analytic proof.

We consider the Melnikov function M as a function defined on the plane R
2 with periods

(2π, 0) and (ω, h). Assume that M is odd with regard to a point (θ0, t0) ∈ R
2. Then M−1(0)

contains (and is symmetric with regard to) the point (θ0, t0). But M−1(0) also contains (and
is symmetric with regard to) the points (θ0 +p, t0 + q) for any semiperiod (p, q) of M , because

M(θ0 + p, t0 + q) = −M(θ0 − p, t0 − q) = −M(θ0 + p, t0 + q).

The functions r(t), ρ(t), and λ(t) given in (12) are even, whereas μ(t) is odd. Let m be the
function defined in (11). Hence, the lemma is a consequence of the following observations:

(i) if α(x) is odd and β(x, y) is even, then m(θ, t) is π-periodic in θ;
(ii) if α(x) is even and β(x, y) is odd, then m(θ, t) is π-antiperiodic in θ;
(iii) if beta(x, y) is even in y, then m(θ, t) is odd with regard to (0, 0); and
(iv) if α(x) is odd and β(x, y) is even in x, m(θ, t) is odd with regard to (π/2, 0).

In this way, we conclude that the Melnikov function (10) verifies the conclusions of the
lemma.
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Remark 4. One can obtain more symmetries or periodicities under more restrictive hy-
potheses. For instance, using basic trigonometric properties, one checks that Z is (π/2, 0)-
periodic when κ(x, y, z) = (0, x, 0) or when κ(x, y, z) = (0, 0, β(x, y)) for some β(x, y) such
that β(x, y) = β(−y, x) or β(x, y) = −β(−y, x).

Remark 5. It turns out that Z̃ �= ∅, even if the volume-preserving perturbation (8) has no
symmetries. This has to do with the existence of an area form η̃ over the torus τ̃ such that
the integral of the two-form M̃η̃ vanishes. Therefore, the Melnikov function has to be zero at
some points. This idea was used in [24]. We skip the details.

5. Bounds on the complexity of the primary heteroclinic set. First, we shall establish
an upper bound on the cardinality of the horizontal sections of the zero-level set Z under
polynomial perturbations of the form (8). These horizontal sections are defined as

Zt0 = {θ ∈ T : M(θ, t0) = 0} = {θ ∈ T : (θ, t0) ∈ Z}, t0 ∈ R.

Proposition 6. If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y] for some integer n ≥ 1, then either
Zt0 = T or #Zt0 ≤ 2n.

Proof. The function m(θ, t) given in (11) has the following simple forms under monomial
perturbations. If α(x) = xi−1 and β(x, y) = 0, then m(θ, t) = (2r(t))i/2λ(t) cosi−1 θ sin θ,
whereas if α(x) = 0 and β(x, y) = xiyj, then m(θ, t) = (2r(t))(i+j)/2μ(t) cosi θ sinj θ. There-
fore, the Fourier expansion of m(θ, t) when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y] has only
the central 2n + 1 harmonics. That is, m(θ, t) =

∑
|j|≤nmj(t)eijθ for some coefficients mj(t).

Thus the Fourier expansion of the Melnikov function (10) has the same form, since

M(θ, t) =
∑
k∈Z

m(θ + kω, t+ kh)

=
∑
|j|≤n

∑
k∈Z

mj(t+ kh)eij(θ+kω)

=
∑
|j|≤n

Mj(t)eijθ,

where Mj(t) =
∑

k∈Z
eijkωmj(t + kh). To end the proof, it suffices to note that any nonzero

trigonometric polynomial like Mt0(θ) := M(θ, t0) =
∑

|j|≤nMj(t0)eijθ has at most 2n different
roots in T.

If ω = 0, there exists a similar bound for the cardinal of the vertical sections. This new
bound is obtained by using some elementary facts of the theory of elliptic functions. We
recall that a function is elliptic when it is meromorphic in the whole complex plane and has
two complex periods that are independent over the reals. The order of a nonconstant elliptic
function is the number of its poles (or zeroes), counted with multiplicity, that lie in a cell. A
cell of an elliptic function with periods p1 and p2 is a parallelogram with vertexes s, s + p1,
s+ p1 + p2, and s+ p2 such that its sides do not contain either zeroes or poles. For a general
background on elliptic functions, we refer to [34].

We realized in Remark 3 that the Melnikov function M(θ, t) is h-periodic in the vertical
coordinate t when the frequency ω is zero. In that case, the vertical sections of the projected
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zero-level set Z̃ = M̃−1(0) ⊂ τ̃ defined as

Z̃θ0 = {t ∈ R/hZ : M̃(θ0, t) = 0} = {t ∈ R/hZ : (θ0, t) ∈ Z̃}

are subsets of the quotient space R/hZ.
Proposition 7. Assume that the perturbation (8) is polynomial and ω = 0. Let Z̃θ0 be any

vertical section which does not cover the whole set R/hZ. Let l, n ∈ N.
(i) If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then #Z̃θ0 ≤ l.
(ii) If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤ n+ 1.
(iii) If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤ max(l, n+ 2).
Proof. These three items a based on the following formulae. If α(x) = x2j−1 and

β(x, y) = 0, then m(θ, t) = (2r(t))jλ(t) cos2j−1 θ sin θ. If α(x) = 0 and β(x, y) = xiy2j−i,
then m(θ, t) = (2r(t))jμ(t) cosi θ sin2j−i θ. Hence, if the polynomial α(x) ∈ R2l−1[x] is odd
and the polynomial β(x, y) ∈ R2n[x, y] is even, the function m(θ, t) has the form

m(θ, t) = λ(t)
l∑

j=1

aj(θ)(r(t))j + μ(t)
n∑

j=1

bj(θ)(r(t))j

for some trigonometric polynomials aj(θ) and bj(θ). Since ω = 0, we get that

(15) M̃θ0(t) := M̃(θ0, t) =
l∑

j=1

aj(θ0)Aj(t) +
n∑

j=1

bj(θ0)Bj(t),

where Aj(t) =
∑

k∈Z
λ(t+ kh)(r(t + kh))j and Bj(t) =

∑
k∈Z

μ(t+ kh)(r(t+ kh))j .
The functions z(t), r(t), λ(t), and μ(t) are 2πi-periodic and meromorphic in C. On the

one hand, the poles of z(t) are the points in the set πi + 2πiZ, all of them simple, and so
λ(t) = 4csz′(t) has the same poles, but they are double ones. On the other hand, the poles
of r(t) are the points in the sets ±h+ πi + 2πiZ, all of them simple, and so μ(t) = −4csr′(t)
has the same poles, but they are double ones.

Thus, Aj(t), Bj(t), and M̃θ0(t) are elliptic functions with periods h and 2πi. Their poles
are the points in the set πi + hZ + 2πiZ. Their orders are at most max(j, 2), j + 2, and
max(l, n + 2), respectively. To end the common part of the proof, we note that M̃θ0(t) is
nonconstant because Z̃θ0 �= R/hZ.

(i) If β(x, y) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑l

j=1 aj(θ0)Aj(t), and its
order is at most max(l, 2), so that it has at most max(l, 2) roots in a cell and #Z̃θ0 ≤ max(l, 2).
We can substitute this last bound by #Z̃θ0 ≤ l because if α(x) = x and ω = 0, then either
Z̃θ0 = R/hZ or Z̃θ0 = ∅; see item (iv) of Theorem 17.

(ii) If α(x) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑n

j=1 bj(θ0)Bj(t) and is
odd, because μ(t) is odd and r(t) is even. Its order is at most n + 2, but the rough bound
#Z̃θ0 ≤ n+ 2 can be improved using the symmetry. We get that M̃θ0(h/2 + πi) = 0, because

M̃θ0(h/2 + πi) = M̃θ0(−h/2 + πi) = M̃θ0(−h/2 − πi) = −M̃θ0(h/2 + πi).

This means that M̃θ0(t) has at most n+ 1 real roots modulo h.
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(iii) In this case, the bound #Z̃θ0 ≤ max(l, n + 2) cannot be improved.
Remark 6. Proposition 6 also holds for the integrable trigonometric family of volume-

preserving maps introduced in [23]. The proof does not requires any change. On the contrary,
Proposition 7 cannot be directly translated into the trigonometric setting, because the com-
plex singularities of the natural parametrization of the separatrix in that setting are more
complicated.

Recall that in the introduction we had a brief discussion of the type of primary heteroclinic
intersections that appear. In our case, by Theorem 1, it is enough to remember that primary
intersections are the intersections that arise as the continuation of the nondegenerate zeroes
of the Melnikov function.

Any vertical curve intersects the horizontal line {t = t0} in at least one point, so the
number of vertical curves cannot be larger than the cardinal of the horizontal sections of the
zero-level set. Therefore, as a by-product of Proposition 6, we get that there are at most 2n
vertical curves when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y]. In fact, Propositions 6 and 7 have
stronger consequences on the homology/homotopy classes of the heteroclinic intersections of
the invariant manifolds.

We recall that Z̃ is the projection of the zero-level set Z = M−1(0) onto the torus τ̃ defined
in (14). Assume that 0 is a regular value of the Melnikov function. Then Z̃ is a submanifold
of the torus, and its connected components are closed smooth curves. Therefore, once we have
fixed an induced orientation on the torus, we can assign to each connected component γ̃ of Z̃
its homology class [γ̃] ∈ H1(T2) = Z

2.
In the case of the torus τ̃ , we will identify horizontal lines with the class (1, 0) and vertical

lines, generated by the vector (ω, h), with the class (0, 1). Thus, [γ̃] = (p, q) ∈ Z
2 means

that γ̃ is a closed curve that wraps around the torus |p| times in the horizontal direction and
|q| times in the vertical one. For instance, the set Z̃ has four connected components with
homology class (0, 1) or (0,−1) in the subfigures 4(a)–4(d), whereas it has just two connected
components with homology class (1,−2) or (−1, 2) in the subfigures 4(f)–4(i). Subfigure 4(e)
is excluded because then 0 is a singular value of the Melnikov function.

Remark 7. With regard to the three types of heteroclinic curves mentioned in the intro-
duction, we note that a connected component γ̃ such that [γ̃] = (p, q) gives rise for ε small
enough to vertical (resp., equatorial) (resp., bubble-type) curves when q �= 0 (resp., q = 0 but
p �= 0) (resp., p = q = 0).

Remark 8. The first homology group and the first homotopy group (that is, the funda-
mental group) of a torus coincide: H1(T2) = Z

2 = π1(T2). Hence, we could use homotopy
instead of singular homology.

We need the following result from Morse theory.
Lemma 8. If a ∈ R is a regular value of a smooth function f : X → R defined over a

compact manifold X, the homology class of the level set La = f−1(a) is zero.
Proof. It suffices to prove this for Morse functions, because Morse functions are dense and

the homology class of a closed curve does not change under small perturbations.
Let a and b be two regular values of f such that a < b. Then La and Lb are the borders

of the smooth manifold f−1([a, b]), and so they have the same homology class. Let c be the
maximum value of f . Since f is Morse, there exists a unique point x ∈ X such that f(x) = c.
This point is a nondegenerate maximum, and so if δ > 0 is small enough, c − δ is a regular
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(a) ω = 0 (b) ω = π/3 (c) ω = 9π/20

(d) ω = π/2 − 10−3 (e) ω = π/2 (f) ω = π/2 + 10−3

(g) ω = 11π/20 (h) ω = 2π/3 (i) ω = π

Figure 4. The only bifurcation of Z̃ in the range 0 ≤ ω ≤ π under the perturbation κ(x, y, z) = (0, x, 0)
takes place at the singular frequency ω = π/2. These pictures show this bifurcation for h = 1. The symmetric
points move as the frequency ω varies.

value and Lc−δ is just a small closed curve around x. Hence, Lc−δ is contractible, and its
homology class is equal to zero.

The homology classes of the connected components of the projected zero-level set Z̃ are
bounded in the following theorem. These bounds restrict the topological complexity of the
primary heteroclinic set Pε = Z + O(ε) for small values of ε.

Theorem 9. Assume that 0 is a regular value of the Melnikov function associated with
the perturbation (8). Let γ̃1, . . . , γ̃r be connected components of the projected zero-level set
Z̃ = M̃−1(0). Let [γ̃1] = (p1, q1), . . . , [γ̃r] = (pr, qr) be their homology classes.

(i) The homology of Z̃ is zero:
∑

j [γ̃j ] =
∑

j (pj, qj) = (0, 0).
(ii) If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y], then 2 |qj| ≤

∑
j |qj| ≤ 2n.

(iii) Assume that ω = 0. Let l, n ∈ N. Then we have the following:
1. If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then 2 |pj| ≤

∑
j |pj| ≤ l.

2. If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then 2 |pj | ≤
∑

j |pj| ≤ n+ 1.
3. If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then 2 |pj| ≤

∑
j |pj| ≤

max(l, n + 2).
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Proof. (i) It suffices to apply Lemma 8 to the projected function M̃ : T
2 → R.

(ii) We are under the hypotheses of Proposition 6, and 0 is a regular value of the Melnikov
function, so there exists some t∗ ∈ R such that #Zt∗ ≤ 2n. On the contrary, Zt0 = T for all
t0 ∈ R, and the Melnikov function should be identically zero.

Using that Z̃ = γ̃1 � · · · � γ̃r and that each curve γ̃j wraps |qj| times in the vertical
direction, we get that

∑
j |qj| ≤

∑
j # (γ̃j ∩ (T × {t∗})) = #Zt∗ ≤ 2n. Next, we obtain the

bound 2 |qj| = |qj| +
∣∣∑

i
=j qi
∣∣ ≤∑i |qi| ≤ 2n from the identity

∑
j qj = 0.

(iii) This follows in a similar way, but from Proposition 7.

6. Splitting of separatrices. In this section we shall present two theorems about the
splitting of the separatrix. In the first one, we shall establish a sufficient condition for the
splitting of the separatrix under some entire perturbations, whereas in the second one we find
a broad class of polynomial perturbations that split the separatrix. The sufficient condition
is obtained through the study of the complex singularities of the Melnikov function. To be
more precise, if the Melnikov function can be analytically extended for complex values of its
variables and this extension has some nonremovable singularity, then the original Melnikov
function cannot be identically zero and the separatrix splits.

For simplicity, we have restricted our study to perturbations of the form

(16) fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, 0, β(x, y))

for some nonzero even entire function β(x, y). The study is a bit more cumbersome when
the entire perturbation has the more general form (8) with α(x) odd and β(x, y) even. If
α(x) is not odd or β(x, y) is not even, our current technique does not work, because ramified
singularities are harder to deal with than isolated ones.

Theorem 10. Let Bθ : C → C be the entire function

(17) Bθ(r) =
∫ r

0
β(

√
2s cos θ,

√
2s sin θ)ds.

Let r(t) = z(t+ h) − z(t− h) with z(t) = tanh(t/2). If the function

(18) δθ(t) = δ+θ (t) + δ−θ (t), δ±θ (t) = Bθ±ω(r(t± h))

has a nonremovable singularity at t = πi for some θ ∈ T, then the separatrix splits.
We note that z(t) is meromorphic and its poles are the points in the set πi+2πiZ. Hence,

since the function Bθ(r) is entire and nonzero, the compositions δ+θ (t) and δ−θ (t) always have
a nonremovable singularity at the point t = πi. Our sufficient condition for the splitting is
that the sum δ+θ (t) + δ−θ (t) be still singular at t = πi, which is generic.

Proof. The function Bθ(r) is entire because the parity of the perturbation β(x, y) cancels
the square roots that appear in (17).

The first step is to rewrite the Melnikov function in a more convenient form. Using
that α(x) = 0 and the relation μ(t) = −4csr′(t), the Melnikov function (10) has the form
M(θ, t) = −4cs(Δθ)′(t), where

Δθ(t) =
∑
k∈Z

δ
[k]
θ (t), δ

[k]
θ (t) = Bθ+kω(r(t+ kh)).
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Using that δθ(t) = δ
[1]
θ (t) + δ

[−1]
θ (t), we shall prove that the series Δθ(t)—and hence, the

Melnikov function—has a nonremovable singularity at t = πi for some θ ∈ T.
Since the function Bθ(r) is entire, the composition δ

[k]
θ (t) = Bθ+kω(r(t+ kh)) is analytic

but at the poles of the meromorphic function r(t + kh), which are the points in the sets
±h− kh+ πi + 2πiZ. Thus, the difference

Δθ(t) − δθ(t) =
∑

k 
=±1

δ
[k]
θ (t)

is analytic at t = πi for any θ ∈ T. On the other hand, by hypothesis, δθ(t) has a nonremovable
singularity at t = πi for some θ ∈ T.

Next, we find some concrete perturbations of the form (16) that split the separatrix.
For simplicity, we shall deal with perturbations such that the computation of the singular
parts of the functions δ±θ (t) defined in (18) around their singularity t = πi can be easily
analyzed. Polynomial perturbations are a natural choice. We need the following notation for
the statement of the result. Given any β(x, y) ∈ Rn[x, y], we shall denote by

∑n
l=0 βl(x, y) its

decomposition as a sum of homogeneous polynomials. That is, βl(ρx, ρy) = ρlβl(x, y) for all
ρ ∈ R. Let Rϕ : R

2 → R
2 be the rotation

(19) Rϕ(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ).

Proposition 11. If β(x, y) ∈ R2n[x, y] is even and β2n◦R2ω �= (−1)nβ2n, then the separatrix
splits under the polynomial perturbation (16).

Proof. The decomposition of the polynomial β(x, y) ∈ R2n[x, y] has only even terms:
β(x, y) =

∑n
l=0 β2l(x, y). Then the entire function Bθ : C → C defined in (17) is the (not

necessarily even) polynomial

Bθ(r) =
n∑

l=0

B̂l(θ)rl+1, B̂l(θ) =
2lβ2l(cos θ, sin θ)

l + 1
.

The point t = πi is a simple pole of the meromorphic function z(t) = tanh(t/2), and so it
becomes a pole of order n + 1 of the functions δ+θ (t) = Bθ+ω(z(t + 2h) − z(t)) and δ−θ (t) =
Bθ−ω(z(t)− z(t− 2h)). In particular, there exist some Laurent coefficients δ̂±1 (θ), . . . , δ̂±n+1(θ)
such that

δ±θ (t) =
δ̂±n+1(θ)

(t− πi)n+1
+ · · · + δ̂±1 (θ)

t− πi
+ (some analytic function at t = πi).

For instance, using that the residue of z(t) at its poles is equal to 2, we get that the dominant
Laurent coefficients are δ̂±n+1(θ) = (∓2)n+1B̂n(θ ± ω).

Finally, we note that if there exist some θ ∈ T and some index j = 1, . . . , n+ 1 such that
δ̂+j (θ)+ δ̂−j (θ) �= 0, then δθ(t) = δ+θ (t)+δ−θ (t) has a nonremovable singularity at t = πi and the
separatrix splits. The functional condition β2n ◦R2ω �= (−1)nβ2n is equivalent to the existence
of some angle θ ∈ T such that

β2n(cos(θ + 2ω), sin(θ + 2ω)) �= (−1)nβ2n(cos θ, sin θ),
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which is equivalent to the existence of θ such that δ̂+n+1(θ) + δ̂−n+1(θ) �= 0.
Using this proposition, we shall obtain many polynomial perturbations that split the

separatrix. To explain this, we introduce the complexified variables

(20) z = x+ yi, z̄ = x− yi.

In these variables, the functional equation β2n◦R2ω = (−1)nβ2n reads as β̃2n◦R̃2ω = (−1)nβ̃2n.
Here, R̃ϕ(z, z̄) = (eϕiz, e−ϕiz̄) and

β̃2n(z, z̄) =
n∑

k=−n

β̃
[k]
2nz

n+kz̄n−k

stand for the rotation (19) and the homogeneous polynomial β2n(x, y) in the complexified vari-
ables, respectively. The transformed polynomial β̃2n(z, z̄) is still a homogeneous polynomial
of degree 2n because the change (20) is linear.

Lemma 12. The functional equation β2n ◦R2ω = (−1)nβ2n holds if and only if

(21) β̃
[k]
2n

(
e4ωki − (−1)n

)
= 0 ∀k = −n, . . . , n.

Proof. R̃2ω(z, z̄) = (e2ωiz, e−2ωi z̄) maps zn+kz̄n−k onto e4kωizn+kz̄n−k.
Now we are ready to give precise statements about the splitting of the separatrix under

polynomial perturbations of the form (16). For instance, we shall see that both nonresonant
frequencies and high-order resonant frequencies—that is, ω/π /∈ Q or ω/π is an irreducible
fraction with a high denominator—are strong obstructions for the persistence of the separatrix.
A homogeneous polynomial β2n(x, y) of degree 2n is rotationally invariant when it has the
form

β2n(x, y) = β̃
[0]
2nz

nz̄n = β̃
[0]
2n|z|2n = β̃

[0]
2n(x2 + y2)n

for some constant β̃[0]
2n ∈ R. These polynomials are the only homogeneous ones that remain

invariant under the action of the continuous group of rotations Rϕ : R
2 → R

2.
Theorem 13. If β(x, y) is an even polynomial of degree 2n, then the perturbation (16) splits

the separatrix in any of the following two cases:
(i) n odd and e4kωi �= −1 for k = 1, . . . , n; or
(ii) n even, β2n(x, y) not rotationally invariant, and e4kωi �= 1 for k = 1, . . . , n.
Proof. From Proposition 11 and Lemma 12, we know that (21) is a necessary condition

for the persistence of the separatrix. Let us check that this condition is incompatible with the
two listed cases.

(i) If n is odd and e4kωi �= −1 for k = 1, . . . , n, condition (21) implies that β̃[k]
2n = 0 for all

k = −n, . . . , n. Therefore, the homogeneous polynomial β2n(x, y) is zero, which contradicts
the fact that β(x, y) has degree 2n.

(ii) If n is even and e4kωi �= 1 for k = 1, . . . , n, then condition (21) implies that β̃[k]
2n = 0 for

all k �= 0, which contradicts the fact that β(x, y) has degree 2n and β2n(x, y) is not rotationally
invariant.

It would be interesting to know whether there exist some entire perturbations of the
form (16) that preserve the separatrix. Of course, such perturbations cannot verify the suffi-
cient condition for splitting given in Theorem 10. We have not found any perturbation of this
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kind, which is not so strange because in similar contexts, related with other McMillan maps,
they simply do not exist. An area-preserving example of this situation can be found in [13],
and a high-dimensional symplectic one in [14].

7. Bifurcations of the zero-level set in an example. In this section, we shall study the
bifurcations in ω ∈ T of the topological shape of the zero-set Z ⊂ T × R for the perturbation
κ(x, y, z) = (0, x, 0). We note that, according to Lemma 5 and Remark 4, Z contains (and
is symmetric with regard to) the eight symmetric points shown in Figure 3 and it is also
(π/2, 0)-periodic.

Based on detailed numerical computations and several analytical arguments, we conjecture
that 0 is a singular value of the Melnikov function if and only if ω = ±π/2, and so the only
bifurcations of Z = M−1(0) take place at those values. For instance, we show in Figure 4 the
numerically computed shape of Z̃ for several values of the frequency in the range 0 ≤ ω ≤ π.

We give a dynamical interpretation of these Melnikov-like results. If ω �= ±π/2, the set
of primary intersections Pε = Z + O(ε) consists of four vertical curves for ε small enough;
see Theorem 1. Each curve has a symmetric twin, because Pε is invariant under the axial
symmetry S(x, y, z) = (−x,−y, z). The fixed sets of the reversors are

FixRε = {(x, y, z) ∈ R
3 : y = εx/2, z = 0},

Fix Tε = {(x, y, z) ∈ R
3 : x = 0, z = 0}.

Hence, two heteroclinic vertical curves cross a curve O(ε)-close to the x-axis, and the other
pair of heteroclinic curves cross the y-axis. The rotation number of these vertical curves is
equal to ω in the range −π/2 < ω < π/2, but it jumps to ω ∓ π when the bifurcation values
ω = ±π/2 are crossed. The shape of the primary set when ω = ±π/2 is not completely clear,
because then 0 is a singular value of the Melnikov function and Theorem 1 cannot be applied.
This is an open question.

The rest of the section is devoted to presenting some rigorous results supporting the previ-
ous conjecture, although we have found a complete proof only for h ≥ h0 ≈ 2.28. Nevertheless,
we have been able to prove the following results. If ω is a regular frequency (that is, if 0 is a
regular value of the Melnikov function), then Z contains just four vertical curves. Otherwise,
we say that ω is a singular frequency and Z contains the four vertical curves jointly with the
images and preimages of exactly one horizontal straight line, in which case the degenerate
zeroes of the Melnikov function are just the points in the intersections between the horizontal
and vertical curves. The number of singular frequencies is finite. The frequencies ω = 0 and
ω = π are regular. The frequencies ω = ±π/2 are singular and are the only singular ones
when the characteristic exponent is big enough: h ≥ h0 := log 16 − log(

√
113 − 9) ≈ 2.28.

In order to lighten the computations, we write the Melnikov function in its simplest form.
Let χ : R → R be the function

(22) χ(t) =
4c2s2

cosh((t+ h)/2) cosh2(t/2) cosh((t− h)/2)
.

Then, using that α(x) = x and β(x, y) = 0, the Melnikov function (10) becomes

(23) M(θ, t) = a(t) sin 2θ + b(t) cos 2θ,
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where a(t) and b(t) are given by the absolutely convergent series

a(t) =
∑
k∈Z

cos(2kω)χ(t + kh), b(t) =
∑
k∈Z

sin(2kω)χ(t+ kh).

We also introduce the complex-valued function

(24) E(t) = Eω(t) =
∑
k∈Z

e2kωiχ(t+ kh) = a(t) + b(t)i,

which plays a crucial role in the digression because of the relation

(25) ∂θM(θ, t)/2 +M(θ, t)i = E(t)e2θi.

This relation has interesting consequences. For instance, if (θ0, t0) ∈ T × R is a degenerate
zero of the Melnikov function, E(t0) must be zero. In particular, 0 is a regular value of the
Melnikov function when E(t) has no real zeroes. Therefore, we are naturally led to the study
of the sets

(26) Ω = Ωh = {ω ∈ T : Eω(t) has some real zero}, h > 0.

Their main properties are addressed in the following lemma, whose proof is deferred to Ap-
pendix A. The proof is based on some nice properties of quasi-elliptic functions that can be
deduced from elementary facts of complex variable theory contained in any basic textbook,
like, for instance, [34].

Lemma 14. Given any h > 0, the set (26) is finite, π-periodic, and symmetric: Ω = −Ω.
If the function (24) has some real zero, all of them are simple, and the set of its real zeroes is
either hZ or h/2 + hZ, so Ω is the disjoint union of the sets

Ω0 = {ω ∈ T : Eω(0) = 0}, Ω1 = {ω ∈ T : Eω(h/2) = 0}.

Further, ±π/2 ∈ Ω1, 0 /∈ Ω, and π /∈ Ω. Finally, Ω1 = {±π/2} for h ≥ h1 := 2 log 20
9 ≈ 1.60

and Ω0 = ∅ for h ≥ h0 := log 16 − log(
√

113 − 9) ≈ 2.28.
Conjecture 15. Ω = Ω1 = {±π/2} and Ω0 = ∅ for all h > 0.
We present in Appendix B strong numerical evidence for this conjecture.
Lemma 16. Let E : R → C be an analytic function such that E(−t) = E(t).
(i) If E(t) has no real zeroes, then there exists a unique odd analytic function ϕ : R → R

and an integer n ∈ {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn)i for all t ∈ R.
(ii) If E(t) has no real multiple zeroes, then there exists a unique odd analytic function

ϕ : R → R and a function n : R → {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn(t))i for all t ∈ R.
The function n(t) is constant, but at the zeroes of E(t).

Proof. (i) If a function is analytic and never zero on a convex subset of the complex plane,
then it has an analytic argument on that convex subset. This is an elementary result in
complex variable theory; see [4, section 2.1]. Let ϕ(t) be an analytic argument of E(t)/E(0);
that is, any analytic function ϕ : R → R such that

E(t) = E(0) |E(t)/E(0)| eϕ(t)i = |E(t)| e(ϕ(t)+πn)i.
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Obviously, n = 0 if E(0) > 0 and n = 1 if E(0) < 0. The argument is not unique, but it is
determined up to a multiple of 2π; that is, it is determined once we choose the value of ϕ(0)
from the set 2πZ. The condition E(−t) = E(t) implies that ϕ(−t) + ϕ(t) = 2ϕ(0) for all real
t. If we want an odd argument, ϕ(0) = 0 is the only possible choice.

(ii) It suffices to realize that, at any simple zero, the argument undergoes a jump by a
multiple of π. When these jumps are stored in the discrete-valued function n(t), the function
ϕ(t) remains analytic.

These two lemmas are the basis for the next theorem, in which the shape and bifurcations
of the zero-level set Z = M−1(0) ⊂ T × R are described.

Theorem 17. Let Z be the zero-level set of the Melnikov function (23). Let Ω = Ω0 ∪ Ω1

be the decomposition of the set (26) given in Lemma 14. Let ω ∈ T. There exists a unique
odd analytic function θ̄ω : R → R such that the following hold:

(i) If ω /∈ Ω, then Z = {θ = θ̄ω(t) (mod π/2)} and ω is a regular frequency.
(ii) If ω ∈ Ωj, then Z = {t = jh/2 (mod h)} ∪ {θ = θ̄ω(t) (mod π/2)} and ω is a

singular frequency. The degenerate zeroes of the Melnikov function are just the points in the
intersections between the horizontal lines and the vertical curves.

(iii) The function Θ̄(t, ω) := θ̄ω(t) is analytic on R × (T \ Ω).
(iv) If ω = 0 (mod π/2), then θ̄ω(t) ≡ 0.
(v) θ̄ω(t+ h) = θ̄ω(t) + ω (mod π/2).
(vi) θ̄ω(h/2 − t) + θ̄ω(h/2 + t) = ω (mod π/2).
(vii) θ̄−ω(t) = −θ̄ω(t) and θ̄ω+π(t) = θ̄ω(t).
Proof. Sometimes, we do not write explicitly the dependence on the frequency. Using that

a(t) is even and b(t) is odd, we see that the function (24) verifies the relation E(−t) = E(t).
This is important, because it was a hypothesis in Lemma 16.

(i) If ω /∈ Ω, then E(t) has no real zeroes, and so ω is a regular frequency. It remains to
prove that Z is composed of four vertical curves of the form {θ = θ̄(t) (mod π/2)} for some
function θ̄(t). Let θ̄ : R → R be the odd analytic function θ̄(t) = −ϕ(t)/2, where ϕ(t) =
arg(E(t)/E(0)) is the argument introduced in Lemma 16. Let n be the integer mentioned in
the same lemma. Using that E(t) has no real zeroes jointly with relation (25), we have

Z = M−1(0) = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) ∈ T × R : sin(ϕ(t) + πn+ 2θ) = 0}
= {(θ, t) ∈ T × R : θ = θ̄(t) (mod π/2)}.

(ii) We know that E(t) has no real multiple zeroes. Let ϕ(t) and n(t) be the functions
given in Lemma 16. Let θ̄(t) = −ϕ(t)/2. Then

Z = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) : E(t) = 0} ∪ {(θ, t) : sin(ϕ(t) + πn(t) + 2θ) = 0}
= {t = jh/2 (mod h)} ∪ {θ = θ̄(t) (mod π/2)}.

Therefore, Z = M−1(0) contains four vertical curves that intersect infinitely many horizontal
straight lines. Obviously, these intersections are degenerate zeroes of the Melnikov function.
Next, we shall prove that the other zeroes are nondegenerate.
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Let (θ0, t0) be a zero of the Melnikov function not contained in any horizontal line:
M(θ0, t0) = 0 and E(t0) �= 0. Then ∂θM(θ0, t0) = 2E(t0)e2θ0i �= 0; see (25).

On the other hand, let (θ, t1) be a point contained in some horizontal line: M(θ, t1) = 0,
E(t1) = 0, and E′(t1) �= 0. Again from relation (25), we get ∂θM(θ, t1) = 0 and ∂tM(θ, t1) =
�E′(t1)e2θi, where � denotes imaginary part. Hence, the degenerate zeroes on the horizontal
line {t = t1} are just those that verify the condition �E′(t1)e2θi = 0. But, since E′(t1) �= 0,
there are exactly four of such angles θ ∈ T. These four angles are the ones correspond-
ing to the four intersections of the horizontal line {t = t1} with the four vertical curves
{θ = θ̄(t) (mod π/2)}.

(iii) Level sets associated with regular values of analytic functions vary in an analytic way
under analytic perturbations.

(iv) If ω = 0 (mod π/2), then sin(2kω) = 0 for all k, and b(t) = �E(t) ≡ 0.
(v) This has to do with the fact that the zero-level set Z is (ω, h)-periodic. Given any

t ∈ R, we consider the slice Zt = {θ ∈ T : (θ, t) ∈ Z}. If E(t) �= 0, then

Zt+h = {θ ∈ T : θ = θ̄(t+ h) (mod π/2)},
Zt + ω = {θ ∈ T : θ = θ̄(t) + ω (mod π/2)}.

But these two sets coincide, due to the (ω, h)-periodicity of Z, and so we obtain that θ̄(t+h) =
θ̄(t) + ω (mod π/2) for any real t such that E(t) �= 0. Indeed, by analytic continuation, this
equality holds for any real t.

(vi) It follows directly from the previous item and the odd character of θ̄(t): θ̄(h/2− t) +
θ̄(h/2 + t) = −θ̄(t− h/2) + θ̄(t− h/2) + ω = ω (mod π/2).

(vii) First, θ̄−ω(t) = −1
2 argE−ω(t) = −1

2 argEω(t) = 1
2 argEω(t) = −θ̄ω(t). Second,

θ̄ω+π(t) = −1
2 argEω+π(t) = −1

2 argEω(t) = θ̄ω(t).
Remark 9. The numerical computations show that θ̄ω(t+h) = θ̄ω(t)+ω holds only in the

range −π/2 < ω < π/2; see Figure 4. This does not contradict item (v) in Theorem 17.
Remark 10. Similar results hold for the perturbation κ(x, y, z) = (0, 0, y2). In that case,

it turns out that the Melnikov function has the form

M(θ, t) = â(t) sin 2θ + b̂(t) cos 2θ + ĉ(t)

for some absolutely convergent series â(t), b̂(t), and ĉ(t). The analytical study is harder
because of the additional third term—compare with (23). We have numerically checked that
the only bifurcations take place at the singular frequencies ω ∈ {0,±π/2, π}, whereas the
zero-level set still contains just four vertical curves for regular frequencies.

8. Conclusion and open problems. In this paper, we have obtained several analytical
results about the splitting of separatrices under perturbations of some integrable volume-
preserving maps using a discrete version of the Melnikov method. The integrable maps have a
two-dimensional heteroclinic connection of spherical shape between two fixed points of saddle-
focus type. We have bounded the topological complexity of the primary heteroclinic set under
some polynomial perturbations. We have also given a sufficient condition for the splitting of
the separatrices under some entire perturbations. Finally, we have obtained a complete picture
of the bifurcations that take place under a simple perturbation. Despite these results, many
unsolved questions remain. We indicate four.
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The first question is: How accurate are our first-order Melnikov estimates? Of course, it
would be necessary to compute numerically the perturbed invariant manifolds and to com-
pare the real distance between them with the distance predicted by using the Melnikov func-
tion. A related numerical experiment was performed in [9] for linear perturbations of a
four-dimensional symplectic version of the McMillan map. This is a work in progress.

Second, we conjecture that the separatrix splitting studied in this paper is exponentially
small in the characteristic exponent, although the role of the frequency is still unclear. Several
examples of the effect that resonant frequencies can have in the dynamics of three-dimensional
maps near Hopf-saddle-node bifurcations can be found in [11, 12], although not related to a
problem about the splitting of separatrices. One could guess an asymptotic exponentially small
formula for the splitting using a multiple-precision arithmetic, like in [31]. Such formulae for
the splitting of one-dimensional heteroclinic connections between saddle-focus fixed points of
volume-preserving systems have already been found in [2] (for maps) and [8] (for flows), but
we do not know any similar formula for the two-dimensional case.

Another question is: What about Šil’nikov-like bifurcations in the discrete setting? The
perturbation of a spheromak structure in three-dimensional flows is a classical setup for study-
ing Šil’nikov bifurcations. Some results about the continuous case are contained in [10]. It is
natural to consider the discrete version of this problem, although the problem seems qualita-
tively more complicated.

It would be also interesting to study some questions about transport. As a first step,
we should compute the geometric flux through the perturbed separatrices. The O(ε)-term of
this flux can be computed by integrating certain Melnikov two-forms over a suitable region;
see [24]. Next, we could follow the ideas introduced in [26], although we must take into
account that the scenario for maps is richer than the one for flows. For instance, we recall
that equatorial and bubble-type heteroclinic curves cannot appear in autonomous flows.

Finally, we stress that only volume-preserving (conservative) perturbations have been
studied in this paper, although the study of dissipative perturbations is also possible. See, for
instance, the theories developed in [9, 7, 25].

Appendix A. Proof of Lemma 14. Here, we study the existence of real zeroes of the
function (24). This function has many properties similar to those of elliptic functions, and so
we shall study its zeroes using tools typical in the theory of elliptic functions.

We list in the next lemma some basic properties of the function E(t), including that E(t)
is meromorphic, 2πi-periodic, and h-quasi-periodic, and so quasi-elliptic.

Lemma 18. The function E(t) = Eω(t) =
∑

k∈Z
e2kωiχ(t+ kh) verifies the following:

(i) It is meromorphic in the complex plane and its poles are the points in the set P =
πi + hZ + 2πiZ (double ones).

(ii) E(t+ 2πi) = E(t) and E(t+ h) = e−2ωiE(t) for all complex t.
(iii) E(−t) = E(t) for all complex t.
(iv) If ω = π/2 (mod π), the points t = h/2 (mod h) are the only real zeroes of E(t), all

of them being simple ones.
(v) If ω = 0 (mod π), then E(t) has no real zeroes.
(vi) E−ω(t) = Eω(t) and Eω+π(t) = Eω(t).
Proof. (i) The function χ(t) is meromorphic in the complex plane, and its poles are the
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points in πi + 2πiZ (double ones) and πi ± h+ 2πiZ (simple ones).
(ii) The function E(t) is 2πi-periodic because so is χ(t). On the other hand,

E(t+ h) =
∑
k∈Z

e2kωiχ(t+ kh+ h) =
∑
k∈Z

e2(k−1)ωiχ(t+ kh) = e−2ωiE(t).

(iii) We recall that E(t) = a(t)+ b(t)i, where a(t) and b(t) are real analytic functions such
that a(t) is even and b(t) is odd. Hence, E(−t) = a(−t)+ b(−t)i = a(t)− b(t)i = a(t)− b(t)i =
E(t).

(iv) In this case, e2kωi = −1, and so E(t + h) = −E(t). Thus, E(t) becomes an elliptic
function with periods 2h and 2πi. Further, E(t) has order four, because it has just four poles
(counted with multiplicity) on any cell with periods 2h and 2πi; see (i).

Using that the elliptic function

E(t) =
∑
k∈Z

(−1)kχ(t+ kh)

is even, h-antiperiodic, and 2πi-periodic, we get that E(t) vanishes at the four points h/2,
3h/2, h/2 + πi, and 3h/2 + πi. For instance, E(h/2) = E(−h/2) = −E(h/2), so E(h/2) = 0.
But we know that E(t) has exactly four zeroes (counted with multiplicity) on each cell with
periods 2h and 2πi. Since the previous four zeroes belong to the same cell, they are the only
ones (modulo periodicities), and they are simple.

(v) χ(t) > 0 in R. Thus, if e2ωi = 1, E(t) =
∑

k∈Z
χ(t+ kh) > 0 for any real t.

(vi) First, E−ω(t) =
∑

k∈Z
e2kωiχ(t+ kh) =

∑
k∈Z

e2kωiχ(t+ kh) = Eω(t), because χ(t) is
real analytic. The second property is trivial.

Next, we gain some insight on the structure of the complex zeroes of the quasi-elliptic
function E(t). Roughly speaking, we state in the following lemma that E(t) has order two,
and its zeroes look like in Figure 5. The proof is adapted from similar proofs about elliptic
functions.

Lemma 19. The quasi-elliptic function E(t) has order two; that is, it has two zeroes in any
cell with periods h and 2πi. Let t1 and t2 be the zeroes in any cell. Then

(27) t1 + t2 ∈ 2ωi + hZ + 2πiZ.

Additionally, the set
T = {t1, t2} + hZ + 2πiZ

formed by the complex zeroes of E(t) is symmetric with regard to the vertical lines {�t = 0
(mod h)} and {�t = h/2 (mod h)}.

Proof. We recall the following version of the argument principle [34, section 6.3]. Let C
be a contour in the complex plane, let f(t) be a function analytic inside and on C, let g(t)
be a meromorphic function without zeroes or poles on C, and let t1, . . . , tJ and p1, . . . , pK be
the zeroes and poles of g(t) in the interior of C, repeated as many times as their multiplicities
and orders, respectively. Then

(28)
1

2πi

∮
C
f(t)

g′(t)
g(t)

dt =
∑

j

f(tj) −
∑

k

f(pk).
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�t = h/2

�t = 0

•

• •

•

� t1

� t2

� t1 � t2

∗ t1

∗t2

◦ t0

−πi h− πi

πi h+ πi

Figure 5. The three scenarios for the set of zeroes of the quasi-elliptic function E(t). First ( �): The zeroes
are on the lines {�t = h/2 (mod h)}. Second ( �): The zeroes have the same imaginary part modulo 2πi. Third
( ∗): The zeroes are on the lines {�t = 0 (mod h)}. The double poles are marked with the symbol •. The
middle point is t0 = h/2 + ωi in the three cases, because t1 + t2 ∈ 2ωi + hZ + 2πiZ.

This version of the principle assumes that the contour has no self-intersections, and that it is
oriented counterclockwise.

If we choose any cell of periods h and 2πi as the contour C, and set f(t) = 1, g(t) = E(t)
in (28), we get that E(t) has J = K = 2 zeroes in the cell, because the integrals of the quotient
E′(t)/E(t) over opposite sides of the cell cancel out. (We recall that E(t) has exactly one
double pole on each cell.)

Let t1 and t2 be the zeroes and p be the double pole of E(t) in a cell C. Let the corners of
the cell be s, s+ h, s+ h+ 2πi, s+ 2πi. Now, if we keep the same contour, but take f(t) = t
and g(t) = E(t), we get that

t1 + t2 − 2p =
1

2πi

(∫ s+h

s
+
∫ s+h+2πi

s+h
+
∫ s+2πi

s+h+2πi
+
∫ s

s+2πi

)
tE′(t)
E(t)

dt

=
1

2πi

(
h

∫ s+2πi

s

E′(t)
E(t)

dt− 2πi
∫ s+h

s

E′(t)
E(t)

dt
)

=
h

2πi
logE(t)|s+2πi

s + logE(t)|ss+h

on making use of the quasi-periodic properties of E(t).
Using again the quasi periodicities E(s + 2πi) = E(s) and E(s + h) = e−2ωiE(s), we see

that logE(t)
]s+2πi

s
∈ 2πiZ and logE(t)

]s
s+h

∈ 2ωi + 2πiZ. Therefore,

t1 + t2 ∈ 2ωi + 2p+ hZ + 2πiZ.

Now, relation (27) follows because we know that the double pole p ∈ πi + hZ + 2πiZ.
Finally, the specular symmetries with regard to the vertical lines are a direct consequence

of the relations E(−t) = E(t) and E(t+ h) = e−2ωiE(t).
Using this lemma, we realize that there are just three possible scenarios for the set of

complex zeroes of the quasi-elliptic function E(t), which are listed in the caption of Figure 5.
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We have numerically checked that only the first scenario takes place, but we have not found
a proof. Therefore, in the following lemma we can only deduce that the set of real zeroes of
E(t) is either hZ or h/2 + hZ, although we suspect that the case hZ is a mirage.

Lemma 20. If E(t) has some real zeroes, all of them are simple, and the set of its real
zeroes is either hZ or h/2 + hZ.

Proof. We note that E(t) cannot have either a double real zero or two different real zeroes
modulo h. On the contrary, we could take t1, t2 ∈ R in Lemma 19, so that R � t1 + t2 ∈
2ωi+hZ +2πiZ. But this would imply that ω = 0 (mod π), and then E(t) has no real zeroes;
see Lemma 18. Therefore, the set of real zeroes has the form t∗ + hZ for some single real zero
t∗ ∈ [0, h). But, since t∗ + hZ must be symmetric with regard to the points 0 and h/2, there
are only two possibilities: either t∗ = 0 or t∗ = h/2.

As a by-product of this lemma, the set defined in (26) can also be defined as

Ω = Ωh = {ω ∈ T : Eω(0)Eω(h/2) = 0}.

To prove Lemma 14, it suffices to check that (1) Ω is finite; (2) Eω(0) �= 0 for all h ≥ h0 and
all ω ∈ T; and (3) Eω(h/2) �= 0 for all h ≥ h1 and all ω �= ±π/2.

Lemma 21. The set Ω = {ω ∈ T : Eω(0)Eω(h/2) = 0} is finite.
Proof. The claim follows from the fact that, once any h > 0 is fixed, the function

T � ω �→ Eω(0)Eω(h/2) ∈ C

is analytic, but not identically zero since the series E0(t) =
∑

k∈Z
χ(t+ kh) is positive for all

real t.
Lemma 22. If h ≥ h0 := log 16 − log(

√
113 − 9), then Eω(0) > 0 for all ω ∈ T.

Proof. We introduce the positive quantities

χk = χk(h) := χ(kh) =
4 cosh2(h/2) sinh2(h/2)

cosh((k + 1)h/2) cosh2(kh/2) cosh((k − 1)h/2)
,

where χ(t) is the function given in (22). Our goal is to prove that

Eω(0) =
∑
k∈Z

e2kωiχk = χ0 + 2
∑
k≥1

cos(2kω)χk > 0

for all h ≥ h0 and ω ∈ T. Here, we have used the symmetry χ−k = χk. Since maxω∈T |cos(2kω)|
= 1, in order to prove the lemma it suffices to establish that

(29) 2
∑
k≥1

χk(h) < χ0(h) ∀h ≥ h0 := log 16 − log(
√

113 − 9).

The rest of the proof is devoted to obtaining this bound. If we work with the multiplicative
variable x = e−h ∈ (0, 1), then χ0 = χ0(x) = (1 − x)2/x and

χk = χk(x) =
4(1 − x2)2x2k−2

(1 + xk+1)(1 + xk)2(1 + xk−1)
< 4(1 − x2)2x2k−2
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for any k ≥ 1 and x ∈ (0, 1). In particular,∑
k≥1

χk(x) < 4(1 − x2)2
∑
k≥1

x2k−2 = 4(1 + x)(1 − x) ∀x ∈ (0, 1).

Let x0 := (
√

113 − 9)/16 < 1 and h0 := log(1/x0) > 0. If h ≥ h0, then x = eh ∈ (0, x0] and
8x2 + 9x− 1 ≤ 0. In particular, we conclude that the bound (29) holds.

Lemma 23. If h ≥ h1 := 2 log 20
9 , then Eω(h/2) �= 0 for all ω �= ±π/2.

Proof. This proof is similar to the previous one. We introduce the positive quantities

χ̃k = χ̃k(h) := χ(kh+ h/2) =
4 cosh2(h/2) sinh2(h/2)

cosh
(
(k
2 + 3

4)h
)
cosh2

(
(k
2 + 1

4)h
)
cosh

(
(k
2 − 1

4 )h
) .

Our goal is to prove that if h ≥ h1 and ω �= ±π/2, then

eωiEω(h/2) = 2
∑
k≥0

cos((2k + 1)ω)χ̃k = 2

(
χ̃0 +

∑
k≥1

akχ̃k

)
cosω �= 0.

Here, we have used the symmetry χ̃−(k+1) = χ̃k and have introduced the notation

ak = ak(ω) :=
cos(2k + 1)ω

cosω
.

That is, ak(ω) = T2k+1(cosω)/ cosω, where Tn(x) denotes the Chebyshev polynomial of first
kind and degree n defined by relation Tn(cosω) = cosnω. Now, using some standard prop-
erties of Chebyshev polynomials contained in [1, entries 22.5.29 and 22.14.1], we realize that
maxω∈T |ak(ω)| = 2k + 1. Therefore, in order to prove the lemma it suffices to establish that

(30)
∑
k≥1

(2k + 1)χ̃k(h) < χ̃0(h) ∀h ≥ h1 := 2 log(20/9).

The rest of the proof is devoted to proving this bound. If we work with the multiplicative
variable x = e−h/2 ∈ (0, 1), then χ̃0 = χ̃0(x) = 4(1 − x4)2/x(1 + x3)(1 + x)3 and

χ̃k = χ̃k(x) =
4(1 − x4)2x4k−2

(1 + x2k+3)(1 + x2k+1)2(1 + x2k−1)
< 4(1 − x4)2x4k−2

for any k ≥ 1 and x ∈ (0, 1). In particular,∑
k≥1

(2k + 1)χ̃k(x) < 4(1 − x4)2
∑
k≥1

(2k + 1)x4k−2 = 12x2(1 − x4/3)

for all x ∈ (0, 1). Hence, if there exists some x1 ∈ (0, 1) such that

(1 − x4)2

1 − x4/3
=: f(x) ≥ g(x) := 3x3(1 + x3)(1 + x)3 ∀x ∈ (0, x1],
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(a) m0(h) and m1(h) vs h ∈ (0.5, 3).
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(b) logm0(h) and logm1(h) vs h ∈ (0.1, 1).

Figure 6. Graphs of the functions m0(h) = min{M0(ω,h) : ω ∈ T} (full curves) and m1(h) =
min{M1(ω,h) : ω ∈ T} (broken curves) in normal (left) and logarithmic (right) vertical scales.

then (30) holds for any h ≥ h1 := 2 log(1/x1). The function f(x) is increasing in the interval
(0, 1), whereas g(x) is decreasing in the same interval. On the other hand,

f(9/20) =
23543526721
25250080000

>
465593887647
512000000000

= g(9/20).

Therefore, we can take x1 := 9/20.

Appendix B. Numerical evidence for Conjecture 15. In the proofs of Lemmas 22 and 23,
we have shown that the analytic functions Mj : T × R+ → R defined by

M0(ω, h) = Eω(0), M1(ω, h) =
eωiEω(h/2)

2 cos ω
are positive when h ≥ h0 and h ≥ h1, respectively. We conjecture that, in fact, they are
positive everywhere, which is equivalent to Conjecture 15.

Figure 6 provides strong numerical evidence for this conjecture. Concretely, we have
numerically checked that the functions

mj : R+ → R, mj(h) = min{Mj(ω, h) : ω ∈ T}

are positive in the range 1/10 ≤ h ≤ 3. Greater values of h are already covered by our ana-
lytical results. Smaller values of h represent a computational challenge, because the functions
mj(h) are exponentially small in h as h → 0+; see subfigure 6(b). This is a typical behavior
for splitting problems in weakly hyperbolic settings.

The computation of such exponentially small splittings requires the use of a multiple
precision arithmetic to mitigate the strong cancellations that take place in such problems.
For instance, to compute the functions mj(h) at h = 1/10 it is necessary to work with at least
50 digits.
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Electrical Waves in a One-Dimensional Model of Cardiac Tissue∗
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Abstract. The electrical dynamics in the heart is modeled by a two-component PDE. Using geometric singu-
lar perturbation theory, it is shown that a traveling pulse solution, which corresponds to a single
heartbeat, exists. One key aspect of the proof involves tracking the solution near a point on the
slow manifold that is not normally hyperbolic. This is achieved by desingularizing the vector field
using a blow-up technique. This feature is relevant because it distinguishes cardiac impulses from,
for example, nerve impulses. Stability of the pulse is also shown, by computing the zeros of the
Evans function. Although the spectrum of one of the fast components is only marginally stable,
due to essential spectrum that accumulates at the origin, it is shown that the spectrum of the
full pulse consists of an isolated eigenvalue at zero and essential spectrum that is bounded away
from the imaginary axis. Thus, this model provides an example in a biological application reminis-
cent of a previously observed mathematical phenomenon: that connecting an unstable—in this case
marginally stable—front and back can produce a stable pulse. Finally, remarks are made regarding
the existence and stability of spatially periodic pulses, corresponding to successive heartbeats, and
their relationship with alternans, irregular action potentials that have been linked with arrhythmia.

Key words. geometric singular perturbation theory, Evans function, blow-up, cardiac model, arrhythmia,
alternans
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1. Introduction. The first model of electrical activity in the cardiac membrane, an adap-
tation of the classic Hodgkin–Huxley model of neural dynamics, was introduced by Hutter and
Noble [HN60] and Noble [Nob62] for the Purkinje fiber. Beeler and Reuter [BR77] introduced
the first model for the dynamics of a ventricular myocyte, and more complicated models in-
cluding additional and new experimental data (see, for example, Luo and Rudy [LR91, LR94])
followed. The main aim of all these models was to describe generic restitution properties of
cardiac tissue, as well as to support spiral waves that break up spontaneously. (Restitution
refers to the relation between the diastolic interval, the interval between the end of an action
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Figure 1. (a) A sketch of the v component of the pulse. (b) A sketch of the nullclines associated with (1.7)
and the leading order traveling pulse solution (bold) of (2.1).

potential and the beginning of the next action potential, and the duration of the next action
potential pulse.) The length and shape of action potentials in myocardial cells are distinct
from those of the Hodgkin–Huxley model. In particular, myocardial cells have substantially
prolonged action potentials compared to neural action potentials, which facilitates muscular
contraction. See Figure 1(a).

In order to focus on the qualitative aspects of the Hodgkin–Huxley model of membrane
activity in the squid giant axon, a simplified version, known as the FitzHugh–Nagumo model,
was developed. In the same spirit, Karma [Kar93, Kar94] extracted a model of minimal
complexity that reproduces restitution properties of the above-mentioned cardiac cell models.
Because these properties are absent in the standard FitzHugh–Nagumo model, it was necessary
to introduce a different minimal model.

In this paper, we study a variant of Karma’s model that was introduced by Mitchell and
Schaeffer [MS03]. In addition, we allow for spatial variation and replace the step functions
that appear in their model by smooth functions. The result is

vt = κvxx + Iin(v, h) + Iout(v) + Istim(t),

ht =
h∞(v) − h

τh(v)
,(1.1)

where

Iin(v, h) =
1
τin

hv2(1 − v), Iout(v) = − 1
τout

v,

h∞(v) =

⎧⎪⎨
⎪⎩

1 if v < vcrit − δv,

fh(v) if vcrit − δv < v < vcrit + δv,

0 if vcrit + δv < v,
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and

τh(v) =

⎧⎪⎨
⎪⎩
τopen if v < vcrit − δv,

f τ (v) if vcrit − δv < v < vcrit + δv,

τclose if vcrit + δv < v,

where δv is sufficiently small, fh and f τ are smooth monotonic functions that give continuity
of the functions h∞ and τh, and Istim(t) is an external stimulus. In the above equations,
x ∈ R, t > 0, v = v(x, t) ∈ R corresponds to the membrane potential of myocardial tissue
and h = h(x, t) ∈ R is a gating variable. Both are dimensionless quantities that can range
between zero and one.

The change of membrane potential v is governed by diffusion, through the diffusion co-
efficient κ, and the ionic currents. The current Iin(v, h) denotes a bulk inward current, a
combination of all currents that raise the voltage across the membrane—primarily sodium
and calcium current. This current is voltage dependent and includes the gating variable h—
open when h = 1, closed when h = 0—that governs the inactivation of the bulk inward
current. The current Iout(v) denotes a bulk outward current, a combination of all currents
that decreases the voltage across the membrane—primarily potassium current. This current
is voltage dependent but ungated. The stimulus current Istim is an external current usually
applied in brief pulses, either by a pacemaker cell or an experimenter.

The parameters τin and τout govern the flow of ions into and out of the cell, respectively,
and the parameters τopen and τclose govern the opening and closing rates of the gate h. Based
upon physiological information, it is reasonable to assume that

(1.2) τin, τout � τopen, τclose.

Therefore, changes in the voltage v occur much faster than changes in the gating variable h,
the inactivation of the bulk inward current. We exclude the case where the speed τout of the
bulk outward current is comparable to the speeds of the gating variable h. For a myocardial
cell to be able to produce an action potential, it is a necessary to have τout/τin =: R sufficiently
large; i.e., activation must occur before deactivation—the inward current has to be sufficiently
faster than the outward current. The exact minimum size for R is dependent on the specific
model, and we will see below that for the model we investigate it is R > 4. Similar conditions
on the gating speeds are not necessary for the existence of action potentials. We remark that,
although R is large, it is not asymptotically large with respect to 1/ε, where ε is a small
parameter that we define below.

Under these assumptions we will rescale space and time so that

(1.3) κ = 1, τout = 1, 1/τin = R.

We remark that it is not necessary that τopen = τclose, but we assume this for convenience.
Allowing them to differ, but remain of the same order, would only change the decay/growth
rates on the slow manifold and would not qualitatively affect our results. Therefore, we define
ε via

(1.4) 1/τopen = 1/τclose = ε.
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We note that similar scalings were used in [MS03]. For typical values of these parameters, see
[CS06]. The relevance of different choices of R will be discussed further below. The voltage
threshold vcrit determines when the gate switches from an opening to a closing state or vice
versa, and it is reasonable to assume that 0 < vcrit < 1/2 [MS03, CS06].

In this paper, we will be primarily interested in traveling pulse solutions, corresponding
to a single heartbeat, stimulated in the distant past at x = −∞. The reason for this is
the following. One particularly interesting biological behavior, found in the ODE version of
the model, is a bifurcation in the response to periodic external stimulation as the frequency
is increased. For smaller frequencies, the model produces action potentials with constant
maximum value in one-to-one correspondence with the stimulus. As the frequency increases,
this behavior can destabilize, and alternans, action potentials with beat-to-beat variation in
their restitution, can appear. This phenomenon has been linked with ventricular fibrillation
and sudden cardiac death [CS06]. In order to eventually understand this phenomenon in
spatially dependent models, we first seek to understand the dynamics of a single heartbeat,
which is described by a traveling pulse solution to the above model without external stimulus.
Therefore, in this paper we will set Istim(t) ≡ 0.

Thus, the model we will study throughout is

vt = vxx +Rhv2(1 − v) − v,

ht = εg(v, h),(1.5)

where

(1.6) g(v, h) =

⎧⎪⎨
⎪⎩

1 − h if v < vcrit − δv,

fh(v) − h if vcrit − δv < v < vcrit + δv,

−h if vcrit + δv < v,

and we have chosen f τ (v) = 1/ε = τopen = τclose. Notice that (v, h) ≡ (0, 1) is a stationary
solution of (1.5). We are interested in traveling pulses that are biasymptotic to this stationary
solution. In order to study such solutions, we define the moving coordinate ξ = x + ct and
analyze the model in the (ξ, t) coordinates:

vt = vξξ − cvξ +Rhv2(1 − v) − v,

ht = −chξ + εg(v, h).(1.7)

As mentioned above, this model has many similarities with the FitzHugh–Nagumo equation,
which was analyzed in [JKL91] and [Jon84] using geometric singular perturbation theory
[Fen71, Fen79, Jon94, Kap99]. The above model also contains a small parameter, ε, indicating
the presence of two separated time-scales on which the dynamics occur, and so we will use
similar techniques in our analysis. On the other hand, there are key structural differences
manifested predominantly in the inward current term Rhv2(1−v), which will lead to properties
of the associated traveling pulse solution that are distinct from those of the pulse solution to
the FitzHugh–Nagumo model. We will point to these differences throughout the paper.

If we consider the ODE associated with spatially independent solutions,

vt = Rhv2(1 − v) − v,

ht = εg(v, h),
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we see that the v- and h-nullclines are given by the sets {v = 0} ∪ {h = 1/(Rv(1 − v))}
and {g(v, h) = 0}, respectively (see Figure 1(b)). This provides intuition for the stationary
solutions that one can expect to exist for the PDE (1.7). For the construction of the pulse, the
v-nullcline will correspond to the slow manifold. Thus, we expect that the pulse will consist
of four pieces: a fast jump in {h = 1} from v = 0 to v = v+, on the right branch of the
v-nullcline; a slow decay on the rightmost branch of the v-nullcline; a second fast jump in
{h = 4/R} from v = 1/2 to v = 0; and a slow growth along the leftmost branch of the v-
nullcline, back to the point (v, h) = (0, 1). We will assume that R > 4, which is in accordance
with our earlier comment on the size of the ratio τout/τin and their relative sizes in (1.3).

The key difference between this pulse and that of the FitzHugh–Nagumo model will be
that the second “fast” jump, in the present case, occurs at the knee of the v-nullcline. This
point is exactly where the slow manifold of the singularly perturbed system loses normal
hyperbolicity. As a direct consequence, the repolarization period of the wave back is much
longer than the fast depolarization period of the wave front. (This explains the quotes in the
second “fast” jump, above.) This is one of the key features of membrane potentials in cardiac
tissue.

The outline of the paper is as follows. Section 2 contains the proof of existence of traveling
pulses. Section 3 is devoted to the stability analysis of such solutions. Finally, in section 4,
we briefly discuss spatially periodic traveling pulses, corresponding to successive heartbeats.

2. Existence of the traveling pulse. The main result of this section is Theorem 2.1, in
which we prove that a traveling pulse, connecting (v, h) = (0, 1) at ξ = ±∞, exists for all
ε ∈ (0, ε0), where ε0 is sufficiently small.

2.1. Construction of the pulse: ε = 0. The traveling pulse is a stationary solution to
the PDE (1.7) and also a solution to the ODE

vξ = w,

wξ = cw −Rhv2(1 − v) + v,(2.1)

hξ =
ε

c
g(v, h).

Notice that v and w are fast variables, while h is a slow variable. By setting ε = 0 in the
above system, we obtain the reduced fast system:

vξ = w,

wξ = cw −Rhv2(1 − v) + v,(2.2)
hξ = 0.

By defining y = εξ in (2.1) and setting ε = 0, we obtain the reduced slow system:

0 = w,

0 = cw −Rhv2(1 − v) + v,(2.3)

hy =
1
c
g(v, h).
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First, consider the reduced slow equation (2.3). The associated leading order slow manifold
is given by two pieces:

Sl = {v = w = 0} and S̃r =
{
w = 0, h =

1
Rv(1 − v)

}
.

We will be interested in Sl and the right branch of S̃r, given by

(2.4) Sr =
{
w = 0, h =

1
Rv(1 − v)

, v ≥ 1
2

}
.

The slow dynamics on these manifolds is given by

hy =
1
c
(1 − h) if (v,w) ∈ Sl,

hy = −1
c
h if (v,w) ∈ Sr.

Next, consider system (2.2), where, due to the third equation, we may think of h as being
a fixed parameter. For 1 ≥ h > 4/R, this equation has three fixed points: (0, 0), (v+(h), 0),
and (v−(h), 0), where

(2.5) v±(h) =
1
2
± 1

2

√
1 − 4

Rh
.

Note that (0, 0) ∈ Sl and (v+(h), 0) ∈ Sr. In addition, this system is equivalent to the traveling
wave equation associated with the PDE

(2.6) vt = vξξ − cvξ −Rhv(v − v+(h))(v − v−(h)).

In other words, system (2.2) is the ODE satisfied by stationary solutions of (2.6). Using
the change of coordinates v → v+(h)v, ξ → (1/v+(h)

√
Rh)ξ, c → −(v+(h)

√
Rh)c, and

t→ t/[(v+(h))2Rh], we see that this equation is just the bistable equation

vt = vξξ + cvξ + v(1 − v)(v − μ).

In the above equation, μ = v−(h)/v+(h). Traveling wave solutions to the bistable equation
are relatively well understood. See, for example, [Xin00]. In particular, for 0 < μ < 1/2, there
is an exact formula for the unique traveling wave connecting v = 0 at ξ = −∞ to v = 1 at
ξ = +∞. Similarly, for 1/2 < μ < 1, there is an exact formula for the unique wave connecting
v = 1 at ξ = −∞ to v = 0 at ξ = +∞. Translating back to the original variables, we obtain
the following formulae for the traveling wave solutions of the reduced fast equation:

(2.7) v(ξ) =
v+(h)

1 + e
−
√

Rh
2

v+(h)ξ
; c =

√
2Rh

(
1
2
v+(h) − v−(h)

)
if

1
2
v+(h) − v−(h) > 0,

and

(2.8) v(ξ) =
v+(h)

1 + e

√
Rh
2

v+(h)ξ
; c = −

√
2Rh

(
1
2
v+(h) − v−(h)

)
if

1
2
v+(h) − v−(h) < 0.
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Figure 2. A sketch of the phase planes for the leading order fast components of the pulse: (a) the traveling
pulse of (2.6), for 1

2
v+ − v− > 0; (b) the traveling pulse of (2.9), for c >

√
2/2, which is asymptotic to the

center manifold at −∞.

Notice this implies that, if 1
2v

+(h)− v−(h) > 0, then there is a unique heteroclinic connection
between v = 0 at −∞ and v = v+(h) at +∞ (see Figure 2(a)). When 1

2v
+(h) − v−(h) < 0,

then there is a unique connection going in the opposite direction. Using the formulae for
v±(h), given in (2.5), one can see that the value of h for which 1

2v
+(h) − v−(h) = 0 is given

by h̄ = 9
2R .

It may be of interest to note the following. If one considers (2.6) with c = 0, then the
associated ODE is Hamiltonian with H(v, v′) = (v′)2/2 − v2/2 + Rhv3/3 − Rhv4/4, where
v′ = vξ. For positive wavespeeds c > 0, dH/dξ = c(v′)2. As h decreases through h̄, the value
of H(v+(h), 0) switches from being positive to negative. As a result, for h > h̄, there is no
way to have a connection going from v = v+(h) to v = 0, and, for h < h̄, there is no way to
go in the opposite direction.

The above reduced fast analysis was for h ∈ (4/R, 1]. If h = 4/R, however, we have
v+(h) = v−(h), and the structure of the reduced fast system changes. In that case, (2.2)
becomes

vξ = w,

wξ = cw + v(2v − 1)2,

which is equivalent to the traveling wave equation for the PDE

(2.9) vt = vξξ − cvξ − v(2v − 1)2.

Up to a change of variables, this PDE is exactly the generalized Fisher–KPP (Kolmogorov–
Petrovskii–Piskunov) equation of order 2 [Xin00]. For each c ≥

√
2/2, equation (2.9) has a

heteroclinic orbit connecting (1/2, 0) at −∞ with (0, 0) at +∞. If c >
√

2/2, then the orbit
leaves (1/2, 0) along a center manifold and approaches (0, 0) along its stable manifold (see
Figure 2(b)). If c =

√
2/2, known as the critical wavespeed, then the orbit leaves (1/2, 0) along

the unstable manifold and approaches (0, 0) along its stable manifold. For more information
on critical wavespeeds in this and other related equations, see, for example, [PK06].

Putting the information from the reduced slow and fast dynamics together, we expect that
the leading order pulse will consist of four pieces as follows:
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Figure 3. A sketch of the function c(R, h), as given in (2.7) and (2.8), for fixed R.

1. a fast jump from (0, 0, 1) to (v+(1), 0, 1), which is given explicitly in (2.7), with c∗ =
c(R, 1);

2. slow decay along Sr to a point (v+(h∗), 0, h∗), where h∗ will be determined by the
third piece of the pulse;

3. a fast jump from (v+(h∗), 0, h∗) to (0, 0, h∗), at the value of h∗ ∈ [4/R, 1) such that
c∗ = c∗(R,h∗); and

4. slow growth along Sl back to (0, 0, 1).
Notice that the first piece will determine the wavespeed c∗ = c(R, 1). The value of h∗ at
which the third piece occurs will be determined by the relation in (2.8) and will be the value
of h ∈ [4/R, 1) such that c(R, 1) = c∗ = c(R,h∗). A sketch of the function c(R,h), for fixed
R, is given in Figure 3.

If 4 < R < 25/4, then there exists an h∗ ∈ (4/R, h̄) for which the reduced fast system
(2.2) has a heteroclinic orbit of speed c∗ connecting (v + (h∗), 0) at −∞ with (0, 0) at +∞.
However, if R > 25/4, there is no such h∗ ∈ (4/R, h̄).

Recall that, based upon the relative sizes in (1.2), we expect R to be large. As a result,
we are interested in the case where R > 25/4. Thus, the second fast jump must occur for
h = 4/R, because for this value of h a connection exists for all c ≥

√
2/2. As a result, the

complete, leading order pulse is given by a curve as sketched in Figure 4.
This situation corresponds to the pulse leaving the slow manifold at the knee, which is

exactly the point where the manifold ceases to be normally hyperbolic. Therefore, it is not
immediately clear what will happen to the pulse for ε > 0. Furthermore, because c(R, 1) >√

2/2 (for R > 25/4), the second fast jump leaves the knee along the center, rather than the
unstable, manifold. This will create a slow transition between the first slow and second fast
piece of the pulse, due to the algebraic, rather than exponential, growth away from the slow
manifold in the singular limit.

2.2. Persistence of the pulse: 1 � ε > 0. The above analysis tells us what the pulse
looks like, to leading order. In order to show that a traveling pulse exists for 0 < ε � 1, we
will track the leading order center-unstable manifold of (0, 0, 1), which we will denote by W cu,
forward along the first fast jump, down the slow manifold, and along the second fast jump. In
addition, we will track the leading order center-stable manifold of (0, 0, 1), denoted by W cs,
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Figure 4. A sketch of the leading order pulse, consisting of a fast jump from (0, 0, 1) to (v+(1), 0, 1), slow
decay along Sr, another fast jump connecting (1/2, 0, 4/R) to (0, 0, 4/R) and leaving at the knee, and slow
growth along Sl.

backward down along the leftmost piece of the slow manifold. We will show that, for ε = 0,
these manifolds intersect transversely, which proves that a traveling pulse must also exist for
ε positive and sufficiently small.

There are two main difficulties in tracking the center-unstable manifold W cu along the
pulse. The first difficulty lies in following W cu along the slow manifold Sr for large times.
However, there is a tool, known as the exchange lemma and proved in [JK94], which will
allow us to do this. Second, complications can arise due to the lack of normal hyperbolicity
at the knee. Analysis in a neighborhood of the knee can be carried out using a geometric
desingularization technique known as blow-up [KS01]. Using these techniques, we will prove
the following theorem.

Theorem 2.1. Let φ0 denote the formal traveling pulse solution of (1.5) for ε = 0, con-
structed in section 2.1. More specifically, φ0 is defined by the union of the following curves
in the (v, vξ , h) phase space. Define Sl = {v = vξ = 0, h ∈ [4/R, 1]}, Sr = {v ∈ [1/2, v+(1)],
vξ = 0, h = 1

Rv(1−v)}, FF = {(v, vξ) given by (2.7) for ξ ∈ R, h = 1}, and FB = {(v, vξ) the

traveling wave solution of (2.9) when c = c∗ >
√

2/2 for ξ ∈ R, h = 4/R}. Then

φ0 = FF ∪ Sr ∪ FB ∪ Sl.

If ε0 > 0 is sufficiently small, then for all ε ∈ (0, ε0) there exists a traveling pulse solution of
(1.5), φε(ξ) = (V (ξ; ε), Vξ(ξ, ε),H(ξ; ε)), satisfying

lim
ξ→±∞

(V (ξ; ε), Vξ(ξ, ε),H(ξ; ε)) = (0, 0, 1)

and lying as a curve within O(ε2/3) of the set φ0.
Remark 2.2. In the statement of the above theorem, the perturbed pulse is parameterized by

the spatial variable ξ. The leading order pulse, φ0, cannot be parameterized in this way. This
is because, for ε = 0, it takes an infinite amount of “time” for the pulse to traverse each piece
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of the leading order orbit in the phase space. This is why the leading order pulse is defined
geometrically, in terms of the sets FF , Sr, FB , Sl.

Proof. First, we remark that, along various pieces of the leading order pulse, different
quantities (i.e., v,w, h, c, ε) will determine the key properties of the tracked manifold. Thus,
we will consider only the relevant equations for vξ, wξ, hξ, cξ, or εξ along each of the two
fast and two slow components of the pulse. With a slight abuse of notation, we will still refer
to the tracked manifold as the center-stable or center-unstable manifold along each piece and
hope that it will be clear from the context exactly which variables we are keeping track of at
the time.

We begin by tracking W cu along the first fast jump. Consider the reduced fast system,
equation (2.2). The plane {h = 1} is invariant, and we want to determine how the unstable
manifold of (v,w) = (0, 0) intersects the stable manifold of (v,w) = (v+(1), 0) as we vary the
wavespeed c. To do this, we fix h = 1 and append to (2.2) the equation cξ = 0:

vξ = w,

wξ = cw −Rv2(1 − v) + v,(2.10)
cξ = 0.

Based upon the analysis of the bistable equation mentioned above, there is a unique c∗ = c∗(R)
for which a unique heteroclinic connection between the saddle (0, 0) at −∞ and the saddle
(v+(1), 0) at +∞ exists. We will show that the two-dimensional center-unstable manifold,
which is a union of the unstable manifolds of (v,w) = (0, 0) for values of c near c∗ and denoted
byW cu(0, 0), intersects the two-dimensional center-stable manifold of (v+(1), 0) (again defined
as a union of the stable manifolds for c near c∗), denoted by W cs(v+(1), 0), and that this
intersection is transverse in the c direction. In other words, upon varying c along the fibers
within the center-unstable and center-stable manifolds, there is an intersection for a unique
value, c = c∗, and the manifolds intersect transversely at this point.

One way to track the evolution of two-dimensional manifolds is using two-forms, as in
[JKL91]. This essentially allows one to track the evolution of their tangent planes. The vector
of one-forms associated with (2.10) is (dv, dw, dc), and its evolution is given by

dv′ = dw,

dw′ =
(
1 −R2v(1 − v) +Rv2

)
dv + cdw + wdc,

dc′ = 0,

where (·)′ = d/dξ. The associated two-forms are Pvw = dv ∧ dw, Pvc = dv ∧ dc, and Pwc =
dw ∧ dc, with evolution equations

P ′
vw = cPvw + wPvc,

P ′
vc = Pwc,

P ′
wc =

(
1 −R2v(1 − v) +Rv2

)
Pvc + cPwc.

These equations can be analyzed as in [JKL91], and we restate the details here for convenience.
To be precise, we really should think of {Pvw, Pvc, Pwc} as the basis for the space of two-forms
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in vwc-space and write an arbitrary element as f1(v,w, c)Pvw +f2(v,w, c)Pvc +f3(v,w, c)Pwc.
It is really the coefficients fi that we want to determine. The notation in the above system
is therefore an abuse of notation: Pvw(ξ) denotes the coefficient f1(v,w, c)(ξ), and so on. As
this notation has become somewhat standard (for example, in system (2.1) we are in some
sense thinking of {v,w, h} as a basis for R

3, particularly when we plot the phase diagram in
Figure 4), we use it in the following.

Consider the equation for Pvw, and let P±
vw and P±

vc be the two forms associated with
manifolds W cu(0, 0) (−, coming from −∞) and W cs(v+(1), 0) (+, coming from +∞). We
will show that P+

vc and P+
vw have the same sign, whereas P−

vc and P−
vw have the opposite sign.

This implies that the vectors of two-forms associated with the manifolds, (P±
vw, P

±
vc, P

±
wc), are

linearly independent, and hence, that the manifolds intersect transversely.
The manifoldsW cu(0, 0) andW cs(v+(1), 0) both have the vector field, (w, cw−Rv2(1−v)+

v, 0), as one tangent vector. Denote the other one by (dv±, dw±, 1), respectively, where we
can take dc = 1 since dc′ = 0. This ensures that the two tangent vectors for each manifold are
linearly independent. The two-forms for each tangent plane are, up to a positive normalization
factor N , given by 2× 2 subdeterminants of a 2× 3 matrix, whose rows are exactly the above
tangent vectors. Thus, we have

P±
vc = N det

(
w 0
dv± 1

)
= Nw.

As a result, the equation for Pvw is given by

P ′
vw = cPvw +Nw2.

Since both W cu(0, 0) and W cs(v+(1), 0) asymptotically contain a line of fixed points in the
c-direction, we know that P+

vw → 0 as ξ → +∞, and P−
vw → 0 as ξ → −∞. Using the above

equation, we can then see that P−
vw > 0 and P+

vw < 0 along the manifolds. Since P±
vc = Nw

and w is positive along the first fast jump, P±
vc > 0. Thus, the manifolds intersect transversely.

In order to continue tracking W cu along the slow manifold Sr, we will need to use the
exchange lemma [JK94]. This lemma tells us how information in the center direction, cor-
responding to the wavespeed c, at the top of Sr, is exchanged for information in the center
direction, corresponding to h, at the bottom of Sr. More specifically, the lemma tells us that,
since W cu is transverse to W cs(v+(1), 0), when it leaves a neighborhood of Sr near any point
with 1 > h > 4/R, the tangent plane to Wcu will be C1 O(ε) close to the plane spanned by the
tangent line to Sr in the plane {w = 0} and the fast unstable fiber of the point (v+(h), 0, h).
Thus, at a given value of h, the tangent plane to W cu will be spanned, to leading order, by
the vectors

(2.11)
(

1, 0,
2v+(h) − 1

2(v+(h))2(1 − v+(h))2

)
,

(
1,
c

2
+

√
c2 + 4(Rhv+(h) − 2)

2
, 0

)
.

The exchange lemma tells us what W cu looks like up to a neighborhood of the knee, when
h = 4/R. At this point, the slow manifold Sr is not normally hyperbolic, and so we’ll need to
use blow-up to track the manifold around the knee.

2.2.1. Analysis of the knee. Consider the ODE for the pulse, (2.1), and append to it an
equation for ε:
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vξ = w,

wξ = cw −Rhv2(1 − v) + v,(2.12)

hξ =
ε

c
g(v, h),

εξ = 0.

Because the first fast jump selected the wavespeed c = c(ε), where c(0) = c∗, we now think of c
as being fixed. (For notational convenience we do not explicitly write the epsilon dependence.)
The relevant center directions, therefore, are now given by h and also by ε.

We are interested in the behavior of this equation near the knee, which corresponds to the
fixed point (1/2, 0, 4/R, 0). The Jacobian at this point is given by

J =

⎛
⎜⎜⎝

0 1 0 0
0 c −R/8 0
0 0 0 −4/(cR)
0 0 0 0

⎞
⎟⎟⎠ .

This matrix has one positive eigenvalue, λ = c, with associated eigenvector (1, c, 0, 0). In ad-
dition, λ = 0 is an eigenvalue with algebraic multiplicity three and geometric multiplicity one.
The associated eigenvector is (1, 0, 0, 0), and the generalized eigenvectors are (0, 1, 8c/R, 0)
and (0, 0,−8/R,−2c2). In order to do the blow-up, we will need to isolate the nonhyperbolic
dynamics, which occur on a three-dimensional center manifold. In a neighborhood of the knee,
this manifold can be represented by

w = F ((v − 1/2), (h − 4/R), ε)

= α0(h− 4/R) + α1ε+ β0(v − 1/2)2 + β1(h− 4/R)2 + β2ε
2

+ γ0(v − 1/2)(h − 4/R) + γ1(v − 1/2)ε + γ2(h− 4/R)ε+ O(3),

(2.13)

where αi, βi, and γi are constants. We remark that the center manifold is not unique. However,
the analysis that we carry out below is valid up to exponentially small terms, and thus is
independent of the choice of the center manifold.

One can explicitly compute the above coefficients. As we will see below, the ones that will
be relevant for the blow-up analysis are

α0 = R/(8c), β0 = −2/c.

Inserting these into (2.12), one sees that the dynamics on the center manifold are given by

vξ = −2
c

(
v − 1

2

)2

+
R

8c

(
h− 4

R

)

+ O
(
ε,

(
h− 4

R

)2

, ε2,

(
v − 1

2

)(
h− 4

R

)
, ε

(
h− 4

R

)
, ε

(
v − 1

2

))
,(2.14)

hξ = − 4
Rc

ε+ O
(
ε

(
h− 4

R

))
,

εξ = 0.
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Figure 5. A sketch of the slow manifolds and sections for the fold, as analyzed in [KS01].

This system is essentially the normal form for a fold point, given in [KS01]. Their analysis
explains why the terms of order O

(
ε, (h − 4

R )2, ε2, (v − 1
2)(h − 4

R ), ε(h − 4
R ), ε(v − 1

2)
)

are all
indeed higher order. We now collect the results from [KS01] that are relevant for this paper.

In [KS01], the authors analyze systems of the form

x′ = −y + x2 + O(ε, xy, y2, x3),

y′ = −ε+ O(εx, εy, ε2).(2.15)

This system possesses a slow manifold that, for ε = 0, is given by S = {(x, y) : y = x2}. It can
be divided into the attracting and repelling branches of the parabola, denoted by Sa and Sr,
respectively. (To be consistent with the notation in [KS01], we use Sr to denote the repelling
branch and hope that it will not be confused with the right branch of the slow manifold,
given in (2.4).) Outside a neighborhood of the fold point, (0, 0), these manifolds are normally
hyperbolic and, therefore, perturb smoothly to locally invariant manifolds Sε

a and Sε
r, for ε

positive and sufficiently small (see Figure 5).
The main result of [KS01] describes what happens in a neighborhood of (0, 0) for 0 < ε� 1,

and it can be explained as follows. Let Δin = {(x, ρ2), x ∈ I} and Δout = {(ρ, y), y ∈ R},
where I ⊂ R is a suitable interval. Let π : Δin → Δout be the transition map associated with
the flow of (2.15) (see Figure 5).

Proposition 2.3 (see [KS01]). There exists an ε0 > 0 such that, for ε ∈ (0, ε0), the following
hold:

1. The manifold Sε
a passes through Δout at a point (ρ, y(ε)), where y(ε) = O(ε2/3). In

particular, y(ε) = −Ω0ε
2/3 + o(ε2/3), where Ω0 > 0 is known explicitly.

2. The transition map π is a contraction with contraction rate O(e−k/ε), where k is a
positive constant.

The first item of this proposition tells us how to track the manifold W cu around the knee.
The second tells us that the resulting analysis will be independent of the choice of center
manifold. We note the scaling ε2/3 is consistent with the higher order asymptotics of the
restitution curve, computed in [MS03, CS06].

As mentioned above, for any h ∈ (4/R, 1), the two-dimensional manifold W cu is spanned
by the one-dimensional fast unstable direction of the points (v,w) = (v+(h), 0) and the tangent
line in the plane {w = 0} to the one-dimensional slow manifold, given by h = 1/(Rv(1 − v)).
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Figure 6. A schematic diagram, in a neighborhood of the knee, of the tracked manifold W cu. It is guided
by the trajectory through the points pin

ε and pout
ε , which lies on the center manifold Mε.

As W cu enters a neighborhood of the knee, it will intersect the center manifold of the knee,
given in (2.13). We will denote this center manifold by Mε = {w = F (v, h, ε)} and its leading
order version by M0 = {w = F (v, h, 0)}.

In order to see how the dynamics on the center manifold at the knee will guide W cu, define
the following objects (with a slight abuse of notation, we will reuse the quantities Δin,out and
ρ from the fold analysis):

Δin =
{

(v,w, h) : h =
4
R

+ ρ2

}
,

Δout =
{

(v,w, h) : v =
1
2
− ρ

}
,

Iu,in = W cu ∩ Δin,

pin
ε = Iu,in ∩Mε,

Iu,out = W cu ∩ Δout,

pout
ε = Iu,out ∩Mε.

Both Δin and Δout are two-dimensional objects, as is W cu. Iu,in and Iu,out, however, are
one-dimensional, and pin,out

ε are points (at least for fixed ε, when Mε is two-dimensional).
Because the point pin

ε lies on the center manifold Mε, its evolution will be governed by the
dynamics of the fold. The trajectory through pin

ε will follow the attracting critical manifold Sε
a

around the knee and exit the neighborhood of the knee on the section Δout at the point pout
ε .

Since pin
ε is also in W cu, the tracked manifold will follow its trajectory around the knee. Upon

exiting a neighborhood of the knee, W cu will be spanned by the one-dimensional direction of
the flow at pout

ε and the one-dimensional fast fibers of Mε at pout
ε . See Figure 6.

The important information to take away from the analysis at the knee is the following.
When ε = 0, the manifold W cu is tangent at the knee to the plane spanned by the vectors
(1, 0, 0) and (1, c, 0), which are obtained by setting v = 1/2 in (2.11), and has height h = 4/R.
We need to know how this picture changes for ε positive and small. Based on the above
analysis, we see that, on leaving a neighborhood of the knee, the tangent plane to W cu is
spanned by a vector tangent to the fast unstable fibers of Mε and a vector in the direction of
the flow. We know that the unstable fibers of the center manifoldMε perturb smoothly, so their
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h component will be O(ε). The other tangent vector is given by the flow, whose h component
is O(ε). In addition, the height of the tangent plane to W cu is given by h = 4/R −O(ε2/3).
Therefore, upon leaving a neighborhood of the knee, the perturbed manifold W cu will be C1

O(ε2/3) close to the unperturbed one. We remark that the C1 aspect of the perturbation
follows from the fact that the center manifold itself is normally hyperbolic, and therefore its
unstable fibers perturb smoothly. It is these fibers that make up W cu. Proposition 2.3 then
ensures that the base points of these fibers can change by no more than O(ε2/3).

2.2.2. Completion of the existence proof. We will now follow W cu along the back and
W cs backward down the left branch of the slow manifold and show that they intersect trans-
versely. This will complete the existence argument.

We have shown above that when W cu leaves a neighborhood of the knee, its tangent plane
is close to a plane that is parallel to the vw plane. One can see directly from (2.1) that, to
leading order, any plane parallel to the vw plane is invariant. There is only a finite amount of
time between when W cu leaves a neighborhood of the knee and when it enters a neighborhood
of the point (0, 0, 4/R). Therefore, by choosing ε sufficiently small, we can make the tangent
plane to W cu, upon entering this neighborhood, as close to a plane parallel to the vw plane
as we like.

The center stable manifold of (0, 0, 1), W cs, consists of the union of the stable manifolds
of the saddle points (0, 0) for h ∈ [4/R, 1]. As a result, it will transversely intersect any plane
which is parallel to the vw plane. This implies that W cs intersects W cu transversely, which
completes the proof.

3. Stability of the pulse. The goal of this section will be to prove the following theorem
on the linear stability of the traveling pulse.

Theorem 3.1. The traveling pulse solution, constructed in section 2, is spectrally stable. In
other words, the operator obtained by linearizing around the wave (see (3.1)) has no spectrum
in {Re(λ) ≥ 0} except for an isolated eigenvalue at the origin of geometric and algebraic
multiplicity one.

We remark that linear stability of the wave follows from a spectral mapping theorem
for the strongly continuous semigroup generated by the linear operator in (3.1). In addition,
because the zero eigenvalue is isolated, standard arguments, such as invariant manifold theory,
can be used to show that the traveling pulse is nonlinearly stable as well [BJ89].

The outline of the proof is as follows. First, we will show that the essential spectrum is
bounded to the left of the imaginary axis, although the bound will be dependent on ε. We
will then construct the Evans function [Eva73, AGJ90] associated with the full problem, for
ε > 0, followed by the Evans functions associated with the reduced fast pieces along the front
and back of the pulse. This will be done in section 3.1. We will then show that eigenvalues of
the full Evans function are determined by those of the reduced problems, and use information
about the stability of the pulses in the bistable and generalized KPP equations to determine
the stability of the pulse. This will be done in section 3.2.

There are two key elements of the argument. First, the spectrum of the reduced fast
problem along the back, corresponding to the generalized KPP equation, contains essential
spectrum that accumulates at the origin. Thus, one must be careful in analyzing the associated
reduced Evans function. We will appeal to the results of [WXY06], in which the Evans function
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for algebraically decaying solutions to such equations was analyzed. Second, the loss of normal
hyperbolicity at the knee could potentially allow the zeros of the full Evans function to be
different than those of the reduced problem. Using techniques similar to those of the existence
argument above, we will see that this is not the case.

3.1. Essential spectrum and definition of the Evans function. We will denote the per-
sistent traveling pulse solution to (1.7) by (V (ξ),H(ξ)). (Note that this solution is also
dependent on the parameter ε, although we will suppress this in our notation.) In or-
der to consider the stability of the pulse, assume that solutions to (1.7) have the form
(v, h)(ξ, t) = (V (ξ),H(ξ)) + (p, r)(ξ, t). The linearized flow for the new coordinates (p, r),
which represent the perturbation of the wave, is then given by

pt = pξξ − cpξ +
(
2RHV (1 − V ) −RHV 2 − 1

)
p+RV 2(1 − V )r,

rt = −crξ + εgv(V,H)p − εr.(3.1)

The associated eigenvalue problem, when written as a first order system, is given by

pξ = q,

qξ =
(
λ− 2RHV (1 − V ) +RHV 2 + 1

)
p+ cq −RV 2(1 − V )r,(3.2)

rξ = ε
gv(V,H)

c
p− (λ+ ε)

c
r.

We can write this eigenvalue problem using matrix notation

(3.3)
d

dξ

⎛
⎝pq
r

⎞
⎠ = A(ξ, λ)

⎛
⎝pq
r

⎞
⎠ ,

where

(3.4) A(ξ, λ) =

⎛
⎝ 0 1 0
λ− 2RHV (1 − V ) +RHV 2 + 1 c −RV 2(1 − V )

ε gv(V,H)
c 0 − (λ+ε)

c

⎞
⎠

and the ξ dependence is through the underlying wave, (V,H) = (V (ξ),H(ξ)).

3.1.1. Location of the essential spectrum. The essential spectrum is determined by the
asymptotic limits of the matrix A, defined in (3.4), which are given by

A∞(λ) = lim
ξ→±∞

A(ξ, λ)

=

⎛
⎝ 0 1 0
λ+ 1 c 0

0 0 − (λ+ε)
c

⎞
⎠ .

(3.5)

The boundary of the essential spectrum is given by all values of λ for which this matrix has
purely imaginary eigenvalues [Hen81]. This set is given by

{−ε− ick : k ∈ R} ∪ {−k2 − ick − 1 : k ∈ R}.
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In addition, by [Hen81], the essential spectrum lies to the left of the above boundary: σess ⊂
{λ ∈ R : Re(λ) ≤ −ε}. In the limit ε→ 0, the essential spectrum will approach the imaginary
axis. However, this will not affect the definition of the Evans function, as given below. We
define Ω = Ω(ε) to be the open region in the complex plane that lies to the right of the
essential spectrum, containing the right half plane.

3.1.2. Definition of the Evans function. The eigenvalues of the asymptotic matrix A∞(λ),
defined in (3.5), are given by

ν0 = −(λ+ ε)
c

, ν± =
c

2
± 1

2

√
c2 + 4(λ+ 1).

For λ ∈ Ω, ν+(λ) is the unique eigenvalue with positive real part. One can check that
there exists a b, independent of ε, such that, for all ε sufficiently small and all λ ∈ Ω̃ :=
{λ : Re(λ) > −b}, ν+(λ) remains the unique eigenvalue with largest real part. (Note that Ω̃ is
slightly larger than, but contains, Ω, for ε sufficiently small.) This remains true even when the
real part of ν0 changes sign. The eigenvector associated with ν+ is given by X+ = (1, ν+, 0)t.
As a result, there exists a unique solution to (3.3), ζ(ξ, λ), such that

(3.6) lim
ξ→−∞

ζ(ξ, λ)e−ν+(λ)ξ = X+(λ).

Consider now the associated adjoint problem,

(3.7)
d

dξ
Z = −ĀT (λ, ξ)Z.

Similarly, for λ ∈ Ω̃, there is a unique eigenvalue of the associated asymptotic matrix with
smallest real part. This eigenvalue is given by μ−(λ) = −ν̄+(λ), and its associated eigenvector
is Y − = (μ− − c, 1, 0)t. For λ ∈ Ω̃, we have that Re(μ−) < 0. There exists a unique solution
to (3.7), η(ξ, λ), such that

(3.8) lim
ξ→+∞

η(ξ, λ)e−μ−(λ)ξ = Y −(λ).

The Evans function [AGJ90] is then defined by

(3.9) D(λ) = ζ(ξ, λ) · η(ξ, λ).

As in [Jon84], D(λ) can be shown to be analytic on Ω̃. This is because ν+ and μ− are the
unique eigenvalues with largest and smallest real part, respectively, in Ω̃, uniformly in ε, even
as λ crosses into the essential spectrum. (For additional information on the extension of the
Evans function into the essential spectrum, see, for example, [KS98, GZ98].) For λ ∈ Ω, the
zeros of D(λ), along with their multiplicities, correspond to the eigenfunctions of the linear
operator in (3.1). For λ ∈ Ω̃, however, this relationship does not necessarily hold. Technically,
the actual Evans function, D(λ), is defined only on Ω, and the Evans function we consider is
an analytic extension of it (sometimes denoted by D̃(λ)) into Ω̃. We will not emphasize this
distinction here.
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3.2. Locating zeros of D(λ) in the right half plane. The goal of this section is to show
that the only zero of D(λ) with Re(λ) ≥ 0 is λ = 0, and that its geometric and algebraic
multiplicity is one. The argument will be similar to that in [Jon84], although we will have
to do a bit of extra work to account for the loss of hyperbolicity in the knee of the existence
construction.

The outline of the argument is as follows. First, we will construct the reduced Evans
functions associated with the fast flow along the front and back of the pulse and show that
the only zero in the closed right half plane is at the origin and associated with the front.
The back does not contribute a zero there because of its algebraic decay at −∞. This is a
key difference between this problem and the stability of the pulse in the FitzHugh–Nagumo
system. Next, it will be shown that any zeros of the full Evans function must be close to zeros
of the reduced Evans functions. Thus, because there exists a unique zero of the reduced Evans
functions in the right half plane, and we know it remains at zero for the full system due to
translation invariance of the underlying wave, the wave must be spectrally stable. Note that
it is not necessary to compute the derivative of the Evans function at the origin, as it was for
the FitzHugh–Nagumo model, since there is no second zero to locate.

3.2.1. The reduced Evans functions. In this section, we consider the reduced Evans
functions for the fast equation along the front and back of the pulse. We will show that both
reduced Evans functions have no zeros with {Re(λ) ≥ 0}\{0}, and that there is only one zero
at λ = 0, associated with the front.

Recall that, along the front, to leading order we have h ≡ 1. As a result, the reduced, fast
PDE that governs the dynamics of the front is given by

(3.10) vt = vξξ − cvξ +Rv2(1 − v) − v.

As mentioned above, this is just the bistable equation, and the front is the heteroclinic con-
nection between 0 at −∞ and v+(1) at +∞. Up to rescaling, this is also the equation that
governs the dynamics of the front of the pulse for the FitzHugh–Nagumo equation. Its Evans
function was analyzed in detail in [Jon84], and we summarize those results in the following
proposition.

Proposition 3.2 (see [Jon84]). Let DF (λ) denote the reduced Evans function that one ob-
tains from the stability analysis of the heteroclinic front of (3.10). Then DF is analytic in Ω̃
and

1. DF (0) = 0,
2. DF (λ) �= 0 for all λ ∈ Ω̃ \ {0}.

In [Jon84], it was also shown that d
dλDF (λ)|λ=0 > 0, although we will not need that fact

here. However, we do need that the derivative of the Evans function at 0 is nonzero, for
simplicity of the eigenvalue. We remark that the b in the definition of Ω̃ may need to be
chosen slightly smaller than above in order for this proposition to hold.

Next, consider the reduced PDE for the back,

(3.11) vt = vξξ − cvξ − v(2v − 1)2,

where c is the wavespeed that was selected in the analysis of the front (see (2.7) for h = 1).
As mentioned above, this is the generalized Fisher–KPP equation of order 2. The back is a
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heteroclinic connection between 1/2 at −∞ and 0 at +∞. It is asymptotic to a stable manifold
at +∞, but a center manifold at −∞, where it decays only algebraically. In addition, the
essential spectrum of the associated linearized operator is contained in a parabolic region of
the left half plane that touches the imaginary axis at the origin. As a result, the stability
analysis of the back and construction of the associated reduced Evans function is a bit more
subtle. However, this analysis has been carried out in [WXY06], and we collect the relevant
results.

Proposition 3.3 (see [WXY06]). Let DB(λ) denote the reduced Evans function that one ob-
tains from the stability analysis of the heteroclinic solution of (3.11). Then

1. DB is analytic in Ω̃,
2. DB(λ) �= 0 for all λ ∈ Ω̃.

Again, it may be necessary to take b in the definition of Ω̃ to be slightly smaller than
above.

It may be surprising that the derivative of the heteroclinic solution does not lead to a
zero of the reduced Evans function at the origin. This is because the Evans function in
[WXY06] is constructed using the strong unstable eigenvalue at −∞. Since the wave decays
only algebraically there, it is asymptotic to the weak unstable direction and, therefore, does
not contribute a zero. See Theorem 2.1 and Lemma 4.1 of [WXY06] for more details.

3.2.2. Approximation of eigenvalues. We now show that any zero of the Evans function
D(λ) in Ω̃ must be near the unique zero of DF (λ) and DB(λ) in that region, λ = 0. Let Bδ

denote the ball of radius δ at 0, where δ is chosen sufficiently small so that Bδ ⊂ Ω̃, and let
G = Ω̃ \Bδ.

Lemma 3.4. D(λ) �= 0 for all λ ∈ G.
Proof. First, we note that we need only consider a bounded region within G, say Ĝ =

{λ ∈ G : |λ| < M} for some fixed M that is independent of ε. This can be shown using a
scaling argument [San02].

Fix λ ∈ Ĝ and consider ζ(ξ, λ) and η(ξ, λ), defined in (3.6) and (3.8). We will track ζ
around the pulse until ξ is sufficiently large and then show that it cannot be orthogonal to η.

The main idea is to show that, in the absence of an eigenfunction for the reduced fast
flows, the strong unstable direction is always an attractor for the evolution of ζ. As a result,
if λ ∈ Ĝ, then the unstable direction completely determines the evolution of ζ, and we can
use it to track the evolution around the pulse and show it cannot be orthogonal to η. This
argument will be similar to that of [Jon84], and so some details will be omitted.

In order to follow ζ(ξ, λ) around the pulse, we must track its evolution according to (3.2).
To make this more precise, one must couple the traveling wave system (2.1) to (3.2) and track
the combined solution ((V (ξ),W (ξ),H(ξ)), (p(ξ), q(ξ), r(ξ))). However, for our purposes it is
sufficient to refer only to system (3.2). In addition, in [Jon84] the wave was parameterized by
θ ∈ S1, but we will not discuss this further here.

First, we track ζ along the fast front. If vF (ξ) and wF (ξ) denote the leading order fast
pulse along the front, then the eigenvalue problem associated with (3.10) is

vξ = w,

wξ = [λ− 2RvF (1 − vF ) +Rv2
F + 1]v + cw.(3.12)
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The reduced Evans function along the front is defined by DF (λ) = ζF (ξ, λ) · ηF (ξ, λ), where
ζ and η are defined analogously to (3.6) and (3.8).

To leading order, ζ(ξ, λ) = (ζF (ξ, λ), 0) and η(ξ, λ) = (ηF (ξ, λ), 0). In other words, the
components of the full Evans function are just the inclusions in R

3 of their reduced counter-
parts. Therefore, to leading order, the reduced equation can be used to track the evolution of
ζ along the front of the wave.

We are really only interested in the direction of the vector ζ(ξ, λ), which can be studied
using the projectivized version of (3.2). To that end, define (a, b) := π(p, q, r) = (q/p, r/p).
Thus, π : {(p, q, r) ∈ C

3 : p �= 0} → CP
2. The evolution of (a, b) is governed, to leading order,

by

a′ = [λ− 2RHV (1 − V ) +RHV 2 + 1] + ca−RV 2(1 − V )b− a2,

b′ = −λ
c
b− ab.(3.13)

The eigenvector associated with the unique largest eigenvalue of an ODE always corresponds
to a stable fixed point of the corresponding projectivized system. If we fix λ and consider
the “frozen” version of (3.13), where ξ is fixed on the right-hand side, then the projectivized
version of that eigenvector is an attractor for the system. Taking a union over all ξ in some
interval, for example, we would obtain an attractor for the evolution of (3.13) in that interval.
(Note: this fact relies on the compactness of Ĝ.) If we then let ζ̂ denote the projectivized
version of ζ, that attractor would govern the evolution of ζ̂ along that interval.

We could similarly construct the projectivized version of the reduced equation (3.12). The
unstable direction is an attractor for ζ̂F as it follows the front. For λ ∈ Ĝ, we know that the
reduced system does not have an eigenvalue, and so ζ̂F will approach the unstable direction as
ξ → +∞. Thus, when the pulse enters a neighborhood of the invariant slow manifold, ζ̂(ξ, λ)
will be equal, to leading order, to the direction of the unstable fast fiber of the manifold.

Next, we need to track ζ̂ down along the slow manifold until the pulse enters a neighbor-
hood of the knee. Using the projectivized equations associated with the fast flow for any fixed
h ∈ (4/R, 1], one sees that the union of the unstable eigenvectors associated with the fixed
points (v+(h), 0) of (2.2) is an attractor. As a result, as ζ̂ follows the first slow piece of the
pulse, it will remain close to the direction of the unstable fibers of the slow manifold, until it
enters a neighborhood of the knee.

Now we must track ζ̂ around the knee. For λ ∈ Ĝ, the presence of the knee does not pose
any additional complications, and the analysis follows as in [Jon84]. This is because, when
(V,H) ∼ (1/2, 4/R) at the knee, (3.2) is hyperbolic for λ �= 0. There is still a unique largest
eigenvalue, and ζ̂ will be attracted to the direction of its corresponding eigenvector.

The analysis of the evolution of ζ̂ along the back is similar to that of the front, above.
The key fact is that, when ζ̂ emerges from a neighborhood of the knee, it will be close to
the strong unstable direction. Since this direction corresponds to the unstable fiber of the
(normally hyperbolic) center manifold, it will perturb smoothly. In other words, it is a tangent
vector living in the tangent space of the traveling wave (which is O(ε2/3) close to the leading
order wave), and its direction is C1 O(ε) close to the leading order strong unstable direction.
Since it is this direction that is used to construct the Evans function in [WXY06], we can
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then use those results to conclude that any zero of the full Evans must be near a zero of the
reduced Evans function.

Because the reduced equation, the linearization of the generalized KPP equation, does
not have a eigenvalue in Ĝ, ζ̂ must be O(ε) close to the direction of the unstable fibers as the
pulse enters a neighborhood of the slow invariant manifold. Thus, we can follow it up along
the slow manifold Sl and conclude that it is not orthogonal to η̂(ξ, λ) when the pulse enters a
neighborhood of the fixed point (0, 0, 1). Because the ζ̂ and η̂ determine the directions of the
vectors ζ and η, this proves that ζ and η are not orthogonal, as well.

3.2.3. Winding number calculation. We know from the previous section that any poten-
tial unstable eigenvalues must lie in Bδ, the ball of radius δ at the origin. Let K = ∂Bδ denote
the boundary of that ball, and choose δ sufficiently small that zero is the only eigenvalue of
either reduced fast system that is contained in Bδ. We will compute the winding number of
D(λ) along K and show that it is one. This will show that there is exactly one zero of the
Evans function in Ω̃, which implies that there is exactly one eigenvalue of geometric and alge-
braic multiplicity one in Ω̃ [AGJ90]. Since we know there must exist an eigenvalue at λ = 0,
it is the only one. This will complete the proof of Theorem 3.1. We remark that, again, this
argument is similar to that of [Jon84], and so we do not include all of the details here. As
above, we must check that the presence of the knee does not affect the winding number.

Note that an analytic extension of the Evans function is defined for all λ ∈ Bδ ∪ K,
uniformly in ε, and that it is nonzero on K. Any zero inside Bδ necessarily corresponds to an
eigenvalue only if it is in Ω ∪ {0}.

In the previous section, it was shown that the projectivized equations can be used to track
ζ̂ around the pulse. If we take an element (q/p, r/p) ∈ CP

2, then we can associate it with
an element in C

3 using π−1(q/p, r/p) = (1, q/p, r/p), which is just a normalized version of
the vector (p, q, r). When computing the winding number we will need not only the direction
of the vector, but its amplitude as well. One can directly check that, for any ξ such that
p(ξ, λ) �= 0,

ζ(ξ, λ) = p(ξ, λ)[π−1(ζ̂)](ξ, λ).

The Evans function is independent of ξ, and so we can evaluate the expression on the
right-hand side of (3.9) at any value of ξ we choose. It is convenient to pick some sufficiently
large value of ξ, denoted by T4. One can then show that W (D(K)) = W (p(T4,K)). The
proof of this fact follows closely that in [Jon84], and so we do not repeat it here.

Let T0 be the value of ξ for which the underlying wave exits a neighborhood of (0, 1),
T1 be the value at which it enters a neighborhood of (v+(1), 1), T2 be the value at which it
exits a neighborhood of (1/2, 4/R), and T3 be the value at which it enters a neighborhood
of (0, 4/R). Similar to the previous section, we will track the evolution of p(ξ, λ) around the
underlying pulse and evaluate the winding numbers W (p(Ti,K)) for i = 0, . . . , 4, showing

1. W (p(T0,K)) = 0,
2. W (p(T1,K)) = 1,
3. W (p(T2,K)) = 1,
4. W (p(T3,K)) = 1,
5. W (p(T4,K)) = 1.
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Note that, in [Jon84], it was shown p(Ti,K) �= 0 for i = 0, 4. In other words, as p moves
along the pulse, the corresponding winding number increases by one only as it moves along
the front, due to the eigenvalue of the reduced system there. Along the rest of the wave, it
remains constant.

The proof essentially follows from the results in [Jon84]. The only thing one needs to check,
due to the presence of the knee, is that W (p(T2,K)) = 1. This would follow if p(ξ, λ) �= 0
for all ξ ∈ [T1, T2], uniformly for λ near zero. This is because one could then construct a
homotopy between p(T1,K) and p(T2,K) to show that their winding numbers are equal.

Consider the projectivized system (3.13) near the knee, i.e., for (V,H) ∼ (1/2, 4/R),

a′ = λ+ ca− R

8
b− a2,

b′ = −λ
c
b− ab.

The three fixed points of this system are (a+(λ), 0), (a−(λ), 0), and (−λ/c,−8λ2/Rc), where
a± = (c ±

√
c2 + 4λ)/2. These correspond to the unstable, stable, and center directions of

the slow manifold, respectively. As λ → 0, (a−, 0) and (−λ/c,−8λ2/Rc) coincide, but the
remaining fixed point remains separate, uniformly in λ. It is this direction that defines the
attractor that ζ̂ follows as it moves along the wave. Since these fast unstable directions always
point along vectors with nonzero p component, this shows that p(ξ, λ) �= 0 for all ξ ∈ [T1, T2],
uniformly for λ near zero, just as in [Jon84].

In other words, the evolution of ζ̂, and hence the winding number, is determined primarily
by the behavior of the strong unstable direction to which it is attracted. Since we have shown
that this direction remains unique despite the nonhyperbolicity at the knee, the winding
number calculation in essentially the same as in [Jon84].

By continuing to follow ζ along the pulse, we arrive at W (p(T4,K)) = W (D(K)) = 1.
This proves that there is only one zero of the Evans function in Ω̃, and since we know there
exists a zero at the origin, it must be the only one. This concludes the proof of the spectral
stability of the wave.

4. Spatially periodic waves. We now briefly remark on the existence and biological rele-
vance of spatially periodic waves, which will be the subject of future work.

Recall from (2.7) and (2.8) that the fast jumps exist for explicitly computable values of
the wavespeed. If we can find a cper and an hper ∈ (4/R, 1) such that a fast jump exists at
hper from v = 0 at ξ = −∞ to v = v+(hper) at ξ = +∞, and cper = c(hper, R) >

√
2/2, then

we would be able to construct a leading order periodic solution consisting of the following four
pieces:

1. a fast jump from (0, 0, hper) to (v+(hper), 0, v+(hper)), which is given explicitly in (2.7),
with cper = c(R,hper),

2. slow decay along Sr,
3. a fast jump from (1/2, 0, 4/R) to (0, 0, 4/R), with cper = c(R,hper),
4. slow growth along Sl back to (0, 0, hper).

Note we require that cper >
√

2/2, so that the second fast jump must occur at the knee along
the center manifold. If cper ≤

√
2/2, then the second fast jump would leave the slow manifold
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along an unstable manifold, which is not what happens in cardiac dynamics, as discussed in
section 1.

In Figure 3, we see that such an orbit is possible only if R > 25/4. Otherwise, the first
fast jump will necessarily occur for a value of the wavespeed less than

√
2/2. If R > 25/4,

then a first fast jump with sufficiently large wavespeed exists for h > 25/4R. As a result,
there exists at leading order a family of periodic orbits, one for each hper ∈ (25/4R, 1).

Regarding the investigation of the persistence of this family, for ε > 0, we expect that
a combination of the techniques used to prove the existence of a family of spatially periodic
solutions to the FitzHugh–Nagumo equation [Car77] and the blow-up, used in this paper,
will be applicable. To investigate stability, it is possible that the theory developed in [Gar97,
SS01] will apply. In those papers, the authors investigated the linear stability of families of
periodic waves of reaction diffusion equations that are close to a homoclinic orbit—at least
for sufficiently large period—and, in particular, applied their results to the family of periodic
solutions of the FitzHugh–Nagumo equation.

Periodic solutions are of biological interest because they represent a beating heart. In
cardiac models, the stability of these periodic waves cannot persist indefinitely as the period
is shortened. Even the ODE model suffers a period-doubling bifurcation as the pacing period
is shortened. The bifurcation in the PDE context is more complicated than simple period
doubling—see, for example, [EK02, EK06]. We plan to study this bifurcation in a subsequent
publication.
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Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal
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Abstract. Stellate cells (SCs) of the medial entorhinal cortex (layer II) display mixed-mode oscillatory ac-
tivity, subthreshold oscillations (small-amplitude) interspersed with spikes (large amplitude), at
theta frequencies (8–12 Hz). In this paper we study the mechanism of generation of such pat-
terns in an SC biophysical (conductance-based) model. In particular, we show that the mechanism
is based on the three-dimensional canard phenomenon and that the subthreshold oscillatory phe-
nomenon is intrinsically nonlinear, involving the participation of both components (fast and slow)
of a hyperpolarization-activated current in addition to the voltage and a persistent sodium current.
We discuss some consequences of this mechanism for the SC intrinsic dynamics as well as for the
interaction between SCs and external inhibitory inputs.
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1. Introduction. The entorhinal cortex (EC) is the interface between the neocortex and
the hippocampus [1], and it plays a very important role in orchestrating the flow of information
between these two areas of the brain. Neocortical information flows to the hippocampus, to
be processed, through the superficial layers (II and III) of the EC. The spiny stellate cells
(SCs) are the most abundant principal cell type in layer II of the medial EC [1, 2]. These
cells give rise to the main afferent fiber system to the hippocampus. In addition, in layer II
of the EC grid cells are putative SCs [3] (and see references therein). Grid cells are principal
neurons that exhibit multiple phase fields arranged in hexagonal patterns [4, 5, 6]. Their
recent discovery implies that the EC contains a neural map of the spatial environment which
is then transmitted to the hippocampus.

In vitro electrophysiological investigations have shown that, when depolarized, SCs develop
small-amplitude rhythmic subthreshold membrane potential oscillations (STOs) at theta fre-
quencies (8–12 Hz). If the membrane potential is depolarized further, then SCs fire action
potentials at the peak of the STOs but not necessarily at every STO’s cycle [7]. The ampli-
tudes of STOs and spikes differ roughly in an order of magnitude. We refer to the resulting
temporal patterns (combination of STOs and spikes) as mixed-mode oscillations (MMOs).
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These are a distinctive property of SCs in layer II of the medial EC [8, 9, 10], and they can
also be found in in vivo electrophysiological studies [11].

Theta frequency STOs and MMOs in SCs are intrinsic single-cell phenomena [8] and have
been shown to result from the interaction between two currents: a persistent sodium current
(Ip) and a hyperpolarization activated current (Ih) [9]. Mathematical (conductance-based)
models, incorporating Ip and Ih in addition to the spiking currents (transient sodium, delayed
rectifier potassium, and leak), have been used to reproduce, via simulations, several aspects
of the SC dynamics [12, 13, 14]. However, the mechanistic aspects of the generation of STOs
and MMOs are still not fully understood.

The goal of this paper is to uncover the mechanism of generation of STOs and MMOs in
the biophysical SC model proposed in [12], and to identify the key parameters controlling the
transition among the various types of MMO patterns. We use analytical and computational
techniques to show that, as hypothesized in [10], the generation of STOs and the onset of
spikes in this model is governed by the three-dimensional canard phenomenon [15, 16, 17].
Qualitatively different mechanisms have been proposed to explain the generation of MMOs in
other models. These are break-up of an invariant torus [18], break-up (loss) of stability of a
Shilnikov homoclinic orbit [19, 20], and subcritical Hopf-homoclinic bifurcation [21, 22]. See
also [17, 23] and other articles in the focus issue on MMOs introduced in [24] for a detailed
discussion.

In section 2 we provide some biophysical and mathematical background related to the
generation of MMOs in SCs. We briefly describe the key experimental findings and the
biophysical SC model that we use in this paper. This model is a three-dimensional (3D)
reduction [10] of the 7D model presented in [12]. The former, which we will refer to as the
SC model, is a good approximation to the latter in the subthreshold regime where STOs and
the onset of spikes are observed [10], thus allowing the investigation of the mechanisms of
generation of STOs and MMOs. In addition, we explain some basic aspects on the canard
phenomenon.

In section 3 we describe the (dimensional) SC model and nondimensionalize it to uncover
the multiple time-scale nature of the model. In particular, we show that the membrane po-
tential evolves on a much faster time scale than the h-current gating variables (rf and rs).
Although the former is faster than the latter, there is no significant time scale separation
between the two gates compared with the time scale separation introduced by the fast voltage
dynamics. Therefore both gating dynamics of the h-current are considered as slow. For the
remainder of this paper we use this dimensionless SC model. However, the results will be pre-
sented in terms of both the dimensional and dimensionless values of the relevant parameters.
We also present the result of our simulations using this SC model showing MMO patterns and
their corresponding phase-space diagrams.

In section 4 we analyze the mechanism of generation of MMOs in the SC model using
numerical and analytical techniques. We show that for the relevant (biophysically plausible)
parameters the SC model can be put into the analytic and geometric 3D canard framework
described in [16] for the generation of small-amplitude oscillations (see also [17]). We describe
this framework using notation tailored to the model. In addition, we describe the return
mechanism necessary to bring trajectories back to the subthreshold regime after they escape
it towards the spiking one.
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Our approach provides a geometric framework to qualitatively understand and predict the
dynamic properties of the resulting MMO patterns. In particular, it allows us to study the
dependence of these patterns on the relevant parameters: the Ih and Ip maximal conductances,
the applied DC (constant) current, and the initial conditions of the participating variables in
the subthreshold regime. These initial conditions reflect the reset properties of Ih after a spike
has occurred. In addition, following the “canard approach,” we explain how inhibitory pulses
applied at different times after a spike has occurred may suppress some of the STOs of the
unperturbed cell and advance the timing of the next spike. This type of calculation is the
first step in the computation of spike-time response curves [12, 25, 26], which are used in the
study of synchronization properties of small neural networks. We discuss our results and their
implications for the understanding of SC dynamics in section 5.

2. Background.

2.1. Biophysics of subthreshold and mixed-mode oscillations in stellate cells. Voltage
changes in single (isolated) neurons are the result of the flow of ionic currents into and out of
the cells. Typically, three currents are involved in the generation of spikes: a transient sodium
current (INa), a delayed-rectifier potassium current (IK), and a leak current (IL) [27]. We refer
to them as the standard spiking currents. Spikes are usually initiated by the activation of INa

and terminated by its inactivation followed by the activation of IK . Additional (nonstandard
or nonspiking) currents may be present and play various different roles in neural dynamics.
Two nonstandard currents have been implicated in the pacemaking of single-cell rhythmicity
at theta frequencies: a persistent sodium current (Ip) and an h-current (Ih) [7, 8, 9, 13, 28,
29, 30, 31, 32] (see also references therein). The former constitutes a depolarization-activated
fast inward current that precisely tracks voltage changes and provides the main drive for the
depolarizing phase of the STOs. The latter is a hyperpolarization-activated (noninactivating)
current with slow activation kinetics, and it provides a delayed feedback effect that promotes
resonance [33].

2.2. MMOs in a biophysically plausible SC model. In recent work, Rotstein et al. [10]
showed that the biophysical (conductance-based) SC model presented in [12] displays STOs
and MMOs, and they initiated a mechanistic study of these phenomena using computational
tools and dynamical systems ideas. In [10], reduction-of-dimension techniques were used to
reveal a three-dimensional reduced model that is a good approximation to the “full” seven-
dimensional SC model in the subthreshold regime where STOs and the onset of spikes occur.
This reduced model describes the evolution of the membrane potential V (mV) and the two
(fast and slow) h-current gating variables rf and rs (dimensionless). The latter describe the
opening/closing of the h-current ion channels. In [10] it was found that both INa and IK can
be neglected in the subthreshold regime where STOs and MMOs are generated, and that the
persistent sodium gating variable p has fast dynamics, so the adiabatic approximation can
be made; i.e., p can be well approximated by its corresponding voltage-dependent activation
curve (see section 3). The resulting equations are presented in section 3, in formulas (1)–(3).
As mentioned above, these equations describe the generation of STOs and the onset of spikes,
which occurs in the subthreshold regime, but they do not describe the spike dynamics and
the early recovery from spiking, which belong to a different regime (where INa and IK are the
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main active currents) [10]. If one is not interested in the spike details, the dynamics of the SC
can be approximately described by (1)–(3) supplemented with an “artificial spike,” operating
in a much shorter time scale and reaching a peak of about 50 mV. This model has been
called the nonlinear artificially spiking (NAS) SC model [10], a class of models that includes
the generalized integrate-and-fire models (see [10, 34, 35] for details). For simplicity, in the
remainder of this paper we will refer to it as the SC model. When working with this (NAS)
SC model, one has to give appropriate threshold (Vth) and reset (Vrst) values. The former
indicates that the trajectory has reached the spiking regime. The latter is the voltage value
after a spike has occurred and represents the initial condition in the subthreshold regime.
Note that, differently from other types of NAS models, Vth is not part of the mechanism of
generation of action potentials which, as shown here and in [10], result from the dynamics of
the so-called canard structure.

2.3. The canard phenomenon. Canards [36] were first studied in two-dimensional (2D)
relaxation oscillators [37, 38, 39, 40], particularly in the van der Pol oscillator. There, the
nature of the classical canard phenomenon is the transition from a small-amplitude oscillatory
state created in a Hopf bifurcation to a large-amplitude relaxation oscillatory state within an
exponentially small range of a control parameter. This transition, also called canard explosion,
occurs through a sequence of canard cycles which can be asymptotically stable and is hard to
observe in an experiment because of sensitivity to the control parameter. This is well known
in the chemical literature, where a canard explosion is classified as a hard transition [41, 42].
Therefore, 2D slow-fast systems display either STOs or large-amplitude oscillations but no
MMOs. However, MMOs are possible by the addition of noise [43, 44].

Deterministic 3D slow-fast systems with one fast and two slow variables can produce
MMOs [10, 16, 17, 23, 45, 46, 47, 48, 49] (see also the articles in the focus issue on MMOs
introduced in [24]). One way to explain these patterns is based on a generalized canard phe-
nomenon, because a special class of canards in three dimensions called canards of folded node
(or folded saddle-node) type can be responsible for small-amplitude oscillations [16, 46]. A
good intuition for MMOs is that a system moves dynamically from a small-amplitude oscilla-
tory state to a relaxation oscillatory state, and the feature of the large relaxation oscillation
is to bring the system back to the basin of attraction of the small-amplitude oscillatory state.
A detailed explanation of this generalized canard phenomenon is given in section 4.

3. The model.

3.1. Dimensional formulation. The dimensional equations are

C
dV

dt
= Iapp −GL (V −EL) −Gp p∞(V ) (V − ENa) −Gh (cf rf + cs rs) (V −Eh),(1)

drf
dt

=
rf,∞(V ) − rf

τrf
(V )

,(2)

drs
dt

=
rs,∞(V ) − rs

τrs(V )
,(3)

where V is the membrane potential (mV), C is the membrane capacitance (μF/cm2), Iapp is
the applied bias (DC) current (μA/cm2), IL = GL (V −EL ), Ip = Gp p∞(V ) (V −ENa ), and
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Figure 1. SC model (1)–(3). (a) Activation/inactivation curves: p∞(v), rf,∞(v), and rs,∞(v). (b) Voltage-
dependent time scales: τrf (v) and τrs(v). The dimensionless voltage v is the result of the rescaling v = V/Kv

with Kv = 100 mV.

Ih = Gh ( cf rf + cs rs ) (V − Eh ) [10]. The parameters GX and EX (X = L, p,Na, h) are
the maximal conductances (mS/cm2) and reversal potentials (mV), respectively. The units of
time are ms. The variables rf and rs are the h-current fast and slow gating variables, and the
parameters cf and cs represent the fraction of the total h-current corresponding to its fast and
slow components, respectively. Unless stated otherwise, we will use the following values for the
parameters [10, 12]: ENa = 55, EL = −65, Eh = −20, GL = 0.5, Gp = 0.5, C = 1, cf = 0.65,
and cs = 0.35. The functions rf,∞(V ), rs,∞(V ), and p∞(V ) are the voltage-dependent activa-
tion/inactivation curves, and the functions τrf

(V ) and τrs(V ) are the voltage-dependent time
scales. They are given by rf,∞(V ) = 1/(1 + e(V +79.2)/9.78), rs,∞(V ) = 1/(1 + e(V +2.83)/15.9)58,
p∞(V ) = 1/(1 + e−(V +38)/6.5), τrf

(V ) = 0.51/(e(V −1.7)/10 + e−(V +340)/52) + 1, and τrs(V ) =
5.6/(e(V −1.7)/14 + e−(V +260)/43) + 1. The graphs of these functions are shown in Figure 1.

3.2. Initial and threshold conditions in the subthreshold regime. The initial conditions
in the subthreshold regime are given by the reset values of the participating variables after a
spike has occurred. For rf and rs these reset values can be derived from the 7D SC model [10].
More specifically, during a spike, V increases above zero to a value V ∼ 50 mV. For these
values of V , rf,∞(V ) ∼ 0 and rs,∞(V ) ∼ 0 (see Figure 1(a)). In addition, for these high
values of V , both τrf

(V ) and τrs(V ) are very small (see Figure 1(b)). Therefore, both rf
and rs quickly decrease to values close to rf ∼ rs ∼ 0. The reset value of V ∼ −80 mV
is estimated from numerical simulations of the 7D SC model [10]. Unless stated otherwise,
we take (V, rf , rs) = (−80, 0, 0) as the initial conditions of system (1)–(3), and we reset the
trajectory to these values after each spike has occurred.

Since action potentials in this model are initiated at V ∼ −50 mV (see, e.g., Figure 2) we
may set the voltage threshold value Vth for this event to any value V > −50mV. Here we
choose a value Vth = −40mV, which is well above the initiation value. We emphasize that
the spike results from the dynamics of the SC model, and, consequently, Vth only indicates
that a spike has occurred and is not a component of the mechanism of spike generation [10].
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Figure 2. MMO patterns for the dimensional SC model (1)–(3) with Vth = −40 mV and Vrst = −80 mV.
The number of subthreshold oscillations per spike decreases with increasing values of Iapp. Note that Vth only
indicates that a spike occurs and is not part of the mechanism of spike generation.

3.3. MMOs in the dimensional model. In Figure 2 we illustrate various MMO patterns
generated by the SC model. The voltage traces correspond to Gh = 1.5, Gp = 0.5, and a
sequence of increasing values of Iapp. We observe that the ratio of subthreshold oscillations
to spikes decreases for increasing values of Iapp. For values of Iapp below and above these
corresponding to Figures 2(a) and (e), the SC becomes silent and fully spiking, respectively
(no MMOs). We will use the notation 1s to indicate that an MMO pattern has a number s
of STOs per spike.

Figure 3 shows the 3D phase space corresponding to the voltage traces presented in Figure
2(d) and (b). The V -nullsurface of the SC model is shown as well as the corresponding
trajectories of MMO patterns. The trajectories move rapidly from their initial points towards
the lower branch of the V -nullsurface and then along it towards the fold-curve (curve of
knees of the V -nullsurface). Once the trajectories reach the vicinity of the fold-curve, they
start to move almost parallel to the fold-curve and rotate, generating STOs. Finally, the
trajectories move rapidly in the direction of increasing values of V , eventually initiating a
spike by activating INa. (The spiking dynamics belongs in a different regime and is not
described by this reduced SC model.)
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Figure 3. Phase-space diagrams for the dimensional SC model (1)–(3); Iapp = −2.4 (left) and Iapp = −2.5
(right). The folded V -nullsurface is shown as well as the trajectories corresponding to the time traces shown
in Figure 2(d) and (b). Note that the trajectories evolve approximately along the V -nullsurface towards the
fold-curve, where they start to create subthreshold oscillations before they escape this regime to fire an action
potential.

3.4. Dimensionless formulation. Here we bring system (1)–(3) to a dimensionless form
in order to uncover the different time scales in which the system operates. We first choose
appropriate voltage and time scales, KV and Kt, respectively, and define

(4) v =
V

KV
, t̄ =

t

Kt
.

From a dimensional analysis point of view one would choose KV as a combination of the model
parameters. A more standard choice would be KV = |EK | = 90 mV, which is the maximum,
in absolute value, reversal potential for the full SC model [10], and an upper bound for V .
Here we choose KV = 100 mV, which is a typical voltage scale for neuronal models, for easier
comparison with the original full model as well as with the dimensional reduced model. The
dimensionless voltage threshold and reset values are then given by vrst = −80/KV = −0.8 and
vth = −40/KV = −0.4. The relevant voltage range for our model in terms of the dimensionless
variable v is therefore [−0.8 : −0.4]. We define

(5) Tf = min
v∈[−0.8:−0.4]

τrf
(KV v), Ts = min

v∈[−0.8:−0.4]
τrs(KV v),
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and we choose KT = Tf ∼ 30 ms as a typical (slow) time scale (see Figure 1(b)).
We also define a reference maximal conductance KG = 1.5 mS/cm2, which is at the top of

the physiologically plausible scale for maximal conductances. This is the value of Gh that we
used in the simulations presented in Figures 2 and 3. We define the following dimensionless
variables, parameters, and functions:

ĒL =
EL

KV
, ĒNa =

ENa

KV
, Ēh =

Eh

KV
,(6)

Ḡp =
Gp

KG
, Ḡh =

Gh

KG
, ḠL =

GL

KG
, Īapp =

Iapp

KGKV
,(7)

ε =
C

KT KG
=

C

Tf KG
∼ 0.023 � 1, η =

KT

Ts
=
Tf

Ts
∼ 0.286,(8)

r̄f,∞(v) = rf,∞(KV v), r̄s,∞(v) = rs,∞(KV v), p̄∞(v) = p∞(KV v),(9)

τ̄rf
(v) =

τrf
(KV v)
Tf

, τ̄rs(v) =
τrs(KV v)

Ts
.(10)

Substituting (4)–(10) into (1)–(3) and deleting the “bar” sign, one gets

ε
dv

dt
= Iapp −GL (v − EL) −Gp p∞(v) (v − ENa) −Gh (cf rf + cs rs) (v − Eh),(11)

drf
dt

=
rf,∞(v) − rf

τrf
(v)

,(12)

drs
dt

= η
rs,∞(v) − rs

τrs(v)
.(13)

System (11)–(13) is a slow-fast system with v evolving on the fast time scale and both rf
and rs evolving on a slow scale. These two variables evolve on a similar slow time scale, as
becomes apparent by comparing the values of ε and η (ε� η).

4. The mechanism of generation of MMOs. MMOs consist of STOs interspersed with
spikes (large-amplitude oscillations occurring on a faster time scale). In this section we show
that the generation of MMOs in the SC model (11)–(13) is governed by the canard phe-
nomenon. In our explanation we will follow [16, 17]. We use notation tailored to the model.
For simplicity we call

f(v, rf , rs) = Iapp −GL (v − EL) −Gp p∞(v) (v − ENa) −Gh (cf rf + cs rs) (v − Eh),(14)

g(v, rf ) =
rf,∞(v) − rf

τrf
(v)

,(15)

h(v, rs) = η
rs,∞(v) − rs

τrs(v)
.(16)



1590 H. G. ROTSTEIN, M. WECHSELBERGER, AND N. KOPELL

As we show below, the existence of MMOs for the SC model (11)–(13) is guaranteed by
Theorem 4.1 or Theorem 4.2 in [17]. These theorems require that the v-nullsurface (which we
will refer to as S) be folded (parabolic cylinder shape). STOs occur in the vicinity of the fold-
curve L (the curve of knees of S), defined as the set of points {p ∈ S : fv(p) = 0, fvv(p) < 0}.
The lower (Sa) and upper (Sr) branches of the folded manifold S are attracting (fv < 0) and
repelling (fv > 0), respectively. After a finite number of STOs the trajectory moves away from
S and escapes the subthreshold regime towards the spiking one, as we explain in section 4.2.
For MMOs to occur, the trajectory should be able to come back to the subthreshold regime;
i.e., a suitable return mechanism should bring the trajectory back to a region of S where it can
evolve towards its curve of knees L (setting the initial conditions in the subthreshold regime).
Different models may have different return mechanisms. The one corresponding to this model
was described in section 3.2. In the following sections we describe the mechanism of generation
of STOs and the onset of spikes for system (11)–(13), and we show their dependence on some
of the parameters of the model.

We are mainly interested in understanding the contribution of Ih to the observed mixed-
mode oscillatory patterns, since Ih is known to change with development and neuromodula-
tors [50]. Changes in the amounts of Ih are reflected in changes in the maximal conductances
Gh. Other effects include changes to the activation curves (rf,∞(V ) and rs,∞(V )) and the
voltage-dependent time scales through the values of ε and η or the reset properties of Ih (ini-
tial conditions in the subthreshold regime). Changes in these values may affect the relative
number of STOs, as well as the oscillatory frequency and the amplitude of the STOs.

4.1. A geometric singular perturbation theory approach. The SC model (11)–(13) is a
singularly perturbed system with one fast (v) and two slow (rf , rs) variables. This system
evolves on a slow time scale t = ετ . The limiting problem ε → 0 on this slow time scale t
is called the reduced problem and describes the evolution of the slow variables (rf , rs). The
phase space of the reduced problem is the critical manifold S defined by S := {(v, rf , rs) ∈ R

3 :
f(v, rf , rs) = 0}; i.e., S is the v-nullsurface. We represent it by

(17) rf = φ(v, rs) =
Iapp −GL (v − EL) −Gp p∞(v) (v − ENa)

cf Gh (v − Eh)
− cs
cf
rs.

Figure 4 illustrates S for two values of Iapp and other physiologically plausible parameters.
The second limiting problem is called the layer problem, and it is obtained by rescaling

time (τ = t/ε) in system (11)–(13) and setting ε → 0. The layer problem describes the
evolution of v on the fast time scale for fixed values of the gating variables (rf , rs); i.e., the
slow variables are considered as parameters in this singular limit. Note that the manifold S
is a manifold of equilibria for the layer problem.

These two limiting problems, the reduced problem (2D) and layer problem (1D), are
lower-dimensional than the full problem (3D) and are therefore more amenable to analysis.
Geometric singular perturbation theory [17, 51, 52] provides a way to piece together the
information obtained from these lower-dimensional problems in order to provide a unified
global description of the observed MMOs in the full 3D system.

4.2. Layer problem. By rescaling time (τ = t/ε) in (11)–(13) and setting ε = 0, one
obtains the layer problem which describes the fast dynamics away from the critical manifold
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Figure 4. Domains of possible initial conditions on the critical manifolds S for trajectories starting at the
SC reset values. The left and right panels correspond to Iapp = −2.64 (−0.0176) and Iapp = −1.86 (−0.0124),
respectively. The dimensionless values of the parameters are given in parentheses. All panels correspond to
Gh = 1.5 ( 1.0). This figure illustrates the facts that Iapp does not change the geometry of the critical manifold
significantly and that Iapp has also no significant influence on the domain of (biologically relevant) initial
conditions.

S, represented by (17):

dv

dτ
= f(v, rf , rs),(18)

drf
dτ

= 0,(19)

drs
dτ

= 0.(20)

Trajectories of the layer problem starting at an initial point (v0, rs,0, rf,0) evolve along
1D sets (v, rs,0, rf,0), called fast fibers, near the critical manifold. The critical manifold S
is a manifold of equilibria for the layer problem; i.e., the intersection points between S and
vertical lines containing the fast fibers define the fixed point corresponding to each trajectory.
By linearizing the layer problem at S, one obtains information about the transient behavior
of the solutions along the fast fibers. As we illustrate in Figure 4, the critical manifold S
is folded. This remains true for parameter variations in the physiologically plausible regime
(data not shown). The lower (Sa) and upper (Sr) branches of the folded manifold S are
attracting (fv < 0) and repelling (fv > 0), respectively. Figure 4 also illustrates that changes
in the key parameters of the model (e.g., Iapp) do not affect the shape of the folded slow
manifold S significantly.

4.3. Initial conditions of the reduced problem on the critical manifold. The relevant
trajectory in the subthreshold regime starts at (v, rf , rs) = (−0.8, 0, 0) (see sections 1 and 3.4).
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This trajectory is projected on Sa along the corresponding fast fiber to the equilibrium point
(v0, rf,0 = 0, rs,0 = 0) of the layer problem. This point on the critical manifold is then used
as the initial condition of the reduced flow corresponding to the initial condition (v, rf , rs) =
(−0.8, 0, 0). Note that we use the same notation for initial conditions on the critical manifold
S as for the initial conditions for problem (11)–(13). Figure 4(b) shows the critical manifold
intersected with the plane rs = 0. For rf = rs = 0 as initial conditions (reset values) this figure
shows that V ∼ −70 mV (v ∼ −0.7) corresponds to the intersection of the fast fiber through
rf = rs = 0 with the critical manifold. Therefore we will take v0 ∼ −0.7 as initial condition
for the reduced problem. The exact initial condition on the critical manifold depends on the
parameters of the model. We make the appropriate calculations for each parameter set.

4.4. The reduced flow. The reduced flow is obtained by setting ε = 0 in (11). System
(11)–(13) becomes

0 = f(v, rf , rs),(21)

drf
dt

= g(v, rf ),(22)

drs
dt

= h(v, rs).(23)

These equations describe the evolution of rf and rs on the critical manifold S defined by (17).
Trajectories evolve on the slow manifold S (actually on Sa), from their initial conditions

(v0, rf,0, rs,0) towards the fold-curve L. Since S is given as a graph φ(v, rs) we project the
reduced system (21)–(23) onto the (v, rs)-plane. By implicitly differentiating the function
f(v, rf , rs) = 0, we obtain the reduced system

(24)
(

−fv v
′

r′s

)
=

(
frf

g + frs h

h

)
rf=φ(v,rs)

.

This system is singular along the fold-curve L (fv = 0). Therefore we rescale time by a factor
−fv to obtain the desingularized system

(25)
(

v̇
ṙs

)
=

(
frf

g + frs h

−fv h

)
rf=φ(v,rs)

,

where the overdot represents differentiation with respect to this new time. Note that sys-
tem (25) has the same phase portrait as system (24), but the orientation of the flow on Sr

(unstable slow manifold) has to be reversed due to the rescaling of time.
There are two types of singularities in system (25): regular and folded singularities. Reg-

ular singularities are given by h = 0 and g = 0 and are therefore also equilibria of the reduced
flow (24). These singularities will (generically) persist under small perturbations in system
(11)–(13) with ε � 1. On the other hand, folded singularities are given by fv = 0, which
defines the fold-curve L, and frf

g + frs h = 0 (for points p̄ on L). Each folded singularity is
classified as a folded saddle, folded node, or folded saddle-node based on its classification as a
saddle, node, or saddle-node as an equilibrium of (25). Folded singularities are not equilibria
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Figure 5. Schematic representation of the canard mechanism generating MMOs in the SC and related
models: A folded node singularity, located on the fold-curve L, forms a singular funnel. A singular periodic
orbit consists of a segment on the attracting manifold Sa (blue) within the funnel with the folded node singularity
as an endpoint. Then it follows a fast fiber of the layer problem (red), and a global return mechanism (green)
projects the singular orbit back into the singular funnel. The return mechanism for the SC model is based on the
reset properties of the h-current after a spike has occurred. The right panel shows a schematic representation
of a trajectory rotating around the weak canard within the singular funnel.

of the reduced system (24). However, as shown in [15, 17], their presence gives the opportunity
for the reduced flow to cross from Sa to Sr through L in finite time. If there are no folded
singularities, then trajectories of the reduced flow which arrive at the fold-curve subsequently
jump along the fast fibers and escape the subthreshold regime without generating any STO.

As we show in section 4.6, the singularities found in the SC model, for the relevant
biophysically plausible parameters, are folded nodes (or folded saddle-nodes). For more details
about folded singularities we refer to [15, 16, 17, 45]. Associated with a folded node there
exists a whole sector of trajectories, called singular canards, that are able to pass from Sa to
Sr through the folded node. This sector is called the singular funnel. Two singular canards
are related to the eigendirections of the folded node. They are the weak and strong canards.
They correspond to the smallest and largest (in absolute value) eigenvalues, respectively. The
singular funnel is bounded by the fold-curve L and the strong canard. The latter is the
strong stable invariant manifold of the folded node. The canards and funnel existing from
ε > 0 (sufficiently small) arise as perturbation of their singular counterparts. Only trajectories
entering the funnel are able to rotate around the weak canard (see Figure 5). For a geometric
description of this phenomenon, we refer the reader to [16, 17].

4.5. Existence of MMOs. Based on the singular limit behavior of solutions in both the
reduced and the layer problem, Brøns, Krupa, and Wechselberger [17] provided a theorem that
guarantees the existence of MMOs for system (11)–(13) with a sufficiently small 0 < ε � 1.
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This theorem is based on the following assumptions.
Assumption 1. The singularly perturbed system is (locally) a folded surface, as in sys-

tem (11)–(13) for parameter sets in the physiologically plausible range. This was shown in
section 4.2.

Assumption 2. The problem possesses a folded node singularity. In section 4.6 we will
determine parameter ranges (in the physiologically plausible regime) for which folded nodes
exist.

Assumption 3. There exists a singular periodic orbit (see Figure 5) which consists of a
segment on Sa (blue) within the singular funnel (shadowed region) with the folded node
singularity (black circle) as an endpoint, fast fibers (red) of the layer problem, and a global
return mechanism (green). The global return mechanism for the SC model was described in
sections 3.2 and 4.3.

If Assumptions 1–3 are fulfilled, then Theorem 4.1 in [17] predicts maximal 1s MMO
patterns (for sufficiently small ε). There are two limiting cases of the theory related to
Assumptions 2 and 3. In Assumption 3, if the global return mechanism is on the border
of the singular funnel (the brown trajectory in Figure 5), then Theorem 4.2 in [17] predicts
submaximal MMO patterns. In the folded saddle-node limit, Assumption 2 is violated, but we
still expect the existence of MMOs (with a large number of STOs). The theory for this limiting
case has still to be developed, but we can use the folded node theory to make qualitative
predictions of MMOs. We will discuss both limiting cases in section 4.8.

4.6. The folded node singularity and the canard phenomenon. In order to look for
parameter ranges in which system (11)–(13) possesses a folded node singularity, we numerically
calculated the desingularized reduced flow corresponding to (25) for various values of Gh

and Iapp. We used XPPAUT [53] for these computations and a Runge–Kutta method of
order II [54] for the numerical simulations of the 3D system (11)–(13). The results are given
in terms of the dimensional values of the parameters. Their corresponding dimensionless
values are given in parentheses. We will first consider the case Gh = 1.5 (1.0) for which we
found the existence of the following:

• a regular node singularity on Sa, a folded saddle singularity, and a regular node sin-
gularity on Sr for Iapp < −2.64 (−0.0176);

• a folded saddle-node singularity and a regular node singularity on Sr for Iapp ≈ −2.64;
• a regular saddle singularity on Sr, a regular node singularity on Sr, and a folded node

singularity for −2.64 < Iapp < −1.92 (−0.0128);
• a saddle-node singularity on Sr and a folded node singularity for Iapp ≈ −1.92

(−0.0128);
• a folded node singularity for −1.92 < Iapp < −1.86 (−0.0124);
• a folded focus singularity for Iapp > −1.86.

Therefore a folded node singularity exists for values of Iapp ∈ (−2.64,−1.86). To each
folded node corresponds a singular funnel which is bounded by the strong canard and the
fold-curve. The strong canard is an invariant manifold of the folded node; it is a separatrix
of the flow on the reduced phase space S and therefore a borderline for qualitatively different
behaviors. Note that the strong canard is related to the strong eigendirection of the folded
node and is therefore unique.
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Figure 6 shows the folded node, the singular strong canard, the fold-curve, and the singular
funnel for three values of Iapp and the same values of both Gh and the initial conditions on
Sa. In Figure 6(a), an initial condition within the singular funnel will be “funneled” into the
folded singularity and gives the possibility of STOs [16] for ε > 0. The corresponding voltage
trace showing STOs is given in Figure 7(a). If an initial condition is outside the funnel
(Figure 6(c)), then the reduced flow will reach the fold-curve at an (ordinary) jump point
where solutions jump off the fold and follow a fast fiber, which leads to the spiking regime
without displaying STOs. The corresponding voltage trace showing only spiking activity is
given in Figure 7(c). Figures 6(b) and 7(b) correspond to a trajectory within the funnel but
very close to its boundary. The voltage trace shows only one STO per spike. From Figure 6
and the voltage traces showed in Figure 7 we observe that as we increase Iapp the folded node
moves to the left and, accordingly, the strong canards (separatrices) intersect the v-axis at
higher values. As this occur, trajectories starting at approximately the same initial values on
the critical manifold, v ∈ (−0.69,−0.68), evolve closer to the strong canard, decreasing their
number of STOs (per spike), and, for higher values of Iapp, they are left outside the funnel
and generate only spiking activity.

Figure 8 shows the folded nodes and corresponding strong canards for various values of
Iapp. The range of values of v0 whose corresponding trajectories will be attracted to the funnel
shrinks as Iapp increases. For example, the singular limit analysis predicts that trajectories
on the slow manifold with initial conditions (rf (0), rs(0)) = (0, 0) and the corresponding
values of v0 will not display STOs for Iapp > −2.25 and for Iapp < −2.64 (corresponding
to a lower bound where a folded node singularity exists). Our simulations of the SC model
(11)–(13) show the existence of MMOs for −2.57 < Iapp < −2.27; i.e., both the onset of
MMOs and the change from MMOs to relaxation oscillations occur for slightly higher values
than theoretically predicted. However, in both cases these values are within the order of the
singular perturbation parameter ε and therefore justify the singular prediction made above.

The observed MMO parameter window −2.57 < Iapp < −2.27 for the SC model is also
in good agreement with the MMO parameter window −2.7 < Iapp < −2.4 of the full 7D
model. The (small) shift to more depolarized values in the SC model (11)–(13) is basically
explained by the lack of the depolarized current INa given by the full 7D model. A more
detailed comparison of the two models can be found in [55].

4.7. Transition between subthreshold oscillatory regimes as a consequence of changes
in the h-current reset properties. Changes in the h-current reset properties are reflected in
changes in the initial values of its gating variables rf and rs in the subthreshold regime, and
particularly on the slow manifold. Here we show how this affects the subthreshold oscillatory
properties of the MMO 1s patterns, particularly the number of subthreshold oscillations per
spike. This number s depends on the ratio μ = λ1 /λ2 < 1 between the eigenvalues corre-
sponding to the weak and strong eigendirections of the folded node in system (25). In the
case μ < 1/3, it was shown in [16] that singularly perturbed systems like (11)–(13) possess
[ (1 − μ)/(2μ) ] secondary canards besides the two primary (weak and strong) canards, where
[ (1 − μ)/(2μ) ] denotes the greatest integer less than or equal to (1 − μ)/(2μ).

These secondary canards divide the singular funnel into subsectors (see Figure 9). Each of
them is associated with a specific value of s in the MMO 1s patterns; i.e., trajectories entering
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Figure 6. Schematic representations of the singular funnel for various values of Iapp and for Gh = 1.5 ( 1.0)
and Gp = 0.5 ( 0.3333). The dimensionless values of the parameters are given in parentheses. The singular
funnel is bounded by the fold (horizontal) line and the strong canard. The funnel is located on the attracting
part of the slow manifold Sa (below the fold). Trajectories (dashed lines) start at their initial conditions (IC)
on the slow manifold and evolve towards the folded node.



MIXED-MODE OSCILLATIONS IN STELLATE CELLS 1597

(a)

0 5 10 15 20 25 30
−0.6

−0.58

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

t

v

G
h
=1.0  (1.5)        I

app
=−0.0167  (−2.5)

(b)

0 5 10 15
−0.6

−0.58

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

t

v

G
h
=1.0  (1.5)        I

app
=−0.0160  (−2.4)

(c)

0 5 10 15 20

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

t

v

G
h
=1.0  (1.5)        I

app
=−0.0147  (−2.2)

Figure 7. Voltage traces for the (dimensionless) SC model (11)–(13). Gh = 0.5 ( 0.3333). The dimensional
values of Gh and Iapp are given in parentheses. The initial conditions are located on the slow manifold S. The
number of subthreshold oscillations per spike increases with decreasing values of Iapp.
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Figure 8. Schematic representations of the singular funnel for various values of Iapp and for Gh = 1.5
( 1.0) and Gp = 0.5 ( 0.3333). The dimensionless values of the parameters are given in parentheses. Each
singular funnel is bounded by the fold (horizontal) line and the corresponding strong canard. The funnels are
located on the attracting part of the slow manifold Sa (below the fold).

Table 1
Singular limit predictions of number of secondary canards and maximum number s∗ of STOs for Gh = 1.5

( 1.0) under the variation of Iapp.

Iapp μ (1 − μ)/(2μ) s∗

−2.6 0.0097 51 52
−2.5 0.0480 9 10
−2.4 0.0917 4 5
−2.3 0.1430 2 3
−2.25 0.1725 2 3
−2.1 0.2842 1 2
−2.0 0.3940 0 1

different sectors display a different number of STOs per spike. This number increases from the
sector bounded by the strong canard to the sector bounded by the fold-curve. The maximum
number of STOs is defined by s∗ := (1+μ)/(2μ), which is a singular limit prediction. Table 1
shows the number of secondary canards and maximum number s∗ STOs for Gh = 1.5 (1.0)
under the variation of Iapp.

As a consequence of an increase in the initial values of rf and rs, the initial voltage on S
also changes, and trajectories may enter a sector corresponding to a higher or lower number of
STOs. We illustrate this in Figures 9 to 11. We first vary rs(0) and keep rf (0) = 0 unchanged
for Iapp = −2.4 (dimensionless value: Iapp = −0.0160). We illustrate this schematically in
Figure 9(a). The voltage traces are presented in Figure 10. The initial conditions on the
slow manifold S approximate a line passing through the points (v0, rf,0, rs,0) = (−0.69, 0, 0)
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Figure 9. Schematic illustration of the effect of changes in the initial values of the h-current gating variables
rs and rf on the mixed-mode oscillatory patterns for Gh = 1.5 ( 1.0), Gp = 0.5 ( 0.3333), and (a) Iapp = −2.4
(−0.0160) or (b) Iapp = −2.25 (−0.0150). Each singular funnel is bounded by the “fold” line and the strong
canard. The funnel is located on the attracting part of the slow manifold Sa (the repelling manifolds Sr are not
shown). The secondary canards divide the funnel into sectors. Each sector corresponds to a 1s mixed-mode
oscillatory pattern. Trajectories starting in a given sector display s subthreshold oscillations per spike. Panel (a)
corresponds to changes in rs(0) for fixed values of v(0) and rf (0). The number of subthreshold oscillations per
spike, s, decreases from left to right. The corresponding voltage traces are shown in Figure 10. Panel (b)
corresponds to changes in rf (0) for fixed values of v(0) and rs(0). The number of subthreshold oscillations per
spike, s, decreases from top to bottom. The corresponding voltage traces are shown in Figure 11.

and (v0, rf,0, rs,0) = (−0.67, 0, 0.03) (dashed segment in Figure 9(a)). We observe that the
transition from MMO to only spiking patterns occurs for a value of rs(0) slightly higher than
0.02, and the number s of STOs per spike decreases as we increase rs(0). The results of
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Figure 10. Voltage traces showing the effect of changes in the initial values of rs on the mixed-mode
oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold for fixed initial
values of rf . The dimensionless values of the parameters are given in parentheses: Gh = 1.5 ( 1.0), Gp = 0.5
( 0.3333), Iapp = −2.4 (−0.0160). The schematic representation of the corresponding singular funnel is given
in Figure 9(a).

our simulations (Figure 10) are in agreement with this prediction. In Figures 9(b) and 11
we vary rf (0) and keep rs(0) = 0 unchanged for Iapp = −2.25 (dimensionless value: Iapp =
−0.0150). The initial conditions on S are located on the v-axis at the points (−0.69, 0, 0),
(−0.66, 0.025, 0), and (−0.63, 0.05, 0) (dashed vertical segment in Figure 9(b)). This dashed
vertical segment crosses the strong canard at v ∼ −0.675. According to this, the transition
from 11 to 10 (spikes only) MMO patterns occurs for rs lower than 0.025. The results of our
simulations (Figure 11) are in agreement with this prediction.

4.8. MMO theory and the dependence on the singular perturbation parameter. The
existence results on MMOs presented here are based on singular perturbation theory and
hold for sufficiently small singular perturbation parameter 0 < ε � 1 [16, 17]. In particular,
Theorem 4.1 in [17] states that if Assumptions 1–3 are fulfilled, then maximal 1s∗ MMOs
are expected for sufficiently small ε. Sufficiently small ε means here that μ � √

ε for the
eigenvalue ratio of the folded node, as well as that δ � √

ε, where δ defines the distance of the
initial condition on Sa from the strong canard (relative position of the global return within
the funnel). The

√
ε-dependence follows from the canard theory (see, e.g., [16, 17, 55]). If

one of these estimates is violated, then we still expect to observe an MMO pattern, but we
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Figure 11. Voltage traces showing the effect of changes in the initial values of rf on the mixed-mode
oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold for fixed initial
values of rs. The dimensionless values of the parameters are given in parentheses: Gh = 1.5 ( 1.0), Gp = 0.5
( 0.3333), Iapp = −2.25 (−0.0150). The schematic representation of the corresponding singular funnel is given
in Figure 9(b).

cannot predict the exact MMO pattern. Theorem 4.2 in [17] covers the case where δ violates
this condition.

For example, Table 1 predicts for Iapp = −2.4 four secondary canards and therefore a
maximal number s∗ = 5 of STOs. If we compare the prediction with Figure 2(d), then we see
that a 13 MMO pattern is realized with that particular choice of initial conditions. Therefore,
Assumption 2 and/or 3 is violated; i.e., μ and/or δ are of order O(

√
ε), where

√
ε ∼ 0.15. For

Iapp = −2.4, Table 1 shows that μ ∼ 0.1, and we estimate from Figure 9(a) that δ ∼ 0.02.
Hence, both parameters are within the order O(

√
ε), which explains why we do not find the

maximal MMO pattern predicted by the singular perturbation theory. Nonetheless, we can
explain certain trends. For instance, if we increase δ, i.e., if we decrease the initial conditions
on Sa (to physiologically irrelevant negative values), then we observe an increase in STOs
until we reach a maximum value of STOs. In the case Iapp = −2.4, 18 MMO is the maximum
pattern which is observed for initial conditions rs < −0.12 (data not shown). Clearly, the
maximum number of STOs, although larger than predicted, is still finite and therefore reflects
the characteristics of a folded node induced MMO pattern. The perturbation ε is simply too
large to give precise estimates on STOs. On the other hand, if we sufficiently decrease ε, then
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we should observe the maximal 15 pattern as predicted. In this case, any ε < 10−5 gives this
predicted result (data not shown).

Note that in the folded saddle-node limit μ→ 0 an unbounded growth of STOs is expected.
Folded saddle-nodes are related to the transition from an excitable to an oscillatory state, and
we observe a large number of STOs in our simulations, e.g., for Iapp = 2.55 in Figure 2(a).
The MMO theory for this limiting case still has to be developed. So far, MMOs related to
folded saddle-node singularities have been studied in [47] for a 3D autocatalator problem and
in [23] for a dopaminergic neuron model.

4.9. Dependence of the subthreshold oscillatory frequency on the amount of the h-
current. The dynamic picture described in section 4.6 is qualitatively affected by changes in
the amount of the h-current, measured by the parameter Gh. We now consider values of Gh

lower than the one considered in section 4.6. Table 2 shows that the ranges of values of Iapp

for which the system (11)–(13) has a folded node shrink with increasing values of Gh and
Gp = 0.5 (dimensionless value: Gp = 0.3333). Note that the decrease in the amount of Ih
results in an increase of the amount of Iapp.

Table 2
Folded node regimes for different Gh values.

Dimensional Dimensionless

Gh Folded nodes for Interval size Gh Folded nodes for Interval size

1.5 −2.64 < Iapp < −1.86 0.78 1.0 −0.0176 < Iapp < −0.0124 0.0052
1.4 −2.43 < Iapp < −1.72 0.71 0.933 −0.0162 < Iapp < −0.0115 0.0047
1.3 −2.21 < Iapp < −1.58 0.63 0.866 −0.0147 < Iapp < −0.0105 0.0042
1.2 −1.98 < Iapp < −1.43 0.55 0.8 −0.0132 < Iapp < −0.0095 0.0037
1.0 −1.51 < Iapp < −1.12 0.39 0.666 −0.0101 < Iapp < −0.0075 0.0026
0.5 −0.24 < Iapp < −0.11 0.13 0.333 −0.0016 < Iapp < −0.0007 0.0009

Figure 12 illustrates the effect that “balanced” changes in the values of Gh and Iapp have
on the MMO patterns for a constant value of Gp. To compensate for the decrease in the
amount of Ih (decrease in Gh) we increased Iapp so that the number of STOs per spike is kept
constant, and for a fixed value of Gh, a lower value of Iapp would produce one less STO per
spike. We observe that as we decrease Gh, the STO frequency slightly decreases.

A decrease in the amount of Ih can be also compensated by an increase in the amount of
Ip. In Figures 13(a) and (b) the values of Iapp are kept constant and the values of Gh and
Gp were chosen following the principle described in the previous paragraph. Similarly to the
previous case, as we decrease Gh, the STO frequency slightly decreases.

4.10. Inhibitory pulses decrease the number of STOs per spike and increase the SC
firing frequency. Inhibitory pulses typically delay firing in the postsynaptic cell. However,
this is partially reversed when the postsynaptic cell has an h-current [26, 56]. Heuristically, we
expect a pulse of inhibition applied at different times tpert to have a differential effect on the
postsynaptic spike-time. When the pulse of inhibition is applied to an SC whose trajectory
is still far away from the “rotational region,” it will have little effect, since the trajectory will
have enough time to recover before starting to rotate. In contrast, a pulse of inhibition of
the same magnitude applied to an SC that is already rotating may cause it to move from one
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Figure 12. Voltage traces showing the effect of changes in the values of Gh and Iapp on the mixed-mode
oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold. The dimensionless
values of the parameters are given in parentheses. Gp = 0.5 ( 0.3333). Top: Gh = 1.5 ( 1.0) and (a) Iapp =
−2.3 (−0.0153), (b) Iapp = −2.4 (−0.0160). Middle: Gh = 1.2 ( 0.8) and (a) Iapp = −1.685 (−0.0112),
(b) Iapp = −1.79 (−0.0119). Bottom: Gh = 1.0 ( 0.6667) and (a) Iapp = −1.26 (−0.0084), (b) Iapp = −1.36
(−0.0091).

rotational sector to another with a lower number of STOs or no STOs at all. As a consequence,
the spike-time of the perturbed SC will be considerably advanced with respect to that of the
unperturbed cell. We illustrate this in Figures 14 and 15 for two different values of Iapp. In
Figure 14, the unperturbed SC displays one STO per spike. The pulses of inhibition applied
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Figure 13. Voltage traces showing the effects of changes in the value of Gh and Gp on the mixed-mode
oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold. The dimensionless
values of the parameters are given in parentheses. (a) Iapp = −2.3 (−0.0153) and (b) Iapp = −2.4 (−0.0160).
Top: Gh = 1.5 ( 1.0) and Gp = 0.5 ( 0.3333); bottom: Gp = 0.6 ( 0.4) and (a) Gh = 0.95 ( 0.6333), (b) Gh =
0.94 ( 0.6267).

at tpert = 2.66 and tpert = 2.83 move the trajectory outside the funnel and cause the SC to
spike with no STOs. In Figure 15, the unperturbed SC has three STOs per spike. Pulses of
inhibition applied at tpert = 3.33 and tpert = 5.0 move the trajectory to sectors corresponding
to two and one STO per spike, respectively, and a pulse of inhibition applied at tpert = 5.83
moves the trajectory outside the funnel and causes the SC to spike with no STOs.

5. Discussion. Stellate cells (SCs) of the medial entorhinal cortex (MEC) display sub-
threshold oscillations (STOs) and mixed-mode oscillations (MMOs) at theta frequencies [8, 9].
In these MMO patterns, spikes occur at the peak of STOs, though not at every cycle. STOs
found in single SCs are the result of the interaction between Ih and Ip [7, 8, 9]. It was recently
found that their frequency varies along the dorsal-to-ventral axis of the MEC, scaling with
the MEC grid-cells [3] that are believed to contain a neural map of the spatial environment
[4, 5, 6].

Previous theoretical work has focused on various aspects of SC dynamics using biophysical
(conductance-based) models: reproducing, via simulations, STOs, MMOs, and fully spiking
patterns [10, 12, 13, 14, 30], the computational study of resonant properties of SCs [14, 57] and



MIXED-MODE OSCILLATIONS IN STELLATE CELLS 1605

(a) (b)

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v
t
pert

=0          v
pert

=0

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v

t
pert

=1.66          v
pert

=−1.0

(c) (d)

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v

t
pert

=2.66          v
pert

=−1.0

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v

t
pert

=2.83          v
pert

=−1.0

(e) (f)

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v

t
pert

=3.83          v
pert

=−1.0

0 2 4 6 8 10
−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

t

v

t
pert

=6.66          v
pert

=−1.0

Figure 14. Voltage traces showing the effect of inhibitory perturbations at various times tpert on the mixed-
mode oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold for Gh = 1.5
( 1.0), Iapp = −2.3 (−0.0153). The dimensionless values of Gh and Iapp are given in parentheses.

the computational study of synchronization properties of networks including SCs [12, 10, 26].
In [10] we initiated a more detailed mechanistic study of the generation of STOs and

MMOs in the 7D SC model proposed in [12]. We considered there a rather restricted set
of parameters. Using reduction-of-dimensions techniques, we argued that this model can
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Figure 15. Voltage traces showing the effect of inhibitory perturbations at various times tpert on the mixed-
mode oscillatory patterns corresponding to trajectories starting in a vicinity of the slow manifold for Gh = 1.5
( 1.0), Iapp = −2.4 (−0.0160). The dimensionless values of Gh and Iapp are given in parentheses.

be approximated in the subthreshold regime by the 3D slow-fast system (1)–(3) studied in
this paper (the dimensional SC model), which accounts for the interactions between Ip and
Ih. Using computational techniques and dynamical systems ideas, we hypothesized that this
interaction is intrinsically nonlinear and that the generation of STOs and MMOs is governed
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by the 3D canard phenomenon.
In this paper we used analytical and computational tools to show that the 3D canard

phenomenon is the main player in the mechanism of generation of STOs in the SC model
(1)–(3) for a broad range of biophysically plausible parameter values that include those con-
sidered in [10]. The underlying dynamic structure also describes the onset of spikes but not
the spike dynamics. Once the oscillating trajectory escapes the subthreshold regime to the
spiking one, the reset properties of the h-current provide the additional mechanism needed
for the trajectory to return to the subthreshold regime and produce MMOs.

From the mathematical point of view, our results show that the SC model (1)–(3) satisfies
the conditions required by the theorems proposed in [17] (see section 4.4) to guarantee the
existence of MMOs. Thus, the SC model becomes a biologically plausible example of the
theory developed in [17]. Care has to be taken in the limiting case of a folded saddle-node
(μ→ 0), since the corresponding theory has still to be developed. Nonetheless, trends can be
deduced from the folded node analysis and by sufficiently decreasing the singular perturbation
parameter as shown in section 4.8. Examples related to other phenomena include those studied
in [16, 45].

From the mechanistic point of view, our results provide an analytical and geometric frame-
work to study various dynamic aspects of SCs: the role that the participating currents and
their interaction play in shaping the observed MMO patterns, some of the consequences of
these interactions when SCs receive external inputs (sinusoidal or synaptic-like), and the pre-
diction of the effect that different amounts of the participating currents may have on the
observed MMO patterns. These differences could be due to a heterogeneous distribution of
channels in the EC, to the effect of neuromodulators, or to changes due to development.

A very important component of the framework we refer to above is the singular funnel.
By calculating the strong canard it is possible to make qualitative predictions about whether
STOs are expected within the spiking pattern or not, i.e., which initial conditions in the
subthreshold regime lead to MMOs and which lead to fully spiking patterns. One can be
more explicit about the precise number of STOs by further calculating the secondary canards.
Changes in the parameters of the model are reflected in the singular funnel via changes in
the strong canard, changes in the secondary canards, or changes in the initial conditions in
the subthreshold regime due to variations in the trajectory reset values. So, for example,
the trajectory corresponding to a specific initial condition and a certain set of parameters
may enter the funnel while the trajectory corresponding to the same initial conditions and
a different set of parameters may be left outside. The tools required to make more accurate
quantitative predictions call for further research.

The results of this paper support our previous hypothesis [10] of the existence of a canard
geometric/dynamic structure as the main player in the mechanism of generation of STOs in
SCs. This canard structure is generated by the (nonlinear) nullsurfaces and the time scale
separation between the participating variables, and it has the potential of producing the
canard phenomenon. More specifically, STOs in SCs have been proposed to be sustained by a
“push-pull” interplay between Ip and Ih [7, 8]. In particular, Ih has been proposed to play a
major pacemaker role in the generation of STOs, providing a delayed feedback mechanism to
the voltage changes led by Ip. This mechanism depends on the dynamic (kinetic) properties
of Ih. There are various players in this interaction: the amount of Ih and Ip (expressed by the
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maximal conductances Gh and Gp), the relative speeds of the voltage and gating variables,
and the nonlinearities associated with the dynamic equations. Our results show that these are
encoded in the canard structure. Different sets of parameters lead to similar canard structures
which produce similar voltage traces: In our model, a decrease in Gh (reflecting a decrease
in the amount of Ih) leads to an increase in the “height” of the V -nullsurface. Since the
other nullsurfaces do not depend on the parameter of the model, for fixed values of Iapp and
low enough values of Gh, folded nodes no longer exist and trajectories will be attracted to
a stable fixed point (see Table 2). However, this can be reversed by increasing the value of
Iapp, which lowers the V -nullsurface. The fact that MMOs with the same number of STOs
per spike with roughly the same amplitude are obtained for different pairs of (Gh, Iapp) and
(Gh, Gp) (see Figures 12 and 13) shows that it is not a specific property of Ih and Ip that
creates the STOs but rather a property of the various appropriate balances these currents can
create, which are reflected in the generation of similar or “equivalent” canard structures. This
raises the question of whether internal homeostatic mechanisms exist that keep the number
of STOs per spike unchanged. On the other hand, as we mentioned earlier, the fact that the
STO frequency changes with Ih shows a way in which the canard mechanism can account for
the difference in frequencies experimentally observed in SCs along the ventral-to-dorsal axis
of the EC [3].

Spike-time response curve (STRC) techniques have been used to study the synchroniza-
tion properties of small networks including SCs [12, 25, 26], particularly to investigate how
synchronization depends on key ionic currents known to be important to the theta rhythm.
STRCs are functions that measure the effect of a spike of a presynaptic cell on the timing of
the next spike of the postsynaptic cell. (STRCs are essentially the same as phase response
curves [58, 59].) Our results also support the hypothesis that the canard structure is an im-
portant component in the mechanism of synchronization in networks including SCs and other
excitatory and inhibitory neurons.

There has been some controversy in the literature about whether the observed subthreshold
oscillations in SCs are intrinsically linear or nonlinear phenomena [14, 57]. As predicted in [10],
our results show that the latter is the most plausible case. Our results also show that the
interaction between Ip and Ih responsible for the generation of STOs involves both components
of Ih, not only the fast one; i.e., the slow component of Ih does not simply play a modulatory
role in the generation of STOs, but rather a dynamic one.

As occurs for many conductance-based models, the concept of a spiking threshold is not
well defined in the SC model we study here (see [60] for a discussion on the topic). There
are two ways in which spikes are generated in the SC model, leading to patterns whose
interspike intervals differ by roughly an order of magnitude. The first type corresponds to
initial conditions such that the trajectory is “captured” by the slow manifold S. The spiking
period between two such spikes is determined by the time it takes the trajectory to move
along the slow manifold. These trajectories may or may not enter the funnel. In either case,
the onset of spikes occurs when the trajectory moves away from the slow manifold along a fast
fiber towards the spiking regime. Once this occurs, spiking is unavoidable; i.e., the trajectory
does not have to cross any voltage threshold value to spike. In the nonlinear artificially spiking
model, the value of Vth only indicates that a spike has occurred so that it can be (artificially)
added to the voltage trace. The second type of spike corresponds to initial conditions such
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that the trajectory is never “captured” by the slow manifold S. These initial conditions are
above the fold-curve. The period between two such spikes is determined by the time it takes
the trajectory to move along a fast fiber (vertical direction); i.e., its order of magnitude is
ε. As for the first type, once the trajectory enters the subthreshold regime a spike will occur
without the need of a voltage threshold value. Spontaneous spikes of the second type are
expected to be rare, since reset voltage values are typically lower than that corresponding to
the fold-curve. However, trajectories may be forced to change from one spiking regime to the
other by external inputs. This may have consequences for network dynamics in the EC.

There are several aspects of the SC dynamics not studied in this paper. One of them is
how noise affects the MMO patterns. One important source of noise is the set of persistent
sodium channels [13, 61]. In [10] we showed that STOs are less regular and more robust when
persistent sodium channel noise is added to the SC model studied here. A second aspect is
spike clustering, where two or more spikes occur without interspersed STOs. Noisy MMOs and
clustering have been reproduced via simulations in the biophysical (conductance-based) model
presented in [13]. Whether or not this model has an underlying canard structure qualitatively
similar to the one we uncovered in this paper is still an open question.

Acknowledgments. We thank Tasso Kaper for his useful comments on an earlier draft of
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